MEDICAL TISSUE-MARKER AND MANUFACTURING METHOD FOR SAME

MEDIZINISCHE GEWEBEMARKER UND HERSTELLUNGSVERFAHREN DAFÜR

MARQUEUR DE TISSU MÉDICAL ET SON PROCÉDÉ DE FABRICATION

TOYOTA, Taro
Chiba-shi
Chiba 263-8522 (JP)

HARUHIRO ANKO: "Lecithin Haigo lipidol emulsion o Mochiita Kandochu Kagaku Sokusen Ryoho no Kisoteki Kenkyu" JOURNAL OF TOKYO WOMENS MEDICAL UNIVERSITY vol. 60, no. 12, 1990, pages 999 - 1010, XP008170901

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

TECHNICAL FIELD

[0001] The present invention relates to a medical tissue-marker and a manufacturing method for the same.

BACKGROUND ART

[0002] Recently, a surgical operation using an endoscope has been developed and employed in a method for diagnosis and a medical treatment. In a surgical operation, a tissue-marker is extremely useful. A tissue-marker makes a mark on region to be diagnosed or medically treated. A region for diagnosis and a medical treatment can be easily identified by making a mark.

[0003] Techniques for a well-known tissue-marker such as indocyanine green are disclosed, for example, in non-patent literatures 1 to 6, and patent literatures 1 and 2 (hereinafter, referred to as "literatures"). In literatures described below, disclosed is that a tissue-marker fabricated by combining indocyanine green and gelatin is used, and absorption for a visible region is observed by an endoscope camera.

[0004] Technique using X-ray contrast mediums such as iodized poppy oil ethyl ester as a tissue-marker is disclosed in a non-patent literature 7 described below. In the literatures described below, disclosed is that a tissue-maker fabricated by combining the iodized poppy oil ethyl ester and a phospholipid is more stable than a tissue-marker in which no phospholipid is used.

[0005] Furthermore, in the patent literature 3, a vesicle formed by combining a phospholipid and a near-infrared fluorescent dye is incorporated into a hydrophilic solvent to prepare a medical tissue-marker having a vesicle cluster where a plurality of capsules are formed and aggregated by an emulsifier.

Non-patent literature 3: S. Ito et al, Endoscopy 2001; 33: 849-853
Non-patent literature 4: R. Ashida et al, Endoscopy 2006; 38: 190-192
Non-patent literature 6: J. V. Frangioni, Current Opinion in Chemical Biology 2003; 7: 626-634
Non-patent literature 7: Ahkoh Seihiro, basic research for hepatic artery chemoembolotherapy using lipiodol emulsion mixed with lecithin, Tokyo Medical Women's College magazine, 1990; 60: 999-1010

DESCRIPTION OF THE INVENTION

Problems to be solved by the Invention

[0007] Techniques disclosed in non-patent literatures 1 to 6, and patent literatures 1 and 2 are useful for roughly catching a marking position for tissue. However, it is not easy to use an identification that precisely determines a minimum range of tissue to be excised. Specifically, in techniques described above, a tissue inside in an organ and a marker for marking the tissue can be directly observed by an endoscope. However, it is difficult to confirm a marking position inside in an organ by observation from the outside of an organ in which visible light cannot transmit, and to excise target lesion with minimum margins. Furthermore, when ICG is simply mixed with gelatin, identifying a marking position is difficult because diffusion occurs through tissues of a body in early stage.
These problems mean that there is a room for functional improvement in a marker. It is difficult to find ordinary markers placed inside in an organ from the outside of the organ. A marker with fluorescence of a near-infrared light wavelength range can be detected from outside of the organ since near-infrared light can transmit through biological tissues. However, such marker is immediately diffused after administration, a marking point become blurred. As a result, an organ with target lesion is unnecessarily widely to be excised and a burden on a patient is increased.

These problems described above can be solved by technique disclosed in the patent literature 3. However, it is not easy to catch a marking position within an entire organ. For example, if a marking position is easily detected from outside of an organ by an X-ray computed tomography (CT) and endoscope, it is expected that the information of the marking position can be utilized for a simulation before surgery as well as a navigation during surgery.

In the technique disclosed in the non-patent literature 7, iodized poppy oil ethyl ester having poor water-solubility is protected by a phospholipid. Thus, there are merits that dispersibility of the iodized poppy oil ethyl ester in water and retentivity in a body are enhanced. However, since the dispersion liquid has high fluidity, when an organ is marked, fixation thereof is low and it leaks out of the marking point.

Thus, in order to solve the above mentioned problem, it is an object of the present invention to provide a medical tissue-marker and a manufacturing method for the same in which it is possible to identify a position from the outside of an organ, it is easy to be locally stayed for a long period, and it is easy to catch a marking position within an entire organ.

A medical tissue-marker according to one aspect of the present invention to solve the above problem comprises a vesicle formed by combining a phospholipid and a near-infrared fluorescent dye, an emulsion formed by combining the phospholipid and an X-ray contrast medium, the vesicle and the emulsion being incorporated into a hydrophilic solvent, and a cluster in which a plurality of capsules are formed and aggregated by an emulsifier.

A method for manufacturing a medical tissue-marker according to another aspect of the present invention comprises adding a near-infrared fluorescent dye, an X-ray contrast medium and a phospholipid into a first hydrophilic solvent and stirring the first hydrophilic solvent, adding the first hydrophilic solvent and an emulsifier into a hydrophobic solvent to form suspension, and performing centrifugation by the suspension and a second hydrophilic solvent.

Thus, according to the present invention, a medical tissue-marker and a manufacturing method for the same can be provided. It is possible to identify a position even in the outside of an organ and to be stayed for a long period, and it is easy to catch a marking position within an entire organ.

Fig. 1 shows a schematic view for clusters according to one embodiment.
Fig. 2 shows a schematic view for a vesicle according to one embodiment.
Fig. 3 shows a schematic view for an emulsion according to one embodiment.
Fig. 4 shows a schematic view for processes of a method for manufacturing clusters according to one embodiment.
Fig. 5 shows a drawing that displays processes for manufacturing clusters according to one embodiment.
Fig. 6 shows a schematic view of clusters according to one embodiment.
Fig. 7 shows a bright-field microscopic image of clusters according to an example.
Fig. 8 shows a fluorescent microscopic image of clusters according to an example.
Fig. 9 shows a bright-field microscopic image (after 27 hours) of clusters according to an example.
Fig. 10 shows a fluorescent microscopic image (after 27 hours) of clusters according to an example.
Fig. 11 shows a result for an X-ray CT image of clusters according to an example.

