(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 15.05.2019 Bulletin 2019/20

(21) Application number: 12810942.8

(22) Date of filing: 10.07.2012

(51) Int Cl.: B05C 5/00 (2006.01) B05C 11/10 (2006.01)
B05D 1/26 (2006.01) H05K 3/34 (2006.01)
B05C 5/02 (2006.01) B41J 2/04 (2006.01)
B41J 2/14 (2006.01) B65D 83/00 (2006.01)
H05K 3/00 (2006.01) H05K 3/12 (2006.01)
B23K 3/06 (2006.01)

(86) International application number: PCT/JP2012/067527

(87) International publication number: WO 2013/008799 (17.01.2013 Gazette 2013/03)

(54) DROPLET DISCHARGE DEVICE AND METHOD
TRÖPFCHENAUSSTOSSVORRICHTUNG UND VERFAHREN
DISPOSITIF ET PROCÉDÉ D’EXPULSION DE GOUTTELETTES

(84) Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(43) Date of publication of application: 21.05.2014 Bulletin 2014/21

(73) Proprietor: Musashi Engineering, Inc.
Mitaka-shi, Tokyo 181-0011 (JP)

(72) Inventor: IKUSHIMA, Kazumasa
Mitaka-shi
Tokyo 181-0011 (JP)

(74) Representative: TBK
Bavariaring 4-6
80336 München (DE)

(56) References cited:
EP-A2- 1 004 441
WO-A1-2008/108097
WO-A1-2008/108097
JP-A- 3 254 851
JP-A- 10 314 640
JP-B2- 3 904 668
US-B1- 6 253 957

Remarks:
The file contains technical information submitted after the application was filed and not included in this specification

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a droplet discharge device and method for high-accurately discharging a minute amount of liquid material ranging from a low-viscosity material, such as water, a solvent or a reagent, to a high-viscosity material, such as a solder paste, a silver paste or an adhesive, regardless of whether the liquid material contains filler or not.

[0002] Various techniques have hitherto been proposed in relation to a droplet discharge device for discharging a small amount of liquid material from a discharge opening by using a plunger that is moved reciprocally.

[0003] As an example of a droplet discharge device of the type hitting a tip of a plunger against a valve seat to discharge a liquid material in a droplet state, document WO 98/10251 A1 discloses a droplet discharge device for causing the liquid material to land on a workpiece after a droplet has departed from a nozzle, wherein a plunger is disposed in a flow path including a valve seat near an outlet of the flow path, the outlet communicating with the nozzle, such that a lateral surface of the plunger is not contacted with an inner wall of the flow path, and the tip of the plunger is moved toward the valve seat and is hit against the valve seat, thereby discharging the liquid material in the droplet state from the nozzle.

[0004] However, hitting the plunger against the valve seat raises the problems that the shape of the plunger is changed due to wear, and that wear dust or wear debris generates and contaminates the liquid material, or comes into a gap between the plunger and the valve seat, whereby satisfactory discharge is impeded.

[0005] In view of those problems, the applicant has proposed, as a droplet discharge device of the type discharging the liquid material without hitting the tip of the plunger against the valve seat, a droplet discharge device for discharging the liquid material in the droplet state by applying inertial force to the liquid material with operations of moving the plunger forward and stopping the forward movement of the plunger, wherein the device includes a plunger position determining mechanism that specifies a position of the tip of the plunger upon the stop of the forward movement to be held near an inner wall of a liquid chamber, which is located ahead in an advancing direction of the plunger (see document WO 2008/108097 A1).

[0006] Furthermore, document WO 98/16323 A1 discloses a fluid droplet applying apparatus in which a pressure wave is formed by displacing an end surface of a rod forward and backward inside a chamber through a very small stroke with high acceleration and large force by employing a drive device, and the pressure wave is propagated through a material in the chamber, thus causing the material to be discharged from a nozzle opening.

[0007] Meanwhile, with further reduction in size and weight of electronic equipment, reduction in size and weight of electronic components incorporated in the electronic equipment has also been progressed in recent years. For instance, a component having mounting dimensions of 400 \(\mu \text{m} \times 200 \mu \text{m} \), called the "0402 component", which can greatly reduce a mount area, has been practically mounted since about 2005. The 0402 component is mounted by solder printing using a metal plate at present. However, there is a problem of requiring a con-trivance, such as half-etching, in a situation where the 0402 component is present together with large-sized components. Another problem is that a coating amount (coating thickness) has to be controlled individually. For that reason, the mounting with the printing is poor in yield. Moreover, component layout is limited in some cases when good printing performance is to be ensured.

[0008] In the droplet discharge device using the plunger that is moved reciprocally, the above-mentioned problems are not caused because the liquid material can be controlled with the operation of the plunger. In that type of device, however, there is not yet realized a technique of high-accurately discharging a droplet of a liquid, such as a solder paste, in a minute volume (e.g., several tens to several hundreds \(\mu \text{m} \) in terms of a diameter of the landed droplet), which is required for a small-sized component, without contacting the plunger with the valve seat.

[0009] According to document US 6,253,957 B1, in an apparatus for dispensing small amounts of liquid material a valve operated dispenser and a control for moving the valve member with respect to a valve seat in rapid successions are provided. Rigid valve seats as well as resilient valve seats can be provided. Separation of a droplet occurs by setting the plunger onto the respective valve seat.

[0010] Document EP 1 004 441 A2 discloses an inkjet printer and an inkjet printing method. A liquid droplet is discharged by means of a push-pull method. Here, a pulling back step is executed at the beginning of a discharge process while a step of moving the plunger backwards is executed after a step of moving the plunger forwards.

[0011] The present invention is intended to high-accurately discharge a minute droplet in a droplet discharge device, which employs a reciprocally moving plunger, without contacting the plunger with an inner wall of a liquid chamber (valve seat).

[0012] The present invention is further intended to discharge various types of liquids ranging from a low-viscosity liquid to a high-viscosity liquid in the same droplet discharge device.

[0013] It is the object of the invention to provide a corresponding droplet discharge device and method, respectively.

[0014] The object of the invention is achieved by a droplet discharge device according to claim 1 and a method according to claim 7. Advantageous embodiments of
the present invention are set out in the dependent claims.

