RFID INLET ANTENNA AND RFID EMPLOYING SAME

The present invention provides an RFID inlet antenna comprising a resin base film and a metallic circuit formed via an adhesive layer on the surface of the resin base film. The RFID inlet antenna is prevented from removal of the metallic circuit by unauthorized detachment after the RFID inlet antenna is bonded to an item by a bonding material disposed in such a manner as to cover the metallic circuit.
Description

Technical Field

[0001] The present invention relates to an RFID inlet antenna comprising a resin base film and a metallic circuit formed via an adhesive layer on the surface of the resin base film, and an RFID using the antenna. The term RFID* used herein stands for "Radio Frequency IDentification," and refers to an IC tag that allows for individual identification under non-contacting conditions utilizing electric waves.

Background Art

[0002] RFID inlet antennas comprise a resin base film and a metallic circuit formed via an adhesive layer on the surface of the resin base film. In view of heat resistance and dimensional stability, a polyethylene terephthalate film, a polyethylene naphthalate film, or the like, is used as the resin base film. RFID refers to a system formed by mounting an IC chip on a metallic circuit of an RFID inlet antenna, and then applying a bonding material in such a manner as to cover the IP chip and the circuit to form a bonding material layer.

[0003] Such RFID inlet antennas often comprise an IC chip mounted on a metallic circuit, a bonding material layer formed by applying a bonding material in such a manner as to cover the circuit and the chip, and a release paper covering the bonding material layer; and are distributed in this form. In this case, the end user removes the release paper, and attaches the bonding material layer to an item (e.g., an item for distribution) to treat the RFID as a control label. 

[0004] Although such an RFID inlet antenna is useful in that individual items can be identified under non-contacting conditions, the RFID inlet antenna (particularly the metallic circuit), once attached, may be detached from the item and fraudulently utilized (falsified) by attachment to another item.

[0005] As a measure to prevent such fraudulent utilization, for example, Patent Literature (PLT) 1 discloses an invention directed to "a non-contact data carrier label comprising (1) a substrate film, (2) a release agent layer provided on a portion of one side of the substrate film, (3) an adhesive embedding layer provided on the release agent layer side of the substrate film, the adhesive embedding layer having a noncontact data carrier element embedded therein and covering the whole release agent layer, wherein the adhesive embedding layer portion having the noncontact data carrier element embedded therein is substantially present over a releasable portion covering the release agent layer and a non-releasable portion not covering the release agent layer."

[0006] As an effect thereof, the following is disclosed in paragraph [0041] of PTL 1. "Because the detachment-destroyed noncontact data carrier label according to the present invention comprises an adhesive embedding layer that comprises a releasable portion and a non-releasable portion and that has a non-contact data carrier element embedded therein in such a manner that the non-contact data carrier element is present over the releasable and non-releasable portions, the non-contact data carrier element is destroyed at the same time by unauthorized detachment. Accordingly, unauthorized detachment is rendered pointless, and thus effectively prevented. In the detachment-destroyed noncontact data carrier label of the present invention, provision of slits on the periphery of the releasable portion of the adhesive embedding layer can facilitate cutting/destruction of the non-contact data carrier element by unauthorized detachment and can more reliably control the site of cutting/destruction."

[0007] However, when the present inventors prepared an RFID inlet antenna like the non-contact data carrier label disclosed in PTL 1, which comprises a substrate film (a resin base film) and a release agent layer (a release coating layer) formed thereon in such a manner as to be embedded in an adhesive embedding layer (a bonding material layer), and conducted a peeling test by bonding a cover member to the bonding material layer and pulling the resin base film and the cover member in opposite directions, cohesion of the bonding material layer was destroyed, and the RFID inlet antenna was detached with the bonding material layer as a boundary, without cutting/destroying the non-contact data carrier element (metallic circuit) (see Fig. 1). Thus, further improvement of the technique disclosed in PTL 1 is necessary to prevent unauthorized detachment.

