EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 23.12.2015 Bulletin 2015/52

Application number: 13192123.1

Date of filing: 08.11.2013

Recessed groove for better suture retention

<table>
<thead>
<tr>
<th>Designated Contracting States:</th>
<th>Inventor: Bettuchi, Michael J. Madison, CT 06443 (US)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR</td>
<td>Representative: Maschio, Antonio Maschio & Soames IP Limited 20 Carlton Crescent Southampton, SO15 2ET (GB)</td>
</tr>
<tr>
<td>Priority: 09.11.2012 US 201213673148</td>
<td>References cited:</td>
</tr>
</tbody>
</table>

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND

1. Technical field

[0001] The present disclosure relates to surgical stapling apparatus including surgical buttresses which can be releasably attached to the surgical stapling apparatus, and in particular, to surgical stapling apparatus having sutures disposed within recessed grooves therein. Sutures join the surgical buttress to the surgical stapling apparatus such that the surgical buttress is released upon firing of the surgical stapling apparatus.

2. Background of Related Art

[0002] Surgical stapling instruments that are used to sequentially or simultaneously apply one or more rows of fasteners to join segments of body tissues are well known in the art. The fasteners are typically in the form of surgical staples but two part polymeric fasteners can also be utilized. Such devices generally include a pair of jaw members having staple drive members in one of the jaws which in turn acts upon staple pushers to sequentially or simultaneously eject the staples from the staple cartridge. A blade can travel between the staple rows to longitudinally cut and/or open the stapled tissue between the rows of staples. Such instruments are disclosed, for example, in U.S. Pat. No. 3,079,606 and U.S. Pat. No. 3,490,675.

[0003] When the stapling instrument is actuated, longitudinally translating cams contact staple drive members in one of the jaws which in turn acts upon staple pushers to sequentially or simultaneously eject the staples from the staple cartridge. A blade can travel between the staple rows to longitudinally cut and/or open the stapled tissue between the rows of staples. Such instruments are disclosed, for example, in U.S. Pat. No. 3,079,606 and U.S. Pat. No. 3,490,675.

[0004] When stapling relatively thin or fragile tissues, it is important to effectively seal the staple line against air or fluid leakage. Additionally, it is often necessary to reinforce the staple line against the tissue to prevent tears in the tissue or pulling of the staples through the tissue. One method of preventing tears or pull through involves the placement of a biocompatible fabric reinforcing material, or a "surgical buttress," between the staple and the underlying tissue. In this method, a layer of surgical buttress is placed against the tissue and the tissue is stapled in a conventional manner through the surgical buttress. In more recent methods, the layer of surgical buttress is positioned on the stapling instrument itself prior to stapling the tissue. Some surgical staplers utilize fasteners or clips to temporarily connect surgical buttresses to each of the jaws of the staplers, i.e., one disposed on the staple cartridge and the other on the anvil plate.

[0005] The present application discloses a retention system for securing surgical buttresses to the jaws of the stapler. The retention system allows the surgical buttresses to secure to a tissue contacting surface of the staple cartridge and anvil plate by utilizing sutures disposed within recessed grooves along the tissue contacting surfaces of each of the staple cartridge and anvil plate. This retention system diminishes the likelihood of premature suture release during assembly, packing or firing.

[0006] Document EP2311386A2 discloses a staple cartridge according to the preamble of claim 1.

SUMMARY

[0007] The present invention relates to a staple cartridge as claimed in claim 1. Preferred embodiments are recited in the dependent claims.

[0008] According to one aspect of the present disclosure, an end effector for use with a surgical stapler comprising a staple cartridge having a tissue contacting surface having at least one recessed groove defined therein and an anvil plate having a tissue contacting surface having at least one recessed groove defined therein. A surgical buttress releasably disposed on the tissue contacting surfaces of each of the staple cartridge and the anvil plate. At least one suture is disposed within the at least one recessed groove of each of the staple cartridge and anvil plate and configured to retain the respective surgical buttress atop the respective tissue contacting surface. Preferably, the at least one recessed groove of the staple cartridge extends from a first outer side edge to a second outer side edge of the staple cartridge and the at least one recessed groove of the anvil plate extends from a first outer side edge to a second outer side edge of the anvil plate. A proximal recessed groove is positioned along a proximal portion of each of the staple cartridge and anvil plate and a distal recessed groove is positioned along a distal portion of each of the staple cartridge and the anvil plate.

[0009] The staple cartridge and the anvil plate each have a central longitudinal slot configured to enable a passage of a knife blade therethrough. The proximal recessed groove is positioned distally from a proximal end of the central longitudinal slot on each of the staple cartridge and anvil plate. The distal recessed groove is positioned proximally from a distal end of the central longitudinal slot on each of the staple cartridge and anvil plate.

[0010] In alternate embodiments, the distal recessed groove is positioned distally from a distal end of the central longitudinal slot on each of the staple cartridge and anvil plate.

[0011] In another aspect of the present disclosure, a staple cartridge for use with a surgical stapling apparatus comprising a cartridge body including a tissue contacting surface defining a plurality of staple retaining slots and having at least one recessed groove defined therein wherein a staple is disposed within each staple retaining slot of the cartridge body. A surgical buttress configured...
and dimensioned to substantially overlie at least a portion of the staple retaining slots of the cartridge body and at least one suture is disposed within the at least one recessed groove of the cartridge body and configured to retain the surgical buttress atop the tissue contacting surface. Preferably, the at least one recessed groove extends from a first outer side edge to a second outer side edge of the staple cartridge.

