METHOD OF INTERCONNECTING A DRILL ROD WITH A DRILL STRING BY MEANS OF A THREADDED CONNECTION, ROD HANDLING SYSTEM AND DRILL RIG

Verfahren zur Verbindung eines Bohrstange mit einem Bohrstrang mittels Gewindeverbindung, Stangenhandhabungssystem und Bohrgestell

Procédé d’interconnexion d’une tige de forage avec un train de tiges de forage au moyen d’un raccord fileté, système de manipulation de tiges et installation de forage

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Date of publication and mention of the grant of the patent:
04.03.2015 Bulletin 2015/10

Application number: 12186110.8

Date of filing: 26.09.2012

Date of publication of application:
02.04.2014 Bulletin 2014/14

Proprietor: Sandvik Intellectual Property AB
811 81 Sandviken (SE)

Inventors:
• Vilén, Per
 713 33 Nora (SE)
• Rosmark, Peter
 702 30 Örebro (SE)
• Evermark, Kent
 655 93 Karlstad (SE)

References cited:
WO-A1-02/079603
US-A- 4 258 796

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Technical Field

[0001] The present disclosure relates to a method of interconnecting rods to form part of a drill string, and more particularly to a method of detecting a thread entrance of a drill string rod. The disclosure also relates to a device for such thread detection and to a ground drill system comprising such a device.

Background

[0002] In exploration drilling, the average length of a drill string may typically be about 900 m. The drill string is typically composed of a plurality of drill rods, which, depending on configuration, typically weigh about 11-20 kg each and measure about 2-3 m in length. The drill rods are interconnected by a threaded connection.

[0003] Moreover, in many applications, also depending on rock type, tool type and drilling speed, it may be necessary to exchange the drill bit or other tool parts, e.g. every 300 m of drilling. Changing tools may be associated with retrieving the entire drill string from the hole, changing the lowermost portion and then reinserting the entire drill string, after which drilling may continue. In practice, and depending on rock conditions, 10-20 retrieval operations per drill hole is not uncommon.

[0004] Needless to say, a very large number of drill rods will need to be handled, including picking them from a transport carrier, inserting them into the drill, fastening them, releasing them and replacing them at the transport carrier.

[0005] In reality, this may mean that an operator has to carry/lift an 11 to 20 kg rod, about 1200 times to or from the rig for each hole. The estimated average number of holes drilled by one rig is 35 holes/year, resulting in that the operator carries (11 to 20) * 1200 * 35 / (220 working days) = 2100 to 3820 kg/day. This is the main reason for developing a so-called Rod Handling System (RHS).

[0006] Such Rod Handling Systems are disclosed in WO2011/129760A1 and WO 00/65193A1. A Rod Handling System may typically comprise a robot arm having a dedicated gripper for gripping the drill rods. During a forward drilling operation, the robot arm is arranged to pick up drill rods at a transport or intermediate carrier and to place the drill rod in the drill unit, whereupon the drill rod is connected to an already installed drill rod to extend the drill string. During a drill string retrieval operation, the robot arm is arranged to pick up disconnected rods from the drill unit and to replace them onto the transport or intermediate carrier.

[0007] In order to provide a fully automatic system, thereby further eliminating manual work, it is desirable for the Rod Handling System to be able to connect and disconnect the drill rod to/from the installed drill rods.

[0008] However, the threads used in many drilling applications, including wireline core drilling, may have a very low thread height, and they may be slightly conical.

[0009] If a pair of such threads is brought axially together at random, experience shows that there is about 60% chance of the threads not engaging each other, or engaging each other incorrectly. In either case, the threads may become damaged, resulting in additional cost and work.

[0010] WO 02/079603A1 discloses a system for automatically connecting drill rods to form a drill string. In this system, marks are provided around the perimeter of the rods, such that their rotational positions can be determined, thus allowing the rods to be rotationally aligned for optimal thread entry.

[0011] There is a need for an improved way of automatically and safely finding the thread entrance when using a Rod Handling System for connecting drill rods.

Summary

[0012] It is an object of the present disclosure to provide an improved method and device for thread detection and drill rod interconnection.

[0013] The invention is defined by the appended independent claims. Embodiments are set forth in the dependent claims, in the following description and on the attached drawings.

[0014] According to a first aspect, there is provided a method of interconnecting a drill rod with a drill string by means of a threaded connection. The method comprises axially aligning the drill rod with the drill string, rotating the drill rod and the drill string relative each other in a disengagement rotational direction of the threaded connection, identifying a rotational position of the drill rod where thread ends of the drill rod and the drill string slip over each other, stopping said rotating within a predetermined period of identifying the rotational position, and rotating the drill rod and the drill string relative each other in an engagement direction, such that the drill rod is interconnected with the drill string by the threaded connection.

