FILLER FOR REMOVING WRINKLES

The present invention relates to a filler for removing wrinkles, which comprises: a thin and long tubular main body (12) to be placed so as to penetrate through subcutaneous tissue; and through-holes (14) for guiding tissue cells surrounding the main body into the main body, so as to form fibrous tissue, wherein the through-holes (14) are formed so as to communicate with a hollow portion (12c) formed in said main body in the lengthwise direction from the outer surface of said main body, said filler is prevented from being deformed or moved by pressure on the skin or by an external force arising after being inserted into the subcutaneous tissue, and can be applied to various body parts having wrinkles, including deep wrinkles and the wrinkle-removing effects of the filler of the present invention may last (semi)permanently.

Fig. 1
Description

[0001] The present disclosure relates to a filler for removing wrinkles, more particularly to a filler which is inserted into the subcutaneous layer around wrinkles through cosmetic surgery and removes the wrinkles by inducing formation of new fibrous tissue.

[0002] As human ages, wrinkles are formed on the skin surface of the face or body. The wrinkles are formed because of muscular contraction. The wrinkles are formed perpendicularly to the direction of muscle contraction and become deeper with aging.

[0003] As a method for removing wrinkles, Botox is frequently used to paralyze the muscles which cause wrinkles. However, this results in an unnatural look and is limited in removing the wrinkles below the eyes, below the lower lip and around the mouth and in removing thick or deep wrinkles. Also, the effect lasts only 3-6 months.

[0004] As another method, a filler is used to correct wrinkles and other depressions in the skin. Although a liquid filler is convenient to inject, it tends to move toward the direction of muscle contraction after being injected into the skin. As a result, the wrinkles may look deeper and, it is limited in that it is degraded and absorbed by the body after a predetermined time (up to about 1-2 years).

[0005] Another method is to insert a very thin gold thread into the subcutaneous layer. The gold thread induces growth of new tissue around the thread through foreign body reactions. However, this method is limited to be used for thick wrinkles and the inserted gold thread may be bent by external force or protrude out of the skin. Also, it may cause diagnostic problems during X-ray, CT or MRI imaging through interference.

[0006] The present disclosure is directed to providing a filler for removing wrinkles that is not moved after being inserted into the subcutaneous layer without resorting, for example, to surgical skin incision regardless of muscle contraction.

[0007] The present disclosure is also directed to providing a filler for removing wrinkles that provides (semi) permanently lasting wrinkle-removing effect after being inserted into the subcutaneous layer even when the filler itself is degraded and absorbed by the body with time since it induces formation of new fibrous tissue including collagen fiber.

[0008] The present disclosure is also directed to providing a filler for removing wrinkles that can be applied to various wrinkles including thick wrinkles and has recoiling force against external force.

[0009] In a general aspect, there is provided a filler for removing wrinkles, including: a thin and long tubular main body provided so as to penetrate the subcutaneous layer; and through-holes provided so as to guide tissue cells surrounding the main body into the main body to form fibrous tissue, wherein the through-holes are formed to communicate with a hollow portion formed in the main body in a lengthwise direction from the outer surface of the main body.

[0010] In an exemplary embodiment of the present disclosure, the main body of the filler for removing wrinkles has a circular transection.

[0011] Specifically, the main body may have an outer diameter of 0.6-1.0 mm, the hollow portion may have a diameter (inner diameter of the main body) of 0.5-0.7 mm, and the through-holes may have a diameter of 40-500 μm.

[0012] In an exemplary embodiment of the present disclosure, the main body of the filler for removing wrinkles is made of an elastic material.

[0013] In another exemplary embodiment of the present disclosure, the main body of the filler for removing wrinkles is made of a biodegradable polymer selected from a group consisting of hyaluronic acid (HA), polyactic acid (PLA), polyglycolactic acid (PGLA) and polydioxanone (PDS).