In embodiments, a proximal recessed groove is positioned along a proximal portion of each of the staple cartridge and a distal recessed groove is positioned along a distal portion of each of the staple cartridge. The staple cartridge has a central longitudinal slot configured to enable a passage of a knife blade therethrough. The proximal recessed groove is positioned distally from a proximal end of the central longitudinal slot on the staple cartridge. The distal recessed groove is positioned proximally from a distal end of the central longitudinal slot on the staple cartridge.

In yet another aspect of the present disclosure, a surgical stapling apparatus, comprising a housing and an end effector being secured to the housing having a staple cartridge assembly having a tissue contacting surface and an anvil assembly having a tissue contacting surface, each of the tissue contacting surfaces of the staple cartridge assembly and the anvil assembly having at least one transversely extending recessed groove. A surgical buttress configured and dimensioned to substantially overlie at least a portion of the tissue contacting surface of at least one of the staple cartridge assembly and anvil assembly. A suture is disposed within the at least one recessed groove of each of the tissue contacting surfaces of the staple cartridge assembly and the anvil plate and configured to retain the respective surgical buttress atop the respective tissue contacting surface. Preferably, a proximal recessed groove is positioned along a proximal portion of each of the staple cartridge and anvil plate, and a distal recessed groove is positioned along a distal portion of each of the staple cartridge and the anvil plate.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the presently disclosed retention systems are disclosed herein with reference to the drawings, wherein:

FIG. 1 is a perspective view of a surgical stapling apparatus according to an embodiment of the present disclosure;

FIG. 2 is a perspective view, with parts separated, of a staple cartridge assembly of the surgical stapling apparatus of FIG. 1, illustrating a surgical buttress associated therewith;

FIG. 3 is a perspective view, with parts separated, of an anvil assembly of the surgical stapling apparatus of FIG. 1, illustrating a surgical buttress associated therewith;

FIG. 4 is a perspective view of the staple cartridge assembly, illustrating the surgical buttress affixed to the staple cartridge of FIG. 2;

FIG. 5 is a perspective view of the anvil assembly, illustrating the surgical buttress affixed to the anvil plate of FIG. 3;

FIG. 6 is a perspective view of a distal end of the surgical stapling apparatus of FIG. 1, shown in use positioned about a tissue section;

FIG. 7 is a cross-sectional view taken along line 7-7 of FIG. 6;

FIG. 7A is an enlarged area of detail depicted in FIG. 7;

FIG. 8 is a perspective view of the stapled and divided tissue section of FIG. 6;

FIG. 9A is a perspective view of an illustrative embodiment of a surgical stapling apparatus in accordance with another embodiment of the present disclosure;

FIG. 9B is a side elevational view partially, broken away, of the surgical stapling apparatus of FIG. 9A;

FIG. 10A is a perspective view of an illustrative embodiment of the staple cartridge assembly of the surgical stapling apparatus of FIG. 9A including a surgical buttress in accordance with an embodiment of the present disclosure;

FIG. 10B is a top plan view of the staple cartridge assembly and surgical buttress illustrated in FIG. 10A;

FIG. 11 is perspective view of an intestinal area of a patient, illustrating a method of positioning an anvil rod and staple cartridge assembly of the surgical stapling apparatus of FIGS. 9A, 9B, and 10 within the intestinal area; and

FIG. 12 is a schematic perspective view of the intestinal area of FIG. 11, illustrating the anvil rod mounted to the surgical stapling apparatus.

DETAILED DESCRIPTION OF THE EMBODIMENTS

Various exemplary embodiments of the present disclosure are discussed herein below in terms of surgical buttresses for use with surgical stapling apparatus. The surgical buttresses described herein may be used
in sealing a wound by approximating the edges of wound tissue between a staple cartridge and an anvil plate of a surgical stapling apparatus which contains at least one surgical buttress. The at least one surgical buttress is joined to the surgical stapling apparatus by at least one suture disposed within a recessed groove of a tissue contacting surface of each of a staple cartridge and anvil plate. Firing of the surgical stapling apparatus forces legs of at least one staple to pass through an opening on the staple cartridge, the tissue, and the openings on the anvil plate to secure the surgical buttress to the tissue, to secure the adjoining tissue to one another, and to seal the tissue. The firing force of the staple impacts the suture to release the suture from the recessed groove thereby releasing the surgical buttress from the tissue contacting surface. Thus, the present disclosure describes surgical buttresses, surgical stapling apparatus supporting said surgical buttresses, and methods and mechanisms for using the same.

[0016] It should be understood that a variety of surgical stapling apparatus may be utilized with a surgical buttress of the present disclosure. For example, linear stapler configurations may be utilized, such as, for example those including Duet TRS™ reloads and staplers with Tri-Staple™ technology, available through Covidien, which maintain a principal place of business at 555 Long Wharf Drive, North Haven, CT 06511, and transverse anastomosis staplers, such as, for example, EEA™, CEEA™, GIA™, EndoGIA™, and TA™, also available through Covidien. It should also be appreciated that the principles of the present disclosure are equally applicable to surgical staplers having alternate configurations, such as, for example, end-to-end anastomosis staplers having a circular cartridge and anvil (see, e.g., commonly owned U.S. Patent No. 5,915,616, entitled "Surgical Fastener Applying Apparatus."); laparoscopic staplers (see, e.g., commonly owned U.S. Pat. Nos. 6,330,965 and 6,241,139, each entitled "Surgical Stapling Apparatus."); and transverse anastomosis staplers (see, e.g., commonly owned U.S. Patent Nos. 5,964,394 and 7,334,717, each entitled "Surgical Fastener Applying Apparatus").

