Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND

Field

[0001] Apparatuses and methods consistent with exemplary embodiments relate to an electronic device, a server, and control methods thereof, and more particularly, to an electronic device, a server, and control methods thereof which recognize a user’s command and operate under the command by using the server.

Description of the Related Art

[0002] US2004/010409 describes a voice recognition system with a client device and a server device which count recognition of vocabulary in a recognition dictionary and provide dictionary updates of from the server to the client. US2011/066634 describes a speech-to-text recognition for use in combination with a mobile search function on a mobile terminal.

[0003] An electronic device may take many different specific forms in the related art, such as a television (TV), a set-top box, a Digital Versatile Disc (DVD) player, an air-conditioner, a refrigerator, or a computer. The electronic device operates under a user’s command. The electronic device of the related art may be controlled by various types of commands, such as a voice recognition through a microphone, in line with the development of technology and diversification of functions beyond a traditional input method, such as using a hand-held remote control unit. In the case of an electronic device such as a TV, if a user says, “Change the volume to 20,” the electronic device receives and interprets a voice signal through voice recognition technology and changes the volume level to ‘20’, accordingly.

[0004] The electronic device of the related art may utilize a command recognition configuration in order to properly interpret a user’s command. However, the electronic device may not be able to accurately interpret the command. In this case, an external server through a network may be used. More specifically, to recognize voice, the electronic device transmits content of a user’s voice command to the server, which interprets and determines a user’s intention regarding the voice command by using a voice recognition configuration provided in the server. The server transmits the analysis result to the electronic device, which may perform a corresponding function by using the analysis result.

[0005] However, if a related art electronic device may not identify a user’s command by itself, the electronic device is to communicate with the server and receive the analysis result from the server. Accordingly, a communication time is required between the electronic device and the server through the network, and there is a delay to perform functions according to the analysis result. The communication time which is taken to obtain the analysis result regarding the user’s command depends on the state of the network or the communication bandwidth, but fundamentally delays the time for recognizing the user’s command and performing the corresponding function.

SUMMARY

[0006] According to the present invention there is provided an apparatus and method as set forth in the appended claims. Other features of the invention will be apparent from the dependent claims, and the description which follows.

[0007] One or more exemplary embodiments provide an electronic device, a server, and control methods thereof which minimize the time for recognizing a user’s command and performing an operation of the electronic device in response to the user’s command.

[0008] According to an aspect of an exemplary embodiment, there is provided a display apparatus including: a processor which processes a signal; a display which displays an image based on the processed signal; a command receiver which receives a user’s voice command; a communicator which communicates with a first server; a storage; and a controller which receives, from the first server, a voice recognition command list including a voice recognition command and corresponding control command information and stores the list in the storage, the voice recognition command being among user’s voice commands which have successfully been recognized a predetermined number of times or more and in response to receiving a user’s voice command, identifies whether the voice command corresponds to the voice recognition command included in the voice recognition command list, and if so, controls the processor to operate based on the control command information of the corresponding voice recognition command, and if not, transmits the voice command to the first server, receives corresponding control command information from the first server, and controls the processor to operate based on the received control command information.

[0009] The controller may determine whether the voice command corresponds to the voice recognition command in the voice recognition command list based on a determined relevance between the voice command and the voice recognition command.

[0010] If predetermined time or more elapses after the voice command is transmitted to the first server, the controller may control the image processor to operate based on the voice recognition command in the voice recognition command list.

[0011] The controller may notify a user of a content of the voice recognition command in the voice recognition command list in advance, and determine whether to operate based on the voice recognition command according to a user’s intention.

[0012] If the received voice command is newly recognized for a user, the controller may transmit the recog-
The controller may transmit the user’s voice command to a second server, receive a text into which the voice command has been converted, from the second server, and transmits the received text to the first server.

The controller may store in the storage voice commands for each user, and display a list of the stored voice commands in the form of a user interface (UI).

The controller may register an identification symbol corresponding to the voice command under a user’s instruction, and in response to the registered identification symbol being said by the user, determine that the voice command has been received.

If a location where a voice command is arranged in the list is said, the controller may determine that the voice command has been received.

According to an aspect of another exemplary embodiment, there is provided a control method of a display apparatus, the control method including: receiving a voice recognition command list and corresponding control command information from a first server, the voice recognition command being among user’s voice commands which have successfully been recognized a predetermined number of times or more; storing the received voice recognition command list in the display apparatus; receiving a user’s voice command; identifying whether the received voice command corresponds to the voice recognition command included in the stored voice recognition command list; operating according to the control command information of the voice recognition command if the received voice command corresponds to the voice recognition command; and transmitting the received voice command to the first server and receiving corresponding control command information from the first server and operating according to the received control command information if the received voice command does not correspond to the voice recognition command.

The identifying whether the received voice command corresponds to the voice recognition command included in the voice recognition command list may include determining whether the voice command corresponds to the voice recognition command in the voice recognition command list based on a determined relevance between the voice command and the voice recognition command.

The control method may further include operating based on the voice recognition command in the voice recognition command list if a predetermined time or more elapses after the voice command is transmitted to the first server.

The control method may further include notifying a user of a content of the voice recognition command in the voice recognition command list in advance and determining whether to operate based on the voice recognition command according to a user’s intention.

The control method may further include, if the received voice command is newly recognized for a user, transmitting to the first server the recognized voice command and the corresponding control command information.

The control method may further include: transmitting the user’s voice command to a second server; receiving a text to which the voice command has been converted, from the second server, and transmitting the received text to the first server.

The control method may further include: storing a voice command for each user, in the processing apparatus; and displaying a list of the stored voice commands in the form of a user interface (UI).

The control method may further include: registering an identification symbol corresponding to the voice command under a user’s instruction, wherein the receiving the voice command includes determining that the corresponding voice command is received if the user says the registered identification symbol.

The receiving the voice command may include determining that the corresponding voice command is received if a user says a location where one voice command is arranged from the list.

According to an aspect of another exemplary embodiment, there is provided a server which analyzes a user’s voice command to a display apparatus, the server including: a communicator which communicates with a display apparatus; a storage which stores information regarding a user’s voice command; and a controller which, in response to receiving a request from the display apparatus for analysis of a user’s voice command, transmits control command information corresponding to the voice command to the processing apparatus, stores in the storage a voice recognition command list including a voice recognition command and corresponding control command information, and transmits the stored voice recognition command list to the display apparatus, the voice recognition command being among user’s voice commands which have successfully been recognized a predetermined number of times or more.

The controller may receive a user’s voice command which has been successfully recognized, and corresponding control command information from the display apparatus, and prepare the voice recognition command list based on the received user’s voice command and corresponding control command information.

According to an aspect of another exemplary embodiment, there is provided a control method of a server which analyzes a user’s voice command to a display apparatus, the control method including: receiving a request from a display apparatus for analysis of the user’s voice command; transmitting control command information corresponding to the voice command to the display apparatus; storing a voice recognition command list including a voice recognition command and corresponding control command information, the voice recognition command being among user’s voice commands which have successfully been recognized a predetermined number of times or more; and transmitting the stored voice recognition command list to the display apparatus.

The controller may register an identification symbol corresponding to the voice command under a user’s instruction, and in response to the registered identification symbol being said by the user, determine that the voice command has been received.

The control method may further include, if the received voice command corresponds to the voice recognition command included in the stored voice recognition command list, transmitting the received voice command to a second server, receive a text into which the voice command has been converted, from the second server, and transmitting the received text to the first server.

The control method may further include: storing a voice command for each user, in the processing apparatus; and displaying a list of the stored voice commands in the form of a user interface (UI).

The control method may further include: registering an identification symbol corresponding to the voice command under a user’s instruction, wherein the receiving the voice command includes determining that the corresponding voice command is received if the user says the registered identification symbol.

The receiving the voice command may include determining that the corresponding voice command is received if a user says a location where one voice command is arranged from the list.

According to an aspect of another exemplary embodiment, there is provided a server which analyzes a user’s voice command to a display apparatus, the server including: a communicator which communicates with a display apparatus; a storage which stores information regarding a user’s voice command; and a controller which, in response to receiving a request from the display apparatus for analysis of a user’s voice command, transmits control command information corresponding to the voice command to the processing apparatus, stores in the storage a voice recognition command list including a voice recognition command and corresponding control command information, and transmits the stored voice recognition command list to the display apparatus, the voice recognition command being among user’s voice commands which have successfully been recognized a predetermined number of times or more.

The controller may receive a user’s voice command which has been successfully recognized, and corresponding control command information from the display apparatus, and prepare the voice recognition command list based on the received user’s voice command and corresponding control command information.
The control method may further include: receiving a user’s voice command which has been successfully recognized, and corresponding control command information from the display apparatus, wherein the storing includes preparing the voice recognition command list based on the received user’s voice command and corresponding control command information.