[0014] In another exemplary embodiment of the present disclosure, the main body of the filler for removing wrinkles is made of a non-biodegradable polymer selected from a group consisting of nylon, silicone and Teflon.

[0015] In another exemplary embodiment of the present disclosure, the main body may have a double-layer structure including an inner sheath and an outer sheath made of different materials having different physical properties.

[0016] In another exemplary embodiment of the present disclosure, a plurality of partitions may be further formed in the hollow portion in the main body of the filler for removing wrinkles.

[0017] In another exemplary embodiment of the present disclosure, a spiral elastic support may be further formed in the hollow portion in the main body of the filler for removing wrinkles.

[0018] In another exemplary embodiment of the present disclosure, a spiral elastic support may be provided outside the main body of the filler for removing wrinkles so as to surround the outer surface of the main body.

[0019] Since a filler for removing wrinkles according to the present disclosure has recoiling force, it is not deformed or moved by the pressure or external force applied on the skin after being inserted into the subcutaneous layer. Since a large quantity of new fibrous tissue including collagen fiber can be formed in a hollow portion of a main body of the filler through through-holes provided on the outer surface of the main body, the filler can be applied to various wrinkles including thick wrinkles by adjusting the diameter of the main body, the diameter of the hollow portion, the diameter of the through-holes, etc. depending on the size and kind of the wrinkles. Furthermore, the wrinkle-removing effect may last (semi)permanently since new fibrous tissue is formed.

Figure 1 is a perspective view of a filler for removing wrinkles according to an exemplary embodiment of the present disclosure.

Figure 2 is a perspective view of a filler for removing
winkles according to another exemplary embodiment of the present disclosure. Figure 3 is a longitudinal sectional view of a filler for removing wrinkles according to another exemplary embodiment of the present disclosure wherein partitions are formed. Figure 4 is a longitudinal sectional view of a filler for removing wrinkles according to another exemplary embodiment of the present disclosure wherein a spiral elastic support is provided. Figure 5 shows fibrous tissue formed in a hollow portion of a filler for removing wrinkles according to the present disclosure inserted into the subcutaneous layer. Figure 6 shows a filler for removing wrinkles according to another exemplary embodiment of the present disclosure which is improved to allow easy insertion into a curved part. Figure 7 shows the filler for removing wrinkles according to the embodiment shown in Fig. 6 which is inserted into a curved part. Figure 8 shows a filler for removing wrinkles according to another exemplary embodiment of the present disclosure wherein elastic cogs projecting in one direction are provided on the outer surface of a main body of the filler for removing wrinkles. Figure 9 shows the filler for removing wrinkles according to the embodiment shown in Fig. 8 being inserted into the subcutaneous layer. Figure 10 shows the filler for removing wrinkles according to the embodiment shown in Figure 8 inserted into the subcutaneous layer.

[0020] Hereinafter, the embodiments of the present disclosure will be described in detail referring to the attached drawings.

[0021] Fig. 1 is a perspective view of a filler for removing wrinkles according to an exemplary embodiment (first embodiment) of the present disclosure. As shown in Fig. 1, a filler 10 for removing wrinkles according to the present disclosure includes: a thin and long, integral tubular main body 12 provided so as to penetrate the subcutaneous layer; and through-holes 14 provided so as to guide tissue cells surrounding the main body 12 into the main body 12 to form fibrous tissue, wherein the through-holes 14 are formed to communicate with a hollow portion 12c formed in the main body 12 in a lengthwise direction from the outer surface of the main body 12.