Means for Solving the Problems

[0015] According to a first aspect of the present invention, there is provided a droplet discharge device comprising a discharge path having an end that constitutes a discharge opening, a plunger, a liquid chamber into which the plunger is inserted, a plunger driving mechanism that moves the plunger forward and backward, and a plunger position determining mechanism that specifies a position of a tip portion of the plunger, the liquid material being discharged in a droplet state by applying inertial force to the liquid material with forward movement of the plunger in a state where the tip portion of the plunger and an inner wall of a liquid chamber are not contacted with each other, wherein a minute droplet is formed by moving the plunger forward to push the liquid material out of the discharge opening in an amount necessary to form a droplet of a desired size, and then by moving the plunger backward to divide the liquid material having been pushed out of the discharge opening.

[0016] According to a second aspect of the present invention, in the invention according to the first aspect, the discharge path includes a first flow path having an end that constitutes the discharge opening, and a second flow path, which is communicated with the first flow path and the liquid chamber and which has a larger diameter than the first flow path.

[0017] According to a third aspect of the present invention, in the invention according to the second aspect, after moving the plunger backward and dividing the liquid material having been pushed out of the discharge opening, the plunger is further moved backward to form an air-liquid interface in the first flow path or the second flow path, and the movement of the plunger is then stopped.

[0018] According to a fourth aspect of the present invention, in the invention according to the first aspect, after moving the plunger backward and dividing the liquid material having been pushed out of the discharge opening, the plunger is further moved backward to form an air-liquid interface in the discharge path, and the movement of the plunger is then stopped.

[0019] According to a fifth aspect of the present invention, in the invention according to the third or fourth aspect, the minute droplet is successively formed by moving the plunger forward from a plunger position, which is given after forming the air-liquid interface in the discharge path and stopping the movement of the plunger, to push the liquid material out of the discharge opening in an amount necessary to form a droplet of a desired size, and then by moving the plunger backward to divide the liquid material having been pushed out of the discharge opening.

[0020] According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, an inner diameter of the discharge opening is several tens μm or less.

[0021] According to a seventh aspect of the present invention, there is provided a droplet discharge method for discharging a liquid material in a droplet state by applying inertial force to the liquid material with forward movement of a plunger in a state where a tip portion of the plunger and an inner wall of a liquid chamber are not contacted with each other, by employing a droplet discharge device comprising a discharge path having an end that constitutes a discharge opening, the plunger, the liquid chamber into which the plunger is inserted, a plunger driving mechanism that moves the plunger forward and backward, and a plunger position determining mechanism that specifies a position of the tip portion of the plunger, wherein the droplet discharge method includes a pushing step of moving the plunger forward to push the liquid material out of the discharge opening in an amount necessary to form a droplet of a desired size, and a dividing step of moving the plunger backward to divide the liquid material having been pushed out of the discharge opening, to thereby form the minute droplet.

[0022] According to an eighth aspect of the present invention, in the invention according to the seventh aspect, the droplet discharge method further includes a sucking step of, after the dividing step, further moving the plunger backward to form an air-liquid interface in the discharge path, and then stopping the movement of the plunger.

[0023] According to a ninth aspect of the present invention, in the invention according to the seventh or eighth aspect, the liquid material is a liquid material containing a solid substance, and a distance between the tip portion of the plunger and the inner wall of the liquid chamber in the pushing step is set larger than the solid substance.

[0024] According to a tenth aspect of the present invention, in the invention according to any one of the seventh to ninth aspects, an inner diameter of the discharge opening is several tens μm or less.

[0025] According to an eleventh aspect of the present invention, in the invention according to any one of the seventh to tenth aspects, the liquid material has viscosity of 10000 mPa-s or more.

[0026] According to a twelfth aspect of the present invention, in the invention according to any one of the seventh to eleventh aspects, a forward movement distance of the plunger in the pushing step is larger than a distance between the tip portion of the plunger and the inner wall of the liquid chamber immediately after the pushing step. In this respect, the forward movement distance of the plunger in the pushing step is set to be preferably 3 times or more, more preferably 6 times or more, and even more preferably 10 times or more the distance between the tip portion of the plunger and the inner wall of the liquid chamber immediately after the pushing step.
Advantageous Effect of the Invention

According to the present invention, the droplet can be high-accurately discharged in a minute volume at which it has so far been impossible to discharge the droplet without contacting the plunger (valve body) with the inner wall of the liquid chamber (valve seat).

Furthermore, since the valve body and the valve seat are not contacted with each other, friction debris or particles are not generated and hence not mixed into the liquid material. Accordingly, contamination-free discharge of the liquid material in a minute amount can be realized.

In addition, even when the liquid material contains a solid substance, e.g., filler, reduction of discharge accuracy caused by collapse or breakage of the solid substance is avoided, and the discharge can be performed without impairing the function and the properties of the liquid material.

Brief Description of the Drawings

Fig. 1 is a side sectional view of principal part of a droplet discharge device to explain the relation between a position of a plunger and a state of a liquid material. More specifically, Fig. 1(a) illustrates a first stage, Fig. 1(b) illustrates a second stage, Fig. 1(c) illustrates a third stage, Fig. 1(d) illustrates a fourth stage, Fig. 1(e) illustrates a fifth stage, Fig. 1(f) illustrates a sixth stage, Fig. 1(g) illustrates a seventh stage, and Fig. 1(h) illustrates an eighth stage. Fig. 2 illustrates examples of modified configuration of the plunger and a discharge path. More specifically, Fig. 2(a) illustrates a first modification example, Fig. 2(b) illustrates a second modification example, Fig. 2(c) illustrates a third modification example, Fig. 2(d) illustrates a fourth modification example, Fig. 2(e) illustrates a fifth modification example, Fig. 2(f) illustrates a sixth modification example, Fig. 2(g) illustrates a seventh modification example, and Fig. 2(h) illustrates an eighth modification example.

Fig. 3 is a side sectional view of the droplet discharge device including a plunger position determining mechanism. More specifically, Fig. 3(a) illustrates a state where a movable member is moved forward, and Fig. 3(b) illustrates a state where the movable member is moved backward.

The present invention relates to a technique of discharging a liquid material from a discharge opening at an end of a discharge path, formed to extend in an advancing direction of a plunger, with forward and backward movement of the plunger, which is inserted through an insertion hole communicating with a liquid chamber and which is moved forward and backward in a state where a tip of the plunger is not contacted with an inner wall of the liquid chamber. With the technique of the present invention, various types of liquid materials ranging from a low-viscosity material to a high-viscosity material can be high-accurately discharged in a minute amount from the discharge opening in a droplet state regardless of whether the liquid material contains filler no not.