[0008] Although PTL 1 proposes that slits on the periphery of the releasable portion are preferable to prevent unauthorized detachment, slitting currently known RFID inlet antennas is not easy. For example, slitting a resin base film may be considered; however, such slitting should be avoided, because such an RFID inlet antenna is produced by a roll-to-roll process using a resin base film as a substrate. Slitting an adhesive layer may be considered; however, such slitting is actually difficult, because the adhesive layer has a small thickness of about 1 to 5 μm. Accordingly, the development of a technique that can prevent unauthorized detachment without slitting has been desired.
Summary of Invention

Technical Problem

An object of the present invention is to provide an RFID inlet antenna comprising a resin base film and a metallic circuit formed via an adhesive layer on the surface of the resin base film, the antenna being prevented from removal of the metallic circuit by unauthorized detachment after the antenna is bonded to an item by a bonding material disposed in such a manner as to cover the metallic circuit.

Solution to Problem

The present inventors conducted extensive research to achieve the above object. As a result, the inventors found that the above object can be achieved by forming a specifically patterned release coating layer on a portion of the interface between a resin base film and an adhesive layer. The present invention has been accomplished based on this finding.

More specifically, the present invention provides the following RFID inlet antenna and RFID.

1. An RFID inlet antenna comprising:
   a resin base film;
   a metallic circuit formed via an adhesive layer on the surface of the resin base film;
   a release coating layer provided on a portion of the interface between the resin base film and the adhesive layer; and
   a bonding material disposed in such a manner as to cover the metallic circuit; and
   the antenna being bonded to an item by the bonding material,
   
   (1) wherein the bonding strength between the release coating layer and the resin base film is weaker than the bonding strength between the adhesive layer and the resin base film,
   (2) the release coating layer is formed in such a manner as to overlap at least a portion of the outer periphery of the RFID inlet antenna and a portion of the metallic circuit in an overhead view of the RFID inlet antenna.

2. The RFID inlet antenna according to item 1, wherein the metallic circuit is made of aluminum or copper.

3. The RFID inlet antenna according to item 1 or 2, wherein the bonding strength between the release coating layer and the resin base film is 1 N/15 mm or less.

4. The RFID inlet antenna according to any one of items 1 to 3, wherein the bonding strength between the adhesive layer and the resin base film is 3 N/15 mm or more.

5. The RFID inlet antenna according to any one of items 1 to 4, wherein the metallic circuit portion that overlaps an end portion of the release coating layer in the overhead view of the RFID inlet antenna has a line width of 1.2 mm or less and/or a thickness of 30 μm or less.

6. An RFID using the RFID inlet antenna according to any one of items 1 to 5.

The present invention is described below in detail.

The RFID inlet antenna of the present invention has the following features. The RFID inlet antenna comprises:
   a resin base film; a metallic circuit formed via an adhesive layer on the surface of the resin base film; a release coating layer provided on a portion of the interface between the resin base film and the adhesive layer; and a bonding material disposed in such a manner as to cover the metallic circuit, and the antenna is bonded to an item by the bonding material,
   
   (1) wherein the bonding strength between the release coating layer and the resin base film is weaker than the bonding strength between the adhesive layer and the resin base film,
   (2) the release coating layer is formed in such a manner as to overlap at least a portion of the outer periphery of the RFID inlet antenna and a portion of the metallic circuit in an overhead view of the RFID inlet antenna.

In the RFID inlet antenna of the present invention, in particular, based on the structural feature that the release coating layer is formed in such a manner as to overlap at least a portion of the outer periphery of the RFID inlet antenna and a portion of the metallic circuit in an overhead view of the RFID inlet antenna.
and a portion of the metallic circuit in an overhead view of the RFID inlet antenna, the metallic circuit is prevented from
removal by unauthorized detachment after the antenna is bonded to an item by a bonding material disposed in such a
manner as to cover the metallic circuit. Specifically, upon unauthorized detachment, the release coating layer is detached
to the resin base film before cohesion of the adhesive layer is destroyed; after complete detachment of the release
coating layer, detachment proceeds in such a manner that the metallic circuit is cut/destroyed, thus preventing detachment
of the metallic circuit in an intact state.

There is no limitation on the resin base film. Resin films known in the field of RFID inlet antennas can be used.
Examples of such usable films include polyethylene, polypropylene, polyethylene terephthalate, polyethylene naphthe-
late, polycarbonate, polyvinyl chloride, polyimide, amorphous polyethylene terephthalate, liquid crystal polymers, and
the like. Among these, at least one of polyethylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate,
polycarbonate, and polyvinyl chloride is preferable.