According to an aspect of another exemplary embodiment, there is provided a control method of a processing apparatus, the control method including: receiving a command from a user; determining whether the received command corresponds to a recognition command comprised in a stored recognition command list, the stored recognition command list including the recognition command and control command information corresponding to the recognition command; in response to determining that the received command corresponds to the recognition command included in the stored recognition command list, operating according to the control command information included in the recognition command list and corresponding to the recognition command; and, in response to determining that the received command does not correspond to the recognition command included in the stored recognition command list, transmitting the received command to a first server, receiving corresponding control command information from the first server, receiving the received control command information from the first server, and operating according to the received control command information.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and/or other aspects will become apparent and more readily appreciated from the following description of exemplary embodiments, taken in conjunction with the accompanying drawings, in which:

- FIG. 1 is a block diagram of an electronic device and an analysis server according to an exemplary embodiment;
- FIG. 2 is a block diagram of an electronic device according to an exemplary embodiment;
- FIG. 3 is a block diagram of an analysis server according to an exemplary embodiment;
- FIG. 4 is a flowchart showing operations of an electronic device according to an exemplary embodiment;
- FIG. 5 illustrates an example of a voice recognition command list according to an exemplary embodiment;
- FIG. 6 is a flowchart showing an operation of determining the possibility of analysis by an electronic device according to an exemplary embodiment;
- FIG. 7 is a flowchart showing another example of operations of an electronic device according to an exemplary embodiment;
- FIG. 8 is a flowchart showing another example of operations of an electronic device according to an exemplary embodiment;
- FIG. 9 illustrates an example of an electronic device and an analysis server according to an exemplary embodiment;
- FIG. 10 is a flowchart showing operations of a server according to an exemplary embodiment;
- FIG. 11 is a flowchart showing operations of a server according to an exemplary embodiment;
- FIG. 12 is a block diagram of an electronic device, an analysis server, and a speech-to-text (STT) server according to an exemplary embodiment;
- FIGS. 13 and 14 illustrate an example of a voice command list which is stored per user according to an exemplary embodiment.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Below, exemplary embodiments will be described in detail with reference to accompanying drawings so as to be easily realized by a person having ordinary knowledge in the art. Exemplary embodiments may be embodied in various forms without being limited to the exemplary embodiments set forth herein. Descriptions of well-known parts are omitted for clarity, and like reference numerals refer to like elements throughout.

FIG. 1 is a block diagram of an electronic device 1 and an analysis server 2 according to an exemplary embodiment. An electronic device 1 and an analysis server 2 are connected to each other through a network 3. The electronic device 1 operates under a user’s command and includes, e.g., household appliances or personal handsets such as a television (TV), a set-top box, a Digital Versatile Disc (DVD) player, an air-conditioner, a refrigerator, a computer, a mobile phone, a smart phone, a smart pad, etc., and office machines such as a printer and a photocopier and any other devices which operate based on electrical/electronic circuits.

A user’s command according to the present exemplary embodiment includes information based on which the electronic device 1 may determine to perform a predetermined operation under a user’s act. The electronic device 1 and an analysis server 2 according to an exemplary embodiment are connected to each other through a network 3. The electronic device 1 operates under a user’s command and includes, e.g., household appliances or personal handsets such as a television (TV), a set-top box, a Digital Versatile Disc (DVD) player, an air-conditioner, a refrigerator, a computer, a mobile phone, a smart phone, a smart pad, etc., and office machines such as a printer and a photocopier and any other devices which operate based on electrical/electronic circuits.

A user’s command according to the present exemplary embodiment includes information based on which the electronic device 1 may determine to perform a predetermined operation under a user’s act. The electronic device 1 and an analysis server 2 analyze the user’s command to identify the user’s command. For example, the user’s command may include at least one of a user’s voice, a gesture, and a particular external ap-
Hereinafter, for convenience of description, the user’s command will exemplarily be a voice command and the electronic device 1 includes a display apparatus such as a TV. However, it is understood that other exemplary embodiments are not limited thereto.

The network 3 according to the present exemplary embodiment includes a device or infrastructure which is used to exchange information regarding a user’s voice command between the electronic device 1 and the analysis server 2, and may be a wired and/or wireless network.

The analysis server 2 is connected to the network 3, analyzes a service regarding a user’s voice command, i.e., a user’s voice command for the electronic device 1 as its client, and transmits the analysis result to the electronic device 1. The analysis server 2 according to the present exemplary embodiment transmits, to the electronic device 1, a voice recognition command list including a voice recognition command that is among user’s voice commands which have successfully been recognized a predetermined number of times or more and corresponding control command information. The control command information is used to control the electronic device 1 to operate as desired by a user under the voice recognition command. The electronic device 1 identifies the user’s voice command based on the voice recognition command list transmitted by the analysis server 2. That is, if the user’s voice command is input, the electronic device 1 identifies whether the user’s voice command corresponds to a voice recognition command included in the voice recognition command list, and if so, operates according to the control command information of the voice recognition command. Conversely, if the user’s voice command does not correspond to a voice recognition command included in the voice recognition command list, the electronic device 1 transmits the user’s voice command to the analysis server 2. The analysis server 2 analyzes the user’s voice command transmitted by the electronic device 1 and transmits corresponding control command information to the electronic device 1. The electronic device 1 operates according to the control command information transmitted by the analysis server 2.

According to the present exemplary embodiment, instead of transmitting all user’s voice commands to the analysis server 2, the electronic device 1 identifies the user’s voice command based on the voice recognition command list transmitted in advance by the analysis server 2, and if the identification of the user’s voice command is not available based on the received voice recognition command list, operates according to the control command information transmitted by the analysis server 2. Accordingly, communication time taken between the electronic device 1 and the analysis server 2 may be minimized, and the time for recognizing the user’s voice command and performing the operation may be minimized.

FIG. 2 is a block diagram of an electronic device 1 according to an exemplary embodiment. The electronic device 1 may include an operation performer 11, a command receiver 12, a communication unit 13 (e.g., communicator such as a wired and/or wireless interface, port, card, dongle, etc.), and a controller 14. The electronic device 1 may further include a storage unit 15 (e.g., a storage such as RAM, ROM, flash memory, a hard disk drive, etc.). The operation performer 11 performs operations of the electronic device 1. For example, if the electronic device 1 includes a display apparatus such as a TV, the operation performer 11 may include a signal receiver 111, an image processor 112, and a display unit 113 (e.g., a display such as a liquid crystal display panel, a plasma display panel, an organic light emitting diode display, etc.). However, it is understood that the operation performer 11 corresponds to operations of the product which realizes the electronic device 1, and is not limited to the example shown in FIG. 2.

FIG. 2 is a block diagram of an electronic device 1 according to an exemplary embodiment. The electronic device 1 may include an operation performer 11, a command receiver 12, a communication unit 13 (e.g., communicator such as a wired and/or wireless interface, port, card, dongle, etc.), and a controller 14. The electronic device 1 may further include a storage unit 15 (e.g., a storage such as RAM, ROM, flash memory, a hard disk drive, etc.). The operation performer 11 performs operations of the electronic device 1. For example, if the electronic device 1 includes a display apparatus such as a TV, the operation performer 11 may include a signal receiver 111, an image processor 112, and a display unit 113 (e.g., a display such as a liquid crystal display panel, a plasma display panel, an organic light emitting diode display, etc.). However, it is understood that the operation performer 11 corresponds to operations of the product which realizes the electronic device 1, and is not limited to the example shown in FIG. 2.

The signal receiver 111 may receive an image signal included in a broadcasting signal transmitted by a broadcasting signal transmission apparatus (not shown), receive an image signal from a video device such as a DVD player, a Blu-ray Disc (BD) player, etc., receive an image signal from a personal computer (PC), receive an image signal from a mobile device such as a smart phone and a smart pad, receive an image signal through a network such as the Internet, or receive an image signal as image content stored in a storage medium such as a Universal Serial Bus (USB) storage medium.

The image processor 111 processes an image signal received by the signal receiver 111 to display an image. The image processor 112 may perform decoding, image enhancement, and scale operations. The display unit 113 displays an image thereon based on the image signal processed by the image processor 112. The image displaying method of the display unit 113 is not limited.

The command receiver 12 receives a user’s voice command. For example, the command receiver 12 may include a first command receiver 121 to receive a user’s voice command. The first command receiver 121 may include a microphone to convert a received user’s voice command into a voice signal. The command receiver 12 may further include a second command receiver 122 to receive a user’s manipulation command. The second command receiver 122 may be implemented as a remote control signal receiver which receives a remote control signal including key input information corresponding to a user’s manipulation command from a remote controller (not shown) or as a manipulation panel which is provided in the electronic device 1 and generates key input information corresponding to a user’s manipulation.

The communication unit 13 communicates with the analysis server 2 through the network 3. The communication unit 13 exchanges the user’s voice command and the information regarding the analysis result with the analysis server 2 under a control of the controller 14.

The controller 14 controls the operation performer 11 to perform operations under a user’s voice command.
The controller 14 may include a central processing unit (CPU), and may execute a control program for operation. The controller 14 may further include a non-volatile memory such as a flash memory to store a control program therein, and a volatile memory such as double data rate (DDR) memory to load at least a part of the stored control program for prompt access by the CPU. The control program of the controller 14 is programmed to control the operations of the operation performer 11.

