STORAGE BOX AND ELECTRICAL CONNECTION BOX

A storing box A of the present invention, which is formed with a unit storing room (20) storing an electronic control unit (63), includes a latching part (25) by which an electric wire (62) or a connector (61) connected to one end of the electric wire (62) is caught, and the electric wire (62) passes through an inner side of the unit storing room (20) and is drawn out from a storing opening which is the entrance for storing the electronic control unit (63).

Fig. 6
Description

Technical Field

[0001] The present invention relates to a storing box and an electrical junction box which are carried in an automobile or the like, and which include a unit storing room to store an electronic control unit.

Background Art

[0002] Traditionally, a type of electrical junction box which has a unit storing room that receives an electronic control unit including electrical control components is proposed (refer to a patent document 1). The electrical junction box has a unit storing room which accommodates the electronic control unit and a storing room which accommodates a plurality of electric wires (harness) and connectors which are connected to the electronic control unit. The electrical junction box packs up these components compactly and is installed in a vehicle indoor room. When the electronic control unit is to be accommodated in the unit storing room, the electrical junction box in which the electric wires, connectors and the like are arranged in advance is prepared by the electrical manufacturer or the electric wire arranging dealer, and then, the electronic control unit is accommodated in the unit storing room of the electrical junction box by the automobile manufacturer.

Citation List

Patent documents

Summary of Invention

Technical Problem

[0004] The traditional electrical junction box has the following problems to be solved. That is, the operation, which is performed by the automobile manufacturer or the like, of connecting the prepared electronic control unit to the connectors at the ends of the electric wires which are arranged in the unit storing room of the electrical junction box, and storing the electronic control unit in the unit storing room is extremely troublesome. For example, an operator puts one hand into the unit storing room to grasp with fingers the plurality of electric wires and the connectors at the ends of the electric wires which are arranged near the bottom part of the unit storing room, and lifts above the opening part of the unit storing room. The connectors at the ends of the electric wires, which are held in this way, are connected (fitted) respectively to the plurality of terminals at the back surface of the electronic control unit supported by another hand. In this case, a force to draw the electric wires and the connectors back into the unit storing room is applied to the electric wires and the connectors. Therefore, as the hand which supports the relatively heavy electronic control unit shivers, it is difficult to perform the operation of connecting the connectors and the terminals smoothly, and the workload of the operator becomes heavier.

[0005] The present invention is made in view of the above situation, and an object of the invention is to provide a storing box and an electrical junction box so that in the operation of connecting connectors to an electronic control unit, the connectors can be easily and quickly connected (fitted) to the terminals of the electronic control unit and the workload of an operator can be substantially reduced.

Solution to Problem

[0006] To achieve the previously described object, the storing box according to the present invention is characterized by the following (1) to (7).

(1) A storing box formed with a unit storing room storing an electronic control unit, wherein the storing box is formed with a latching part by which an electric wire or a connector connected to one end of the electric wire is caught, and the electric wire passes through an inner side of the unit storing room and is drawn out from a storing opening which is an entrance for storing the electronic control unit.

(2) The storing box according to the above (1), wherein the latching part is formed at a side wall which defines the unit storing room.

(3) The storing box according to the above (1), wherein the latching part is formed at a peripheral member which surrounds the unit storing room.

(4) The storing box according to the above (2), wherein the latching part is a projection protruded outwards from the side wall which defines the unit storing room.

(5) The storing box according to the above (4), wherein part of a band bundling the electric wire is caught by the projection.

(6) The storing box according to the above (5), wherein the latching part is formed on an outer side surface of the side wall which defines the unit storing room.

(7) The storing box according to any one of the above (1) to (6) is provided.

[0007] An electrical junction box according to the present invention is characterized by the following (7).

[0008] According to the storing box which has the construction in the above (1), when the connectors are fitted into the unit storing room.
in the electronic control unit, since the electric wires and the connectors can be easily held by hand, the workload is reduced.

[0009] According to the storing box which has the construction in the above (2), since the distance between the unit storing room and the connectors is decreased, the workload is reduced.

[0010] According to the storing box which has the construction in the above (3), the freedom in design increases for the position where the latching part is arranged. According to the storing box which has the construction in the above (4), when the connectors are fitted in the electronic control unit, the electric wires and the connectors are easily held by hand, and the distance between the unit storing room and the connectors is the shortest one.

[0011] According to the storing box which has the construction in the above (5), the design modification to provide the latching part can be very small.

[0012] According to the storing box which has the construction in the above (6), the band can be prevented from being unintentionally untied from the latching part (even if the vibration is increased during transportation, it is difficult to untie the band.).