[0015] The aligning step should be understood as providing a sufficient alignment for the threads to be interconnectable. Hence, minor radial and/or angular deviations may be tolerated.

[0016] The "predetermined period" may be a time period, rotation angle and/or axial displacement. The rotation of the drill rod and the drill string is normally a rotation of the drill rod relative to a stationary drill string, but rotation of the drill string (alone or as a complement) is not excluded.

[0017] Typically, the drill string remains substantially stationary, while the drill rod is being rotated.

[0018] Tests have shown that the use of this method results in a clear improvement in the success rate when interconnecting drill rods using an automated RHS.

[0019] The method may further comprise axially biasing the drill rod and the drill string towards each other.
This biasing may be in the form of biasing the drill rod towards the drill string. Such biasing may be achieved by means of a biasing element (such as a resilient element), an actuator or by means of gravity, e.g. using the weight of the drill rod itself.

[0020] The method may further comprise recording an axial displacement of the rod during said rotating, and identifying a rotational position based on the axial displacement.

[0021] The identification of the directional shift of the axial movement has proven to be an accurate way of identifying the rotational position.

[0022] The identification of the rotational position of the drill rod may comprise detecting a shift from a movement of the drill rod away from the drill string to a movement of the drill rod towards the drill string.

[0023] The method may further comprise detecting an increase and/or decrease in a ratio between axial and rotational movement.

[0024] The step of identifying a rotational position of the drill rod may further comprise a subsequent detecting of a second shift from the movement of the rod towards the drill string to a movement of the drill rod away from the drill string.

[0025] Alternatively, or as a complement, the step of identifying a rotational position of the drill rod may comprise detecting an axial acceleration.

[0026] Alternatively, or as a complement, the step of identifying a rotational position of the rod may comprise detecting a pressure drop in a fluid used for biasing and/or feeding the drill rod and/or the drill string towards each other.

[0027] According to a second aspect, there is provided a rod handling system, adapted for supplying a drill rod that is to be connected to a drill string. The system comprises a moveable arm having gripping means adapted for gripping the drill rod, means for rotating the drill rod and the drill string relative each other about a longitudinal axis thereof and in a disengagement direction of the threaded connection, and means for detecting a rotational position of the drill rod where thread ends of the drill rod and of the drill string slip over each other.

[0028] The system may further comprise means for biasing the drill rod and the drill string towards each other.

[0029] The gripping means may comprise at least one rotatable member having a perimeter which is adapted for frictionally engaging an outer wall of the drill rod.

[0030] The rotatable member may be axially slidable in a direction substantially parallel with the longitudinal axis.

[0031] The system may further comprise a drive arrangement, adapted for causing the rotatable member to rotate.

[0032] The rotatable member may be biased in a direction substantially towards the drill string.

[0033] The system may further comprise a jaw, which carries the rotatable member, such that the rotatable member is slidable relative to the jaw, wherein the jaw is displaceable in the direction substantially parallel with the longitudinal axis.

[0034] The above-mentioned means for detecting a rotational position may be arranged to record a longitudinal position or change in position of the drill rod along the longitudinal axis and to derive said rotational position of the drill rod based on said longitudinal position or change in position.

[0035] According to a third aspect, there is provided a drill rig assembly, comprising a feed device, a drilling device, which is movable along the feed device to and from a drill string, and a rod handling system as described above, wherein the rod handling system is arranged to pick up and/or drop off drill rods from/onto a carrier and to move the drill rods to/from the feed device. Such a carrier may, as non-limiting examples, be a storage device, a rod feed device or a drill rod cassette.

Description of Embodiments

Fig. 1 is a schematic side view of a drill rod handler unit design.
Fig. 2 is a schematic sectional view of the drill unit of Fig. 1.
Fig. 3 is a schematic sectional view of an alternative rod handler unit design.
Fig. 4 is a diagram showing axial position of the drill rod as a function of rotational position.
Fig. 5 is a schematic perspective view of a rod handling device.
Fig. 6 is a schematic perspective view of the rod handling device of Fig. 5.
Fig. 7 is an enlarged detail of a part of the rod handling device of Figs 5 and 6.
respectively female thread 112, 112' at the other end thereof.