Fig. 12 shows a endoscopic view of the inside of the stomach wall of a pig when clusters are injected according to an example.

Fig. 13 shows a laparoscopic view of the outside of stomach of a pig when clusters are injected according to an example.

Fig. 14 shows fluorescent laparoscopic images of the outside of stomach of a pig when clusters are injected according to an example.

Fig. 15 shows fluorescent laparoscopic images of the outside of stomach of a pig when an ICG aqueous solution is injected according to an example.

Fig. 16 shows fluorescent laparoscopic images of the outside of stomach of a pig when clusters are injected (after 24 hours) according to an example.

Fig. 17 shows fluorescent images when an amount of injection is 50μl according to an example.

Fig. 18 shows fluorescent images when an amount of injection is 100μl according to an example.

Fig. 19 shows fluorescent images when an amount of injection is 200μl according to an example.

Fig. 20 shows fluorescent images when an amount of injection is 300μl according to an example.

Fig. 21 is a fluorescent image of the excised stomach 32 hours after administration of clusters according to an example.

Fig. 22 is a X-ray CT image of the excised stomach 32 hours after administration of clusters according to an example.

Fig. 23 shows images in which intensities of fluorescence are varied when ICG concentration and egg yolk lecithin concentration are changed.

Fig. 24 shows X-ray CT images when a vesicle fabricated in example 2 in disperse liquid.

Fig. 25 shows endoscopic view of the local injection of clusters fabricated in example 3 into submucosal layer of the stomach wall (A), three-dimensional volumetric reconstruction of X-ray CT images immediately after administration of the marker (B), fluorescence laparoscopic view from the outside of the stomach 18 hours after administration of the marker(C), fluorescence laparoscopic view from the outside of the stomach 18 hours after administration of ICG aqueous solution.

BEST MODE FOR CARRYING OUT THE PRESENT INVENTION

Hereinafter, embodiments of the present invention are described with reference to the drawings. Subject-matter which is not encompassed by the scope of the claims does not form part of the presently claimed invention.

(a medical tissue-marker)

A medical tissue-marker according to the present embodiment 1 comprises a vesicle formed by combining a phospholipid and a near-infrared fluorescent dye, an emulsion formed by combining the phospholipid and an X-ray contrast medium, the emulsion being incorporated into a hydrophilic solvent, and has clusters in which a plurality of capsules are formed and aggregated by an emulsifier (hereinafter, referred to as "clusters"). Fig. 1 shows a schematic view of clusters 1 in a medical tissue-marker according to the present embodiment 1. Fig. 2 shows a schematic view of a vesicle 2 contained in the clusters 1, and fig. 3 shows a schematic view of an emulsion 3 contained in the clusters 1.

As shown in fig. 2, a vesicle 2 according to the present embodiment 1 is formed by including phospholipids 21 and near-infrared fluorescent dyes 22. Herein, the vesicle 2 means bag-shaped bilayer membranes formed by self-assembled phospholipids due to intermolecular forces. The near-infrared fluorescent dyes 22 are combined with the
phospholipids 21 to become component of the vesicle 2. Herein, the "combination" means a state of forming complex with a vesicle mainly by intermolecular interaction of hydrophobic interaction or means a state of being dissolved in the vesicle 2. By combining the near-infrared fluorescent dyes 22 with the phospholipids 21, the vesicle 2 according to the present embodiment 1 stabilizes the near-infrared fluorescent dyes 22 to stably generate fluorescent light in a near-infrared region.

[0019] The phospholipids 21 according to the present embodiment 1 are not limited as far as a vesicle can be formed. Examples thereof may be lecithin, phosphatidylcholine, or mixtures thereof. Lecithin is not limited. However, examples thereof maybe egg yolk lecithin, soybean lecithin, or mixtures thereof. From the viewpoint of fluorescence intensity in a body, the phospholipids 21 are preferably egg yolk lecithin.

[0020] The phosphatidylcholine is not limited as far as requirement described above is satisfied. Example thereof may be 1-palmitoyl-2-oleoyl-3-sn-glycerophosphatidylcholine, 1-stearoyl-2-oleoyl-3-sn-glycerophosphatidylcholine, 1-palmitoyl-2-linoleate-3-sn-glycerophosphatidylcholine, 1-stearoyl-2-linoleate-3-sn-glycerophosphatidylcholine, 1,2-dilinoleate-3-sn-phosphatidylcholine, 1,2-dipalmitoyl-3-sn-glycerophosphatidylcholine, 1,2-distearyl-3-sn-glycerophosphatidylcholine, or mixtures thereof.

[0021] In the present embodiment 1, the near-infrared fluorescent dyes 22 may be indocyanine green, brilliant green, Indigo Carmine or derivatives thereof. The near-infrared fluorescent dyes 22 means a compound in which a portion of the indocyanine green, the brilliant green or the Indigo Carmine is substituted with other functional group, while maintaining main structure and function thereof. The indocyanine green, the brilliant green and the Indigo Carmine are expressed by chemical formulae 1, 2, and 3, respectively.

[chemical formula 1]

[chemical formula 2]
Size of the vesicle 2 according to the present embodiment 1 is not particularly limited. Generally, the size thereof is preferably 10 nm or more and 100 μm or less, and is more preferably 100 nm or more and 10 μm or less.

In the vesicle 2 according to the present embodiment 1, amounts of the phospholipids 21 and the near-infrared fluorescent dyes 22 can be adjustable without limitation. For example, when amount of lecithin of the phospholipids 21 is one, amount of indocyanine green of the near-infrared fluorescent dyes 22 is preferably 1X10^-4 or more and 1X10^-3 or less, and is more preferably 4X10^-3 or more and 6x10^-3 or less. Within the range of 1X10^-4 or more and 1X10^-3 or less, it is easy to identify a marking position for a tissue in the inside of an organ from the outside of an organ. Within the range of 4X10^-3 or more and 6x10^-3 or less, effect thereof becomes more remarkable.