[0044] The controller 14 may include a central processing unit (CPU), and may execute a control program for operation. The controller 14 may further include a non-volatile memory such as a flash memory to store a control program therein, and a volatile memory such as a double data rate (DDR) memory to load at least a part of the stored control program for prompt access by the CPU. The control program of the controller 14 is programmed to control the operations of the operation performer 11.

[0045] FIG. 3 is a block diagram of an analysis server 2 according to an exemplary embodiment. The analysis server 2 includes a communication unit 21 (e.g., communicator such as a wired and/or wireless interface, port, card, dongle, etc.), a controller 22, and a storage unit 23 (e.g., a storage such as ROM, flash memory, a hard disk drive, etc.). The communication unit 21 communicates with the communication unit 13 of the electronic device 1 through the network 3. The controller 22 controls operations of the analysis server 2. The storage unit 23 as a non-volatile memory stores therein a voice recognition command list 231 corresponding to a user’s voice command. The controller 22 controls the communication unit 21 to transmit the voice recognition command list 231 stored in the storage unit 23 to the electronic device 1. In response to receiving a user’s voice command and an analysis request for the user’s voice command from the electronic device 1, the controller 22 analyzes the received user’s voice command. The controller 22 controls the communication unit 21 to transmit the analysis result of the user’s voice command to the electronic device 1.

[0046] FIG. 4 is a flowchart showing operations of the electronic device 1 according to an exemplary embodiment. At operation S41, the electronic device 1 receives the voice recognition command list 151 from the analysis server 2. The received voice recognition command list 151 may be stored in the storage unit 15. FIG. 5 illustrates an example of the voice recognition command list 151 according to an exemplary embodiment. The voice recognition command list 151 may include a plurality of voice recognition commands (‘voice recognition command 1’, ‘voice recognition command 2’, ‘voice recognition command 3’, etc.), and a plurality of control command information (‘control command information 1’, ‘control command information 2’, ‘control command information 3’, etc.) corresponding to the plurality of voice recognition commands. The plurality of voice recognition commands may include commands such as ‘turn on’, ‘turn off’, or ‘raise volume’. The plurality of control command information may include inherent control information regarding operations or functions which are to be performed by the electronic device 1 corresponding to the plurality of voice recognition commands.

[0047] If the electronic device 1 is turned on, the electronic device 1 may request the analysis server 2 to transmit the voice recognition command list 231. In response to receiving the request to transmit the voice recognition command list 231 from the electronic device 1, the analysis server 2 may transmit the voice recognition command list 231 to the electronic device 1. The electronic device 1 may store, in the storage unit 15, the voice recognition command list 231 transmitted by the analysis server 2. If the storage unit 15 already has the voice recognition command list 151 stored therein, the electronic device 1 may compare the stored voice recognition command list 151 with the voice recognition command list 231 which has been transmitted by the analysis server 2, and update the stored voice recognition command list 151 based on the received voice recognition command list 231.

[0048] Referring back to FIG. 4, at operation S42, the electronic device 1 receives a user’s voice command. At operation S43, the electronic device 1 identifies whether the received user’s voice command corresponds to the voice recognition command included in the received voice recognition command list 231. FIG. 6 is a flowchart showing an operation of determining whether the voice command corresponds to the voice recognition command included in the received voice recognition command list 231.

[0049] At operation S61, the electronic device 1 receives a user’s voice command. At operation S62, the electronic device 1 determines whether the received voice command corresponds to a voice recognition command included in the voice recognition command list 151. The relevance according to the present exemplary embodiment may be determined, e.g., by how similar the received voice command is to the voice recognition command included in the voice recognition command list 151. For example, if a user says a command ‘turn off’ which is substantially the same as or similar to the command said by the user, it may be determined that the voice command is the most relevant to the voice recognition command in the voice
recognition command list 151. As another example, if a user says a command 'raise volume', and the voice recognition command list 151 includes a voice command 'volume up', the two cases may be highly related. In this case, the electronic device 1 may determine that the relevance between the voice command and the corresponding voice recognition command in the voice recognition command list 151 is of at least a predetermined value or more. As another example, if a user says a command 'make screen brighter', and if it is identified that the voice recognition command list 151 does not have any similar voice recognition command, the electronic device 1 may determine that the relevance between the voice command and the corresponding voice recognition command in the voice recognition command list 151 is of less than the predetermined value.

[0050] Returning to FIG. 6, at operation S63, if it is determined that the voice recognition command list 151 includes a voice recognition command whose relevance to the voice command is of a predetermined value or more, the electronic device 1 determines that the voice command corresponds to the voice recognition command included in the voice recognition command list 151 at operation S64. On the contrary, if it is determined that the voice recognition command list 151 does not have any voice command whose relevance to the voice command is of the predetermined value or more, the electronic device 1 determines that the voice command does not correspond to the voice recognition command included in the voice recognition command list 151 at operation S64.

[0051] Returning to FIG. 4, if it is determined that the user’s voice command corresponds to the voice recognition command in the received voice recognition command list 151 at operation S44, the electronic device 1 operates according to the control command information corresponding to the voice recognition command in the voice recognition command list 151 at operation S45. For example, the electronic device 1 performs operations by referring to the control command information corresponding to the voice recognition commands such as ‘turn off and ‘volume up’ included in the voice recognition command list 151, corresponding to the user’s voice commands such as ‘turn off and ‘raise volume’.

[0052] At operation S46, if it is determined that the user’s voice command does not correspond to the voice recognition command included in the received voice recognition command list 151, the electronic device 1 transmits the user’s voice command to the analysis server 2 at operation S46. For example, if the user’s voice command ‘make screen brighter’ is not identified based on the voice recognition command list 151, the electronic device 1 transmits information of the voice command ‘make screen brighter’ to the analysis server 2. At operation S47, the electronic device 1 receives control command information corresponding to the voice command from the analysis server 2. For example, the electronic device 1 receives control command information corresponding to the voice command as the analysis result of the voice command ‘make screen brighter’. At operation S48, the electronic device 1 operates according to the received control command information.

[0053] FIG. 12 illustrates an example of a speech-to-text (STT) server 4 according to an exemplary embodiment. The electronic device 1 may process the information regarding the user’s voice command, i.e., the voice made by the user, into a text. For example, the electronic device 1 transmits the received user’s voice command to the STT server 4. The STT server 4 includes an STT converter 41 which converts the user’s voice command transmitted by the electronic device 1 into a corresponding text. The STT server 4 transmits the text into which the user’s voice command has been converted, to the electronic device 1. The electronic device 1 may determine, on the basis of the text transmitted by the STT server 4, whether the user’s voice command corresponds to the voice recognition command included in the stored voice recognition command list. The electronic device 1 may transmit the text provided by the STT server 4 to the server 1 and request the server 1 to analyze the user’s voice command.

[0054] FIG. 7 is a flowchart showing another example of operations of an electronic device 1 according to an exemplary embodiment. In the present exemplary embodiment, the case where the user’s voice command is determined to not correspond to the voice recognition command in the received voice recognition command list 151 will be explained. At operation S71, the electronic device 1 transmits a user’s voice command to the analysis server 2. At operation S72, the electronic device 1 identifies whether the control command information corresponding to the user’s voice command has been received from the analysis server 2. If the electronic device 1 has received the control command information corresponding to the user’s voice command from the analysis server 2, the electronic device 1 operates according to the control command information transmitted by the analysis server 2 at operation S73. If the electronic device 1 has not received the control command information corresponding to the user’s voice command from the analysis server 2, the electronic device 1 identifies whether a predetermined time has elapsed after the user’s voice command has been transmitted to the analysis server 2 at operation S74. If the predetermined time has not elapsed, the operation S72 is performed again. On the contrary, if the predetermined time has elapsed, the electronic device 1 operates under the voice recognition command in the received voice recognition command list 151 at operation S74.

[0055] For example, if a user says a command ‘reduce screen’, the electronic device 1 may determine that the voice recognition command list has the voice command ‘make screen smaller’ and the relevance between the two commands is less than a predetermined value. Accordingly, in this case, the electronic device 1 requests the analysis server 2 for the analysis result. However, if
it takes a long time to receive the analysis result from the analysis server 2 due to communication conditions, etc., it may be inconvenient or difficult for a user to wait a long time until the operation is performed. In this case, if a predetermined time elapses after the electronic device 1 requests the analysis server 2 for the analysis result, the electronic device 1 may promptly operate under the voice recognition command of the plurality of voice recognition commands for its operation. In the present exemplary embodiment, the time during which a user awaits the recognition command of the plurality of voice recognition commands is firstly selected the most related voice recognition command list 151 corresponding to the user’s voice command ‘reduce screen’. If there are several voice recognition commands which are related to the voice command, the electronic device 1 may display a plurality of voice recognition commands included in the voice recognition command list 151, and enable a user to select one of the plurality of voice recognition commands which is consistent with the user’s intention regarding the voice command. If a user selects one of the plurality of voice recognition commands, the electronic device 1 operates based on the control command information corresponding to the selected voice recognition command.