In typical applications, the drill rods may have an outer diameter in the area of 40 - 200 mm and most commonly in the area of 40 - 120 mm. Thread sections may be conical with an angle of about 0.50 - 1.50, most commonly about 1.0. Thread depth may be in the area of 0.5 - 2 mm, most commonly 0.5-1.5 mm. Thread pitch may be in the area of 2-5 threads/inch. In Figs 1-3, directions are defined as follows: the Z direction is the drilling direction. +Z thus illustrates forward drilling and -Z illustrates reverse drilling (retrieval of drill string). Y is perpendicular to the Z direction and Y and Z form a plane, in which a central axis L of the drill string is positioned. X is perpendicular to both Y and Z.

The basic operation of the drill rig is known, for example, from e.g. WO98/30627 and WO2011/129760A1.

Figs 1 and 2 further illustrates a rod handler 13, comprising an arm 131, a gripper cradle 132, a gripper frame 133, gripper jaws 137, gripper rollers 135 and biasing springs 136.

The arm 131 of the rod handler 13 may be movable relative to the gripper arm 131 in a direction substantially parallel with the drilling direction Z. This may be achieved by arranging the gripper frame 133 in a gripper cradle 132 and by providing an actuator (not shown) for controlling the relative motion between the gripper frame 133 and the gripper cradle 132. It is possible to use any type of actuator providing a substantially linear motion.

In order to allow for gripping (or dropping off) a drill rod 11, the jaws 137 of the rod handler 13 may be movable relative to the gripping frame, similar to one of the gripping rollers 135 or to an entire set of gripping rollers, alternatively to an entire set of gripping rollers (which in this case, the jaws 137 may be pivotable in a respective direction Dj). The operation of the rod handler 13 will now be described with reference to Figs 1, 2 and 4. It is noted that the embodiment disclosed in Fig. 3 will be operable in substantially the same manner.

In order to connect a new drill rod 11' to an already installed drill rod 11 (or a drill string formed of a plurality of installed drill rods), the arm 131 is operable to move the gripper close enough to a drill rod carrier such that a drill rod may be picked up from the carrier and held by the jaws 137 such that the gripping rollers 135 contact the outer surface of the drill rod 11'.

The arm 131 then moves the drill rod 11' towards the drill rig to a position where male thread 111 of the new drill rod 11' is aligned with the female thread 112 of the already installed drill rod 11. In this position, longitudinal central axes L of the installed drill rod 11 and the new drill rod 11' may be substantially aligned with each other. Minor deviations may be tolerable. At this position, the thread portions may be on the order of 100-300 mm apart.

The gripping frame 133 is then caused to move relative to the gripping cradle 132 such that the gripping frame 133 is moved in the +Z direction, thus causing the new drill rod 11' to move in the +Z direction towards the installed drill rod 11. The gripping frame 133 may be moved such that the end portion of the new drill rod 11' with the male thread 111 contacts the end portion of the installed drill rod 11 with the female thread 112 and causes the gripping rollers 135 to be displaced in the -Z direction relative to the gripping frame 133. Through this displacement, the biasing device 136 may become activated (e.g. by being compressed) so as to provide a biasing force between the thread portions 112, 111'. This biasing displacement may be measured in order to secure an adequate biasing force.

While the thread portions 112, 111' are biased towards each other, the gripping rollers 135 may be caused to rotate so as to cause the new drill rod 11' (but not the installed drill rod 11) to rotate about its longitudinal axis in a reverse direction, i.e. a direction in which the new rod 11' would be rotated when disconnecting it from rollers may be arranged to define a rectangular cross section with one set of gripping rollers at each corner and with the central axis of the drill string coinciding with the intersection of the diagonals of the rectangle.
the installed rod 11 (typically counter clockwise).

[0054] During this reverse rotating motion, the new rod 11' will move along its longitudinal direction due to the cam effect of the abutting thread ends.

[0055] A measuring device may be provided for measuring the movement of the new drill rod 11' while rotated. Such a device may detect the longitudinal relative movement of a point on the new drill rod 11' or on a part connected to the new drill rod 11'; a point on a roller 135 or on a part connected to a roller 135; or a point on the gripper frame 133 or on a part connected to the gripper frame 133.

[0056] Fig. 4 illustrates data generated by measurement of the longitudinal movement of the new rod 11' as a function of rotational position over three full laps. The graph presents maxima at the points where the outermost parts of the thread ridges contact each other and minima at the points where the threads have slipped over each other and thus cause the new rod 11' to move forwardly. Hence, from the graph, it is possible to identify a relative position between the threads where they have a good likelihood of engaging properly. In practice, the new rod 11' may be rotated reversely and the rotation stopped at a point (or predetermined period) just after a minimum has been identified, i.e. where a change in direction of movement from +Z to -Z has been detected. If no such point is identified within 1-3 laps, the thread detection may be interrupted and an alarm triggered, such that an operator may take over.