As shown in fig 3, an emulsion 3 according to the present embodiment 1 is formed by including phospholipids 31 and X-ray contrast mediums 32. Herein, the emulsion 3 means particles wrapped by molecular film formed by the phospholipids 31 being self-assembled due to intermolecular interaction. The X-ray contrast mediums 32 mean component of the emulsion 3 by combination with the phospholipids 31. Herein, the “combination” means a state of forming complex with the phospholipids 31 mainly by intermolecular interaction of hydrophobic interaction or means a state of being dissolved in the emulsion 3. By combining the X-ray contrast mediums 32 with the phospholipids 31, the emulsion 3 according to the present embodiment 1 stabilizes the X-ray contrast mediums 32 to properly capture an X-ray CT image.

The phospholipids 31 according to the present embodiment 1 are similar to the phospholipids 21 in the vesicle 2.

In the present embodiment 1, the X-ray contrast mediums 32 are not limited. Example thereof preferably is iodized poppy oil ethyl ester and derivative thereof, iodobenzene and derivative thereof, barium salt or mixtures thereof. The iodized poppy oil ethyl ester is a compound obtained by iodization and esterification of a poppy oil fatty acid. Example of the iodized poppy oil ethyl ester can be expressed by a chemical formula (4). From the viewpoint of X-ray absorption ratio in an organ, the X-ray mediums 32 are preferably the iodized poppy oil ethyl ester.

Size of the emulsion 3 according to the present embodiment 1 is not particularly limited. Generally, the size thereof is preferably 10 nm or more and 100 μm or less, and is more preferably 100 nm or more and 10 μm or less.

In the emulsion 3 according to the present embodiment 1, amounts of the phospholipids 31 and the X-ray contrast mediums 32 can be adjustable without limitation. For example, when amount of lecithin of the phospholipids 31 is one, amount of the iodized poppy oil ethyl ester of the X-ray contrast mediums 32 is preferably 1X10^-1 or more and 1X10^1 or less, and is more preferably 2X10^-1 or more and 2x10^1 or less. Within the range of 1X10^-1 or more and 1X10^3 or less, it is possible sufficiently to protect surface of the emulsion 3 of the iodized poppy oil ethyl ester with a film of the phospholipids 31. Within the range of 2X10^-1 or more and 2x10^1 or less, effect thereof becomes more remarkable.

As shown in fig. 1, the clusters 1 according to the present embodiment includes a plurality of capsules 5 in which a hydrophilic solvent 4 is incorporated, wherein the plurality of capsules 5 are formed and aggregated by an emulsifier. In the hydrophilic solvent 4, at least any one of the vesicle 2 and the emulsion 3 is incorporated.

The hydrophilic solvent 4 is used for the vesicle 2 and the emulsion 3 being stably incorporated and is not
limited as far as the above condition is satisfied. Preferably, example thereof is water, physiological salt water, phosphate buffer solution, TRIS hydrochloric acid buffer solution, HEPES buffer solution, or mixtures thereof. When phosphate buffer solution, TRIS hydrochloric acid buffer solution or HEPES buffer solution is used, the range of pH 6.5 or more and 8 or less is preferable.

[0031] In order to perform stable stay for a long period at a marking position of tissue in a body, an edible thickener is preferably added into the hydrophilic solution 4. Example thereof is not limited and may be gelatin, agar, fibrinogen, saccharide, or mixtures thereof.

[0032] Example of the gelatin is not limited and may be collagen type I, collagen type II, collagen type III, collagen type V or mixtures thereof.

[0033] Example of the agar is not limited and may be agarose, agaropetin, or mixtures thereof, the agarose and the agaropetin having molecular weight of from several thousands to several ten thousands.

[0034] Example of the fibrinogen is not limited. For example, fibrinogen having concentration of from 5 mg/mL to 50 mg/mL as a main ingredient is included, and calcium chloride, prothrombin, or mixtures thereof is also included.

[0035] Example of saccharide is not limited and may be glucose, sucrose, maltose, galactose, arabinose, ribulose, fructose, rutoside, mannose, lactose, cellobiose or mixtures thereof.

[0036] Amount of adding the edible thickener is not limited. When amount of the hydrophilic solvent 4 contained in the capsules is one, amount of an edible thickener is preferably 1X10^-3 or more and 10 or less, and is more preferably 1X10^-1 or more and 1 or less. Within the range of 1X10^-2 or more, effect thereof becomes more remarkable. Furthermore, within the range of 1 or less, a lowering of fluidity for the hydrophilic solvent 3 can be restrained, and within the range of 1 or less, effect thereof becomes more remarkable.

[0037] In the present embodiment 1, weight ratio of sum of the near-infrared fluorescent dyes, the X-ray contrast mediums and the phospholipids with respect to the hydrophilic solvent (weight ratio of the vesicle and the emulsion) is not limited as far as sufficient fluorescence intensity can be maintained as a medical tissue-marker and an X-ray CT image are sufficiently captured. Preferably, the weight ratio may be 1:100 or more and 1:100 or less, and more preferably, the weight ratio may be 10:1 or more and 1:1 or less. When the ratio is 100:1 or more, fluorescence intensity and X-ray absorption ratio of the medical tissue-marker is higher than those of an organ which is background. When the weight ratio is 10:1 or more, the effect thereof becomes remarkable. Furthermore, when the weight ratio is 1:100 or less, interference is restrained by X-ray absorption with respect to fluorescent light, and when the weight ratio is 1:1 or less, the effect thereof becomes remarkable.

[0038] In the present embodiment 1, weight of the near-infrared fluorescent dyes, the X-ray contrast mediums and the phospholipids which are added into the hydrophilic solvent (weight of the vesicle and the emulsion) is not limited as far as sufficient fluorescence intensity can be maintained as a medical tissue-marker and an X-ray CT image are sufficiently captured. When weight of the hydrophilic solvent (in case of including edible thickener and the like, weight including the edible thickener, etc.) is one, the weight thereof is preferably 1X10^-4 or more and 1X10^-1 or less, and is more preferably 1X10^-3 or more and 1X10^-2 or less. Within the range of 1X10^-4 or more, it is possible to enhance fluorescence intensity and X-ray absorption ratio, and within the range of 1X10^-2 or more, effect thereof becomes more remarkable. Furthermore, within the range of 1X10^-1 or less, changing into lamella phase instead of being the vesicle and the emulsion may be restrained in the hydrophilic solvent and within the range of 1X10^-2 or less, effect thereof becomes more remarkable.