According to another exemplary embodiment, if no voice recognition command in the voice recognition command list 151 corresponds to the user’s voice command, the electronic device 1 may display a plurality of voice recognition commands included in the voice recognition command list 151, and enable a user to select one of the plurality of voice recognition commands which is consistent with the user’s intention regarding the voice command. If a user selects one of the plurality of voice recognition commands, the electronic device 1 operates based on the control command information corresponding to the selected voice recognition command.

Under the situation that the stored voice recognition command list 151 does not include a voice recognition command corresponding to the user’s voice command, if it is determined based on the user’s intention that the user’s voice command is newly and successfully recognized, the electronic device 1 adds, to the voice recognition command list 151, control command information which is used to correspond to the recognized voice command and stores the information. In this case, the electronic device 1 may transmit the recognized voice command and the corresponding control command information to the analysis server 2, which updates the voice recognition command list 231.

FIG. 13 illustrates an example of a user interface (UI) 131 which shows a list of voice commands stored according to an exemplary embodiment. The electronic device 1 stores therein the voice command said by a user, and upon a user’s request, may display the list of the stored voice commands as a UI 131. As shown in FIG. 13, the list of the stored voice commands displayed as the UI 131 shows voice commands 132 which have been said by a user. The electronic device 1 may store the voice commands per user, and show the stored voice commands 132 per user (reference numeral 133). The electronic device 1 may display the list of the stored voice commands in which the voice commands 132 are sorted in order of how many times the voice commands 132 have been said by a user. Accordingly, a user may easily view the voice commands that the user has previously said, through the UI 131, and conveniently say the voice commands.

According to an exemplary embodiment, identification symbols may be registered (e.g., stored) by a user per voice command, and if a user says the registered identification symbol later, the electronic device 1 may determine that the corresponding voice command has been received. The UI 131 showing the list of stored voice commands may further display an identification symbol 134 corresponding to each voice command. For example, if the identification symbol 1 is registered for a voice command such as ‘tell me about tomorrow’s weather’, upon saying the identification symbol ‘1’ by a user, the electronic device 1 determines that the voice command ‘tell me about tomorrow’s weather’ has been input. Accordingly, a user may replace a voice command having a long or complicated sentence, with a simple identifica-
...tion symbol, for the sake of convenience. The electronic device 1 may delete any voice command from the list of the UI 131 or add a new voice command thereto under a user’s instruction.

[0061] According to another exemplary embodiment, if a user says a location where one voice command is arranged in the UI 131 of the list of voice commands, the electronic device 1 may determine that the voice command has been received. For example, if a user says ‘first’ while the UI 131 of the list is displayed, the electronic device 1 may determine that the voice command ‘tell me about tomorrow’s weather’ ranked on top in the UI 131 of the list has been said.

[0062] The electronic device 1 may edit the order of voice commands in the UI 131 of the list of the stored voice commands under a user’s instruction. FIG. 14 illustrates such a situation in which the order of the voice commands in the UI 131 is edited. For example, as shown in FIG. 14, the electronic device 1 may exchange the order of the command ‘play %%%’ and ‘record $$$ news’ under a user’s instruction. In this case, the corresponding identification symbol may be maintained or identification symbols of the two commands may be exchanged.

[0063] FIG. 9 illustrates an example of an electronic device 1 and an analysis server 2a according to an exemplary embodiment. Explanations of configurations of the analysis server 2a which are the same as or similar to the configurations of the analysis server 2 which has been explained with reference to FIGS. 1 to 8 will not be repeated. The analysis server 2a according to the present exemplary embodiment communicates with a plurality of electronic devices 1. Upon receiving a current request from the plurality of electronic devices 1 for analysis of a user’s voice command, the analysis server 2a analyzes the voice and transmits the analysis result to the relevant electronic device 1. The analysis server 2a collects user’s voice commands transmitted by each of the plurality of electronic devices 1, prepares a voice recognition command list 231 based on the voice commands, e.g. by combining the commands as requested by each device into a combined list, and transmits the prepared voice recognition command list 231 to each of the plurality of electronic devices 1.

[0064] FIG. 10 is a flowchart showing operations of an analysis server 2a according to an exemplary embodiment. At operation S101, the analysis server 2a receives a request from the electronic device 1 for analysis of the user’s voice command. At operation S102, the analysis server 2a analyzes the voice command and transmits control command information corresponding to the analysis result to the electronic device 1. At operation S103, the analysis server 2a prepares a voice recognition command list 231 based on the user’s voice commands collected from the plurality of electronic devices 1 and the analysis result, and stores in the storage unit 23 the prepared voice recognition command list 231. The analysis server 2a may update a voice recognition command list 231 stored in the storage unit 23 based on the user’s voice command continuously collected from the plurality of electronic devices 1 and the analysis result thereof. At operation S103, the analysis server 2a transmits the voice recognition command list 231 stored in the storage unit 23, to the plurality of electronic devices 1.

[0065] According to an exemplary embodiment, as explained above with reference to FIG. 8, if there is a voice command which has been determined to be less related to the voice recognition command in the voice recognition command list but has been requested by a user (has been newly and successfully recognized) to operate, the electronic device 1 may transmit the recognized voice command and corresponding control command information to the analysis server 2a. In this case, the analysis server 2a may reflect the received voice command and corresponding control command information in the voice recognition command list 231. According to an exemplary embodiment, the analysis server 2a may add a voice recognition command to the voice recognition command list 231 if the analysis server 2a receives the recognized voice command and corresponding control command information a predetermined number of times, or from a predetermined number of electronic devices 1.

[0066] FIG. 11 is a flowchart showing operations of the analysis server 2a according to an exemplary embodiment. At operation S101, the analysis server 2a determines the number of successful recognitions of the user’s voice commands collected from the plurality of electronic devices 1. That is, the analysis server 2a determines which of the user’s voice commands collected from the plurality of electronic devices 1 is frequently recognized successfully. At operation S102, the analysis server 2a determines whether the number of successful recognition of the user’s voice command collected is a predetermined value or more. If the number of the successful recognition of the voice command is a predetermined value or more, the analysis server 2a may add the voice command and the control command information to the voice recognition command list as a new voice recognition command at operation S103. If the number of the successful recognition of the voice command is less than the predetermined value, the analysis server 2a does not add the voice command and the control command information to the voice recognition command list. According to the present exemplary embodiment, the voice recognition command list adds only the voice commands whose successful recognition number is a predetermined number or more, and thus, the transmission time for the voice recognition command list and the operation of the electronic device 1 for processing the voice recognition command list may be minimized.

[0067] As described above, the time for recognizing a user’s command and performing operations may be minimized in a method of recognizing the user’s command through a server.

[0068] While the above-described exemplary embodiments are with reference to a voice command, it is understood that one or more other exemplary embodiments
are not limited thereto. For example, another exemplary embodiment may be applicable to any one or more kinds of commands, such as a gesture command. In this case, by way of example, a command list may include gesture recognition commands and corresponding control command information.

Furthermore, while the above-described exemplary embodiments are with reference to a first server, it is understood that one or more other exemplary embodiments are not limited thereto, and may be applicable to plural first servers.

While not restricted thereto, an exemplary embodiment can be embodied as computer-readable code on a computer-readable recording medium. The computer-readable recording medium is any data storage device that can store data that can be thereafter read by a computer system. Examples of the computer-readable recording medium include read-only memory (ROM), random-access memory (RAM), CD-ROMs, magnetic tapes, floppy disks, and optical data storage devices. The computer-readable recording medium can also be distributed over network-coupled computer systems so that the computer-readable code is stored and executed in a distributed fashion. Also, an exemplary embodiment may be written as a computer program transmitted over a computer-readable transmission medium, such as a carrier wave, and received and implemented in general-use or special-purpose digital computers that execute the programs. Moreover, it is understood that in exemplary embodiments, one or more units, components, elements, etc., of the above-described devices can include circuitry, a processor, a microprocessor, etc., and may execute a computer program stored in a computer-readable medium.

Although a few exemplary embodiments have been shown and described, it will be appreciated by those skilled in the art that changes may be made in these exemplary embodiments without departing from the scope of the inventive concept as defined in the appended claims.

Claims

1. A display apparatus (1) comprising:

 a processor (11) which processes a content signal;
 a display (113) which displays an image based on the processed content signal;
 a command receiver (12) which receives a current voice command from a user;
 a communicator (13) which communicates with a first server (2);
 a storage unit (15); and
 a controller (14);

 wherein the controller (14) is arranged to receive, from the first server (2), a voice recognition command list (231) comprising at least one voice recognition command and control command information corresponding to the voice recognition command, and store the received voice recognition command list (231) in the storage unit (15), the voice recognition command being a voice command given by the user which has been successfully recognized a predetermined number of times or more, wherein the predetermined number is a threshold value for including the voice recognition command in the voice recognition command list, the control command information causing the display apparatus (1) to operate as desired by the user according to the voice command from the user;

 the controller (14) is arranged to determine, in response to receiving the current voice command, whether the received current voice command corresponds to the voice recognition command comprised in the stored voice recognition command list (231, 151), the controller (14) is arranged to control the processor (11), in response to determining that the received current voice command corresponds to the voice recognition command comprised in the stored voice recognition command list (231, 151), to operate as desired by the user based on the control command information corresponding to the voice recognition command comprised in the stored voice recognition command list (231, 151), the controller (14), in response to determining that the received current voice command does not correspond to the voice recognition command comprised in the stored voice recognition command list (231, 151), is arranged to transmit the received current voice command to the first server (2), receive corresponding control command information from the first server (2), and control the processor (11) to operate as desired by the user based on the received control command information, and the controller (14) is arranged to receive the voice recognition command list (231) from the first server (2) which does not include voice commands of which the number of successfully recognized is less than the predetermined number of times.