[0022] In another exemplary embodiment (second embodiment) of the present disclosure shown in Fig. 2, the filler 10 for removing wrinkles may have, for example, a circular transection (Also, it may have a hexagonal transection.). The thin and long tubular main body 12 may be formed by spirally winding a plurality of strip-shaped parts 12a, 12b which is made of the material of the main body 12 of the filler 10 for removing wrinkles and which is having a predetermined width b along the surface of a long core material 20 having a diameter desired for the hollow portion 12c so as to cross each other (in a manner similar to making a bamboo wife from bamboo cane). Then, the core material 20 may be removed, such that the hollow portion 12c is formed in the parts 12a, 12b in a lengthwise direction, and the through-holes 14 may be formed by the gaps between the parts 12a, 12b (including the gaps formed at the crossing of the parts). Alternatively, the thin and long tubular main body 12 may be formed by various methods which are spirally winding the plurality of parts 12a, 12b so as to cross each other, without using the core material. Although Fig. 2 shows an example wherein two parts 12a, 12b, i.e. a first part 12a and a second part 12b, are used to form the filler 10 for removing wrinkles according to the present disclosure, it will be obvious to those skilled in the art that the thin and long tubular main body 12 may be formed by spirally winding a plurality of strip-shaped parts as to cross each other, without being limited thereto.

[0023] In the exemplary embodiments of the present disclosure including the first embodiment and the second embodiment described above, the main body 12 may have a circular or polygonal (e.g., tetragonal, hexagonal, octagonal, etc.) transection. Specifically, it may have a circular transection, so that it can be easily inserted into the subcutaneous layer after being threaded on a needle (e.g., a needle for cosmetic surgery). Specifically, the main body 12 may have a diameter of 0.6-1.0 mm, so that it can be easily inserted into the subcutaneous layer and be located between the subcutaneous fat layer and the dermis or in the fat layer after being inserted. The length of the main body 12 is not particularly limited as long as it is enough for insertion.

[0024] The hollow portion 12c formed in the main body 12 in the lengthwise direction provides a space, so that nearby tissue cells such as fibroblasts are guided through the through-holes 14 and then fibrous tissue such as elastic fibrous tissue and collagen tissue is newly formed. Accordingly, since the amount of newly formed fibrous tissue increases as the diameter of the hollow portion 12c is larger and the amount of newly formed fibrous tissue decreases as the diameter of the hollow portion 12c is smaller, the diameter of the hollow portion 12c may be adequately adjusted depending on the depth, location, etc. of wrinkles. In general, the diameter of the hollow portion 12c may be 0.5-0.7 mm.

[0025] The through-holes 14 provide a passage for fibroblasts, etc. to enter the hollow portion 12c. They may have any shape, including circular, triangular, tetragonal, octagonal, trapezoidal and rhombic shapes. The plurality of through-holes 14 may be arranged regularly or irregularly on the outer surface of the main body 12. Specifically, the through-holes 14 may have a diameter, when they have a circular shape, or a circle-equivalent diameter, when they have other shapes, of 40-500 μm. If the diameter is too large, the filler 10 may not be able to support the surrounding tissues.

[0026] Specifically, the main body 12 may be made of an elastic material. It may be made of a biodegradable
polymer such as hyaluronic acid (HA), polylactic acid (PLA), polyglyco-lactic acid (PLGA) and polydioxanone (PDS) or a non-biodegradable polymer such as nylon, silicone and Teflon. If a biodegradable polymer is used, the filler for removing wrinkles is slowly degraded and absorbed after the fibrous tissue is formed. If a non-biodegradable polymer is used, the filler for removing wrinkles remains permanently in the subcutaneous layer.

The main body 12 may have a double-layer structure including an inner sheath and an outer sheath made of different materials having different physical properties. For example, the inner sheath may be formed of a hard material and the outer sheath may be formed of a soft material. Alternatively, the inner sheath may be formed of an absorbent material and the outer sheath may be formed of a non-absorbent material, or the inner sheath and the outer sheath may be formed of absorbent materials having different rates of absorption.

The filler for removing wrinkles according to the present disclosure has recoiling force so as to endure the pressure or external force applied on the skin without collapsing after being inserted into the subcutaneous layer. In another exemplary embodiment, a plurality of partitions 16 may be formed in the hollow portion 12c to reinforce the recoiling force, as shown in Fig. 3.

The partitions 16 may be formed to completely or incompletely divide the hollow portion 12c of the main body 12. The partitions 16 may be made of the same material as the main body 12.