According to the present invention, the liquid material ranging from a low-viscosity material, such as water, a solvent, or a reagent, to a high-viscosity material, such as a solder paste, a silver paste or an adhesive can be discharged in a minute amount. The present invention is featured in that it can be applied to a high-viscosity liquid having high viscosity, such as solder cream, which is not suitable for discharge with an ink jet type device. Here, the term "high-viscosity liquid" implies a liquid having viscosity of 10000 to 500000 mPa·s, for example. A technique of discharging a minute amount of liquid having viscosity of 20000 mPa·s to 500000 mPa·s, particularly a liquid having viscosity of 30000 mPa·s to 50000 mPa·s, in a droplet state without contacting the plunger (valve body) with the inner wall of a liquid chamber (valve seat) has not been realized at an industrial level up to date.

The term "discharge in a minute amount" used in the present invention implies discharge of a droplet landed at a diameter of several tens to several hundreds μm, for example, or a droplet having a volume of 1 nl or less (preferably 0.1 to 0.5 nl or less). The present invention is featured in that a droplet can be formed even with the discharge opening having a diameter of several tens μm or less (preferably 30 μm or less).

One embodiment for carrying out the present invention will be described below with reference to Fig. 1. Fig. 1 is a side sectional view of principal part of a droplet discharge device (dispenser). The structure of the principal part (discharge unit) of the droplet discharge device is first described.

The discharge unit illustrated in Fig. 1 includes a plunger 30, a liquid chamber 50, an insertion hole 51, a liquid feed path 52, and a discharge path 12.

The liquid chamber 50 is a space in which a tip portion 31 of the plunger is positioned and which is filled with a liquid material. The liquid chamber 50, illustrated in Fig. 1, is formed in a cylindrical shape, and it has an upper surface, a lateral surface, and a bottom surface.

The insertion hole 51 is formed in the upper surface of the liquid chamber 50. The plunger 30 is inserted through the insertion hole 51, and a tip of the plunger 30 is positioned inside the liquid chamber 50. A width (diameter) of the liquid chamber 50 is larger than a width (diameter) of the plunger 30, and an outer periphery of the plunger 30 and the lateral surface of the liquid chamber 50 are always held in a noncontact state. The plunger 30 is connected to a plunger driving mechanism (not illustrated) such that the plunger 30 is linearly moved toward the discharge path 12 or away from the discharge path 12. While the tip portion 31 has a flat shape in Fig.
The liquid feed path 52 is connected to the lateral surface of the liquid chamber 50. The liquid material is supplied to the liquid chamber 50 from a liquid material supply unit (not illustrated), such as a liquid material reservoir, through the liquid feed path 52.

The discharge path 12 communicating with the outside is connected to the bottom surface of the liquid chamber 50. With the plunger moving forward, the liquid material is discharged from the outer surface of the discharge opening 11 at the end of the discharge path 12. The discharge opening 11 has an inner diameter of 10 to 100 μm, for example. The discharge path 12 is preferably formed as an orifice that is provided by the first flow path 21 including the discharge opening, and a second flow path 22 having a larger diameter than the first flow path (see Figs. 2(e) and 2(g)). The discharge path 12 may be constituted by a first flow path 21 including the discharge opening, and a second flow path 22 having a larger diameter than the first flow path (see Fig. 2(f)). In such a case, the second flow path 22 may be formed in a truncated conical shape (see Figs. 2(a) to 2(d)). When the discharge path has a larger diameter on the side closer to the liquid chamber than on the side closer to the discharge opening, the discharge path provides an effect of accelerating the liquid material that has entered the discharge path.

If the discharge path is too long, the droplet is not satisfactorily divided in some cases. Such a problem tends to occur particularly in the case of the liquid material having high viscosity. For that reason, the discharge path 12 is preferably formed as an orifice that is provided by boring a wall surface 53 of the liquid chamber. The length of the discharge path is set to be 100 μm to 1000 μm, for example. As an alternative, a recess having a larger diameter than the plunger 30 may be formed in the wall surface 53 of the liquid chamber, and a recess surface facing the tip portion 31 of the plunger may be formed at a position closer to the discharge opening than in the above-mentioned configurations. In such a case, a portion from the recess surface facing the tip portion 31 of the plunger to the discharge opening 11 serves as the discharge path 12 (see Fig. 2(f)). As still another modification, the wall surface 53 may be formed as a curved surface such that the wall is relatively thin in its central portion where the discharge path 12 is positioned (see Fig. 2(g)).

The plunger driving mechanism is, for example, an actuator that utilizes a motor, a piezoelectric element, an elastic member like a spring, air pressure, etc. The plunger driving mechanism may be constituted by using appropriate means depending on use. However, when various types of liquids ranging from a low-viscosity liquid to a high-viscosity liquid are to be discharged, it is preferable to use means capable of adjusting a stroke of the plunger over a certain range (i.e., drive means other than the piezoelectric element). When the discharge in a minute amount is performed, the plunger stroke is 5 to 1000 μm, for example. However, when the liquid having high viscosity is discharged, the plunger stroke is preferably set to a longer distance, e.g., 50 to 1000 μm.

A position of the tip portion of the plunger in its most advanced position is specified by the plunger positioning mechanism. In order to apply sufficient inertial force to the liquid material that is present ahead in the advancing direction of the plunger, a distance from an end surface of the plunger to the wall surface 53 of the liquid chamber, which faces the tip portion 31 of the plunger, is preferably set to be sufficiently short. As an inner diameter of the discharge path (nozzle) reduces, the force applied from the plunger to the liquid material needs to be increased. Thus, the distance (clearance) between the end surface of the plunger and the wall surface of the liquid chamber needs to be reduced correspondingly.

For example, to form a droplet in a diameter of 300 μm or less in the landed state with the liquid having high viscosity, the clearance is preferably set to the range of 1 to 50 μm and more preferably the range of 1 to 30 μm. However, when the liquid material contains a solid substance, such as filler, the most advanced position is set such that the clearance is larger than the solid substance. For example, when the liquid material is solder cream containing particles with a mean particle diameter of 10 μm, the clearance needs to be larger than 10 μm (preferably, the clearance is set to be 1.5 times or more the size (particle diameter) of the solid substance). This aims to avoid the problem that solder particles may be collapsed and deposited near an inlet of the discharge path, and discharge accuracy may be reduced significantly.