2. The display apparatus according to claim 1, wherein the controller (14) is arranged to determine whether the received voice command corresponds to the voice recognition command comprised in the stored voice recognition command list (151) based on a determined relevance between the received voice command and the voice recognition command.
3. The display apparatus according to claim 1 or 2, wherein, in response to a predetermined time elapsing after the received current voice command is transmitted to the first server (2), the controller (14) controls the processor (11) to operate based on the voice recognition command comprised in the stored voice recognition command list (151).

4. The display apparatus according to any preceding claim, wherein, in response to the predetermined time elapsing after the received voice command is transmitted to the first server (2), the controller (14) notifies the user of a content of the voice recognition command comprised in the stored voice recognition command list in advance, and determines whether to control the processor (11) to operate based on the voice recognition command according to a response by the user to the notifying.

5. The display apparatus according to any preceding claim, wherein if the received voice command is newly and successfully recognized for a user, by notifying the user of the current voice command and receiving a confirmation that the user agrees with the current voice command, the controller (14) transmits, to the first server (2), the recognized voice command and control command information corresponding to the recognized voice command.

6. The display apparatus according to any preceding claim, wherein the controller (14) transmits, to a second server (4), the received voice command, receives, from the second server (4), a text to which the transmitted voice command has been converted, and transmits the received text to the first server (2).

7. A control method of a display apparatus (1) for:

receiving, from a first server (2), a voice recognition command list (231, 151) comprising a voice recognition command and a control command information corresponding to the voice recognition command, the voice recognition command being among user's voice commands which have successfully been recognized a predetermined number of times or more, wherein the predetermined number is a threshold value for including the voice recognition command in the voice recognition command list, and wherein the voice recognition command list (231) received from the first server (2) does not include voice commands of which the number of successfully recognition is less than the predetermined number of times, the control command information causing the display apparatus (1) to operate as desired by the user according to a voice command from the user;

storing the received voice recognition command list (231, 151) in the display apparatus (1);

receiving a voice command from a user;

determining whether the received voice command corresponds to the voice recognition command comprised in the stored voice recognition command list;

in response to determining that the received voice command corresponds to the voice recognition command comprised in the stored voice recognition command list, operating the display apparatus as desired by the user according to the control command information corresponding to the voice recognition command comprised in the voice recognition command list; and

in response to determining that the received voice command does not correspond to the voice recognition command comprised in the stored voice recognition command list, transmitting the received voice command to the first server (2), receiving corresponding control command information from the first server (2), and operating the display apparatus (1) as desired by the user according to the received control command information.

8. The control method according to claim 7, comprising determining whether the received voice command corresponds to the voice recognition command comprised in the stored voice recognition command list based on a determined relevance between the received voice command and the voice recognition command.

9. The control method according to claim 7 or 8, further comprising operating the display apparatus (1) based on the voice recognition command comprised in the stored voice recognition command list in response to a predetermined time elapsing after the received voice command is transmitted to the first server (2).

10. The control method according to claim 9, comprising notifying the user of a content of the voice recognition command comprised in the stored voice recognition command list in advance and determining whether to operate based on the voice recognition command according to a response by the user to the notifying.

11. The control method according to any of claims 7 to 10, further comprising, if the received voice command is newly and successfully recognized for a user, by notifying the user of the current voice command and receiving a confirmation that the user agrees with the current voice command, transmitting, to the first server (2), the recognized voice command, and control command information corresponding to the recognized voice recognition command.
12. The control method according to any preceding claim, further comprising:

transmitting, to a second server (4), the received voice command;
receiving, from the second server (4), a text to which the transmitted voice command has been converted, from the second server (4), and
transmitting the received text to the first server (2).

13. A server (2) which analyzes a user's voice command to a display apparatus (1), the server comprising:

a communicator (21) arranged to communicate with the display apparatus (1);
a storage unit (23) arranged to store information regarding a voice command; and
a controller (22);

wherein
the controller (22), in response to receiving a request from the display apparatus (1) for analysis of the voice command received from a user, is arranged to transmit, to the display apparatus (1), control command information corresponding to the received voice command, the control command information causing the display apparatus (1) to operate as desired by the user according to the voice command from the user, the controller (22) is arranged to store, in the storage unit (23), a voice recognition command list (231) comprising a voice recognition command and control command information corresponding to the voice recognition command, and
the controller (22) is arranged to transmit the stored voice recognition command list (231) to the display apparatus (1), the voice recognition command being among user's voice commands which have successfully been recognized a predetermined number of times or more, wherein the predetermined number is a threshold value for including the voice recognition command in the voice recognition command list, and wherein the voice recognition command list (231) does not include voice commands of which the number of successfully recognition is less than the predetermined number of times;
and
transmitting, to the display apparatus (1), the stored voice recognition command list (231).

15. A control method of a server (2) which analyzes a user's voice command to a display apparatus (1) for:

receiving, from the display apparatus (1), a request for analysis of a voice command received from a user;
transmitting, to the display apparatus (1), control command information corresponding to the received voice command, the control command information causing the display apparatus (1) to operate as desired by the user according to the voice command from the user;

storing a voice recognition command list (231) comprising a voice recognition command and control command information corresponding to the voice recognition command, the voice recognition command being among user's voice commands which have successfully been recognized a predetermined number of times or more, wherein the predetermined number is a threshold value for including the voice recognition command in the voice recognition command list, and wherein the voice recognition command list (231) does not include voice commands of which the number of successfully recognition is less than the predetermined number of times;
and
transmitting, to the display apparatus (1), the stored voice recognition command list (231).

Patentansprüche

1. Anzeigevorrichtung (1), umfassend:

 einen Prozessor (11), welcher ein Inhaltsignal verarbeitet;
eine Anzeige (113), welche ein Bild anzeigt, das auf dem verarbeiteten Inhaltsignal basiert;
einen Befehlsempfänger (12), welcher einen aktuellen Sprachbefehl von einem Benutzer empfängt;
einen Datenaustauscher (13), welcher mit einem ersten Server (2) Daten austauscht;
eine Speichereinheit (15) und
 eine Steuerung (14);
wobei die Steuerung (14) dafür eingerichtet ist, von dem ersten Server (2) eine Spracherkennungsbefehlsliste (231) zu empfangen, welche mindestens einen Spracherkennungsbefehl und dem Spracherkennungsbefehl entsprechende Steuerbefehlsinformationen umfasst, und die empfangene Spracherkennungsbefehlsliste (231) in der Speichereinheit (15) zu speichern, wobei der Spracherkennungsbefehl ein von dem Benutzer gegebener Sprachbefehl ist, welcher für eine vorgegebene Anzahl von Malen oder häufiger erfolgreich erkannt worden

14. The server according to claim 13, wherein the controller (22) is arranged to receive, from the display apparatus (1), a voice command which has been successfully recognized for the user, and corresponding control command information, and is arranged to prepare the voice recognition command list based on the received voice command and the corresponding control command information.
ist, wobei die vorgegebene Anzahl ein Schwellenwert zum Einbeziehen des Spracherkennungsbefehls in die Spracherkennungsbefehlsliste ist, wobei die Steuerbefehlsinformationen bewirken, dass die Anzeigevorrichtung (1) arbeitet, wie gemäß dem Sprachbefehl von dem Benutzer vom Benutzer gewünscht; die Steuerung (14) dafür eingerichtet ist, in Reaktion auf den Empfang des aktuellen Sprachbefehls zu bestimmen, ob der empfangene aktuelle Sprachbefehl dem Spracherkennungsbefehl entspricht, der in der gespeicherten Spracherkennungsbefehlsliste (231, 151) enthalten ist, die Steuerung (14) dafür eingerichtet ist, in Reaktion auf das Bestimmen, dass der empfangene aktuelle Sprachbefehl dem Spracherkennungsbefehl entspricht, der in der gespeicherten Spracherkennungsbefehlsliste (231, 151) enthalten ist, den Prozessor (11) zu steuern, zu arbeiten, wie vom Benutzer gewünscht, basierend auf den Steuerbefehlsinformationen, die dem Spracherkennungsbefehl entsprechen, der in der gespeicherten Spracherkennungsbefehlsliste (231, 151) enthalten ist, die Steuerung (14) dafür eingerichtet ist, in Reaktion auf das Bestimmen, dass der empfangene aktuelle Sprachbefehl dem Spracherkennungsbefehl entspricht, der in der gespeicherten Spracherkennungsbefehlsliste (231, 151) enthalten ist, den Prozessor (11) zu steuern, zu arbeiten, wie vom Benutzer gewünscht, basierend auf den empfangenen Steuerbefehlsinformationen, und die Steuerung (14) dafür eingerichtet ist, von dem ersten Server (2) die Spracherkennungsbefehlsliste (231) zu empfangen, welche keine Sprachbefehl umfasst, deren Anzahl erfolgreicher Erkennungen geringer als die vorgegebene Anzahl ist.