[0039] In the present embodiment 1, the emulsifier is formed on walls of the capsules in which the hydrophilic solvent is contained, and the emulsifier is used for aggregation as clusters. The emulsifier according to the present embodiment 1 can form not only walls of the capsules but also epidermis covering entire clusters. Thus, a plurality of capsules can be aggregated and combined. Example of the emulsifier according to the present embodiment 1 is not limited and may be polyglyceryl polycricolineate, polylglyceryl polycricolineate derivative, glycerol fatty acid ester derivative or mixtures thereof.

[0040] In the present embodiment 1, weight of the emulsifier added for forming the capsules is not limited. When weight of the hydrophilic solvent (including total weight of the near-infrared fluorescent dyes, X-ray contrast mediums and the phospholipoids, and in the case where edible thickener is also included, including total weight thereof) is one, the weight of the emulsifier is preferably 1X10^-3 or more and 1 or less, and is more preferably 1X10^-2 or more and 1X10^-1 or less. Within the range of 1X10^-3 or more, the emulsifier can stably makes the capsules of the hydrophilic solvent, and within the range of 1X10^-2 or more, effect thereof becomes more remarkable. Furthermore, within the range of 1 or less, reaction in which the emulsifier, hydrophobic solvent and a first hydrophilic solvent form a gel layer is restrained, and within the range of 1X10^-1 or less, effect thereof becomes more remarkable.

[0041] In the present embodiment 1, particle diameter is not limited as far as function for a medical tissue-marker is maintained. For example, the particle diameter is preferably 50μm or more and 500μm or less, and is more preferably 100μm or more and 250μm or less. Within the range of 50μm or more, the maker is hard to decompose and fluorescence intensity for the marker can be enhanced. Within the range of 100μm or more, effect thereof becomes more remarkable. Furthermore, Within the range of 500μm or less, it is possible to restrain that injection needle through an endoscope is
stopped. Within the range of 250μm or less, effect thereof becomes more remarkable.

[0042] In the present embodiment 1, number of capsules in one cluster is not limited as far as function for a medical tissue-marker is maintained. For example, the number of capsules is preferably 1 or more and 10^3 or less, and is more preferably 10 or more and 10^2 or less. Within the range of 1 or more, fluorescence intensity is increased and within the range of 10 or more, effect thereof becomes more remarkable. Furthermore, within the range of 10^3 or less, strength for the capsules is increased and the marker becomes stable, and within the range of 10^2 or less, effect thereof becomes more remarkable.

[0043] Furthermore, in order to preferably maintain clusters, a medical tissue-marker according to the present embodiment 1 uses, for example, a hydrophobic solvent, the clusters being maintained in the hydrophobic solvent. Thus, there is an effect that a plurality of capsules are formed and aggregated. Besides the above solvent, in order to stabilize and strengthen the function of the medical tissue-marker, another element such as hydrophobic polymer and the like can be added to cross-link.

[0044] Hereinabove, by a medical tissue-marker according to the present embodiment 1, it is possible to identify a position even in the outside of an organ, to be locally stayed for a long period, and to catch a marking position within an entire organ.

[0045] More specifically, a medical tissue-marker according to the present embodiment 1 can strongly and stably generate a near-infrared fluorescent light since near-infrared fluorescent dyes are combined with a vesicle, and can photograph an X-ray CT image since X-ray contrast mediums are forming an emulsion. Furthermore, even when capsules are contacted with tissue liquid in a body by being driven into an organ, there is an advantage that each capsule is hard to be dissociated and locally to be stayed for a long period since both the vesicle and the emulsion are incorporated into a hydrophilic solution to form clusters that includes the capsules. There is also advantage that strength for a local stay for a long period and flexibility for injection into an organ through passage of an endoscope are maintained since an edible thickener is used for the capsules of the clusters.

(A method for manufacturing clusters)

[0046] Herein, an example of a method for manufacturing a medical tissue-marker (hereinafter, referred to as "the present manufacturing method") is described in detail. Fig. 4 is a schematic view of the present manufacturing method.

[0047] As shown in fig. 4, the present manufacturing method is characterized by comprising a first step of adding a near-infrared fluorescent dye, an X-ray contrast medium and a phospholipid into a first hydrophilic solvent and stirring the first hydrophilic solvent, a second step of adding the first hydrophilic solvent and an emulsifier into a hydrophobic solvent to form suspension, and a third step of performing centrifugation by the suspension and a second hydrophilic solvent.

[0048] By the first step of adding a near-infrared fluorescent dye, an X-ray contrast medium and a phospholipid into a first hydrophilic solvent and stirring the first hydrophilic solvent, a vesicle including the phospholipid combined with the near-infrared fluorescent dye and an emulsion including the phospholipid combined with the X-ray contrast medium can be formed. In the present embodiment 1, there is an advantage that this operation can be performed at one time, and large device is unnecessary. The step of forming the vesicle and the step of forming the emulsion are separately performed. Then each solvent may be mixed to be one solvent. In this case, the step of forming the vesicle and the step of forming the emulsion are not limited to the step of adding the phospholipid for stirring. The step of removing solvent may be used by decompression process after the phospholipid is mixed with an organic solvent or supercritical fluid. The step of performing filter treatment or ultrasonic treatment by adding the phospholipid may also be used. However, from the viewpoints of enhancement for biocompatibility by including no organic solvent and stability of the phospholipid, the step of adding the phospholipid for stirring is preferable.

[0049] In the first step described above, from the viewpoint of the capsules 4 being easily formed, the first hydrophilic solvent preferably employs the same as the hydrophilic solvent which exists in the capsules. That is to say, example of the first hydrophilic solvent is preferably water, physiological salt water, phosphate buffer solution, TRIS hydrochloric acid buffer solution, HEPES buffer solution, or mixtures thereof.

[0050] The first hydrophilic solvent preferably includes an edible thickener. The edible thickener may be gelatin, agar, fibrinogen, saccharide, or mixtures thereof.

[0051] Amount of the near-infrared fluorescent dyes, the X-ray contrast mediums and the phospholipids with respect to the first hydrophilic solvent is not limited. The same range preferably applied to in relation to the near-infrared fluorescent dyes, the X-ray contrast mediums and the phospholipids in the hydrophilic solvent which exists in the capsules. That is to say, when weight (in case of including an edible thickener and the like, including weight thereof) of the first hydrophilic solvent is one, weight thereof is preferably 1X10^-4 or more and 1X10^-1 or less, and is more preferably 1X10^-3 or more and 1X10^-2 or less. Within the range of 1X10^-4 or more, intensity of fluorescent light is increased and an X-ray CT image is sufficiently captured, and within the range of 1X10^-3 or more, effect thereof becomes more remarkable. Furthermore, within the range of 1X10^-1 or less, changing into lamellar phase instead of the vesicle and the emulsion in the hydrophilic
solvent is restrained, and within the range of 1×10^{-2} or less, effect thereof becomes more remarkable.