[0057] Once the thread entrance has been identified, the new drill rod 11' may be caused to rotate in the forward direction (typically clockwise) so as to allow the threads 112, 111' to engage. This forward rotation may continue for a predefined rotation time, to a predefined length position, or until a predefined force or torque is achieved (e.g. causing drive rollers to slip).

[0058] It is possible to allow the gripping rollers 135 to move under the influence of the biasing device to such an extent as to correspond to at least the entire length of the thread portion 112, 111'. Hence, the longitudinal movement of the new rod 11' when rotating it forwardly until firmly engaged with the installed rod 11 will be compensated for by the longitudinal movement of the gripping rollers. As an alternative, or complement, the gripping frame 133 may be caused to move, or merely released and allowed to move freely relative to the gripper cradle 132, so as to provide such compensation.

[0059] Figs 5-7 disclose an embodiment of a rod handler 1" which may be used for implementing the present invention.

[0060] The rod handler 1" may include a handler base frame 20 which may be integrated with a drill rig frame or which may form a separate frame, which may be fitted or retrofitted to a drill rig frame. As another alternative, the rod handler may form a separate unit, which may be positioned in the immediate vicinity of the drill rig.

[0061] The rod handler 1" may further include an arm 131 which is connected to the base by a first joint 22 and to a free head portion 23 by a second joint 24. Hydraulic, pneumatic or electric actuators 25, 26 may be provided for causing motions at the joints 22, 24.

[0062] The head portion 23 may include the parts disclosed above with reference to Figs 1-3. For example, a set of longitudinally spaced apart gripping jaws 137a, 137b may be provided, connected by a jaw spacer 137c, such that the gripping rollers 135a, 135b are spaced apart along the drill rod longitudinal direction so as to reduce torques at the gripping rollers 135a, 135b.

[0063] The illustrated embodiment comprises three sets of gripping rollers 135a, 135b, with each set comprising two longitudinally spaced apart gripping rollers 135a, 135b. Each set of gripping rollers may comprise one driven roller 135a and one freely rotatable support roller 135b.

[0064] In the disclosed embodiment, each roller 135a, 135b is arranged on its own shaft and not mechanically connected to any other of the rollers.

[0065] The biasing devices 136 are provided in the form of helical springs, arranged to act upon the respective driven roller 135a.

[0066] Roller actuators 138 are provided for driving the respective rollers.

[0067] The rollers 135, 135a, 135b may have the same or different surface properties at the drill rod supporting surface. In one embodiment, the rollers are provided with a rubber or rubber-like material in order to increase their coefficient of friction relative to the drill rod. Alternatively, or as a complement, the supporting surface may be patterned for providing increased coefficient of friction.

[0068] The rollers may be designed with rounded edges between their respective radially and axially facing surfaces, such that relative movement between rollers and drill rod is facilitated. Such rounded edges may have a radius of curvature in the Y-Z plane of at least 0.5 mm, 1 mm, 2 mm or 5 mm.

[0069] In embodiments where all rollers have a supporting surface providing sufficient friction, it may be advantageous to design all rollers such that they are displaceable in the Z directions and subject to a bias in the +Z direction.

[0070] In an alternative embodiment, support rollers 135b may have a lower surface friction than driven rollers 135a, in which case it may not be necessary, albeit possible, to make the support rollers 135b displaceable in the Z direction.

[0071] One or more of the rollers 135 may, as a complement, or instead of being driven, be dedicated as a measuring roller 139a. Such a measuring roller 139a may be designed to be moveable with the drill rod 11' and to provide as little resistance as possible. The measuring roller 139a may be connected by a roller follower 139d to a measuring sensor 139c by a rigid rod 139b, such that an axial movement of the drill rod 11' results in a corresponding axial movement of the measuring roller 139a. The measuring sensor 139c may be fixedly connected to the jaw frame 133. The movement may be re-
corded by the measuring sensor via the measuring rod 139b, which may be axially fixed in relation to one of the measuring roller 139a and the measuring sensor 139c and movable relative to the other of the measuring roller 139a and the measuring sensor 139c. This measuring device 139a, 139b, 139c, 139d may also be used for measuring the length displacement when applying the biasing force and/or during the forward rotation for engaging the threads. [0072] It is noted that alternative methods of recording the axial movement of the measuring roller and/or of the drill rod 11’ may be applied. Such alternative methods include optical methods (e.g. laser ranging, and camera based methods).