2. Anzeigevorrichtung nach Anspruch 1, wobei die Steuerung (14) dafür eingerichtet ist zu bestimmen, ob der empfangene Sprachbefehl dem Spracherkennungsbefehl entspricht, der in der gespeicherten Spracherkennungsbefehlsliste (151) enthalten ist, basierend auf einer bestimmten Relevanz zwischen dem empfangenen Sprachbefehl und dem Spracherkennungsbefehl.

3. Anzeigevorrichtung nach Anspruch 1 oder 2, wobei in Reaktion darauf, dass eine vorgegebene Zeit abläuft, nachdem der empfangene aktuelle Sprachbefehl an den ersten Server (2) gesendet wird, die Steuerung (14) den Prozessor (11) steuert, basierend auf dem Spracherkennungsbefehl zu arbeiten, der in der gespeicherten Spracherkennungsbefehlsliste (151) enthalten ist.

4. Anzeigevorrichtung nach einem der vorhergehenden Ansprüche, wobei in Reaktion darauf, dass die vorgegebene Zeit abläuft, nachdem der empfangene Sprachbefehl an den ersten Server (2) gesendet wird, die Steuerung (14) den Benutzer eines Inhalts vorab über den Spracherkennungsbefehl benachrichtigt, der in der gespeicherten Spracherkennungsbefehlsliste enthalten ist, und bestimmt, ob der Prozessor (11) zu steuern ist, basierend auf dem Spracherkennungsbefehl zu arbeiten, gemäß einer Antwort des Benutzers auf die Benachrichtigung.

5. Anzeigevorrichtung nach einem der vorhergehenden Ansprüche, wobei, wenn der empfangene Sprachbefehl durch Benachrichtigten des Benutzers über den aktuellen Sprachbefehl und Empfängen einer Bestätigung, dass der Benutzer dem aktuellen Sprachbefehl zustimmt, für einen Benutzer neu und erfolgreich erkannt wird, die Steuerung (14) den erkannten Sprachbefehl und Steuerbefehlsinformationen, welche dem erkannten Sprachbefehl entsprechen, an den ersten Server (2) sendet.

6. Anzeigevorrichtung nach einem der vorhergehenden Ansprüche, wobei die Steuerung (14) den empfangenen Sprachbefehl an einen zweiten Server (4) sendet, von dem zweiten Server (4) einen Text empfängt, in welchen der gesendete Sprachbefehl umgewandelt worden ist, und den empfangenen Text an den ersten Server (2) sendet.

7. Steuerverfahren einer Anzeigevorrichtung (1) zum: Empfangen einer Spracherkennungsbefehlsliste (231, 151), welche einen Spracherkennungsbefehl und dem Spracherkennungsbefehl entsprechende Steuerbefehlsinformationen umfasst, von einem ersten Server (2), wobei der Spracherkennungsbefehl zu Sprachbefehlen des Benutzers gehört, welche für eine vorgegebene Anzahl von Malen oder häufiger erfolgreich erkannt worden sind, wobei die vorgegebene Anzahl ein Schwellewert zum Einbeziehen des Spracherkennungsbefehls in die Spracherkennungsbefehlsliste ist und wobei die von dem ersten Server (2) empfangene Spracherkennungsbefehlsliste (231) keine Sprachbefehle umfasst, deren Anzahl erfolgreicher Erkennungen geringer als die vorgegebene Anzahl ist, wobei die Steuerbefehlsinformationen bewirken, dass die Anzeigevorrichtung (1) arbeitet, wie gemäß einem Sprachbefehl von dem Be-
nutzer vom Benutzer gewünscht;
Speichern der empfangenen Spracherkennungsbefehlsliste (231, 151) in der Anzeigevorrichtung (1);
Empfangen eines Sprachbefehls von einem Benutzer;
Bestimmen, ob der empfangene Sprachbefehl dem Spracherkennungsbefehl entspricht, der in der gespeicherten Spracherkennungsbefehlsliste enthalten ist;
in Reaktion auf das Bestimmen, dass der empfangene Sprachbefehl dem Spracherkennungsbefehl entspricht, der in der gespeicherten Spracherkennungsbefehlsliste enthalten ist, Betreiben der Anzeigevorrichtung, wie vom Benutzer gewünscht, gemäß den Steuerbefehlsinformationen, die dem Spracherkennungsbefehl entsprechen, der in der Spracherkennungsbefehlsliste enthalten ist; und

9. Steuerverfahren nach Anspruch 7 oder 8, ferner umfassend Betreiben der Anzeigevorrichtung (1) basierend auf dem Spracherkennungsbefehl, der in der gespeicherten Spracherkennungsbefehlsliste enthalten ist, in Reaktion darauf, dass eine vorgegebene Zeit abläuft, nachdem der empfangene Sprachbefehl an den ersten Server (2) gesendet wird.

10. Steuerverfahren nach Anspruch 9, umfassend Benachrichtigen des Benutzers eines Inhalts vorab über den Spracherkennungsbefehl, der in der gespeicherten Spracherkennungsbefehlsliste enthalten ist, und Bestimmen, ob auf der Basis des Spracherkennungsbefehls zu arbeiten ist, gemäß einer Antwort des Benutzers auf die Benachrichtigung.

12. Steuerverfahren nach einem der vorhergehenden Ansprüche, ferner umfassend:

Senden des empfangenen Sprachbefehls an einen zweiten Server (4);
Empfangen, von dem zweiten Server (4), eines Texts, in welchem der gesendete Sprachbefehl umgewandelt worden ist, von dem zweiten Server (4) und Senden des empfangenen Texts an den ersten Server (2).

13. Server (2), welcher einen Sprachbefehl eines Benutzers an eine Anzeigevorrichtung (1) anläßt, wobei die Server umfassend:

den Daten austauscher (21), welcher dafür eingerichtet ist, mit der Anzeigevorrichtung (1) Daten auszutauschen;
eine Speichereinheit (23), welche dafür eingerichtet ist, Informationen zu speichern, die sich auf einen Sprachbefehl beziehen; und eine Steuerung (22), wobei:

die Steuerung (22) dafür eingerichtet ist, in Reaktion auf den Empfang einer Anforderung einer Analyse des Sprachbefehls, der von einem Benutzer empfangen wird, von der Anzeigevorrichtung (1) an die Anzeigevorrichtung (1) Steuerbefehlsinformationen zu senden, welche dem empfangenen Sprachbefehl entsprechen, wobei die Steuerbefehlsinformationen bewirken, dass die Anzeigevorrichtung (1) arbeitet, wie gemäß dem Sprachbefehl von dem Benutzer vom Benutzer gewünscht, die Steuerung (22) dafür eingerichtet ist, in der Speichereinheit (23) eine Spracherkennungsbefehlsliste (231) zu speichern, welche einen Spracherkennungsbefehl und dem Spracherkennungsbefehl entsprechende Steuerbefehlsinformationen umfasst, und die Steuerung (22) dafür eingerichtet ist, die gespeicherte Spracherkennungsbefehlsliste (231) an die Anzeigevorrichtung (1) zu senden, wobei der Spracherkennungsbefehl zu Sprachbefehlen des Benutzers gehört, welche für eine vorgegebene Anzahl von Malen oder häufiger erfolgreich erkannt
worden sind, wobei die vorgegebene Anzahl ein Schwellenwert zum Einbeziehen des Spracherkennungsbefehls in die Spracherkennungsbefehlsliste ist und wobei die Spracherkennungsbefehlsliste (231) keine Sprachbefehle umfasst, deren Anzahl erfolgreicher Erkennungen geringer als die vorgegebene Anzahl ist.

14. Server nach Anspruch 13, wobei die Steuerung (22) dafür eingerichtet ist, von der Anzeigevorrichtung (1) einen Sprachbefehl, welcher für den Benutzer erfolgreich erkannt worden ist, und entsprechende Steuerbefehlsinformationen zu empfangen, und dafür eingerichtet ist, auf der Basis des empfangenen Sprachbefehls und der entsprechenden Steuerbefehlsinformationen die Spracherkennungsbefehlsliste zu erzeugen.