Further specifics of the position determining mechanism is added. The plunger position determining mechanism further specifies a position of the plunger in its most retreated position. The reason is that when the liquid material having low viscosity is discharged, inertial force necessary to form a droplet can be applied by moving the plunger at a speed over a certain level, but the plunger stroke needs to be set to a larger distance in order to move the plunger at a higher speed when the liquid material having high viscosity is discharged. Generally, in the case of discharging a minute amount of liquid material having high viscosity (e.g., a liquid having viscosity of 10000 mPa·s or more), the plunger stroke needs to be set sufficiently larger than the clearance. The plunger stroke is preferably set to be 3 times or more, more preferably 6 times or more, and even more preferably 10 times or more and further the clearance at the most advanced position of the plunger.

One example of the plunger position determining mechanism will be described below with reference to Fig. 3. The plunger position determining mechanism described below is the same as disclosed in document WO...
The most advanced position of the plunger is determined in accordance with the following procedures.

First, an electromagnetic selector valve 72 is changed over to a state where a front piston chamber 43 and the outside are communicated with each other, and a movable member 40 is moved such that the movable member 40 comes into its most advanced state. Because the front piston chamber 43 is opened to the outside, a piston 33 is moved forward relative to a body 71 by the action of a coil spring 45, and a front contact portion 32 comes into contact with a front stopper 41, whereby the piston 33 is stopped. Then, a micrometer 46 is rotated to move a rear stopper 42 forward and to make the rear stopper 42 contacted with a rear contact portion 34, whereby the plunger 30 is fixed to the body 71.

The body 71 is moved forward and is fixed in a state where the rear stopper 42 and the rear contact portion 34 are kept contacted with each other. Thus, the body 71 is stopped in a state where the tip portion 31 of the plunger 30 is located at a contact position 13 between the tip portion 31 of the plunger 30 and the inner wall of the liquid chamber 50. The movable member 40 is rotated such that only the movable member 40 is moved backward, thereby specifying the most advanced position. A driving unit 70 is then fixed to a base member 73.

Through operations described above, the most advanced position of the plunger 30 can be adjusted to a desired position at which the tip portion 31 of the plunger 30 is not contacted with the liquid chamber 50.

The most retreated position of the plunger is determined in accordance with the following procedures.

The micrometer 46 is rotated to move the rear stopper 42 backward, thus determining a distance through which the plunger 30 is to be moved backward in the discharge. After the distance through which the plunger 30 is to be moved backward has been determined, the micrometer 46 is fixed by a rotation lock member (not illustrated), e.g., a setting screw, such that the micrometer 46 will not rotate. Through operations described above, the procedures of setting the most retreated position of the plunger 30 are completed.

The droplet discharge device of the present invention is typically used in a state where the liquid material is discharged while a workpiece and the discharge opening are moved relative to each other. The droplet discharge device is mounted to an XYZ driving mechanism and is moved relative to a worktable on which the workpiece is placed. In the present invention, since the liquid is separated in the form of a droplet from the discharge opening and is landed on the workpiece, the discharge opening can be horizontally moved while it is held at a certain height.

One droplet is discharged at one operating position in some cases. In other cases, a plurality of droplets may be discharged to the same place to ensure a desired amount of the liquid material. If the discharge amount of the liquid material per shot is increased, the diameter of the landed droplet increases. Therefore, when the diameter of the landed droplet is not to be increased, it is preferable to obtain the desired amount of the liquid material with several shots. The droplet discharge device of the present invention can successively discharge the liquid at a high speed in units of minute amount. The droplet discharge device can be operated, for example, at a high tact of 100 shots or more per second.

The relation between the position of the plunger and the state of the liquid material will be described below.

Fig. 1(a) illustrates an initial state at the start of a series of discharge operations. In the initial state, the tip portion 31 of the plunger 30 is present at an operation start position at which the tip portion 31 is located farthest away from the discharge path 12 during the series of discharge operations. The liquid chamber 50 and the discharge path 12 are in a state filled with the liquid material. At that time, a portion of the discharge path 12 on the side closer to the discharge opening 11 may be in a state sucking a small amount of the atmosphere (air).

On that occasion, with the forward movement of the plunger 30, the liquid material in the liquid chamber 50 is delivered into the discharge path 12, and the liquid material in the discharge path 12 reaches the discharge opening 11 at the end of the discharge path 12. Accordingly, the atmosphere (air) present inside the discharge path 12 is discharged to the outside.

Fig. 1(b) illustrates a state where the plunger is moved forward from the operation start position of the plunger in Fig. 1(a) until the liquid material in the discharge path 12 reaches the discharge opening (i.e., the end surface of the discharge path 12 on the side close to the discharge opening).

On that occasion, the liquid material having reached the discharge opening is pushed out of the discharge opening without being divided.

Fig. 1(c) illustrates a state where the plunger is further moved forward from the position of Fig. 1(b). In this state, the liquid material having reached the discharge opening is pushed out of the discharge opening without being divided.

Fig. 1(d) illustrates a state where the forward movement of the plunger is stopped after further moving the plunger forward from the plunger position of Fig. 1(c). On that occasion, the liquid material is further pushed out of the discharge opening 11 at the end of the discharge path 12 without being divided over a region from the liquid chamber 50 to a foremost end of the liquid material.

It is preferable to forcibly perform the forward movement of the plunger 30 in the above-described steps, and to suddenly stop the plunger 30.

In that state, the tip portion 31 of the plunger 30 is present at its most advanced position at which the tip portion 31 is located nearest to the discharge path 12 during the series of discharge operations. With the plunger 30 moved to the most advanced position, the liquid material in an amount necessary to form a droplet of a desired size is pushed out of the discharge opening 11. While the most advanced position differs depending on...
the type of the liquid material and the size of the droplet to be formed, the tip portion 31 of the plunger 30 is not contacted with the inner surface of the liquid chamber in any case.

[0063] Fig. 1(e) illustrates a state where the plunger is slightly moved backward from the plunger position (most advanced position) of Fig. 1(d).

[0064] With the backward movement of the plunger 30, a proportion of the volume of the plunger occupying an inner space of the liquid chamber 50 is reduced, and force directing toward the inside of the liquid chamber 50 acts on the liquid material in the discharge path 12. Correspondingly, force further acts on the liquid material present outside the discharge opening 11 (i.e., the liquid material pushed out in continuity with the liquid material in the discharge path 12) in a direction of withdrawing the liquid material back into the discharge path 12. Therefore, the liquid material having been pushed out of the discharge opening undergoes the inertial force acting in the advancing direction of the plunger and the force acting in the retreating direction of the plunger, thus causing a droplet to start to be formed. In other words, the liquid material having been pushed out of the discharge opening 11 in continuity with the liquid material in the discharge path 12 undergoes an action of dividing the liquid material at a position near the discharge opening.