[0073] It is also possible to use hydraulic or pneumatic means for biasing the rollers in the +Z direction. In such case, a pressure change in the pressure medium (gas or liquid) may be used as an indication of the axial movement.

[0074] Another option is to arrange the biasing device to act between the gripper frame 133 and the gripper cradle 132, in which case the biasing devices at the rollers may be dispensed with. Hence the gripper frame may be biased in the forward direction +Z.

[0075] Yet another option is to use an accelerometer to measure the acceleration of the new drill rod 11’ achieved when the thread ends slip over each other, and to use this acceleration as an indication of the rotational position.

[0076] Another option is to use a sound sensor, which records the sound produced when the thread ends slip over each other and the threads strike against each other at the end of the forward +Z motion.

[0077] In an alternative method for detecting the thread entrance, the new drill rod 11’ may be aligned with the drill string 11, after which an immediate attempt to engage the threaded portions by rotation in the engagement direction is made. During this engagement attempt, the force or torque needed for achieving the engagement may be measured, e.g. by measuring the current drawn by the actuator used to provide the rotational movement or by measuring the actual longitudinal movement and to compare this with the expected longitudinal movement, whereby a deviation may indicate that the drive rollers are slipping against the surface of the new rod 11’.

Hence, failure (jamming) of the thread connection may be detected. When such failure is detected a backward rotation may be performed. When the threaded connection is released, there may be a significant decrease in the force or torque or, if there is a biasing in the reverse direction -Z, a sudden axial movement in the -Z direction may be detected.

[0078] When such release is detected, this may be used as an indication of the rotational position of the thread ends, analogous with what was described with respect to the previous set of embodiments, and thus as an indication of where to restart the forward +Z rotation.

[0079] While the embodiments above make use of axially movable and biased rollers, it is possible to provide the biasing of the threaded portions in other ways. For example, the rollers may have a tiltable axis of rotation, which may be angled relative to the longitudinal direction of the drill rod, such that the rotation of the rollers may cause both reverse rotational and axial movement of the drill rod in the +Z direction.

[0080] It is also noted that the rod handler may be provided with an application specific arm, as disclosed herein, or be based on a general industrial robot having a modified free end.

[0081] It is noted that the actuators and sensors described above may be connected to a control system adapted for receiving sensor inputs, processing sensor inputs and providing control signals to actuators. Such control systems are deemed to be known as such and need no further description.

[0082] In addition to exploration drilling, this invention can be usefull also in connection any other rotary type drilling like for example blast hole drilling.

Claims

1. A method of interconnecting a drill rod (11’) with a drill string (11) by means of a threaded connection (112, 111’), the method comprising:

 axially aligning the drill rod (11’) with the drill string (11),
 rotating the drill rod (11’) and the drill string (11) relative each other in a disengagement rotational direction of the threaded connection (112, 111’),
 identifying a rotational position of the drill rod (11) where thread ends of the rod and the drill string (11) slip over each other,
 stopping said rotating within a predetermined period of identifying the rotational position, and
 rotating the drill rod (11’) and the drill string (11) relative each other in an engagement direction, such that the drill rod (11’) is interconnected with the drill string (11) by the threaded connection (112, 111’).

2. The method as claimed in claim 1, further comprising axially biasing the drill rod (11’) and the drill string (11) towards each other.

3. The method as claimed in claim 1 or 2, further comprising:

 during said rotating, recording an axial displacement (Z) of the drill rod (11’), and
 identifying a rotational position of the drill rod based on the axial displacement.

4. The method as claimed in claim 3, wherein said iden-
tifying a rotational position of the drill rod (11') comprises detecting a shift from a movement (-Z) of the drill rod away from the drill string to a movement (+Z) of the rod towards the drill string.

5. The method as claimed in claim 4, further comprising detecting an increase and/or decrease in a ratio between axial and rotational movement.

6. The method as claimed in claim 3, wherein said identifying a rotational position of the drill rod (11') further comprises a subsequent detecting of a second shift from the movement (+Z) of the drill rod towards the drill string to a movement (-Z) of the drill rod away from the drill string.

7. The method as claimed in claim 1, wherein said identifying a rotational position of the drill rod comprises detecting an axial acceleration.

8. The method as claimed in claim 1, wherein said identifying a rotational position of the drill rod comprises detecting a pressure drop in a fluid used for biasing and/or feeding the drill rod and/or the drill string towards each other.