15. Steuerverfahren eines Servers (2), welcher einen Sprachbefehl eines Benutzers an eine Anzeigevorrichtung (1) analysiert, zum:

Empfangen einer Anforderung der Analyse eines von einem Benutzer empfangenen Sprachbefehls von der Anzeigevorrichtung (1);
Senden von Steuerbefehlsinformationen, welche dem empfangenen Sprachbefehl entsprechen, an die Anzeigevorrichtung (1), wobei die Steuerbefehlsinformationen bewirken, dass die Anzeigevorrichtung (1) arbeitet, wie gemäß dem Sprachbefehl von dem Benutzer vom Benutzer gewünscht;
Speichern einer Spracherkennungsbefehlsliste (231), welche einen Spracherkennungsbefehl und dem Spracherkennungsbefehl entsprechende Steuerbefehlsinformationen umfasst, wobei der Spracherkennungsbefehl zu Sprachbefehlen des Benutzers gehört, welche für eine vorgegebene Anzahl von Malen oder häufiger erfolgreich erkannt worden sind, wobei die vorgegebene Anzahl ein Schwellenwert zum Einbeziehen des Spracherkennungsbefehls in die Spracherkennungsbefehlsliste ist und wobei die Spracherkennungsbefehlsliste (231) keine Sprachbefehle umfasst, deren Anzahl erfolgreicher Erkennungen geringer als die vorgegebene Anzahl ist, und Senden der gespeicherten Spracherkennungsbefehlsliste (231) an die Anzeigevorrichtung (1).

Revendications

1. Appareil d'affichage (1) comprenant :

un processeur (11) qui traite un signal de contenu ;

un affichage (113) qui affiche une image sur la base du signal de contenu traité ;
un récepteur de commande (12) qui reçoit une commande vocale en cours d’un utilisateur ;
un dispositif de communication (13) qui communique avec un premier serveur (2) ;
une unité de stockage (15) ; et
un contrôleur (14) ;

où :

le contrôle (14) est agencé pour recevoir, depuis le premier serveur (2), une liste de commandes de reconnaissance vocale (231) comprenant au moins une commande de reconnaissance vocale et des informations de commande de contrôle correspondant à la commande de reconnaissance vocale, et pour stocker la liste de commandes de reconnaissance vocale reçue (231) dans l’unité de stockage (15), la commande de reconnaissance vocale étant une commande de voce donnée par l’utilisateur qui a été reconnue avec succès un nombre prédéterminé de fois, ou plus, où le nombre prédéterminé est une valeur seuil pour inclure la commande de reconnaissance vocale dans la liste de commandes de reconnaissance vocale, les informations de commande de contrôle amenant l’appareil d’affichage (1) à fonctionner comme souhaité par l’utilisateur conformément à la commande vocale provenant de l’utilisateur ;
le contrôle (14) est agencé pour déterminer, en réponse à la réception de la commande vocale en cours, si la commande vocale en cours reçue correspond à la commande de reconnaissance vocale contenue dans la liste de commandes de reconnaissance vocale stockée (231, 151),
le contrôle (14) est agencé pour contrôler le processeur (11), en réponse à la détermination que la commande vocale en cours reçue correspond à la commande de reconnaissance vocale contenue dans la liste de commandes de reconnaissance vocale stockée (231, 151) pour fonctionner comme souhaité par l’utilisateur sur la base des informations de commande de contrôle correspondant à la commande de reconnaissance vocale contenue dans la liste de commandes de reconnaissance vocale stockée (231, 151),
le contrôle (14), en réponse à la détermination que la commande vocale en cours reçue ne correspond pas à la commande de reconnaissance vocale contenue dans la liste de commandes de reconnaissance vocale stockée (231, 151), est agencé pour
transmettre la commande vocale en cours reçue au premier serveur (2), pour recevoir des informations de commande de contrôle correspondantes du premier serveur (2), et pour contrôler le processeur (11) pour fonctionner comme souhaité par l’utilisateur sur la base des informations de commande de contrôle reçues, et le contrôleur (14) est agencé pour recevoir la liste de commandes de reconnaissance vocale (231) depuis le premier serveur (2) qui ne comprend pas de commandes vocales dont le nombre de reconnaissances réussies est inférieur au nombre de fois pré-déterminé.

2. Appareil d’affichage selon la revendication 1, dans lequel le contrôleur (14) est agencé pour déterminer si la commande vocale reçue correspond à la commande de reconnaissance vocale contenue dans la liste de commandes de reconnaissance vocale stockée (151) sur la base d’une pertinence déterminée entre la commande vocale reçue et la commande de reconnaissance vocale.

3. Appareil d’affichage selon la revendication 1 ou la revendication 2, dans lequel, en réponse à un temps écoulé pré-déterminé après que la commande vocale en cours reçue a été transmise au premier serveur (2), le contrôleur (14) contrôle le processeur (11) pour qu’il opère sur la base la commande de reconnaissance vocale contenue dans la liste des commandes de reconnaissance vocale stockée (151).

4. Appareil d’affichage selon l’une quelconque des revendications précédentes, dans lequel, en réponse au temps écoulé pré-déterminé après que la commande vocale reçue a été transmise au premier serveur (2), le contrôleur (14) informe l’utilisateur d’un contenu de la commande de reconnaissance vocale contenue dans la liste de commandes de reconnaissance vocale stockée à l’avance, et détermine s’il convient de contrôler le processeur (11) pour qu’il opère sur la base de la commande de reconnaissance vocale selon une réponse faite par l’utilisateur à la notification.

5. Appareil d’affichage selon l’une quelconque des revendications précédentes, dans lequel, si la commande vocale reçue est nouvellement reconnue et reconnue avec succès pour un utilisateur, en notifiant l’utilisateur de la commande vocale en cours et en recevant une confirmation que l’utilisateur est d’accord avec la commande vocale en cours, le contrôleur (14) transmet, au premier serveur (2), la commande vocale reconnue et des informations de commande de contrôle correspondant à la commande vocale reconnue.

6. Appareil d’affichage selon l’une quelconque des revendications précédentes, dans lequel le contrôleur (14) transmet, à un second serveur (4), la commande vocale reçue, reçoit, depuis le second serveur (4), un texte en lequel la commande vocale transmise a été convertie, et transmet le texte reçu au premier serveur (2).

7. Procédé de contrôle d’un appareil d’affichage (1) pour :

recevoir, depuis un premier serveur (2), une liste de commandes de reconnaissance vocale (231, 151) comprenant une commande de reconnaissance vocale et des informations de commande de contrôle correspondant à la commande de reconnaissance vocale, la commande de reconnaissance vocale se trouvant parmi les commandes vocales de l’utilisateur qui ont été reconnues avec succès un nombre prédéterminé de fois, ou plus, où le nombre prédéterminé est une valeur seuil pour inclure la commande de reconnaissance vocale dans la liste de commandes de reconnaissance vocale, et où la liste de commandes de reconnaissance vocale (231) reçue depuis le premier serveur (2) ne comprend pas de commandes vocales dont le nombre de reconnaissances réussies est inférieur au nombre de fois prédéterminé, les informations de commande de contrôle amenant l’appareil d’affichage (1) à fonctionner comme souhaité par l’utilisateur conformément à une commande vocale provenant de l’utilisateur ; stocker la liste de commandes de reconnaissance vocale (231, 151) reçue dans l’appareil d’affichage (1) ; recevoir une commande vocale depuis un utilisateur ; déterminer si la commande vocale reçue correspond à la commande de reconnaissance vocale contenue dans la liste de commandes de reconnaissance vocale stockée ; en réponse à la détermination que la commande vocale reçue correspond à la commande de reconnaissance vocale contenue dans la liste de commandes de reconnaissance vocale stockée, faire fonctionner l’appareil d’affichage comme souhaite par l’utilisateur conformément aux informations de commande de contrôle correspondant à la commande de reconnaissance vocale contenue dans la liste de commandes de reconnaissance vocale ; et en réponse à la détermination que la commande vocale reçue ne correspond pas à la commande de reconnaissance vocale contenue dans la liste de commandes de reconnaissance vocale.
stockée, transmettre la commande vocale reçue au premier serveur (2), recevoir des informations de commande de contrôle correspondantes depuis le premier serveur (2) et faire fonctionner l’appareil d’affichage (1) comme souhaité par l’utilisateur conformément aux informations de commande de contrôle reçues.

8. Procédé de contrôle selon la revendication 7, comprenant de déterminer si la commande vocale reçue correspond à la commande de reconnaissance vocale contenue dans la liste de commandes de reconnaissance vocale stockée sur la base d’une pertinence déterminée entre la commande vocale reçue et la commande de reconnaissance vocale.

9. Procédé de contrôle selon la revendication 7 ou la revendication 8, comprenant en outre de faire fonctionner l’appareil d’affichage (1) sur la base de la commande vocale reçue dans la liste de commandes de reconnaissance vocale stockée en réponse à un temps écoulé prédéterminé après que la commande vocale reçue a été transmise au premier serveur (2).

10. Procédé de contrôle selon la revendication 9, comprenant de notifier à l’utilisateur un contenu de la commande de reconnaissance vocale contenue dans la liste de commandes de reconnaissance vocale stockée et de déterminer s’il convient de procéder sur la base de la commande vocale reçue.

11. Procédé de contrôle selon l’une quelconque des revendications 7 à 10, comprenant en outre, si la commande vocale reçue est nouvellement reconnue et reconnue avec succès pour un utilisateur, en notifiant l’utilisateur de la commande vocale en cours et en recevant une confirmation que l’utilisateur est d’accord avec la commande vocale reçue.