[0065] Fig. 1(f) illustrates a state where the plunger is further moved backward from the position of Fig. 1(e).

[0066] With the further backward movement of the plunger 30, the action of dividing the liquid material having been pushed out of the discharge opening 11 is further increased. As a result, the liquid material pushed out of the discharge opening 11 in continuity with the liquid material in the discharge path 12 is divided at the position near the discharge opening, whereby a droplet is formed.

[0067] In Fig. 1(f), portions of the liquid material near the division position thereof on the side continuing from the discharge path 12 and on the divided droplet side are each illustrated in the form of a thin string. Generally, a high-viscosity material is often divided in such a way of providing string-like extensions as illustrated in Fig. 1(f). However, division behaviors depend on characteristics of materials, environmental conditions such as temperature and humidity, etc., and all high-viscosity materials do not always provide the above-mentioned string-like extensions when divided.

[0068] Fig. 1(g) illustrates a state where the plunger is further moved backward from the plunger position of Fig. 1(f). The portion of the liquid material having been pushed out of the discharge opening 11 but remaining on the side closer to the discharge path 12 is sucked into the discharge path 12 with the further backward movement of the plunger 30.

[0069] To be ready for the next discharge, a region of the discharge path 12 on the side closer to the discharge opening 11 is preferably brought into a state sucking a minute amount of the atmosphere (air). In other words, it is preferable to establish a state where an air-liquid interface exists inside the discharge path 12. The presence of the air-liquid interface can prevent drying of the liquid material, and can avoid contamination of surrounding environments with liquid leakage in a state standby for the next series of discharge operations. A point to be taken care of here is that the atmosphere (air) should not be sucked into the liquid chamber 50 beyond the discharge path 12. If the atmosphere (air) is sucked into the liquid chamber 50, the discharge accuracy would be affected adversely.

[0070] In the case of the discharge path 12 including the first flow path 21 and the second flow path 22, when a boundary between the first flow path 21 and the second flow path 22 does not form a step, the air-liquid interface may exist in any of the first flow path 21 and the second flow path 22 or at the boundary (For example, as in the case of the flow path having the shapes illustrated in Fig. 2(a) and 2(b)). Even when the boundary between the first flow path 21 and the second flow path 22 forms a step as illustrated in Fig. 2(f), the atmosphere (air) may be sucked into the second flow path 22 unless bubbles are formed. Additionally, the first flow path 21 having a cylindrical shape and the second flow path 22 having a cylindrical shape may be smoothly coupled to each other through a tapered boundary portion.

[0071] Fig. 1(h) illustrates a state where the plunger is further moved backward from the plunger position of Fig. 1(g) and is brought into an operation end position. Figs. 1(a) to 1(h) represent the series of discharge operations to form one droplet. The plunger position after one series of the discharge operations is located backward of the most advanced position. In such a state, a minute amount of the atmosphere (air) is sucked into the region of the discharge path 12 on the side closer to the discharge opening 11. Even when the atmosphere (air) is sucked into the discharge path 12, the problem of bubbles does not occur unless the sucked air reaches the liquid chamber 50. If the atmosphere flows into the liquid chamber 50, this would cause variations of the discharge amount and other problems. Accordingly, the atmosphere has to be avoided from flowing into the liquid chamber 50. When continuously performing the next series of discharge operations, the operation end position of the plunger is preferably set to be the same as the operation start position.

[0072] When the discharge operations are completely ended, it is preferable to close the discharge path 12 with the tip portion 31 of the plunger 30, and to prevent the liquid material from flowing out from the discharge opening 11.

[0073] While details of the present invention will be described below in connection with Examples, the present invention is in no way limited to the following Examples.

Example 1

[0074] A droplet was formed by the droplet discharge device illustrated in Fig. 1. The liquid material used in Example 1 was a solder paste (viscosity: 45000 mPa·s)
containing filler with a mean particle size of 6 μm. A volume of one droplet discharged in this Example was 0.2 nl, and a diameter of the landed droplet was 120 μm. From a test of forming several tens of droplets on a workpiece at a tact of 100 shots per second while moving the workpiece and the discharge opening relative to each other, it was confirmed as a result of measurement using a measuring device that dots having uniform shapes were formed.

Example 2

A droplet was formed by the droplet discharge device illustrated in Fig. 1. The liquid material used in Example 2 was an Ag paste (viscosity: 28 000 mPa·s) containing flake-shaped filler in the range of 1 to 10 μm. A volume of one droplet discharged in this Example was 0.17 nl, and a diameter of the landed droplet was 100 μm. From a test of forming several tens of droplets on a workpiece at a tact of 250 shots per second while moving the workpiece and the discharge opening relative to each other, it was confirmed as a result of measurement using a measuring device that dots having uniform shapes were formed.

Industrial Applicability

According to the present invention, high-accuracy discharge in a minute amount can be realized for materials, which have so far been regarded, in the fields of electronic and semiconductor industries, to be difficult in performing discharge in the minute amount, without contacting the plunger (valve body) with the inner wall of the liquid chamber (valve seat). For example, a paste material containing a soft metallic material, such as a solder paste, can be continuously discharged without collapsing the paste material and without causing clogging in the discharge device. The present invention can be applied to a wide range of field, such as application to a process of mounting small-sized components onto a substrate, and to a process of manufacturing a solar cell.

Furthermore, since the valve body and the valve seat are not contacted with each other, friction debris or particles are not generated and hence not mixed into the material (namely, contamination-free). Therefore, the present invention can suitably be further applied to industries of foods, pharmaceuticals, and so on.

In addition, since particles, solid substances, gel-like materials, structured materials, etc., including filler, are discharged in a flying way without destroying their structures, it is possible to effectively prevent clogging of the nozzle with destroyed matters.