9. A rod handling system, adapted for supplying a drill rod that is to be connected to a drill string, the system comprising:
 a moveable arm (21, 22, 23, 24) having gripping means (137, 137', 135, 137a, 135a; 137b, 135b) adapted for gripping the drill rod (11'), means (135, 135a, 138) for rotating the drill rod (11') and the drill string (11) relative each other about a longitudinal axis (L) thereof and in a disengagement direction of the threaded connection (112, 111'), characterised in that the handling system further comprises means (139a, 139b, 139c, 139d) for detecting a rotational position of the drill rod where thread ends of the drill rod and of the drill string slip over each other.

10. The system as claimed in claim 9, further comprising means (136) for biasing the drill rod (11') towards the drill string (11).

11. The system as claimed in claim 9 or 10, wherein the gripping means comprise at least one rotatable member (135, 135a, 135b) having a perimeter which is adapted for frictionally engaging an outer wall of the drill rod.

12. The system as claimed in claim 11, wherein the rotatable member (135, 135a, 135b) is axially slidable in a direction (Z) substantially parallel with the longitudinal axis (L).

13. The system as claimed in claim 11 or 12, further comprising a drive arrangement (138), adapted for causing the rotatable member (135, 135a, 135b) to rotate.

14. The system as claimed in any one of claims 10-13, wherein the rotatable member (135, 135a, 135b) is biased in a direction (+Z) substantially towards the drill string (11).

15. The system as claimed in any one of claims 10-14, further comprising a jaw (137, 137', 137a, 137c), which carries the rotatable member (135, 135a, 135b), such that the rotatable member (135, 135a, 135b) is slidable relative to the jaw, wherein the jaw is displaceable in the direction (Z) substantially parallel with the longitudinal axis (L).

16. The system as claimed in any one of claims 10-15, wherein said means (139a, 139b, 139c, 139d) for detecting a rotational position is arranged to record a longitudinal position or change in position of the drill rod (11') along the longitudinal axis (L) and to derive said rotational position of the drill rod based on said longitudinal position or change in position.

17. A drill rig assembly, adapted, comprising:
 a feed device (10), a drilling device (12), which is movable along the feed device (10) to and from a drill string (11), and a rod handling system as claimed in any one of claims 10-16, wherein the rod handling system is arranged to pick up and/or drop off drill rods (11') from/onto a carrier and to move the drill rods to/from the feed device (10).

Patentansprüche

1. Verfahren zum Verbinden einer Bohrstange (11') mit einem Bohrstrang (11) mittels einer Gewindeverbindung (112, 111'), wobei das Verfahren umfasst:
 Axiales Ausrichten der Bohrstange (11') zu dem Bohrstrang (11), Drehen der Bohrstange (11') und des Bohrstrangs (11) relativ zueinander in einer Drehrichtung zum Lösen der Gewindeverbindung (112, 111'), Erkennen einer Drehposition der Bohrstange (11'), in welcher Gewindeenden der Stange und des Bohrstrangs (11) übereinander gleiten, Stoppen des Drehens innerhalb eines vorbestimmten Abschnitts des Erkennens der Drehposition und Drehen der Bohrstange (11') und des Bohr-
strangs (11) relativ zueinander in einer Richtung zum Eingriff Treten, sodass die Bohrstange (11') mittels der Gewindeverbindung (112, 111') mit dem Bohrstrang (11) verbunden wird.

2. Verfahren nach Anspruch 1, welches ferner ein axiales Vorspannen der Bohrstange (11') und des Bohrstrangs (11) aufeinander zu umfasst.

3. Verfahren nach Anspruch 1 oder 2, welches ferner umfasst:

 Aufzeichnen einer axialen Verschiebung (Z) der Bohrstange (11') während des Drehens und Erkennen der Drehposition der Bohrstange basierend auf der axialen Verschiebung.

5. Verfahren nach Anspruch 4, welches ferner ein Erfassen einer Zunahme und/oder Abnahme in einem Verhältnis zwischen axialer Bewegung und Drehbewegung umfasst.

7. Verfahren nach Anspruch 1, wobei das Erkennen einer Drehposition der Bohrstange ein Erfassen einer axialen Beschleunigung umfasst.

8. Verfahren nach Anspruch 1, wobei das Erkennen einer Drehposition der Bohrstange ein Erfassen eines Druckabfalls in einem Fluid umfasst, welches zum Vorspannen und/oder Vorschieben der Bohrstange und/oder des Bohrstrangs aufeinander zu verwendet wird.