12. Procédé de contrôle selon l’une quelconque des revendications précédentes, comprenant en outre les étapes suivantes :

 transmettre, à un second serveur (4), la commande vocale reçue ;
 recevoir, depuis le second serveur (4), un texte en lequel la commande vocale transmise a été convertie, depuis le second serveur (4), et transmettre le texte reçu au premier serveur (2).

13. Serveur (2), qui analyse la commande vocale d’un utilisateur faite à un appareil d’affichage (1), le serveur comprenant :

 un dispositif de communication (21) agencé pour communiquer avec l’appareil d’affichage (1) ;
 une unité de stockage (23) agencée pour stocker des informations relatives à une commande vocale ; et
 un contrôleur (22) ;

 où le contrôleur (22), en réponse à la réception d’une demande provenant de l’appareil d’affichage (1) pour analyser la commande vocale reçue d’un utilisateur, est agencé pour transmettre, à l’appareil d’affichage (1), des informations de commande de contrôle correspondant à la commande vocale reçue, les informations de commande de contrôle correspondant à l’appareil d’affichage (1) à fonctionner comme souhaité par l’utilisateur conformément à la commande vocale provenant de l’utilisateur, le contrôleur (22) est agencé pour stocker, dans l’unité de stockage (23), une liste de commandes de reconnaissance vocale (231) comprenant une commande de reconnaissance vocale et des informations de commande de contrôle correspondant à la commande de reconnaissance vocale, et le contrôleur (22) est agencé pour transmettre la liste de commandes de reconnaissance vocale (231) à l’appareil d’affichage (1), la commande de reconnaissance vocale se trouvant parmi des commandes vocales de l’utilisateur qui ont été reconnues avec succès un nombre prédéterminé de fois, ou plus, où le nombre prédéterminé est une valeur seuil pour inclure la commande de reconnaissance vocale dans la liste de commandes de reconnaissance vocale, et où la liste de commandes de reconnaissance vocale (231) ne comprend pas de commandes vocales dont le nombre de reconnaissances réussies est inférieur au nombre de fois prédéterminé.

14. Serveur selon la revendication 13, dans lequel le contrôleur (22) est agencé pour recevoir, depuis l’appareil d’affichage (1), une commande vocale qui a été reconnue avec succès pour l’utilisateur, et des informations de commande de contrôle correspondantes, et est agencé pour préparer la liste de commandes de reconnaissance vocale sur la base de la commande vocale reçue et des informations de commande de contrôle correspondantes.

15. Procédé de contrôle d’un serveur (2) qui analyse la
commande vocale d’un utilisateur faite à un appareil d’affichage (1) pour :

recevoir, depuis le dispositif d’affichage (1), une demande pour analyser une commande vocale reçue d’un utilisateur ;
transmettre, à l’appareil d’affichage (1), des informations de commande de contrôle correspondant à la commande vocale reçue, les informations de commande de contrôle amenant l’appareil d’affichage (1) à fonctionner comme souhaité par l’utilisateur conformément à la commande vocale provenant de l’utilisateur ;
stocker une liste de commandes de reconnaissance vocale (231) comprenant une commande de reconnaissance vocale et des informations de commande de contrôle correspondant à la commande de reconnaissance vocale, la commande de reconnaissance vocale se trouvant parmi des commandes vocales d’utilisateur qui ont été reconnues avec succès un nombre prédéterminé de fois, ou plus, où le nombre prédéterminé est une valeur seuil pour inclure la commande de reconnaissance vocale dans la liste de commandes de reconnaissance vocale, et où la liste de commandes de reconnaissance vocale (231) ne comprend pas de commandes vocales dont le nombre de reconnaissances réussies est inférieur au nombre de fois prédéterminé ; et
transmettre, à l’appareil d’affichage (1), la liste de commandes de reconnaissance vocale (231).
FIG. 3
FIG. 4

START

RECEIVE VOICE RECOGNITION COMMAND LIST FROM ANALYSIS SERVER S41

RECEIVE USER'S VOICE COMMAND S42

IDENTIFY WHETHER RECEIVED VOICE COMMAND CORRESPONDS TO VOICE RECOGNITION COMMAND INCLUDED IN VOICE RECOGNITION COMMAND LIST S43

DOES RECEIVED VOICE COMMAND CORRESPOND TO VOICE RECOGNITION COMMAND? S46

NO

TRANSMIT USER'S VOICE COMMAND TO SERVER S46

RECEIVE CONTROL COMMAND INFORMATION CORRESPONDING TO VOICE COMMAND FROM ANALYSIS SERVER S47

YES

OPERATE BASED ON CONTROL COMMAND INFORMATION OF CORRESPONDING VOICE RECOGNITION COMMAND S43

END

OPERATE BASED ON RECEIVED CONTROL COMMAND INFORMATION S48
FIG. 5

<table>
<thead>
<tr>
<th>VOICE RECOGNITION COMMAND</th>
<th>CONTROL COMMAND INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOICE RECOGNITION COMMAND 1</td>
<td>CONTROL COMMAND INFORMATION 1</td>
</tr>
<tr>
<td>VOICE RECOGNITION COMMAND 2</td>
<td>CONTROL COMMAND INFORMATION 2</td>
</tr>
<tr>
<td>VOICE RECOGNITION COMMAND 3</td>
<td>CONTROL COMMAND INFORMATION 3</td>
</tr>
</tbody>
</table>

...
FIG. 6

START

RECEIVE USER'S VOICE COMMAND

S61

DETERMINE RELEVANCE BETWEEN RECEIVED VOICE COMMAND AND VOICE RECOGNITION COMMAND IN VOICE RECOGNITION COMMAND LIST

S62

IS THERE VOICE RECOGNITION COMMAND WHOSE RELEVANCE IS PREDETERMINED VALUE OR MORE?

S63

NO

YES

DETERMINE THAT VOICE COMMAND CORRESPONDS TO VOICE RECOGNITION COMMAND INCLUDED IN VOICE RECOGNITION COMMAND LIST

S64

DETERMINE THAT VOICE COMMAND DOES NOT CORRESPOND TO VOICE RECOGNITION COMMAND INCLUDED IN VOICE RECOGNITION COMMAND LIST

S65

END
FIG. 7

START

TRANSMIT USER'S VOICE COMMAND TO SERVER

HAS ANALYSIS RESULT BEEN TRANSMITTED BY ANALYSIS SERVER?

NO

HAS PREDETERMINED TIME ELAPSED?

YES

OPERATE BASED ON VOICE RECOGNITION COMMAND INCLUDED IN VOICE RECOGNITION COMMAND LIST

END

S71

S72

S73

S74

S75
FIG. 8

START

NOTIFY USER OF CONTENT OF VOICE RECOGNITION COMMAND IN VOICE RECOGNITION COMMAND LIST

RECEIVE USER'S INTENTION REGARDING CONTENT OF VOICE RECOGNITION COMMAND

HAS USER AGREED TO CONTENT OF VOICE RECOGNITION COMMAND?

YES

OPERATE BASED ON VOICE RECOGNITION COMMAND

NO

END
FIG. 9

ANALYSIS SERVER

USER'S VOICE COMMAND

VOICE RECOGNITION COMMAND LIST

ELECTRONIC DEVICE

USER'S VOICE COMMAND

VOICE RECOGNITION COMMAND LIST

ELECTRONIC DEVICE

USER'S VOICE COMMAND

USER'S VOICE COMMAND
FIG. 10

START

S101
RECEIVE ANALYSIS REQUEST FROM ELECTRONIC DEVICE FOR USER'S VOICE COMMAND

S102
TRANSMIT CONTROL COMMAND INFORMATION CORRESPONDING TO VOICE COMMAND TO ELECTRONIC DEVICE

S103
STORE VOICE RECOGNITION COMMAND LIST BASED ON USER'S VOICE COMMAND WHICH HAS BEEN SUCCESSFULLY RECOGNIZED AND CONTROL COMMAND INFORMATION FROM PLURALITY OF ELECTRONIC DEVICES

S104
TRANSMIT STORED VOICE RECOGNITION COMMAND LIST TO ELECTRONIC DEVICE

END
FIG. 11

START

S111
Determine number of successful recognition of user's voice command

S112
Is number of successful recognition predetermined value or more?

NO

YES

S113
Add user's voice command to voice recognition command list as new voice recognition command

END
FIG. 12
FIG. 13

User 1 Stored Voice Command List

<table>
<thead>
<tr>
<th></th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TELL ME ABOUT TOMORROW'S WEATHER</td>
</tr>
<tr>
<td>2</td>
<td>PLAY ###</td>
</tr>
<tr>
<td>3</td>
<td>PLAY %%%%%</td>
</tr>
<tr>
<td>4</td>
<td>RECORD $$$ NEWS</td>
</tr>
</tbody>
</table>

...
(USER 1) STORED VOICE COMMAND LIST

<table>
<thead>
<tr>
<th></th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TELL ME ABOUT TOMORROW'S WEATHER</td>
</tr>
<tr>
<td>2</td>
<td>PLAY ###</td>
</tr>
<tr>
<td>3</td>
<td>PLAY %%%</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

RECORD $$$ NEWS

-
-
-
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 2004010409 A [0002]
• US 2011066634 A [0002]