List of Reference Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>discharge opening</td>
</tr>
<tr>
<td>12</td>
<td>discharge path</td>
</tr>
<tr>
<td>13</td>
<td>contact position</td>
</tr>
<tr>
<td>21</td>
<td>first flow path</td>
</tr>
<tr>
<td>22</td>
<td>second flow path</td>
</tr>
<tr>
<td>23</td>
<td>micrometer</td>
</tr>
<tr>
<td>24</td>
<td>liquid chamber</td>
</tr>
<tr>
<td>25</td>
<td>liquid feed path</td>
</tr>
<tr>
<td>26</td>
<td>wall surface of liquid chamber in facing relation to plunger</td>
</tr>
<tr>
<td>27</td>
<td>body</td>
</tr>
<tr>
<td>28</td>
<td>electromagnetic selector valve</td>
</tr>
<tr>
<td>29</td>
<td>base member</td>
</tr>
<tr>
<td>30</td>
<td>plunger</td>
</tr>
<tr>
<td>31</td>
<td>tip portion</td>
</tr>
<tr>
<td>32</td>
<td>front contact portion</td>
</tr>
<tr>
<td>33</td>
<td>piston</td>
</tr>
<tr>
<td>34</td>
<td>rear contact portion</td>
</tr>
<tr>
<td>35</td>
<td>movable member</td>
</tr>
<tr>
<td>36</td>
<td>front stopper</td>
</tr>
<tr>
<td>37</td>
<td>rear stopper</td>
</tr>
<tr>
<td>38</td>
<td>front piston chamber</td>
</tr>
<tr>
<td>39</td>
<td>rear piston chamber</td>
</tr>
<tr>
<td>40</td>
<td>coil spring</td>
</tr>
<tr>
<td>41</td>
<td>insertion hole</td>
</tr>
<tr>
<td>42</td>
<td>liquid feed path</td>
</tr>
<tr>
<td>43</td>
<td>wall surface of liquid chamber in facing relation to plunger</td>
</tr>
<tr>
<td>44</td>
<td>body</td>
</tr>
<tr>
<td>45</td>
<td>electromagnetic selector valve</td>
</tr>
<tr>
<td>46</td>
<td>base member</td>
</tr>
</tbody>
</table>

Claims

1. A droplet discharge device comprising a discharge path (12) having an end that constitutes a discharge opening (11), a plunger (30) comprising a tip portion (31), a liquid chamber (50) into which the plunger (30) is inserted, said liquid chamber (50) having an inner wall (53) comprising the discharge path (12), wherein said tip portion (31) faces the discharge path (12), a plunger driving mechanism configured to move the plunger (30) forward and backward, and a plunger position determining mechanism (40, 41, 42, 46) that specifies a position of the tip portion (31) of the plunger (30), the plunger (30) being configured to be moved forward into a state where the tip portion (31) of the plunger (30) and the inner wall (53) of the liquid chamber (50) are not contacted with each other to thereby apply inertial force to a liquid material, the liquid material being discharged in a droplet state, wherein the plunger (30) is configured to be moved forward to push the liquid material out of the discharge opening (11) in an amount necessary to form a droplet of a desired size and then to move the plunger (30) backward to divide the liquid material having been pushed out of the discharge opening (11), thereby forming a minute droplet.

2. The droplet discharge device according to claim 1,
wherein the discharge path (12) includes a first flow path (21) having an end that constitutes the discharge opening (11), and a second flow path (22), which is communicated with the first flow path (21) and the liquid chamber (50), and which has a larger diameter than the first flow path (21).

3. The droplet discharge device according to claim 2, wherein the plunger (30) is configured to be, after moving the plunger (30) backward and dividing the liquid material having been pushed out of the discharge opening (11), further moved backward to form an air-liquid interface in the first flow path (21) or the second flow path (22), and to be then stopped.

4. The droplet discharge device according to claim 1, wherein the plunger (30) is configured to be, after moving the plunger (30) backward and dividing the liquid material having been pushed out of the discharge opening (11), further moved backward to form an air-liquid interface in the discharge path (12), and to be then stopped.

5. The droplet discharge device according to claim 3 or 4, wherein the plunger (30) is configured to be moved forward from a plunger position which is given after forming the air-liquid interface in the discharge path and stopping the movement of the plunger, to push the liquid material out of the discharge opening (11) in an amount necessary to form a droplet of a desired size, and then to be moved backward to divide the liquid material having been pushed out of the discharge opening (11), thereby successively forming the minute droplet.

6. The droplet discharge device according to any one of claims 1 to 5, wherein an inner diameter of the discharge opening is from 10 \(\mu \text{m} \) to 100 \(\mu \text{m} \).

7. A droplet discharge method for discharging a liquid material in a droplet state by applying inertial force to the liquid material with forward movement of a plunger (30) in a state where a tip portion (31) of the plunger (30) and an inner wall (53) of a liquid chamber (50) are not contacted with each other, by employing a droplet discharge device comprising a discharge path (12) having an end that constitutes a discharge opening (11) located in the inner wall (53), the plunger (30) whose tip portion (31) faces the discharge path (12), the liquid chamber (50) into which the plunger (30) is inserted, a plunger driving mechanism that moves the plunger (30) forward and backward, and a plunger position determining mechanism (40, 41, 42, 46) that specifies a position of the tip portion (31) of the plunger (30), wherein the droplet discharge method includes a pushing step of moving the plunger (30) forward to push the liquid material out of the discharge opening (11) in an amount necessary to form a droplet of a desired size; the droplet discharge method is characterised by a dividing step of moving the plunger (30) backward to divide the liquid material having been pushed out of the discharge opening (11), to thereby form a minute droplet.

8. The droplet discharge method according to claim 7, wherein the droplet discharge method further includes a sucking step of, after the dividing step, further moving the plunger (30) backward to form an air-liquid interface in the discharge path (12), and then stopping the movement of the plunger (30).

9. The droplet discharge method according to claim 7 or 8, wherein the liquid material is a liquid material containing a solid substance, and a distance between the tip portion (31) of the plunger (30) and the inner wall (53) of the liquid chamber (50) at the end of the pushing step is set larger than the solid substance.

10. The droplet discharge method according to any one of claims 7 to 9, wherein an inner diameter of the discharge opening is from 10 \(\mu \text{m} \) to 100 \(\mu \text{m} \).

11. The droplet discharge method according to any one of claims 7 to 10, wherein the liquid material has viscosity of 10000 mPa·s or more.

12. The droplet discharge method according to any one of claims 7 to 11, wherein a forward movement distance of the plunger (30) in the pushing step is larger than a distance between the tip portion (31) of the plunger (30) and the inner wall (53) of the liquid chamber (50) immediately after the pushing step.