9. Stangenhandhabungssystem, welches dafür vorgesehen ist eine Bohrstange bereitzustellen, die mit einem Bohrstrang zu verbinden ist, wobei das System umfasst:

 Einen bewegbaren Arm (21, 22, 23, 24) der Klemmeinrichtungen (137, 137', 135, 137a, 135a; 137b, 135b) aufweist, die dazu vorgesehen sind die Bohrstange (11') klemmend zu fassen, Einrichtungen (135, 135a, 138) zum Drehen der Bohrstange (all') und des Bohrstrangs (11) relativ zueinander um eine Längsachse (L) der selben und in einer Richtung zum Lösung der Gewindeverbindung (112, 111'), **dadurch gekennzeichnet, dass** das Handhabungssystem ferner Einrichtungen (139a, 139b, 139c, 139d) zum Er- fassen einer Drehposition der Bohrstange umfasst, in der Gewindeenden der Bohrstange und des Bohrstrangs übereinander gleiten.

10. System nach Anspruch 9, welches ferner Einrichtungen (136) zum Vorspannen der Bohrstange (11') auf den Bohrstrang (11) zu umfasst.

11. System nach Anspruch 9 oder 10, wobei die Klemmeinrichtungen zumindest ein drehbares Element (135, 135a, 135b) umfassen, das einen Umfang aufweist, der dafür vorgesehen ist mit einer äußeren Wand der Bohrstange reibend in Eingriff zu treten.

12. System nach Anspruch 11, wobei ein drehbares Element (135, 135a, 135b) axial verschiebbar ist in einer zu der Längsachse (L) im Wesentlichen parallelen Richtung (Z).

13. System nach Anspruch 11 oder 12, welches ferner eine Antriebsanordnung (138) umfasst, die dafür vorgesehen ist das drehbare Element (135, 135a, 135b) in Drehung zu versetzen.

14. System nach einem der Ansprüche 10 bis 13, wobei das drehbare Element (135, 135a, 135b) in einer Richtung (+Z) im Wesentlichen auf den Bohrstrang (11) zu vorgespannt ist.

15. System nach einem der Ansprüche 10 bis 15, welches ferner eine Klemmbacke (137, 137', 137a, 137c) umfasst, die das drehbare Element (135, 135a, 135b) trägt, sodass das drehbare Element (135, 135a, 135b) relativ zu der Klemmbacke verschiebbar ist, wobei die Klemmbacke in der zu der Längsachse (L) im Wesentlichen parallelen Richtung (Z) verstellbar ist.

16. System nach einem der Ansprüche 10 bis 15, wobei die Einrichtungen (139a, 139b, 139c, 139d) zum Erfassen einer Drehposition dafür vorgesehen sind, eine Längsposition oder eine Änderung der Lage der Bohrstange (11') entlang der Längsachse (L) aufzuzeichnen und die Drehposition der Bohrstange basierend auf der Längsposition oder der Änderung der Position abzuleiten.

17. Bohrgestelleinrichtung, welche umfasst:

 Eine Vorschubeinrichtung (10), ein Bohrerät (12), das entlang der Vorschub-
Revendications

1. Procédé pour interconnecter une tige de forage (11’) avec un train de tiges de forage (11) au moyen d’un raccord fileté (112, 111’), le procédé comprenant les étapes consistant à :
 - aligner axialement la tige de forage (11’) avec le train de tiges de forage (11),
 - faire tourner la tige de forage (11’) et le train de tiges de forage (11) l’un par rapport à l’autre dans une direction de rotation de dégagement du raccord fileté (112, 111’),
 - identifier une position de rotation de la tige de forage (11’) dans laquelle des extrémités de filetage de la tige et du train de tiges de forage (11) glissent les unes sur les autres, arrêté ladite rotation dans une période prédéterminée pour identifier la position de rotation, et faire tourner la tige de forage (11’) et le train de tiges de forage (11) l’un par rapport à l’autre dans une direction de mise en prise, de sorte que la tige de forage (11’) est interconnectée avec le train de tiges de forage (11) par le raccord fileté (112, 111’).

2. Procédé selon la revendication 1, comprenant en outre l’étape consistant à solliciter de manière axiale la tige de forage (11’) et le train de tiges de forage (11) l’un vers l’autre.

3. Procédé selon la revendication 1 ou 2, comprenant en outre les étapes consistant à :
 - pendant ladite rotation, enregistrer un déplacement axial (Z) de la tige de forage (11’), et identifier une position de rotation de la tige de forage en fonction du déplacement axial.

4. Procédé selon la revendication 3, dans lequel ladite étape consistant à identifier une position de rotation de la tige de forage (11’) comprend l’étape consistant à détecter un passage d’un mouvement (−Z) de la tige de forage à distance du train de tiges de forage à un mouvement (+Z) de la tige vers le train de tiges de forage.

