Method and device for producing a bedding product comprising a foamed latex layer, slab of such foamed latex layer for cutting a bedding product and bedding product obtained

A method for producing a bedding product comprising at least a foamed latex layer, said method comprising the steps of:
- pouring liquid latex foam on a conveyor belt;
- vulcanizing said liquid latex foam in a vulcanization station to obtain a vulcanized latex foam slab;
- cutting said vulcanized latex foam slab to a desired length and/or width, characterized in that for at least partially vulcanizing said liquid latex foam electromagnetic waves with a frequency ranging between 1 and 50 Mhz are used.
The present invention concerns bedding products and in particular mattresses and toppers, comprising a foamed latex layer.

BACKGROUND OF THE INVENTION

Bedding products such as toppers and mattresses made of latex foam are generally manufactured by steam vulcanization. Toppers having a thickness of maximally 6 cm are known which are produced in a continuous vulcanization process, whereby liquid latex foam is poured onto an endless belt or carrier and is subsequently passed through a steam oven. Above 6 cm thickness, continuous vulcanization is not possible because heat cannot be introduced into the core of the latex material sufficiently quickly due to the absence of aluminium pins on the conveyor belt.

Furthermore, when manufacturing latex foam layers by steam vulcanization it has been observed that the foam cell diameter and the foam density varies throughout the thickness of the layer which is undesirable for fine-tuning the properties of the latex foam layer, such as compression set and indentation load deflection values.

In order to address the above drawbacks, EP 1,904,570 discloses a composite foam comprising a top layer of latex foam and a second layer of a foam selected from either latex foam or another foam.

CA 2,007,548 discloses a method of manufacturing latex foam mattresses with a thickness up to 15 cm thick in a batch process whereby liquid latex foam is charged into a mold that is subsequently brought into a microwave field having a frequency of 2.45 Ghz (example 1) and a power of 1.2 kW/ kg latex charged.

Accordingly, there remains a need for a continuous method of manufacturing a latex layer having a uniform cell diameter, uniform foam density, low compression set and low indentation load deflection values and which can be produced in a thickness varying from about 1 cm up to 24 cm or more.

DETAILED DESCRIPTION OF THE INVENTION

DEFINITIONS:

Toppers for use in bedding or seating products are known. These toppers extend across the entire width and length of the particular bedding or seating product. If the particular bedding or seating product is a mattress, typically one such topper is placed on one side of the mattress core, in particular the top side of the mattress which is the side where a person is meant to lie upon, and optionally a second topper is placed on the opposite side of the mattress core, thereby effectively "sandwiching" the mattress core. This combination then typically is covered with an upholstered fabric covering.

"Latex" is herein defined as a dispersion of polymeric particles in a continuous phase, the polymeric particles preferably having a size range of from 10 to 1000 nm. The latex foam material can be prepared from natural rubber latex or from one or more of such synthetic latexes as polybutadiene/ styrene latex, polybutadiene/acrylonitrile latex, polychloroprene latex and the like or from a mixture of natural rubber latex and one or more such synthetic latexes. The latex foam includes conventional latex foam as well as visco-elastic latex foam.

The solids content of suitable aqueous latexes is from 20 to 75% by weight. Preferred latexes have a solid content of from 50 to 75% by weight.

Suitable polymer latexes are all dispersions in which the solid is dispersed in a liquid phase and this phase in turn forms an emulsion with a further liquid phase. Examples are latexes of polymers consisting of dienes or olefinically unsaturated monomers and copolymers thereof, such as polystyrene-butadiene latex, polybutadiene latex, polyisoprene latex, natural rubber latex, acrylonitrile-butadiene latex, polychloroprene latex, polydichlorobutadiene latex, latex of a copolymer of chloroprene and dichlorobutadiene, polyisoprene latex, latex of chlorinated polyisoprene or (meth)-acrylate latex.

Dispersions of polyurethanes or other dispersions in which polymers are dispersed in water with the aid of emulsifiers or dispersing agents are also suitable, however.

Preferred latexes include latexes of natural rubber, styrene-butadiene rubber (SBR), SBR having low styrene content (up to 27%), nitrile rubber (NBR), isoprene rubber, neoprene rubber, polybutadiene rubber, , isobutylene-isoprene rubber (IIR), copolymers of acrylonitrile, methacrylonitrile, acrylates, methacrylates, vinylpyridine with butadiene or 2- chloro-1, 3-butadiene, 3-butadiene and chlorinated polyethylene or mixtures of any of these.

Highly preferred are latexes of natural rubber, styrene-butadiene rubber, nitrile rubber, polybutadiene rubber, isoprene rubber or copolymers comprising acrylates.

Polymer-containing latexes, such as e.g. SBR (styrene- butadiene rubber) or NBR (acrylonitrile-butadiene rubber), polychloroprene, polybutadiene, polyisoprene, natural rubber latex, polyvinyl chloride, (meth)-acrylate dispersions or dispersions of copolymers thereof, are conventionally available commercially in solids concentrations of more than 50%. These concentrations can be achieved e.g. by increasing the concentration of low-concentration polymer latexes. The concentration of natural rubber latex is increased from 30% to 60% solids, for example.

Other preferred latexes are combinations of synthetic and natural latex. Preferred proportions of natural latex to synthetic latex can be varied from 1:4 to 6:4. Highly preferred proportions of natural to synthetic latex are more than 1:1.
According to an alternative method, the liquid latex foam is vulcanized up to a desired level solely by the use of electromagnetic waves, preferably in one single vulcanization station through which the conveyor belt is moved. In this first method, vulcanization can be obtained in a period of several minutes by applying specific power of an electromagnetic wave generator used is chosen between 0.5 and 5 kW/kg latex in the vulcanization station.