The type and thickness of the resin base film are usually selected according to the purpose and use of the final
RFID product. When RFID is bonded to an item by a bonding material disposed in such a manner as to cover a metallic
circuit and treated as a control label, polyethylene terephthalate, polyethylene naphthalate, and the like are preferably
used, and the thickness of the film is typically 25 to 50 \( \mu \text{m} \).

The adhesive layer is not particularly limited. For example, an adhesive such as an epoxy resin-, urethane
resin-, polyamide-, acrylic resin-, or vinyl chloride resin solution-type adhesive can be used to form an adhesive layer.
Among these, adhesives that have a bonding strength to the resin base film of 3 N/15 mm or more are preferable, and
those having a bonding strength to the resin base film of 4 to 6 N/15 mm are more preferable. When the bonding strength
between the adhesive layer and the resin base film is less than 3 N/15 mm, the metallic circuit may be destroyed due
to external force applied during processing, such as metallic circuit formation or IC chip mounting.

There is no limitation on the thickness of the adhesive layer. The thickness is preferably about 1 to 10 \( \mu \text{m} \), and
more preferably 3 to 7 \( \mu \text{m} \).

In the present invention, a release coating layer is provided on a portion of the face between the resin base
film and the adhesive layer. The release coating layer is not particularly limited insofar as the bonding strength between
the release coating layer and the resin base film is weaker than the bonding strength between the adhesive layer and
the resin base film, and the release coating layer is formed in such a manner as to overlap at least a portion of the outer
periphery of the RFID inlet antenna and a portion of the metallic circuit in an overhead view of the RFID inlet antenna
(see Fig. 2). The release coating layer thus formed prevents detachment of the metallic circuit in an intact state because
if unauthorized detachment occurs after the RFID inlet antenna is bonded to an item by a bonding material disposed in
such a manner to cover the metallic circuit, the release coating layer is detached from the resin base film before cohesion
of the bonding material layer is destroyed, and after complete detachment of the release coating layer, detachment
proceeds in such a manner that the metallic circuit is cut/destroyed.

Because unauthorized detachment can be done from any direction of the RFID inlet antenna, the release
coating layer is preferably provided in many (a plurality of) directions, insofar as the above requirements are met. In
reality, because RFID inlet antennas are generally square-shaped or rectangular, unauthorized detachment tends to
occur from one of the four corners of the square or rectangle. Considering this point, providing release coating layers
at the four corners is preferable. For example, four release coating layers are preferably disposed in such a manner that
each release coating layer overlaps one of the four corners of the square or rectangle and a portion of the metallic circuit.
Because the IC chip mounting portion, electrically connecting portion between the front and rear sides, and like portions
greatly relate to electrical properties and are more prone to external force by IC chip mounting, crimping processing,
etc. than the other portions, it is preferable for the release coating layer not to extend to these portions.

The release coating layer can be formed, for example, by preparing a release coating liquid by mixing 1 to 5 parts
by weight of polyethylene terephthalate per 100 parts by weight of an acrylic resin and diluting the mixture with an
organic solvent as desired, and applying the release coating liquid to a resin base film, followed by drying. As the release
coating liquid, other materials such as fluorine resins and silicone resins can also be used.

There is no limitation on the thickness of the release coating layer. The thickness is preferably about 0.6 to 1.8
\( \mu \text{m} \), and more preferably about 1.0 to 1.4 \( \mu \text{m} \). The bonding strength between the release coating layer and the resin
base film is preferably 1 N/15 mm or less; considering the durability during processing, the bonding strength is more
preferably 0.05 to 1 N/15 mm. When the bonding strength between the release coating layer and the resin base film is
more than 1 N/15 mm, the metallic circuit may not be destroyed upon unauthorized detachment. The difference between
the bonding strength of the adhesive layer and the resin base film and the bonding strength between the release coating
layer and the resin base film is preferably 2 N/15 mm or more, and more preferably 3 to 5 N/15 mm.

The metallic circuit may be, for example, a circuit produced by forming at least one metal foil selected from the
group consisting of aluminum foil, copper foil, stainless steel foil, titanium foil, tin foil, and the like into a circuit shape by
a resist method (an exposure/development method). Among these metal foils, aluminum foil or copper foil is most
preferable from the viewpoint of economy and reliability. The aluminum foil is not limited to pure aluminum foil, and
includes aluminum alloy foils. Materials of metal foils may be, for example, pure aluminum foil and aluminum alloy foils
such as JIS (AA) 1030, 1N30, 1050, 1100, 8021 and 8079.