[0017] Embodiments of the presently disclosed surgical buttress and surgical stapling apparatus will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. In the following discussion, the terms "proximal" and "trailing" may be employed interchangeably, and should be understood as referring to the portion of a structure that is closer to a clinician during proper use. The terms "distal" and "leading" may also be employed interchangeably, and should be understood as referring to the portion of a structure that is further from the clinician during proper use. As used herein, the term "patient" should be understood as referring to a human subject or other animal, and the term "clinician" should be understood as referring to a doctor, nurse, or other care provider and may include support personnel.

[0018] Referring now to FIG. 1, there is disclosed an exemplary surgical stapling apparatus or surgical stapler 10 for use in stapling tissue and applying a buttress material or surgical buttress to the tissue. A redundant example of this type of surgical stapling instrument is disclosed in U.S. Patent No. 7,128,253.

[0019] Surgical stapling apparatus 10 generally includes a handle 12 having an elongate tubular member 14 extending distally from handle 12. An end effector assembly 16 is mounted on a distal end 18 of elongate tubular member 14. End effector assembly 16 includes a first jaw or staple cartridge assembly 200 configured to receive a staple cartridge 32 therein and a second jaw or anvil assembly 300. End effector assembly 16 may be permanently affixed to elongate tubular member 14 or may be detachable and thus replaceable with a new end effector assembly 16. One of staple cartridge assembly 200 and anvil assembly 300 is movably mounted at distal end 18 of end effector assembly 16, and is movable between an open position spaced apart from one another to a closed position substantially adjacent to one another. Anvil assembly 300 supports an anvil plate 302 and is fabricated from a metal material, including and not limited to stainless steel, titanium, titanium alloy, and the like. At least a tissue contacting surface of staple cartridge 32 is fabricated from a material other than metal, including and not limited to plastic, thermoplastic, resin, polycarbonate, and the like.

[0020] Surgical stapling apparatus 10 further includes a trigger 33, as seen in FIG. 1, movably mounted on handle 12. Actuation of trigger 33 initially operates to move first jaw and second jaw between the open and the closed positions and simultaneously actuates surgical stapling apparatus 10 to apply lines of staples to tissue. In order to properly orient end effector assembly 16 relative to the tissue to be stapled, surgical stapling apparatus 10 is additionally provided with a rotation knob 34 mounted on handle 12. Rotation of rotation knob 34 relative to handle 12 rotates elongate tubular member 14 and end effector assembly 16 relative to handle 12 so as to properly orient end effector assembly 16 relative to the tissue to be stapled.

[0021] A driver 36, as seen in FIGS. 6 and 7A, is provided to move approximate first jaw or staple cartridge assembly 200 and second jaw or anvil assembly 300 from the open position to the closed position. Driver 36 moves through a longitudinal slot 338 (FIG. 3) formed in the anvil plate 302 of anvil assembly 300. A knife 30 with knife blade 31 is associated with driver 36 to cut tissue to receive a staple cartridge 32 therein and a second jaw or anvil assembly 300. End effector assembly 16 may be permanently affixed to elongate tubular member 14 or may be detachable and thus replaceable with a new end effector assembly 16. One of staple cartridge assembly 200 and anvil assembly 300 is movably mounted at distal end 18 of end effector assembly 16, and is movable between an open position spaced apart from one another to a closed position substantially adjacent to one another. Anvil assembly 300 supports an anvil plate 302 and is fabricated from a metal material, including and not limited to stainless steel, titanium, titanium alloy, and the like. At least a tissue contacting surface of staple cartridge 32 is fabricated from a material other than metal, including and not limited to plastic, thermoplastic, resin, polycarbonate, and the like.

[0022] Reference may be made to commonly owned U.S. Pat. Nos. 5,915,616, 6,330,965, and 6,241,139, referenced above, for a detailed discussion of the construction and operation of an exemplary surgical stapling apparatus 10.

[0023] Staple cartridge assembly 200 and/or anvil assembly 300 may be provided with a surgical buttress 500.
Surgical buttress 500 is provided to reinforce and seal the lines of staples applied to tissue by surgical stapling apparatus 10. Surgical buttress 500 may be configured into any shape, size, or dimension suitable to fit any surgical stapling, fastening, or firing apparatus.

[0024] Staple cartridge assembly 200 is provided with a cartridge buttress 500a and anvil assembly 300 is provided with an anvil buttress 500b in the manners described in more detail hereinbelow. The surgical buttresses 500a, 500b may be made from any biocompatible natural or synthetic material. The material from which the surgical buttresses 500a, 500b are formed may be bioabsorbable or non-bioabsorbable. It should be understood that any combination of natural, synthetic, bioabsorbable and non-bioabsorbable materials may be used to form the buttress material. The surgical buttresses 500a, 500b may be porous or non-porous, combination of porous and non-porous layers. The non-porous surgical buttresses 500a, 500b may be utilized to retard or prevent tissue ingrowth from surrounding tissues thereby acting as an adhesion barrier and preventing the formation of unwanted scar tissue.