[0052] Temperature for performing the first step is not limited as far as the vesicle and an emulsion can be formed. Example thereof is preferably 4°C or more and 80°C or less, and more preferably is room temperature for a convenience. A time for stirring the first hydrophilic solvent is also not limited as far as the vesicle and the emulsion can be formed. Example thereof is preferably 5 minutes or more and 1 hour or less, and more preferably is 10 minutes or more and 30 minutes or less.

[0053] By the second step for forming suspension by adding the first hydrophilic solvent and the emulsifier into the hydrophobic solvent, the emulsifier can be boarded on around the first hydrophilic solvent in which the vesicle and the emulsion are incorporated, and a plurality of capsule-shaped emulsion in the hydrophobic solvent can be formed.

[0054] The hydrophobic solvent in the second step is not limited as far as the capsule-shaped emulsion is formed at a temperature of 4°C or more and 80°C or less. Example of the hydrophobic solvent is kerosene, hexane, decane, dodecane, heptane, squalene, squalane, liquid paraffin, mineral oil or mixtures thereof.

[0055] In the present embodiment 1, weight of the hydrophobic solvent is not limited. When weight of the hydrophilic solvent is one, the weight of the hydrophobic solvent is preferably 1 or more and 100 or less, and is more preferably 5 or more and 10 or less. Within the range of 1 or more, it is restrained that capsule-shaped emulsion is transferred to gel phase, and within the range of 5 or more, effect thereof becomes more remarkable. Furthermore, within the range of 100 or less, the clusters stably maintain a particle diameter of capsule-shaped emulsion, and within the range of 10 or less, effect thereof becomes more remarkable.

[0056] In the second step, the emulsifier described above can be employed.

[0057] In the second step, amount of the first hydrophilic solvent can be properly adjusted without limitation. For example, when weight amount of the hydrophobic solvent is one, the amount of the first hydrophilic solvent is preferably 1×10^{-3} or more and 1 or less, and is more preferably 1×10^{-2} or more and 1×10^{-1} or less. Within the range of 1×10^{-3} or more, intensity of fluorescent light of a marker is enhanced by increasing number of capsules per cluster, and within the range of 1×10^{-2} or more, effect thereof becomes more remarkable. Furthermore, within the range of 1 or less, phase separation between the hydrophilic solvent and the hydrophobic solvent is restrained, and within the range of 1×10^{-1} or less, effect thereof becomes more remarkable.

[0058] In the second step, amount of the emulsifier can be properly adjusted without limitation. For example, when weight amount of the hydrophilic solvent is one, the emulsifier is preferably 1×10^{-3} or more and 1 or less, and is more preferably 1×10^{-2} or more and 1×10^{-1} or less. Within the range of 1×10^{-3} or more, the emulsifier stably generates the capsules of the hydrophilic solvent, and within the range of 1×10^{-2} or more, effect thereof becomes more remarkable. Furthermore, within the range of 1 or less, reaction in which the emulsifier, the hydrophobic solvent and the first hydrophilic solvent form a gel layer is restrained, and within the range of 1×10^{-1} or less, effect thereof becomes more remarkable.

[0059] In the present embodiment 1, the third step of performing centrifugation by the suspension and a second hydrophilic solvent is a method in which a hydrophobic solvent layer and a hydrophilic solvent layer is phase-separated for an arrangement and the capsule-shaped emulsion existing in the hydrophobic solvent is precipitated in the hydrophilic solvent by centrifugation. In fig. 5, the schematic view is shown. As a result, the emulsion on the interface between the hydrophilic solvent layer and the hydrophobic solvent layer can form clusters from capsules.

[0060] A second hydrophilic solvent may be used for centrifugation without limitation. For example, water, physiological salt water, phosphate buffer solution, TRIS hydrochloric acid buffer solution, HEPES buffer solution, or mixtures thereof is preferably used.

[0061] Amount of a second solvent is not limited. For example, when amount of suspension is one, the second solvent is preferably 1 or more and 1000 or less, and more preferably 10 or more and 100 or less. Within the range of 1 or more, phase separation between the hydrophobic solvent layer and the hydrophilic solvent layer can be stabilized, and within the range of 10 or more, effect thereof becomes more remarkable. Furthermore, within the range of 1000 or less, the lowering of viscosity can be restrained, and within the range of 100 or less, effect thereof becomes more remarkable.

[0062] As a result, a medical tissue-marker can be configured.

(embodiment 2)

(a medical tissue-marker)

[0063] A medical tissue-marker according to the present embodiment 2 is almost the same as the embodiment 1 except that when suspension is formed by adding a first hydrophilic solvent and an emulsifier to a hydrophobic solvent, X-ray contrast mediums is added into the hydrophobic solvent. Difference therebetween is described below.

[0064] Fig. 6 is a schematic view for clusters 1 in a medical tissue-marker according to the present embodiment 2. As shown in fig. 6, a medical tissue-marker according to the present embodiment 2 is characterized by including the X-ray contrast mediums even in the outside of the capsules 5. Thus, lots of the X-ray contrast mediums can be included. It is also possible to include the X-ray contrast mediums located in near distance with the outside of the clusters 1. Thus,
sensitivity thereof is enhanced.

(a method for manufacturing clusters)

[0065] Herein, a method for manufacturing a medical tissue-marker according to the present embodiment 2 is described. A method for manufacturing clusters according to the present embodiment 2 is almost the same as the embodiment 1 except that suspension is formed by adding a first hydrophilic solvent and an emulsion into a hydrophobic solvent in the second step of the embodiment 1. Specifically, when suspension is formed by adding the first hydrophilic solvent and the emulsifier into the hydrophobic solvent, adding X-ray contrast mediums differs from the embodiment 1.

[0066] The X-ray contrast mediums added in the second step is the same as in the embodiment 1. Concentration of the X-ray contrast mediums is not specially limited. For example, amount of the first hydrophilic solvent is one, amount of the X-ray contrast mediums is preferably 0.01 or more and 10 or less, and more preferably 0.1 or more and 1 or less. Within the range of 0.01 or more, sensitivity for the X-ray contrast image is increasing, and within the range of 0.1 or more, effect thereof becomes more remarkable. Furthermore, within the range of 10 or less, when clusters is fabricated, precipitation due to its weight is restrained, and within the range of 1 or less, effect thereof becomes more remarkable.