Patentansprüche

1. Tröpfchenabgabegerät mit einem Abgabepfad (12), der ein Ende aufweist, das eine Abgabeöffnung (11) bestimmt, einem Kolben (30), der einen Spitzenabschnitt (31) umfasst, einer Flüssigkeitskammer (50), in die der Kolben (30) eingefügt ist, wobei die Flüssigkeitskammer (50) eine innere Wand (53) aufweist, die den Abgabepfad (12) umfasst, wobei der Spitzenabschnitt (31) zu dem Abgabepfad (12) gerichtet ist, einem Kolbenantriebsmechanismus, der konfiguriert ist, die Kolben (30) nach vorwärts und rückwärts zu bewegen, und einem Kolbenpositionsbestimmungsmechanismus (40, 41, 42, 46), der eine Position des Spitz-
Tröpfchenabgabegerät nach Anspruch 3 oder 4, wobei der Kolben (30) konfiguriert ist, in einem Zustand, in dem die Spitzenabschnitt (31) des Kolbens (30) und die innere Wand (53) der Flüssigkeitskammer (50) nicht miteinander in Berührung sind, nach vorwärts bewegt zu werden, um dabei eine Inertialkraft auf ein flüssiges Material aufzubringen, wobei das flüssige Material in einem Tröpfchenzustand abgegeben wird, wobei der Kolben (30) konfiguriert ist, nach vorwärts bewegt zu werden, um das flüssige Material aus der Abgabeöffnung (11) in einer Größe herauszuschieben, die notwendig ist, um ein Tröpfchen einer gewünschten Größe auszubilden, und dann den Kolben (30) nach rückwärts zu bewegen, um das flüssige Material, das aus der Abgabeöffnung (11) herausgeschoben wurde, zu teilen, um dabei ein kleines Tröpfchen auszubilden.

2. Tröpfchenabgabegerät nach Anspruch 1, wobei der Abgabepfad (12) einen ersten Strömungspfad (21), der ein Ende aufweist, das die Abgabeöffnung (11) bestimmt, und einen zweiten Strömungspfad (22), der mit dem ersten Strömungspfad (21) und der Flüssigkeitskammer (50) in Verbindung ist, und der einen größeren Durchmesser als der erste Strömungspfad (21) aufweist, hat.

3. Tröpfchenabgabegerät nach Anspruch 2, wobei der Kolben (30) konfiguriert ist, nach dem Bewegen des Kolbens (30) nach rückwärts und Teilen des flüssigen Materials, das aus der Abgabeöffnung (11) herausgeschoben wurde, weiter nach rückwärts bewegt zu werden, um eine Luft-Flüssigkeit-Schnittstelle in dem ersten Strömungspfad (21) oder dem zweiten Strömungspfad (22) auszubilden, und dann angehalten zu werden.

4. Tröpfchenabgabegerät nach Anspruch 1, wobei der Kolben (30) konfiguriert ist, nach dem Bewegen des Kolbens (30) nach rückwärts und Teilen des flüssigen Materials, das aus der Abgabeöffnung (11) herausgeschoben wurde, weiter nach rückwärts bewegt zu werden, um eine Luft-Flüssigkeit-Schnittstelle in dem ersten Abgabepfad (12) auszubilden, und dann angehalten zu werden.

5. Tröpfchenabgabegerät nach Anspruch 3 oder 4, wobei der Kolben (30) konfiguriert ist, von einer Kolbenposition nach vorwärts bewegt zu werden, die gegeben ist, nachdem die Luft-Flüssigkeit-Schnittstelle in dem Abgabepfad ausgebildet wurde, und die Bewegung des Kolbens angehalten wurde, um das flüssige Material aus der Abgabeöffnung (11) in einer Menge herauszuschieben, die notwendig ist, um ein Tröpfchen einer gewünschten Größe auszubilden, und dann nach rückwärts bewegt zu werden, um das flüssige Material, das aus der Abgabeöffnung (11) herausgeschoben wurde, zu teilen, und dabei außenwärts folgend das kleine Tröpfchen auszubilden.

6. Tröpfchenabgabegerät nach einem der Ansprüche 1 bis 5, wobei ein innerer Durchmesser der Abgabeöffnung von 10 μm bis 100 μm reicht.

8. Tröpfchenabgabeverfahren nach Anspruch 7, wobei das Tröpfchenabgabeverfahren außerdem einen Ansaugschritt hat, nach dem Teilungsschritt den Kolben (30) weiter nach rückwärts zu bewegen, um eine Luft-Flüssigkeit-Schnittstelle in dem Abgabepfad (12) auszubilden, und dann die Bewegung des Kolbens (30) anzuhalten.

9. Tröpfchenabgabeverfahren nach Anspruch 7 oder 8, wobei das flüssige Material ein flüssiges Material ist, dass einen festen Stoff enthält, und ein Abstand zwischen dem Spitzenabschnitt (31) des Kolbens (30) und der inneren Wand (53) der Flüssigkeitskammer (50) an dem Ende des Schiebeschritts größer als der feste Stoff ist.
10. Tröpfchenabgabeverfahren nach einem der Ansprüche 7 bis 9, wobei ein innerer Durchmesser der Abgaböffnung von 10 μm bis 100 μm reicht.

11. Tröpfchenabgabeverfahren nach einem der Ansprüche 7 bis 10, wobei das flüssige Material eine Viskosität von 10000 mPa·s oder mehr aufweist.

12. Tröpfchenabgabeverfahren nach einem der Ansprüche 7 bis 11, wobei ein Abstand einer Vorwärtsbewegung des Kolbens (30) in dem Schiebeschritt größer als ein Abstand zwischen dem Spitzensabschnitt (31) des Kolbens (30) und der inneren Wand (53) der Flüssigkeitskammer (50) direkt nach dem Schiebeschritt ist.

Revendications

1. Dispositif de décharge de gouttelettes comprenant un trajet de décharge (12) ayant une extrémité qui constitue une ouverture de décharge (11), un plongeur (30) comprenant une partie de pointe (31), une chambre de liquide (50) dans laquelle le plongeur (30) est inséré, ladite chambre liquide (50) ayant une paroi intérieure (53) comprenant le trajet de décharge (12), où ladite partie de pointe (31) fait face au trajet de décharge (12), un mécanisme d’entraînement de plongeur configuré pour déplacer le plongeur (30) vers l’avant et vers l’arrière, et un mécanisme de détermination de position de plongeur (40, 41, 42, 46) qui spécifie une position de la partie de pointe (31) du plongeur (30), le plongeur (30) étant configuré pour être déplacé vers l’avant dans un état où la partie de pointe (31) du plongeur (30) et la paroi intérieure (53) de la chambre de liquide (50) ne sont pas en contact l’une avec l’autre de façon à appliquer une force inertielle à un matériau liquide, le matériau liquide étant déchargé dans un état de gouttelettes, dans lequel le plongeur (30) est configuré pour être déplacé vers l’avant pour pousser le matériau liquide hors de l’ouverture de décharge (11) en une quantité nécessaire pour former une gouttelette d’une taille souhaitée, et ensuite pour être déplacé vers l’arrière pour former une interface air-liquide dans le trajet de décharge (12), et pour être ensuite stoppé.