[0025] Additional exemplary materials for surgical buttresses 500a, 500b for use with the surgical stapling devices disclosed herein are set forth in commonly assigned U.S. Patent Nos. 5,542,594; 5,908,427; 5,964,774; and 6,045,560, and commonly assigned U.S. Application Publication Nos. 2006/0085034, filed on April 20, 2006; and 2006/0135992, filed on June 22, 2006.

[0026] As illustrated in the current embodiment and shown in FIGS. 2 and 3, surgical buttress 500 is releasably attached to staple cartridge assembly 200 and/or anvil assembly 300 by a buttress retention system 230, 330 including sutures 240, 340 that affix surgical buttresses 500a, 500b to the inwardly facing or tissue contacting surfaces 220, 320 of staple cartridge 32 and/or the anvil plate 302, as discussed in detail below.

[0027] With reference to FIGS. 2 and 4, cartridge buttress 500a of staple cartridge assembly 200 is operatively secured to a tissue contacting surface 220 of staple cartridge 32 by cartridge buttress retention system 230 including sutures 240, 340 that affix surgical buttresses 500a, 500b to the inwardly facing or tissue contacting surfaces 220, 320 of the staple cartridge 32 and/or the anvil plate 302, as discussed in detail below.

[0028] With reference to FIGS. 2 and 4, cartridge buttress 500a of staple cartridge assembly 200 is operatively secured to a tissue contacting surface 220 of staple cartridge 32 by cartridge buttress retention system 230 including sutures 240, 340 that affix surgical buttresses 500a, 500b to the inwardly facing or tissue contacting surfaces 220, 320 of the staple cartridge 32 and/or the anvil plate 302, as discussed in detail below. Staple cartridge assembly 200 further includes a first outer edge 248a and second outer edge 248b. As shown in FIG. 2, recessed groove 250 extends from the first outer edge 248a to the second outer edge 248b such that recessed groove 250 passes transversely across the tissue contacting surface 220. Preferably, a proximal recessed groove 250a is disposed along a proximal portion 260 of the tissue contacting surface 220. Preferably, a distal recessed groove 250b is disposed along a distal portion 262 of tissue contacting surface 220. Proximal suture 240a is disposed within the proximal recessed groove 250a and passes transversely across cartridge buttress 500a and the proximal portion 260 of tissue contacting surface 220 of staple cartridge 32. In the same manner, distal suture 240b disposed within the distal recessed groove 250b and passes transversely across cartridge buttress 500b and the distal portion of tissue contacting surface 220 of staple cartridge 32. The proximal and distal sutures 240a, 240b disposed within the respective proximal and distal recessed grooves 250a, 250b maintain the cartridge buttress 500b securely along the tissue contacting surface 220 of staple cartridge 32 prior to firing of the stapler 10.

[0029] In embodiments, it is contemplated that recessed grooves 250, 350 may be disposed in varying positions along tissue contacting surfaces 220, 320 relative to central longitudinal slots 238, 338 of staple cartridge 32 and anvil plate 302. More specifically, as shown in FIG. 2, proximal recessed groove 250a is disposed distally of a proximal end of the central longitudinal slot 238 of staple cartridge 32. Distal recessed groove 250b is disposed proximally of a distal end of central longitudinal slot 238. Similarly, as shown in FIG. 3, proximal recessed groove 350a of anvil plate 302 is disposed distally of a proximal end of central longitudinal slot 338 and distal recessed groove 350b is disposed proximally of a distal end of central longitudinal slot 338. In this embodiment, when knife blade 31 is actuated to cut tissue captured between staple cartridge assembly 200 and anvil assembly 300, knife blade 31 also severs sutures 240, 340.

[0030] FIGS. 4 and 5 illustrate the surgical buttresses 500a, 500b secured atop the respective tissue contacting surfaces 220, 320 of staple cartridge 32 and anvil plate 302. FIGS. 4 and 5 also illustrate an alternate embodiment wherein sutures 240 and 340 are disposed past the distal ends of the central longitudinal slots 238, 338. More specifically, as shown in FIG. 4, distal recessed groove 250b is disposed distally of a distal end of central longitudinal slot 238. Similarly, as shown in FIG. 5, distal recessed groove 350b is disposed distally of a distal end of central longitudinal slot 338. In this embodiment, the force of end effector assembly 16 opening after firing of staples 50 releases the sutures 240, 340 from the respect recessed grooves 250 and thus releases the buttress...
During assembly the surgical buttresses 500a, 500b are placed onto each of the tissue contacting surfaces 220, 320 of staple cartridge assembly 200 and anvil assembly 300, respectively. Sutures 240, 340 are then secured into respective recessed grooves 250, 350 whereby securing surgical buttresses 500a, 500b underneath the respective sutures 240, 340 and partially within the respective recessed groove 250, 350 of the tissue contacting surfaces 220, 320 (FIG. 7A). This allows the surgical buttresses 500a, 500b to remain secured along the tissue contacting surfaces 220, 320. After sutures 240, 340 are secured within the recessed groove 250, 350, sutures may also be bonded to the staple cartridge 32 and/or anvil plate 302 by known bonding methods such as ultrasonic welding, laser welding, solvent bonding, or heat pressing. The sutures may also be attached to the staple cartridge and/or anvil plate using an adhesive. In certain embodiments, the surgical buttress 500a and/or surgical buttress 500b is attached to the staple cartridge and/or anvil plate using bonding methods such as ultrasonic welding, laser welding, solvent bonding, or heat pressing, or using an adhesive.