[0067] Hereinabove, by a medical tissue-marker according to the present embodiment 2, it is possible to identify a position from the outside of an organ even marked on the inside of an organ, and to be locally stayed for a long period. It is also possible to catch a marking position within an entire organ. Especially, by a marker according to the present embodiment 2, the X-ray contrast mediums can be included even in the outside of capsules. Thus, sensitivity thereof is increased.

Examples

[0068] Herein, a medical tissue-marker was specifically fabricated and effects of the present invention were confirmed. Hereinafter, the details are described below.

(example 1)

[0069] In the present example 1, TRIS hydrochloric acid buffer solution as a first hydrophilic solvent, indocyanine green (hereinafter, referred to as "ICG") as a near-infrared fluorescent dye, iodized poppy oil ethyl ester (hereinafter, referred to as "LPD") as a X-ray contrast medium, and egg yolk lecithin as a phospholipid were employed, respectively. Sucrose as a thickener was employed.

[0070] TRIS buffer solution of 1 mL was prepared to be 50 mM and pH 7.8 in a glass tube at room temperature. Then, ICG of 2X10^{-2} mM, LPD of 20 mM, and egg yolk lecithin of 30 mM were added thereto for stirring. A vesicle and an emulsion were formed.

[0071] Then, polyglyceryl polyricinoleate (PGPR) of 15w/w% was dissolved into squalene of a hydrophobic solvent of 15 mL. The solution of 1 mL including the vesicle and the emulsion fabricated was added thereto. Suspension including emulsion by PGPR (PGPR emulsion) was prepared. In the present example 1, LPD of 4 mM was added even into the hydrophobic solvent. Thus, the LPD existed in the PGPR emulsion or surrounding the PGPR emulsion.

[0072] Then, TRIS buffer solution of 5 mL having 50 mM and pH 7.7 was prepared as a second hydrophilic solution. Suspension of 10 mL including the PGPR emulsion was added into the second hydrophilic solution from upper side by using glucose as thickener. Oil phase (squalene phase) and aqueous phase (TRIS buffer solution phase) were contacted each other and rotated at a speed of 3500 rpm for 30 minutes at room temperature to form clusters of PGPR.

[0073] Fig. 7 is a bright-field microscopic image of clusters of PGPR. Fig. 8 is a fluorescent microscopic image. From fig. 7 and fig. 8, existing clusters and generation of fluorescent light were confirmed. Fig. 9 is a bright-field microscopic image when clusters of PGPR were fabricated and 27 hours were passed. Fig. 10 is a fluorescent microscopic image when clusters of PGPR were fabricated and 27 hours were passed. As a result, even after one day or more was passed, it was confirmed that shape and function of clusters were stable.

[0074] Fig. 11 shows a result of an X-ray computed tomography (CT) in a state of fluid dispersion with respect to the clusters. From fig. 11, it was confirmed that X-ray absorption (CT numbers) of the clusters were sufficiently higher than that of the stomach wall itself.

[0075] Then, clusters fabricated were injected into biological tissue and result thereof was confirmed. Specifically, submucosal layer of the stomach wall of a pig was a most suitable target of the marker administration. The fluid dispersion of 300 μL including clusters was administrated on four points surrounding a metal clip placed inside the stomach by local injection. Fig. 12 shows an endoscopic view of the inside of the stomach. Fig. 13 shows a laparoscopic view of the outside of the stomach.

[0076] Fig. 14 shows fluorescent images of the outside of stomach. Left and middle panels show conventional and fluorescent laparoscopic images immediately after local injection, respectively. Right panel showed a fluorescent image
6 hours after injection. As shown in fig. 14, even after 6 hours, four injection points were clearly identified. It was confirmed that clusters were sufficiently stayed at the injection points. Fig. 15 shows fluorescent images when ICG aqueous solution was locally injected to the positions similar to those as indicated in fig. 14. In this case, exact injection positions were unclear immediately after injection as well as 6 hours after injection.

[0077] Herein, stability was confirmed again 24 hours after local injection of the marker. Submucosal layer of the stomach wall was a most suitable target of the marker administration. The fluid dispersion of 300 µl including clusters was administrated at two points surrounding a metal clip by local injection. The pig was recovered from general anesthesia after the administration. Twenty-four hours later, laparoscopy was performed again under general anesthesia. Fluorescent laparoscope view of the outside of the stomach revealed sufficient fluorescent intensity at the injection points as indicated in fig.16.

[0078] Optimum injection amount of the marker was verified. When the concentration of the clusters according to the example 1 was 100 µl or more, injection points could be confirmed. The concentration thereof was preferably 200 µl or more, and is more preferably 300 µl or more. Fluorescent images of the injection site with various amount of the marker are shown in figs. 17 to 20. In fig. 17, 50 µl was used. In fig. 18, 100 µl was used. In fig. 19, 200 µl was used. In fig. 20, 300 µl was used.

[0079] Then, stomach of the pig was excised, and fluorescence and X-ray CT imaging was performed 32 hours after marker (300 µl each at four points around a metal clip) administration. Fluorescence imaging with the use of a near-infrared LED light showed four spots of individually distinguishable fluorescence on the marker injection site (pyloric side of the stomach, i.e., right side on the image of the stomach, in fig. 21.) and broad diffusion of the fluorescence on the site of ICG aqueous solution injection site (cardia side of the stomach, i.e., left side on the image of the stomach, in fig. 21.)

[0080] Furthermore, a volumetric reconstruction of the X-ray CT images of the stomach was performed to allow three-dimensional analysis of the location of the injection sites. Fig. 22 shows three-dimensional reconstructed CT images. Injection sites of the marker on the three-dimensional image were observed in exactly the same location with that revealed under the fluorescent laparoscope observation.

[0081] Hereinabove, according to the example 1, it was confirmed that a medical tissue-marker and a manufacturing method therefor were provided. This medical tissue-marker could be detected by X-ray CT as well as fluorescent imaging. Furthermore, injection site of the marker could be identified from the outside of an organ, and to be locally stayed for a long period, and it is easy to catch a marking location within the entire organ.