5. Procédé selon la revendication 4, comprenant en outre l’étape consistant à détecter une augmentation et/ou une diminution d’un rapport entre le mouvement axial et le mouvement de rotation.

6. Procédé selon la revendication 3, dans lequel ladite étape consistant à identifier une position de rotation de la tige de forage (11’) comprend en outre une étape consécutive consistant à détecter un second passage du mouvement (+Z) de la tige de forage vers le train de tiges de forage à un mouvement (−Z) de la tige de forage à distance du train de tiges de forage.

7. Procédé selon la revendication 1, dans lequel ladite étape consistant à identifier une position de rotation de la tige de forage comprend l’étape consistant à détecter une accélération axiale.

8. Procédé selon la revendication 1, dans lequel ladite étape consistant à identifier une position de rotation de la tige de forage comprend l’étape consistant à détecter une chute de pression dans un fluide utilisé pour solliciter et/ou amener la tige de forage et/ou le train de tiges de forage l’un vers l’autre.

9. Système de manipulation de tige adapté pour fournir une tige de forage qui doit être raccordée à un train de tiges de forage, le système comprenant :
 - un bras mobile (21, 22, 23, 24) ayant des moyens de préhension (137, 137’, 135, 137a, 135a ; 137b, 135b) adaptés pour saisir la tige de forage (11’),
 - des moyens (135, 135a, 138) pour faire tourner la tige de forage (11’) et le train de tiges de forage (11) l’un par rapport à l’autre autour de leur axe longitudinal (L) et dans une direction de dégagement du raccord fileté (112, 111’), caractérisé en ce que le système de manipulation comprend en outre :
 - des moyens (139a, 139b, 139c, 139d) pour solliciter la tige de forage (11’) vers le train de tiges de forage (11),
 - des moyens (135, 135a, 138) pour faire tourner la tige de forage (11’) et le train de tiges de forage (11) l’un par rapport à l’autre autour de leur axe longitudinal (L) et dans une direction de dégagement du raccord fileté (112, 111’),

10. Système selon la revendication 9, comprenant en outre des moyens (136) pour solliciter la tige de forage (11’) vers le train de tiges de forage (11).

11. Système selon la revendication 9 ou 10, dans lequel les moyens de préhension comprennent au moins un élément rotatif (135, 135a, 135b) ayant un périmètre qui est adapté pour mettre en prise par friction une paroi externe de la tige de forage.
12. Système selon la revendication 11, dans lequel l’élément rotatif (135, 135a, 135b) peut coulisser axialement dans une direction (Z) sensiblement parallèle à l’axe longitudinal (L).

13. Système selon la revendication 11 ou 12, comprenant en outre un agencement d’entraînement (138), adapté pour amener l’élément rotatif (135, 135a, 135b) à tourner.

14. Système selon l’une quelconque des revendications 10 à 13, dans lequel l’élément rotatif (135, 135a, 135b) est sollicité dans une direction (+Z) sensiblement vers le train de tiges de forage (11).

15. Système selon l’une quelconque des revendications 10 à 14, comprenant en outre une mâchoire (137, 137, 137a, 137c) qui porte l’élément rotatif (135, 135a, 135b), de sorte que l’élément rotatif (135, 135a, 135b) peut coulisser par rapport à la mâchoire, dans lequel la mâchoire peut être déplacée dans la direction (Z) sensiblement parallèle à l’axe longitudinal (L).

16. Système selon l’une quelconque des revendications 10 à 15, dans lequel lesdits moyens (139a, 139b, 139c, 139d) pour détecter une position de rotation sont agencés pour enregistrer une position longitudinale ou un changement de position de la tige de forage (11) le long de l’axe longitudinal (L) et pour dériver ladite position de rotation de la tige de forage en fonction de ladite position longitudinale ou du changement de position.

17. Ensemble d’installation de forage adapté, comprenant:

 un dispositif d’alimentation (10),
 un dispositif de forage (12) qui est mobile le long du dispositif d’alimentation (10) vers et depuis un train de tiges de forage (11), et
 un système de manipulation de tige selon l’une quelconque des revendications 10 à 16, dans lequel le système de manipulation de tige est agencé pour prélever et/ou déposer des tiges de forage (11) depuis/sur un support et pour déplacer les tiges de forage vers/depuis le dispositif d’alimentation (10).
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2011129760 A1 [0006] [0040]
- WO 0065193 A1 [0006]
- WO 9630627 A [0037] [0040]