As illustrated in FIG. 6, during use of surgical stapling apparatus 10, the first jaw or staple cartridge assembly 200 and the second jaw or anvil assembly 300, having surgical buttresses 500a, 500b loaded thereon (as described above) are positioned on either side of the surgical site. Surgical buttresses 500a, 500b positioned atop tissue contacting surfaces 220, 320 of staple cartridge assembly 200 and anvil assembly 300 are positioned adjacent layers of tissue “T” to be fastened to one another.

As shown in FIG. 7, staple cartridge assembly 200 includes surgical staples 50 positioned within individual staple retaining slots 52 of staple cartridge 32. Staples 50 are of a conventional type and include a backspan 54 having a pair of legs 56 and 58 extending from backspan 54. Legs 56 and 58 terminate in tissue penetrating tips 60 and 62, respectively. Pushers 64 are located within staple retaining slots 52 and are positioned between staples 50 and the path of a drive bar 66.

In the illustrated embodiment, surgical stapling apparatus 10 is initially actuated by movement of trigger 33 relative to handle 12 (FIG. 1) causing driver 36 to move in the direction of arrow “A” (FIG. 6), and against sloped edge 21 of anvil plate 302 thereby causing anvil assembly 300 to be moved to the closed position relative to staple cartridge assembly 200. As drive bar 66 advances distally within staple cartridge 32, drive bar 66 urges pushers 64 upwardly against backspan 54 of staples 50 driving legs 56 and 58 of staples 50 through the cartridge buttress 500a, tissue “T”, and anvil buttress 500b, towards staple forming pockets 68 in anvil plate 302 of anvil assembly 300. Tissue penetrating tips 60 and 62 of staple legs 56 and 58 are bent within staple forming pockets 68 in anvil plate 302 with backspan 54 securing surgical buttress 500 against tissue “T”.

Upon full actuation of surgical stapling apparatus 10, a knife 30 (FIG. 7) associated with surgical stapling apparatus 10 and carried by driver 36 may be utilized to cut tissue “T”, as well as surgical buttresses 500a, 500b between the rows of now formed staples 50. Upon movement of anvil assembly 300 to the open position, spaced apart from staple cartridge assembly 200, surgical buttresses 500a, 500b are pulled or torn away from respective tissue contacting surfaces 220, 320 of respective staple cartridge assembly 200 and anvil assembly 300. As detailed in FIG. 7A, anvil buttress 500b is shown secured to tissue contacting surface 320 by suture 340 within proximal recess 250a. In a similar manner cartridge buttress 500a is secured to tissue contacting surface 220 by suture. As anvil assembly 300 and staple cartridge assembly 200 are pulled apart, suture 240 is released from proximal recess 250a and thereby releases anvil buttress 500b. In embodiments, suture 240 is cut or severed by the passage of knife blade 31 of knife 30 through longitudinal slots 238, 338.

The resulting tissue “T”, divided and stapled closed with staples 50, is illustrated in FIG. 8. Specifically, surgical buttresses 500a, 500b are secured against tissue “T” by legs 56, 58 and backspans 54 of staples 50. Thus, surgical buttresses 500a, 500b are stapled to tissue “T” thereby sealing and reinforcing the staple lines created by staples 50.

Referring now to FIGS. 9A and 9B, an annular surgical stapling apparatus 110, for use with surgical buttresses 124 of the present disclosure, is shown. Surgical stapling apparatus 110 includes a handle assembly 112 having at least one pivotable actuating handle member 133, and an advancing member 135. Extending from handle member 112, there is provided a tubular body portion 114 which may be constructed so as to have a curved shape along its length. The tubular body portion can be straight, curved, flexible or have other shapes. Body portion 114 terminates in a staple cartridge assembly 122 which includes a pair of annular arrays of staple retaining slots 152 having a staple 150 disposed in each one of staple retaining slots 152. Positioned distally of staple cartridge 122 there is provided an anvil assembly 120 including an anvil member 121 and a shaft 123 operationally associated therewith for removably connecting anvil assembly 120 to a distal end portion of stapling ap-
Staple cartridge assembly 122 may be fixedly connected to the distal end of tubular body portion 114 or may be configured to concentrically fit within the distal end of tubular body portion 114. Staple cartridge assembly 122 includes a staple pusher 164 including a proximal portion having a generally frusto-conical shape and a distal portion defining two concentric rings of peripherally spaced fingers (not shown), each one of which is received within a respective staple retaining slot 152. The staple cartridge may be configured to be removable and replaceable.

A knife 130, substantially in the form of an open cup with the rim thereof defining a knife blade 131, is disposed within staple cartridge assembly 122 and mounted to a distal surface of a staple pusher 164. The knife 130 is disposed radially inward of the pair of annular arrays of staples 150. Accordingly, as the staple pusher 164 is advanced, the knife 130 is also advanced axially distally.

As seen in FIGS. 10A and 10B, a surgical buttress 124 is releasably attached to the staple cartridge assembly 122 at recessed grooves 155 defined within tissue contacting surface 134 of the staple cartridge assembly 122. It is contemplated that each recessed groove 155 extends in a radial direction and completely across the tissue contacting surfaces of anvil assembly 120 and staple cartridge assembly 122. As described herein above, sutures 140 are placed within recessed grooves 155 to secure surgical buttress 124 to tissue contacting surface 134. Surgical buttress 124 is provided in an annular configuration and includes a central aperture 125 to receive shaft 123 of anvil assembly 120 therethrough.