[0013] According to the junction box which has the construction in the above (7), when the connectors are fitted in the electronic control unit, the electric wires and the connectors can be easily held by hand, the workload of the operation is reduced, and since the distance between the unit storing room and the connectors is decreased, the workload is reduced. The freedom in design increases for the position where the latching part is arranged. When the connectors are fitted in the electronic control unit, the electric wires and the connectors can be easily held by hand, and the distance between the unit storing room and the connectors is the shortest one. The design modification to provide the latching part can be very small, and the band can be prevented from being unintentionally untied from the latching part.

Advantageous Effects of Invention

[0014] According to the present invention, electric wires in a unit storing room and connectors at the ends of the electric wires can be easily held by hand above the opening part of the unit storing room, and the workload in the operation of connecting the plurality of connectors to the terminals of the electronic control unit respectively can be reduced. Therefore, the operation of setting the electronic control unit into the unit storing room can be performed smoothly and quickly.

[0015] The present invention has been briefly described above. Further, details of the invention will become more apparent after the embodiments of the invention described below are read with reference to the accompanying figures.

Brief Description of Drawings

[0016] Fig. 1 is a perspective view of the electrical junction box (except a second lower member) according to an embodiment of the present invention.

Fig. 2 is an exploded perspective view of the electrical junction box according to the embodiment of the present invention.

Fig. 3 is an exploded perspective view of the electrical junction box shown in Fig. 1 which is seen from a different direction.

Fig. 4 is a front view of a frame of the electrical junction box according to the embodiment of the present invention.

Fig. 5 is a top view of the frame of the electrical junction box according to the embodiment of the present invention.

Fig. 6 is a perspective view of the frame of the electrical junction box according to the embodiment of the present invention which is seen obliquely from below.

Fig. 7 is a front view of a first lower member of the electrical junction box according to the embodiment of the present invention.

Fig. 8 is a top view of the first lower member of the electrical junction box according to the embodiment of the present invention.

Fig. 9 is a perspective view of the first lower member of the electrical junction box according to the embodiment of the present invention.

Fig. 10 is a perspective view of the first lower member shown in Fig. 7 which is seen from a different direction.

Fig. 11 is a front view of a second lower member of the electrical junction box according to the embodiment of the present invention.

Fig. 12 is a top view of the second lower member of the electrical junction box according to the embodiment of the present invention.

Fig. 13 is a front view of an upper cover of the electrical junction box according to the embodiment of the present invention.

Fig. 14 is a bottom view of the upper cover of the electrical junction box according to the embodiment of the present invention.

Fig. 15 is a perspective view of the upper cover of the electrical junction box according to the embodiment of the present invention which is seen obliquely from below.

Fig. 16 is a perspective view which shows that the upper cover is removed from the electrical junction box shown in Fig. 1.

Figs. 17A to 17C includes illustrative views which show the process of storing the electronic control unit that is extracted from and inserted into a unit storing room.
Fig. 18 is a perspective view which shows that connector-attached electric wires which are lifted up from the unit storing room are temporarily locked by a latching part of the frame.

Fig. 19 is a perspective view which shows a second embodiment of the latching part provided on the frame.

Fig. 20 is a perspective view which shows a third embodiment of the latching part provided on the frame.

Fig. 21 is a perspective view which shows an embodiment of the locking part provided at the upper cover.

Description of Embodiments

[0017] The storing box and the electrical junction box according to one embodiment of the present invention are described as follows with reference to Figs. 1 to 18. The storing box and the electrical junction box according to the embodiment include a storing box in which a unit storing room in which an electronic control unit is stored is formed, and are formed with a latching part by which electric wires and connectors connected to one ends of the electric wires which pass through the inner side of the unit storing room and are drawn out from a storing opening, which becomes the entrance when the electronic control unit is stored, are caught.

[0018] As shown in Figs. 1 to 3, an electrical junction box A of the embodiment includes a frame 11 as a storing box, a first lower member 12, a second lower member 13, a base member 14 and an upper cover 15. The frame (storing box) 11, the frame 11 is a circular body which is short in the up-down direction as a whole. The frame 11 has side walls 16, 17, 18 and 19, which make up the circular body, and the outer side surfaces of the side walls 16, 17, 18 and 19 are provided integrally with a plurality of locked parts 11 a of the same size and shape. Each of the locked parts 11 a may vary in size and shape.

[0019] The side walls 16 and 19 are curved outwards, the side wall 17 is flat, and the side wall 18 is curved into a substantially L shape as a whole. These side walls 16, 17, 18 and 19 are connected in a circle-shape. As shown in Fig. 4, when the side wall 17 and the opposite side wall 19 are compared in height, the side wall 17 is extended downward to be longer. Between the side wall 17 which includes an extended part 17 a which is extended downward and the side wall 19, a separating wall 21 whose section is U-shaped (or whose section is a square) and which defines a unit storing room 20 is adjacently provided to the side wall 17. The separating wall 21 may be made of a metal plate which has a shielding function. A plurality of locking parts 11 b of different sizes and shapes are provided integrally with and protruded from the inner side surfaces of the side walls 16, 18 and 19 which make up the circular body. Each of the locking parts 11 b may have the same size and shape.