Alternatively the vulcanization can be performed by means of electromagnetic waves up to a point wherein the foam layer is dimensionally stable and subsequently finished in a second vulcanization station wherein for example steam is used for heating the latex foam.

The use of the electromagnetic waves for at least partially vulcanizing the latex foam is advantageous in that foam layers between from 1 cm to more than 6 cm, preferably even more than 8 cm and most preferably up to even 24 cm in thickness can be vulcanized showing good performance in uniform cell diameter, uniform foam density, low compression set (lower than 10%) and low indentation load deflection values. Foam densities of as low as 40 kg/m³ are achievable with the method according to the present invention.

According to an alternative method, the liquid latex layer can be poured upon a preformed foam layer provided on the endless conveyor belt, said preformed foam layer being made form a material chosen from the group comprising: polyurethane, polyolefin, polystyrene, visco-elastic latex, dimensionally stable gelatinized but not fully vulcanized latex and or mixtures thereof.

In case the second layer is a gelatinized but not fully vulcanized latex layer, vulcanization of the second layer can be obtained in the vulcanization station used for vulcanizing the poured liquid latex foam layer.
latex foam is poured on the carrier to a thickness of 1 cm or more, preferably 6 cm or more, most preferably 8 cm or more.

5. The method according to claim 1, wherein the liquid latex foam is poured on a layer of foam of a material chosen from the group comprising: polyurethane, polyolefin, polystyrene, visco-elastic latex, gelatinized but not fully vulcanized latex and or mixtures thereof.

6. A slab of vulcanized latex foam for cutting several bedding products therefrom, having a thickness of 6 cm or more, preferably 8 cm or more.

7. A bedding product comprising at least a foamed latex layer, said layer having a compression set of less than 10%, preferably less than 6% after compressing the layer to 50% of its initial thickness for 24 hrs at 70°C.

8. The bedding product according to claim 6, wherein the foamed latex layer has a thickness between 1 and 24 cm, preferably a thickness of 6 cm or more, most preferably a thickness of 7 cm or more.

9. The bedding product according to claim 8, wherein the foamed latex layer has a density of less than 60 kg/m³.

10. The bedding product according to claim 8, being a mattress or a topper.

11. A device for continuously vulcanizing latex foam, comprising an endless belt, means for pouring liquid latex foam on said belt, a vulcanization station provided along said belt comprising a electromagnetic wave generator for electromagnetic waves having a wave length between 1 and 50 Mhz.

12. The device according to claim 11 comprising a second vulcanization station provided along said belt and downstream from said first vulcanization station, the second vulcanization station being steam heated.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB 1 129 436 A (SEMPERIT AG) 2 October 1968 (1968-10-02) * page 2, line 76 - line 111; claims 6-10 *</td>
<td>1, 2, 4, 5, 11, 12</td>
<td>INV. B29C41/28 B29C41/46 A47C27/14</td>
</tr>
<tr>
<td>Y</td>
<td>US 2 604 666 A (BOSOMWORTH GEORGE P) 29 July 1952 (1952-07-29) * column 7, line 37 - line 50 *</td>
<td>3</td>
<td>ADD. B29C35/08 B29C35/04</td>
</tr>
<tr>
<td>X</td>
<td>US 2 706 183 A (MITCHELL CARTER) 12 April 1955 (1955-04-12) * column 1, lines 15-20 * * column 6, line 78 - column 7, line 33 * * column 10, line 75 - column 11, line 13; example 3 * * column 15, line 64 - line 79 * * column 19, line 21 - line 40 *</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 1 508 420 A2 (DAMES WILLERS GMBH [DE]) 23 February 2005 (2005-02-23) * column 4, lines 11-15, 34-36 * * column 6, paragraph 22 *</td>
<td>1, 5, 11</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munich</td>
<td>27 February 2013</td>
<td>Mathey, Xavier</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

X: particularly relevant if taken alone
Y: particularly relevant if combined with another
document of the same category
A: technological background
O: non-written disclosure
P: intermediate document

<table>
<thead>
<tr>
<th>Theory or principle underlying the invention</th>
<th>Earlier patent document, but published on, or after the filing date</th>
</tr>
</thead>
<tbody>
<tr>
<td>D: document cited in the application</td>
<td>L: document cited for other reasons</td>
</tr>
<tr>
<td>&: member of the same patent family, corresponding document</td>
<td></td>
</tr>
</tbody>
</table>
CLAIMS INCURRING FEES

The present European patent application comprised at the time of filing claims for which payment was due.

☐ Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for those claims for which no payment was due and for those claims for which claims fees have been paid, namely claim(s):

☐ No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for those claims for which no payment was due.

LACK OF UNITY OF INVENTION

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

see sheet B

☐ All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.

☐ As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.

☐ Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:

☐ None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:

 1-5, 11, 12

☐ The present supplementary European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims (Rule 164 (1) EPC).
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. claims: 1-5, 11, 12
 A method and device for producing a bedding product.

2. claim: 6
 Slab of vulcanized latex

3. claims: 7-10
 Bedding product

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on the European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

27-02-2013

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB 1129436 A 02-10-1968</td>
<td>AT 261845 B 10-05-1968</td>
<td>BE 700631 A 01-12-1967</td>
<td>CH 442721 A 31-08-1967</td>
</tr>
<tr>
<td>US 2706183 A 12-04-1955</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 1904570 A [0004]
• CA 2007548 [0005]