In another exemplary embodiment, a spiral elastic support 17 may be formed in the hollow portion 12c to reinforce the recoiling force, as shown in Fig. 4. In another exemplary embodiment, the spiral elastic support 17 may be formed outside the main body 12 so as to surround the outer surface of the main body 12. The spiral elastic support 17 may be made of the same material as the main body 12. In addition to reinforcing the recoiling force, the spiral elastic support 17 may allow easier insertion into a curved part since, when the filler for removing wrinkles according to the present disclosure is inserted into the subcutaneous layer with a curved shape, the spiral structure can become narrower or wider depending on the curvature.

In another exemplary embodiment of the present disclosure, a filler 10 for removing wrinkles according to the present disclosure may be easily inserted by threading one end thereof on a needle for cosmetic surgery or by connecting to the tip of the needle according to a commonly employed method. Hereinafter, a method for removing wrinkles using the filler for removing wrinkles according to the present disclosure will be described in detail referring to Fig. 5.

A wrinkled area to which the filler is to be inserted is marked and an anesthetic ointment is applied thereon. Then, a needle is inserted from one end of the marked area into the subcutaneous layer, particularly between the subcutaneous fat layer and the dermis or into the fat layer, and pulled at the other end, such that the filler for removing wrinkles spans over the marked area. Then, the portion coming out of the skin S is removed by cutting. Subsequently, blood, red blood cells, white blood cells, platelets, fibroblasts, myofibroblasts, etc. are filled in a hollow portion 12c of the filler 10 for removing wrinkles inserted into the subcutaneous layer. The amount of the fibroblasts reaches maximum 3-5 days after the insertion, and that of the myofibroblasts reaches maximum at 5-15 days. Thereafter, collagen is synthesized by the fibroblasts, resulting in fibrous tissue T. The fibrous tissue T provides a wrinkle-correcting effect.

While the exemplary embodiments have been shown and described, it will be understood by those
skilled in the art that various changes in form and details may be made thereto without departing from the spirit and scope of this disclosure as defined by the appended claims.

Claims

1. A filler for removing wrinkles, comprising:
 a thin and long tubular main body (12) provided so as to penetrate the subcutaneous layer; and through-holes (14) provided so as to guide tissue cells surrounding the main body (12) into the main body (12) to form fibrous tissue, wherein the through-holes (14) are formed to communicate with a hollow portion (12c) formed in the main body (12) in a lengthwise direction from the outer surface of the main body (12).

2. The filler for removing wrinkles according to claim 1, wherein the main body (12) is formed integrally and has a circular transection.

3. The filler for removing wrinkles according to claim 2, wherein the main body (12) has a diameter of 0.6-1.0 mm, and the hollow portion (12c) has a diameter of 0.5-0.7 mm.

4. The filler for removing wrinkles according to claim 2, wherein the through-holes (14) have a diameter or a circle-equivalent diameter of 40-500 μm.

5. The filler for removing wrinkles according to claim 1, wherein the main body (12) is formed by spirally winding a plurality of strip-shaped parts (12a, 12b) so as to cross each other, such that the hollow portion (12c) is provided in the parts (12a, 12b) in a lengthwise direction, and the through-holes (14) communicating with the hollow portion (12c) from the outer surface of the main body (12) are provided by the gaps between the parts (12a, 12b).

6. The filler for removing wrinkles according to any one of claims 1 to 5, wherein the main body (12) is made of an elastic material.

7. The filler for removing wrinkles according to any one of claims 1 to 5, wherein the main body (12) is made of a biodegradable polymer selected from a group consisting of hyaluronic acid (HA), polylactic acid (PLA), polyglyco-lactic acid (PGLA) and polydioxanone (PDS).

8. The filler for removing wrinkles according to any one of claims 1 to 5, wherein the main body (12) is made of a non-biodegradable polymer selected from a group consisting of nylon, silicone and Teflon.