It is envisioned that the surgical buttress 124 may be additionally or alternatively attached or adhered to tissue contacting surface of anvil plate 131 in a manner similar to the surgical buttress 124 attached to staple cartridge assembly 122. The buttress may be attached using bonding methods such as ultrasonic welding, laser welding, solvent bonding, or heat pressing. The buttress may also be attached to the staple cartridge and/or anvil plate using adhesive. In certain embodiments, suture is used as described above and the suture is attached using bonding methods such as ultrasonic welding, laser welding, solvent bonding, or heat pressing. The suture may also be attached using adhesive.

Surgical buttress 124 may be secured or adhered to the staple cartridge 122 by sutures 140 which extend between inner portion or peripheral edge 160 and outer portion or peripheral edge 162 of staple cartridge 122. It is envisioned that other configurations of placement of recessed grooves 155 and sutures 140 may be utilized to retain the surgical buttress 124 to the staple cartridge assembly 122.

Surgical stapling apparatus 110 and detachable anvil assembly 120 are used in an anastomosis procedure to effect joining of intestinal sections 50 and 52. The anastomosis procedure is typically performed using minimally invasive surgical techniques including laparoscopic means and instrumentation. At the point in the procedure shown in FIG. 11, a diseased intestinal section has been previously removed, anvil assembly 120 optionally including a surgical buttress 124 thereon) has been applied to the operative site either through a surgical incision or transanally and positioned within intestinal section 52, and tubular body portion 114 of surgical stapling apparatus 110 (optionally including a surgical buttress 124 thereon) has been inserted transanally into intestinal section 50. Intestinal sections 50 and 52 are also shown temporarily secured about their respective components (e.g., shaft 123 of anvil assembly 120, and the distal end of tubular body portion 114) by conventional means such as a purse string suture “P”, as illustrated in FIG. 12.

Thereafter, the clinician maneuvers anvil assembly 120 until the proximal end of shaft 123 is inserted into the distal end of tubular body portion 114 of surgical stapling apparatus 110, wherein the mounting structure (not shown) within the distal end of tubular body portion 114 engages shaft 123 to effect the mounting. Anvil assembly 120 and tubular body portion 114 are then approximated to approximate intestinal sections 50, 52. Surgical stapling apparatus 110 is then fired. A knife (not shown) cuts the portion of tissue and surgical buttress 124 disposed radially inward of the knife, to complete the anastomosis. The force of the opening of anvil assembly 120 and staple cartridge assembly 122, with surgical buttress 124 stapled to intestinal sections 50, 52, causes sutures 140 to release from within the recessed grooves 150 thereby releasing the surgical buttress 124 from the tissue contacting surface 134.

In further embodiments, suture is used to attach a surgical buttress to the anvil assembly 120. Recessed grooves are provided in the anvil plate of the anvil assembly 120 and suture engages the surgical buttress at the grooves.

Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope of the disclosure. Additionally, it is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another exemplary embodiment without departing from the scope of the present disclosure, and that such modifications and variations are also intended to be included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not to be limited by what has been particularly shown and described, except as indicated by
the appended claims.

Claims

1. A staple cartridge (200),(122) for use with a surgical stapling apparatus, the staple cartridge comprising:
 - a cartridge body defining a plurality of staple retaining slots (52),(152) the cartridge body including a tissue contacting surface (220),(134) having at least one recessed groove (250), (155) defined therein;
 - a staple (50), (150) disposed within each staple retaining slot of the cartridge body;
 - a surgical buttress (500), (124) configured and dimensioned to substantially overlie at least a portion of the staple retaining slots of the cartridge body; and
 - at least one suture (240),(140) disposed within the at least one recessed groove of the cartridge body and configured to retain the surgical buttress atop the tissue contacting surface,
 characterised in that
 - the at least one recessed groove (250), (155) of the staple cartridge extends from a first outer edge (248a) to a second outer edge (248b) of the staple cartridge thereby passing transversely across the tissue contacting surface of the staple cartridge.

2. The staple cartridge of claim 1, wherein a proximal recessed groove is positioned along a proximal portion of each of the staple cartridge and anvil plate, and a distal recessed groove is defined along a distal portion of each of the staple cartridge and anvil plate.

3. The staple cartridge of any preceding claim, wherein the staple cartridge has a central longitudinal slot configured to enable a passage of a knife blade therethrough.

4. The staple cartridge of claim 2 or claim 3, wherein the proximal recessed groove is positioned distally from a proximal end of the central longitudinal slot on each of the staple cartridge and anvil plate.

5. The staple cartridge of any of claims 2 to 4, wherein the distal recessed groove is positioned proximally from a distal end of the central longitudinal slot on each of the staple cartridge and anvil plate.

6. An end effector for use with a surgical stapler, the end effector comprising:
 - a staple cartridge according to any of the preceding claims;
 - an anvil plate having a tissue contacting surface, the anvil plate having at least one recessed groove defined therein wherein the at least one recessed groove (350) of the anvil extends from a first outer edge (358a) to a second outer edge (358b) of the anvil thereby passing transversely across the tissue contacting surface of the anvil;
 - a surgical buttress releasably disposed on the tissue contacting surface of the anvil plate; and
 - at least one suture disposed within the at least one recessed groove of the anvil plate configured to retain the respective surgical buttress atop the respective tissue contacting surfaces.