The line width and thickness of the metallic circuit are not limited. The line width is preferably 0.2 to 1.5 mm, and more preferably 0.4 to 0.8 mm. The thickness is preferably 7 to 60 μm, and more preferably 15 to 50 μm. In the present invention, the metallic circuit is cut/destroyed in the portion that overlaps an end portion of the release coating layer in an overhead view of the RFID inlet antenna. Therefore, it is preferable from the viewpoint of ease of cutting/destruction that at least the overlapped metallic circuit portion has a line width of 1.2 mm or less and/or a thickness of 30 μm or less. In particular, from the additional viewpoint of designing a fine-line metallic circuit, the thickness is preferably 30 μm or less.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the present invention, the metallic circuit is cut/destroyed in the portion that overlaps an end portion of the release coating layer in an overhead view of the RFID inlet antenna. Therefore, it is preferable from the viewpoint of ease of cutting/destruction that at least the overlapped metallic circuit portion has a line width of 1.2 mm or less and/or a thickness of 30 μm or less. In particular, from the additional viewpoint of designing a fine-line metallic circuit, the thickness is preferably 30 μm or less.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detachment, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.

In the RFID inlet antenna of the present invention, metallic circuits may be formed on both sides of the resin base film, rather than on one side thereof, via an adhesive layer. In this case, to prevent the detachment of the metallic circuits from both sides by unauthorized detention, a release coating layer may be formed on both sides of the resin base film. However, it is preferable from the viewpoint of economy that a release coating layer is formed only on the side on which unauthorized detachment is more likely to occur.
A metallic circuit was formed in the following manner. First, JIS 8079 aluminum foil with a thickness of 20 μm (produced by Toyo Aluminium K.K.) was prepared. Secondly, an adhesive prepared by mixing 10 parts by weight of LX-500 (an adhesive) and 1 part by weight of KW75 (an adhesive) (both produced by DIC Corporation) by a disper and diluting the mixture with an appropriate amount of an organic solvent was applied to the surface of the aluminum foil. The organic solvent was evaporated by drying using warm air at 60°C, thus forming an adhesive layer with a thickness of 3 μm. Subsequently, the release coating layer-formed side of the resin base film and the adhesive layer were bonded together, and then aging was performed at 40°C for 3 days to cure the adhesive. After the adhesive was cured, the aluminum foil was processed by an exposure/development system to form a metallic circuit (line width: 0.3 mm). An RFID inlet antenna was thereby produced.

Example 2

An RFID inlet antenna was produced in the same manner as in Example 1, except that the metallic circuit was formed by using a JIS 8079 aluminum foil with a thickness of 30 μm (produced by Toyo Aluminium K.K.).

Example 3

An RFID inlet antenna was produced in the same manner as in Example 1, except that the line width of the metallic circuit was 0.9 mm.

Example 4

An RFID inlet antenna was produced in the same manner as in Example 1, except that the line width of the metallic circuit was 1.2 mm.

Comparative Example 1

An RFID inlet antenna was produced in the same manner as in Example 1, except that the release coating layer was formed in such a manner as to overlap a portion of the metallic circuit in the RFID inlet antenna, but not to extend to a portion of the outer periphery of the resin base film in an overhead view of the RFID inlet antenna. That is, the release coating layer was embedded in the adhesive layer (see Fig. 1).

Test Example 1 (Peeling test)

A cover member (wood-free paper: 64 g/m²) was laminated via a bonding material on the metallic circuit-formed side of each of the RFID inlet antennas prepared in Examples 1 to 4 and Comparative Example 1. The bonding material was prepared by mixing 100 parts by weight of Binsol R-8510N (a bonding agent) and 1.7 parts by weight of Binsol B-45 (a bonding agent) (both produced by Ipposha Oil Industries Co., Ltd.) by a disper and diluting the mixture with an appropriate amount of an organic solvent. The bonding material was applied to the surface of the cover member and the organic solvent was evaporated using warm air at 60°C, thus forming a bonding material layer with a thickness of 30 μm. The bonding material layer and the metal circuit side of each of the RFID inlet antennas prepared in Examples 1 to 4 and Comparative Example 1 were bonded together, and aging was performed at 40°C for 2 days.