[0082] In the example 1, for example, the concentration of ICG was 3.2x10⁻²mM and the concentration of ICG can be adjustable. In fig. 23(a), changes of fluorescence intensity are shown when the concentration of ICG combined with the vesicle was varied (egg yolk lecithin of 30mM). In fig. 23(b), changes of fluorescence intensity were shown when the concentration of egg yolk lecithin combined with the vesicle was varied (the concentration of ICG aqueous solution of 3.2x10⁻²mM). It was confirmed that the concentration of ICG was preferably 3.2x10⁻¹mM or more and 1.6x10⁻¹mM or less, and the concentration of egg yolk lecithin was 5mM or more and 40mM or less.

(example 2)

[0083] In the present example 2, a medical tissue-marker was fabricated by using the same material and method used in the example 1 except that LPD was only added to a first hydrophilic solvent. Difference therebetween is mainly described below.

[0084] TRIS buffer solution of 1 mL was prepared to be 50 mM and pH 7.8 in a glass tube at room temperature. Then, ICG of 3.2x10⁻²mM, LPD of 20 mM, egg yolk lecithin of 30 mM were added thereto for stirring. A vesicle and an emulsion were formed.

[0085] Then, polyglyceryl polyricinoleate (PGPR) of the emulsifier having 15w/w% was dissolved into squalene of a hydrophobic solvent of 15mL. The solution of 1mL including the vesicle and the emulsion fabricated was added thereto for stirring. A vesicle and an emulsion were formed.

[0086] Then, TRIS buffer solution of 5 mL having 50 mM and pH7.7 was prepared as a second hydrophilic solution. Suspension of 10 mL including the PGPR emulsion was added into the second hydrophilic solution from upper side by using glucose as a thickener. Oil phase (squalene phase) and aqueous phase (TRIS buffer solution phase) were contacted each other and rotated at a speed of 3500 rpm for 30 minutes at room temperature to form clusters of PGPR.

[0087] Fig. 24 shows X-ray CT images of clusters fabricated in fluid dispersion. Even in clusters, X-ray absorption (CT numbers) of it is sufficiently higher than that of the stomach wall itself.

(example 3)

[0088] In the present example 3, a medical tissue-marker using ICG-8 shown in chemical formula (5) of ICG derivative was fabricated in the following steps. TRIS buffer solution of 1 mL was prepared to be 50 mM and pH 7.8 in a glass tube
at room temperature. Then, ICG-8 of 3.2X10^{-2}mM, LPD of 40mg/mL, egg yolk lecithin of 30 mM were added thereto for stirring. A vesicle and an emulsion were formed.

[chemical formula 5]

[0089] Then, polyglyceryl polyricinoleate (PGPR) of the emulsifier having 15w/w% and LPD of 160mg/mL were dissolved into squalene of a hydrophobic solvent of 15 mL. The solution of 1mL including the vesicle and the emulsion fabricated was added thereto. Suspension including emulsion by PGPR (PGPR emulsion) was prepared.

[0090] Then, TRIS buffer solution of 5 mL having 50 mM and pH7.7 was prepared as a second hydrophilic solution. Suspension of 10 mL including the PGPR emulsion and LPD were added into the second hydrophilic solution from upper side by using glucose as a thickener. Oil phase (squalene phase) and aqueous phase (TRIS buffer solution phase) were contacted each other and rotated at a speed of 3500 rpm for 30 minutes at room temperature to form clusters of PGPR.

[0091] Fig. 25 shows results that (A) the present medical tissue-marker was injected with every 300μl into four points on a circumference of a circle for submucosal layer of the stomach wall of a pig under general anesthesia, (B) it was possible to clearly identify the four points of the injection in three-dimensional reconstruction images of X-ray CT immediately after the administration, (C) the medical tissue-marker locally injected at four points closely located each other on the stomach wall of the pig were individually distinguishable by fluorescent laparoscope even 18 hours after administration, and (D) it was impossible to distinguish four points of locally injected ICG aqueous solution with the same manner as the medical tissue-marker because of broad blurring of the solution through tissues.

[0092] Thus, according to the present examples, it was confirmed that a medical tissue-marker and a manufacturing method therefor were provided. With the use of the medical tissue-marker and the manufacturing method therefor, it was possible to obtain marking point images with X-ray CT as well as a fluorescent endoscope, it was also possible to identify the marking positions from the outside of the organ even administered inside in an organ and to be locally stayed for a long period, and it is easy to catch an accurate marking positions within an entire organ.

Industrial Applicability

[0093] The present invention is industrially applicable a medical tissue-marker and a manufacturing method therefor.

Claims

1. A medical tissue-marker comprises:
a vesicle formed by combining a phospholipid and a near-infrared fluorescent dye; an emulsion formed by combining the phospholipid and an X-ray contrast medium; and clusters, wherein the vesicle and the emulsion are incorporated into a hydrophilic solvent and a plurality of capsules are formed and aggregated by an emulsifier.

2. The medical tissue-marker according to claim 1, wherein the X-ray contrast medium includes iodized poppy oil ethyl ester.

3. The medical tissue-marker according to claim 1, wherein the phospholipid is at least any one of lecithin and phosphatidylcholine.

4. The medical tissue-marker according to claim 1, wherein the hydrophilic solvent includes water and an edible thickener.

5. A method for manufacturing a medical tissue-marker comprising: adding a near-infrared fluorescent dye, an X-ray contrast medium and a phospholipid into a first hydrophilic solvent and stirring the first hydrophilic solvent; adding the first hydrophilic solvent and an emulsifier into a hydrophobic solvent to form suspension; and performing centrifugation by using the suspension and a second hydrophilic solvent.

6. The method for manufacturing a medical tissue-marker according to claim 5, wherein the X-ray contrast medium is also added, when the first hydrophilic solvent and the emulsifier are added into the hydrophobic solvent to form the suspension.

7. The method for manufacturing a medical tissue-marker according to claim 5, wherein the X-ray contrast medium includes iodized poppy oil ethyl ester.

Patentansprüche

1. Medizinischer Gewebemarker umfassend:

 ein Vesikel, gebildet durch Kombinieren eines Phospholipids und eines Nahinfrarot-Fluoreszenzfarbstoffs; eine Emulsion, gebildet durch Kombinieren des Phospholipids und eines Röntgenkontrastmittels; und Cluster, wobei die Vesikel und die Emulsion in einem hydrophilen Lösungsmittel aufgenommen sind und mittels eines Emulgators eine Vielzahl an Kapseln gebildet und aggregiert wird.