7. The end effector of claim 6, wherein a proximal recessed groove is positioned along a proximal portion of each of the staple cartridge and anvil plate, and a distal recessed groove is defined along a distal portion of each of the staple cartridge and the anvil plate.

8. The end effector of claim 6 or 7, wherein the staple cartridge and the anvil plate have a central longitudinal slot configured to enable a passage of a knife blade therethrough.

9. The end effector of any of claims 6, 7 or 8, wherein the proximal recessed groove is positioned distally from a proximal end of the central longitudinal slot on each of the staple cartridge and the anvil plate.

10. The end effector of any of claims 7 to 9, wherein the distal recessed groove is positioned proximally from a distal end of the central longitudinal slot on each of the staple cartridge and the anvil plate.

11. The end effector of any of claims 7 to 10, wherein the distal recessed groove is positioned distally from a distal end of the central longitudinal slot on each of the staple cartridge and anvil plate.

12. A surgical stapling apparatus comprising:
 - a housing; and
 - an end effector according to any of Claims 6 to 11 being secured to the housing.

Patentansprüche

1. Klammermagazin (200), (122) zur Verwendung mit einem chirurgischen Klammergerät, wobei das Klammermagazin umfasst:
 - ein Magazingehäuse, das mehrere Klammerhalteschlitze (52), (152) definiert, wobei das Magazingehäuse eine Gewebekontakfläche (220), (134) mit zumindest einer darin definieren, vertieften Rille (250), (155) enthält;
 - eine Klammer (50), (150), die in jedem Klammerhalteschlitze des Magazingehäuses ange-
ordnet ist;
eine chirurgische Versteifung (500), (124), die
so gestaltet und bemessen ist, dass sie im We-
sentlichen zumindest über einem Teil der Klam-
merhalteschlüsse des Magazingehäuses liegt;
und
zumindest eine Naht (240), (140), die in der zu-
mindest einen vertieften Rille des Magazinge-
häuses anordnet und zum Halten der chirur-
gischen Versteifung über der Gewebekontakt-
fläche gestaltet ist,
dadurch gekennzeichnet, dass sich die zu-
mindest eine vertieften Rille (250), (155) des
Klammermagazins von einer ersten Außenkan-
te (248a) zu einer zweiten Außenkante (248b)
des Klammermagazins erstreckt, wodurch sie
er über die Gewebekontaktfäche des Klam-
mermagazins verläuft.

2. Klammermagazin nach Anspruch 1, wobei eine pro-
ximale vertieften Rille entlang eines proximalen Ab-
schnitts des Klammermagazins positioniert ist und
da distale vertieften Rille entlang eines distalen Ab-
schnitts des Klammermagazins positioniert ist.

3. Klammermagazin nach einem vorangehenden An-
spruch, wobei das Klammermagazin einen mittleren
Längsschlitz aufweist, der so gestaltet ist, dass eine
Messerklinge hindurchgehen kann.

4. Klammermagazin nach Anspruch 2 oder Anspruch
3, wobei die proximale vertieffen Rille distal von einem
proximalen Ende des mittleren Längsschlitzes am
Klammermagazin positioniert ist.

5. Klammermagazin nach einem der Ansprüche 2 bis
4, wobei die distale vertieffen Rille proximal von einem
distalen Ende des mittleren Längsschlitzes am
Klammermagazin positioniert ist.

6. Endeffektor zur Verwendung mit einem chirurgi-
schen Klammergerät, wobei der Endeffektor um-
fasst:
ein Klammermagazin nach einem der vorange-
henden Ansprüche;
eine Ambossplatte mit einer Gewebekontaktfäche,
wobei in der Ambossplatte zumindest eine
vertieften Rille definiert ist, wobei die zumindest
eine vertieften Rille (350) der Ambossplatte sich
von einer ersten Außenkante (358a) zu einer
zweiten Außenkante (358b) des Ambosses er-
streckt, wodurch sie quer über die Gewebekon-
taktfäche des Ambosses verläuft;
eine chirurgische Versteifung, die lösbar auf der
Gewebekontaktfäche der Ambossplatte ange-
ordnet ist; und
zumindest eine Naht, die in der zumindest einen
vertieften Rille der Ambossplatte angeordnet ist,
die zum Halten der jeweiligen chirurgischen Ver-
steifung über den jeweiligen Gewebekontaktfä-
chen gestaltet ist.

7. Endeffektor nach Anspruch 6, wobei eine proximale
vertieften Rille entlang eines proximalen Abschnitts
der Klammermagazins und der Ambossplatte posi-
tioniert ist und eine distale vertieften Rille entlang ei-
nes distalen Abschnitts des Klammermagazins und
der Ambossplatte definiert ist.

8. Endeffektor nach Anspruch 6 oder 7, wobei das
Klammermagazin und die Ambossplatte einen mitt-
leren Längsschlitz aufweisen, der so gestaltet ist,
dass eine Messerklinge hindurchgehen kann.

9. Endeffektor nach einem der Ansprüche 6, 7 oder 8,
wobei die die proximale vertieften Rille distal von ei-
inem proximalen Ende des mittleren Längsschlitzes
am Klammermagazin und an der Ambossplatte pos-
tioniert ist.

10. Endeffektor nach einem der Ansprüche 7 bis 9, wo-
bei die die distale vertieften Rille proximal von einem
distalen Ende des mittleren Längsschlitzes am
Klammermagazin und an der Ambossplatte posi-
tioniert ist.