A peeling test was performed by pulling the resin base film and the cover member in the opposite directions at a rate of 50 mm/min. When the metallic circuit was destroyed and separated into the resin base film side and the cover member side, the RFID inlet antenna was evaluated as A. When the metallic circuit was not destroyed and remained on the resin base film side, the RFID inlet antenna was evaluated as B. Table 1 shows the evaluation results.

<table>
<thead>
<tr>
<th>Evaluation results</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
<th>Example 4</th>
<th>Comparative Example 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

The results of Table 1 clearly show that the RFID inlet antennas of Examples 1 to 4 comprising a release coating layer formed in such a manner as to overlap at least a portion of the outer periphery of the RFID inlet antenna and a portion of the metallic circuit in an overhead view of the RFID inlet antennas were subjected to the peeling test, the metallic circuit was destroyed and separated into the resin base film side and the cover member side, thus preventing unauthorized detachment and unauthorized use. In contrast, when the RFID inlet antenna of Comparative Example 1
was subjected to the peeling test, the metallic circuit was not destroyed and remained on the resin base side, thus failing to prevent unauthorized detachment and unauthorized use.

**Description of the Reference Symbols**

[0042]

1. Resin base film  
2. Release coating layer  
3. Adhesive layer  
4. Metallic circuit  
5. Bonding material  
6. Cover member  
10. Outer periphery of the RFID inlet antenna  
11. Releasable portion (release coating layer)  
12. Non-releasable portion  
13. Metallic circuit

**Claims**

1. An RFID inlet antenna comprising:
   a resin base film;  
a metallic circuit formed via an adhesive layer on the surface of the resin base film;  
a release coating layer provided on a portion of the interface between the resin base film and the adhesive layer; and  
a bonding material disposed in such a manner as to cover the metallic circuit; and  
the antenna being bonded to an item by the bonding material,

   (1) wherein the bonding strength between the release coating layer and the resin base film is weaker than the bonding strength between the adhesive layer and the resin base film,  
(2) the release coating layer is formed in such a manner as to overlap at least a portion of the outer periphery of the RFID inlet antenna and a portion of the metallic circuit in an overhead view of the RFID inlet antenna.

2. The RFID inlet antenna according to claim 1, wherein the metallic circuit is made of aluminum or copper.

3. The RFID inlet antenna according to claim 1 or 2, wherein the bonding strength between the release coating layer and the resin base film is 1 N/15 mm or less.

4. The RFID inlet antenna according to any one of claims 1 to 3, wherein the bonding strength between the adhesive layer and the resin base film is 3 N/15 mm or more.

5. The RFID inlet antenna according to any one of claims 1 to 4, wherein the metallic circuit portion that overlaps an end portion of the release coating layer in the overhead view of the RFID inlet antenna has a line width of 1.2 mm or less and a thickness of 30 μm or less.

6. An RFID using the RFID inlet antenna according to any one of claims 1 to 5.
Fig. 1

Cross-sectional view

Overhead view
**INTERNATIONAL SEARCH REPORT**

A. **CLASSIFICATION OF SUBJECT MATTER**

G06K19/077(2006.01)i, G06K19/07(2006.01)i, G06K19/10(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. **FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

G06K19/077, G06K19/07, G06K19/10

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched


Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. **DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2003-331248 A (Lintec Corp.), 21 November 2003 (21.11.2003), paragraphs [0009] to [0011], [0016]; fig. 1 to 4</td>
<td>1-4, 6</td>
</tr>
<tr>
<td>A</td>
<td>JP 2004-213614 A (Lintec Corp.), 29 July 2004 (29.07.2004), paragraphs [0015], [0016]; fig. 3, 4</td>
<td>1-6</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
  * “A” document defining the general state of the art which is not considered to be of particular relevance
  * “E” earlier application or patent but published on or after the international filing date
  * “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
  * “O” document referring to an oral disclosure, use, exhibition or other means
  * “P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search
13 September, 2012 (13.09.12)

Date of mailing of the international search report
25 September, 2012 (25.09.12)

Name and mailing address of the ISA/
Japanese Patent Office
Authorized officer
Facsimile No.
Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2000057292 A [0009]