2. Dispositif de décharge de gouttelettes selon la revendication 1, dans lequel le trajet de décharge (12) comprend un premier trajet d’écoulement (21) ayant une extrémité qui constitue l’ouverture de décharge (11), et un deuxième trajet d’écoulement (22), qui communique avec le premier trajet d’écoulement (21) et la chambre de liquide (50), et qui a un diamètre supérieur au premier trajet d’écoulement (21).

3. Dispositif de décharge de gouttelettes selon la revendication 2, dans lequel le plongeur (30) est configuré pour être, après déplacement du plongeur (30) vers l’arrière et division du matériau liquide qui a été poussé hors de l’ouverture de décharge (11), encore déplacé vers l’arrière pour former une interface air-liquide dans le premier trajet d’écoulement (21) ou le deuxième trajet d’écoulement (22), et pour être ensuite stoppé.

4. Dispositif de décharge de gouttelettes selon la revendication 1, dans lequel le plongeur (30) est configuré pour être, après déplacement du plongeur (30) vers l’arrière et division du matériau liquide qui a été poussé hors de l’ouverture de décharge (11), encore déplacé vers l’arrière pour former une interface air-liquide dans le trajet de décharge (12), et pour être ensuite stoppé.

5. Dispositif de décharge de gouttelettes selon la revendication 3 ou 4, dans lequel le plongeur (30) est configuré pour être déplacé vers l’avant à partir d’une position de plongeur qui est donnée après formation de l’interface air-liquide dans le trajet de décharge et arrêt du mouvement du plongeur, pour pousser le matériau liquide hors de l’ouverture de décharge (11) en une quantité nécessaire pour former une gouttelette d’une taille souhaitée, et ensuite pour être déplacé vers l’arrière pour diviser le matériau liquide qui a été poussé hors de l’ouverture de décharge (11), en formant ainsi successivement la gouttelette minuscule.

6. Dispositif de décharge de gouttelettes selon l’une quelconque des revendications 1 à 5, dans lequel le diamètre intérieur de l’ouverture de décharge est de 10 μm à 100 μm.

7. Procédé de décharge de gouttelettes pour décharger un matériau liquide à l’état de gouttelettes par application d’une force inertielle au matériau liquide avec le mouvement vers l’avant d’un plongeur (30) dans un état où une partie de pointe (31) du plongeur (30) et une paroi intérieure (53) d’une chambre de liquide (50) ne sont pas en contact l’une avec l’autre, par l’emploi d’un dispositif de décharge de gouttelettes comprenant un trajet de décharge (12) ayant une extrémité qui constitue une ouverture de décharge (11) située dans la paroi intérieure (53), le plongeur (30) dont la partie de pointe (31) fait face au trajet de décharge (12), la chambre de liquide (50) dans laquelle le plongeur (30) est inséré, un mécanisme d’entraînement de plongeur qui déplace le plongeur (30) vers l’avant et vers l’arrière, et un mécanisme de détermination de position de plongeur (40, 41, 42, 46) qui spécifie une position de la partie de pointe (31) du plongeur (30), le plongeur (30) étant configuré pour être déplacé vers l’avant dans un état où la partie de pointe (31) du plongeur (30) et la paroi intérieure (53) de la chambre de liquide (50) ne sont pas en contact l’une avec l’autre de façon à appliquer une force inertielle à un matériau liquide, le matériau liquide étant déchargé dans un état de gouttelettes, dans lequel le plongeur (30) est configuré pour être déplacé vers l’avant pour pousser le matériau liquide hors de l’ouverture de décharge (11) en une quantité nécessaire pour former une gouttelette d’une taille souhaitée, et ensuite pour déplacer le plongeur (30) vers l’arrière pour diviser le matériau liquide qui a été poussé hors de l’ouverture de décharge (11), en formant ainsi une gouttelette minuscule.
(40, 41, 42, 46) qui spécifie une position de la partie de pointe (31) du plongeur (30), dans lequel le procédé de décharge de gouttelettes comprend une étape de poussée consistant à déplacer le plongeur (30) vers l’avant pour pousser le matériau liquide hors de l’ouverture de décharge (11) en une quantité nécessaire pour former une gouttelette d’une taille souhaitée ; le procédé de décharge de gouttelettes est caractérisé par une étape de division consistant à déplacer le plongeur (30) vers l’arrière pour diviser le matériau liquide qui a été poussé hors de l’ouverture de décharge (11), de façon à former ainsi une gouttelette minuscule.

8. Procédé de décharge de gouttelettes selon la revendication 7, dans lequel le procédé de décharge de gouttelettes comprend en outre une étape d’aspiration consistant, après l’étape de division, à déplacer encore le plongeur (30) vers l’arrière pour former une interface air-liquide dans le trajet de décharge (12), et ensuite à stopper le mouvement du plongeur (30).

9. Procédé de décharge de gouttelettes selon la revendication 7 ou 8, dans lequel le matériau liquide est un matériau liquide contenant une substance solide, et la distance entre la partie de pointe (31) du plongeur (30) et la paroi intérieure (53) de la chambre de liquide (50) à l’extrémité de l’étape de poussée est établie plus grande que la substance solide.

10. Procédé de décharge de gouttelettes selon l’une quelconque des revendications 7 à 9, dans lequel le diamètre intérieur de l’ouverture de décharge est de 10 µm à 100 µm.

11. Procédé de décharge de gouttelettes selon l’une quelconque des revendications 7 à 10, dans lequel le matériau liquide a une viscosité de 10000 mPa.s ou plus.

12. Procédé de décharge de gouttelettes selon l’une quelconque des revendications 7 à 11, dans lequel la distance de mouvement vers l’avant du plongeur (30) dans l’étape de poussée est supérieure à la distance entre la partie de pointe (31) du plongeur (30) et la paroi intérieure (53) de la chambre de liquide (50) immédiatement après l’étape de poussée.
[Fig. 3]
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 9810251 A1 [0003] [0008]
- WO 2008108097 A1 [0005] [0008] [0046]
- WO 9816323 A1 [0006] [0008]
- US 6253957 B1 [0009]
- EP 1004441 A2 [0010]