11. Endeffektor nach einem der Ansprüche 7 bis 10, wo-
bei die distale vertieften Rille distal von einem distalen
Ende des mittleren Längsschlitzes am Klammerma-
gazin und an der Ambossplatte positioniert ist.

12. Chirurgisches Klammergerät, umfassend:
ein Gehäuse; und
einen Endeffektor nach einem der Ansprüche 6 bis
11, der an dem Gehäuse befestigt ist.

Revendications

1. Cartouche d’agrafes (200), (122) pour utilisation
avec un appareil d’agrafage chirurgical, la cartouche
da‘agrafes comprenant :
un corps de cartouche définissant une pluralité
de fentes de rétention d’agrafes (52), (152), le
corps de cartouche comprenant une surface de
contact avec le tissu (220), (134) ayant au moins
une rainure en retrait (250), (155) qui y est
définie ;
une agrafe (50), (150) disposée dans chaque
fente de rétention d’agrafe du corps de
cartouche ;
un renfort chirurgical (500), (124) configuré et di-
mensionné pour recouvrir sensiblement au
moins une partie des fentes de rétention d’agrafes du corps de cartouche ; et au moins une suture (240), (140) disposée dans la au moins une rainure en retrait du corps de cartouche et configurée pour retenir le renfort chirurgical par-dessus la surface venant en contact avec le tissu, caractérisée en ce que la au moins une rainure

2. Cartouche d’agrafes selon la revendication 1, dans laquelle une rainure proximale en retrait est positionnée le long d’une partie proximale de la cartouche d’agrafes et une rainure distale en retrait est positionnée le long d’une partie distale de la cartouche d’agrafes.

3. Cartouche d’agrafes selon l’une quelconque des revendications précédentes, dans laquelle la cartouche d’agrafes a une fente longitudinale centrale configurée pour y permettre le passage d’une lame de couteau.

4. Cartouche d’agrafes selon la revendication 2 ou la revendication 3, dans laquelle la rainure proximale en retrait est positionnée de manière proximale par rapport à une extrémité proximale de la fente longitudinale centrale sur la cartouche d’agrafes.

5. Cartouche d’agrafes selon l’une quelconque des revendications 2 à 4, dans laquelle la rainure distale en retrait est positionnée de manière proximale par rapport à une extrémité distale de la fente longitudinale centrale sur la cartouche d’agrafes.

6. Effecteur d’extrémité pour utilisation avec une agrafeuse chirurgicale, l’effecteur d’extrémité comprenant :

 une cartouche d’agrafes selon l’une quelconque des revendications précédentes ;
 une plaque d’enclume ayant une surface en contact avec le tissu, la plaque d’enclume ayant au moins une rainure en retrait qui y est définie et dans laquelle la au moins une rainure en retrait (350) de l’enclume s’étend d’un premier bord externe (358a) à un second bord externe (358b) de l’enclume, en passant de la sorte transversalement en travers de la surface de l’enclume en contact avec le tissu ;
 un renfort chirurgical disposé de manière amovible sur la surface de la plaque d’enclume en contact avec le tissu ; et
 au moins une suture disposée dans la au moins une rainure en retrait de la plaque d’enclume configurée pour retenir le renfort chirurgical respectif au-dessus des surfaces respectives en contact avec le tissu.

7. Effecteur d’extrémité selon la revendication 6, dans lequel une rainure proximale en retrait est définie le long d’une partie proximale de chacune de la cartouche d’agrafes et la plaque d’enclume et une rainure distale en retrait est définie le long d’une partie distale de chacune de la cartouche d’agrafes et de la plaque d’enclume.

8. Effecteur d’extrémité selon la revendication 6 ou la revendication 7 dans lequel la cartouche d’agrafes et la plaque d’enclume ont une fente longitudinale centrale configurée pour y permettre le passage d’une lame de couteau.

9. Effecteur d’extrémité selon l’une quelconque des revendications 6, 7 ou 8, dans lequel la rainure proximale en retrait est positionnée de manière distale par rapport à une extrémité proximale de la fente longitudinale centrale sur chacune de la cartouche d’agrafes et de la plaque d’enclume.

10. Effecteur d’extrémité selon l’une quelconque des revendications 7 à 9, dans lequel la rainure distale en retrait est positionnée de manière proximale par rapport à une extrémité distale de la fente longitudinale centrale sur chacune de la cartouche d’agrafes et de la plaque d’enclume.

11. Effecteur d’extrémité selon l’une quelconque des revendications 7 à 10, dans lequel la rainure distale en retrait est positionnée de manière distale par rapport à une extrémité distale de la fente longitudinale centrale sur chacune de la cartouche d’agrafes et de la plaque d’enclume.

12. Appareil d’agrafage chirurgical comprenant :

 un logement ; et
 un effecteur d’extrémité selon l’une quelconque des revendications 6 à 11 qui est fixé au logement.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 2311386 A2 [0006]
• US 5915616 A [0016] [0022]
• US 6330965 B [0016] [0022]
• US 6241139 B [0016] [0022]
• US 5964394 A [0016]
• US 7334717 B [0016]

• US 7128253 B [0018]
• US 5542594 A [0025]
• US 5908427 A [0025]
• US 5964774 A [0025]
• US 6045560 A [0025]
• US 20060085034 A [0025]
• US 20060135992 A [0025]