2. Medizinischer Gewebemarker nach Anspruch 1, wobei das Röntgenkontrastmittel jodierten Mohnöl-Ethylester umfasst.

3. Medizinischer Gewebemarker nach Anspruch 1, wobei das Phospholipid mindestens eines aus Lecithin und Phosphatidylcholin ist.

4. Medizinischer Gewebemarker nach Anspruch 1, wobei das hydrophile Lösungsmittel Wasser und ein verzehrbares Verdickungsmittel umfasst.

5. Verfahren zur Herstellung eines medizinischen Gewebemarkers umfassend:

 Zugeben eines Nahinfrarot-Fluoreszenzfarbstoffs, eines Röntgenkontrastmittels und eines Phospholipids in ein erstes hydrophiles Lösungsmittel und Rühren des ersten hydrophilen Lösungsmittels; Zugeben des ersten hydrophilen Lösungsmittels und eines Emulgators in ein hydrophobes Lösungsmittel, um eine Suspension zu bilden; und Durchführen einer Zentrifugation unter Verwendung der Suspension und eines zweiten hydrophilen Lösungsmittels.

6. Verfahren zur Herstellung eines medizinischen Gewebemarkers nach Anspruch 5, wobei auch das Röntgenkontrastmittel zugegeben wird, wenn das erste hydrophile Lösungsmittel und der Emulgator
7. Verfahren zur Herstellung eines medizinischen Gewebemarkers nach Anspruch 5, wobei das Röntgenkontrastmittel jodierten Mohnöl-Ethylester umfasst.

Revendications

1. Marqueur de tissu médical comprenant :
 une vésicule formée en combinant un phospholipide et un colorant fluorescent proche infrarouge ;
 une émulsion formée en combinant le phospholipide et un milieu de contraste pour radiographie ; et
 des clusters, dans lequel la vésicule et l’émulsion sont incorporées dans un solvant hydrophile et une pluralité
 de capsules sont formées et agrégées par un émulsifiant.

2. Marqueur de tissu médical selon la revendication 1,
 dans lequel le milieu de contraste pour radiographie inclut de l’estérylique iodé d’huile d’oeillette.

3. Marqueur de tissu médical selon la revendication 1,
 dans lequel le phospholipide est au moins l’un quelconque de la lécitine et de la phosphatidylcholine.

4. Marqueur de tissu médical selon la revendication 1,
 dans lequel le solvant hydrique inclut de l’eau et un épaississant comestible.

5. Procédé de fabrication d’un marqueur de tissu médical comprenant :
 l’ajout d’un colorant fluorescent proche infrarouge, d’un milieu de contraste pour radiographie et d’un phospho-
 lipide dans un premier solvant hydrophile et l’agitation du premier solvant hydrophile ;
 l’ajout du premier solvant hydrophile et d’un émulsifiant dans un solvant hydrophobe pour former une
 suspension ;
 et
 l’exécution de la centrifugation en utilisant la suspension et un second solvant hydrophile.

6. Procédé de fabrication d’un marqueur de tissu médical selon la revendication 5, dans lequel le milieu de contraste
 pour radiographie est également ajouté, lorsque le premier solvant hydrophile et l’émulsifiant sont ajoutés dans le
 solvant hydrophobe pour former la suspension.

7. Procédé de fabrication d’un marqueur de tissu médical selon la revendication 5, dans lequel le milieu de contraste
 pour radiographie inclut l’estérylique iodé d’huile d’oeillette.
Fig. 9
Fig. 11
Fig. 12

the side of local injection (inside of stomach wall)
Fig. 13

the outside of stomach
Fig. 14
Fig. 16
Fig. 19
Fig. 20
Fig. 21

- fluorescent visible position
- greater curvature
- lesser curvature
- back wall of cardia side
- back of pyloric side wall
Fig. 22
ICG concentration dependencies of PGPR vesicle aggregate dispersion liquid (fluorescent light images and intensities thereof)

<table>
<thead>
<tr>
<th>ICG concentration combined into vesicle (mM)</th>
<th>intensity of fluorescent light (a.u.)</th>
<th>standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>38.9</td>
<td>9.5</td>
</tr>
<tr>
<td>3.2×10⁻⁴</td>
<td>54.5</td>
<td>9.4</td>
</tr>
<tr>
<td>1.6×10⁻³</td>
<td>95.3</td>
<td>14.3</td>
</tr>
<tr>
<td>3.2×10⁻³</td>
<td>164.5</td>
<td>29.7</td>
</tr>
<tr>
<td>3.2×10⁻²</td>
<td>186.8</td>
<td>29.9</td>
</tr>
<tr>
<td>1.6×10⁻¹</td>
<td>195.1</td>
<td>35.6</td>
</tr>
<tr>
<td>1.6×10⁻¹</td>
<td>157.2</td>
<td>31.3</td>
</tr>
</tbody>
</table>

EYPC concentration dependencies of PGPR vesicle aggregate dispersion liquid (fluorescent light images and intensities thereof)

<table>
<thead>
<tr>
<th>EYPC concentration combined into vesicle (mM)</th>
<th>intensity of fluorescent light (a.u.)</th>
<th>standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>112.3</td>
<td>21.9</td>
</tr>
<tr>
<td>5</td>
<td>185.8</td>
<td>38.9</td>
</tr>
<tr>
<td>10</td>
<td>217.7</td>
<td>35.1</td>
</tr>
<tr>
<td>20</td>
<td>224.8</td>
<td>38.9</td>
</tr>
<tr>
<td>30</td>
<td>225.8</td>
<td>35.0</td>
</tr>
<tr>
<td>40</td>
<td>210.9</td>
<td>39.4</td>
</tr>
</tbody>
</table>

ICG molecules combined into a bimolecular film of PGPR vesicle aggregate are small.
mixing of LPD with respect to a first hydrophilic solvent

① 0 ② 20 mM
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2007262062 A [0006]
• JP 2008069107 A [0006]
• JP 2010266295 A [0006]

Non-patent literature cited in the description

• KUSANO MITSUO. All about ICG fluorescent Navigation Surgery. Intermedia, 2008 [0006]
• J. V. FRANGIONI. Current Opinion in Chemical Biology, 2003, vol. 7, 626-634 [0006]
• Ahkoh Seihiro, basic research for hepatic artery chemoembolotherapy using lipiodol emulsion mixed with lecithin. Tokyo Medical Women’s College magazine, 1990, vol. 60, 999-1010 [0006]