[0020] The locking parts 11 b, which the inner side surfaces of the side walls 16 to 19 of the frame 11 are provided with, and a locking part 21 a, which the outer side surface of the separating wall 21 is provided with, are locked to locking projections (locked parts) 14 a, which the outer side surfaces of the base member 14 are provided with. Thereby, the base member 14 is held in the frame 11. The locked parts 11 a, which the outer side surfaces of the side walls 16 to 19 of the frame 11 are provided with, are locked to locking projections 12 a and 13 a to be described below, which the first lower member 12 and the second lower member 13 are provided with, respectively. Thereby, the first lower member 12 and the second lower member 13 are held to the frame 11.

[0021] A cut 22 through which electric wires (harness) to be described below are led in is formed at the lower part of the side wall 16. Furthermore, a cut 24 through which connector-attached electric wires are led into the unit storing room 20 from within the frame 11 is formed at the lower part of the separating wall 21. A latching part 25 by which the connector-attached electric wires and the connectors are latched, as will be described below, is protruded from the corner part of the side wall 18.

[0022] Ribs 26, which support the lower edges of the upper cover 15 which blocks the upper opening of the frame 11, are provided integrally with and protruded from the outer side surfaces of the upper part of the side wall 18 and a part of the upper part of the side wall 19. Connector storing frames 27 and 28, in which the connectors connected to electric wires which are stored in the frame 11 are installed, are provided at the inner side of the side wall 18.

[0023] As shown in Figs. 7 to 10, the first lower member 12 is a bottomed container which has such a shape that a bottom part 29 is concaved into a V-shape, and has a side wall 30 and a part which is curved into a V-shape, that is, which has a part bended, and flat side walls 31 and 32. A rib 34 is protruded from the outer side surfaces of the side walls 30 to 33 at positions of the same distance from the upper ends of the side walls. The rib 34 functions to support the lower ends of the side walls 16 and 17 of the frame 11 whose lower part is attached to the first lower member 12. The locking projections 12 a are integrally provided at predetermined positions on the side walls 30 to 32 along the rib 34. The locking projection 12 a is provided at sites corresponding to those of the plurality of locked parts 11 a on the frame 11. The locked parts 11 a and the locking projections 12 a are fitted to each other when the frame 11 and the first lower member 12 are coupled.

[0024] A cut 35 which has a slightly bigger opening is
formed at the upper end of the side wall 33, and two (one is big and the other is small) locked parts 12b are provided integrally at the right and left sides of the cut 35. The cut 35 functions to guide the connector-attached electric wires (harness) which are led inside the first lower member 12 through the second lower member 13 which is provided adjacent to the first lower member 12 as shown in Figs. 17A to 17C.

[0025] The locked parts 12b are provided at sites corresponding to locking projections 13b which are protruded from the lower part of the lateral open end of the second lower member 13 as shown in Figs. 11 and 12. When the first lower member 12 is connected to the second lower member 13, the locking projections 13b which are protruded from the second lower member 13 are fitted and connected to the locked parts 12b of the first lower member 12, respectively. The reference number 36 show a plurality of reinforcing ribs which are protruded from the outside surface of the side wall 31 in the vertical direction so that the rib 34 is continued.

[0026] Raised pieces 34a are provided adjacently to the upper part of the outer side surface of the side wall 33 in the first lower member 12 to be raised up from the outer side edge of the rib 34. The raised pieces 34a function to give strength to resist the bending of the side wall 33 and to resist an external force accommodated from the separating wall 21 of the frame 11. Therefore, an operation of storing an electronic control unit to be described in the unit storing room 20 can be prevented from being hampered by the bending of the separating wall 21.

[0027] Thus, in the present embodiment, the lower member is divided in two parts: the first lower member 12 and the second lower member 13. The first lower member 12 communicates with the inside of the unit storing room 20 in the frame 11, and a space, which is shielded from the frame 11 except the unit storing room 20 and the second lower member 13, is formed. Thereby, the inside of the unit storing room 20 can be thermally shielded and separated from the outside, and the waterproofness and the strength can be improved. As a result, the stability and reliability of the electronic control unit stored in the unit storing room 20 can be secured. In this case, the lower edge of the separating wall 21 in the frame 11 is supported on the rib 34 between the side wall 33 of the first lower member 12 and the raised pieces 34a. Therefore, the separating wall 21 can be stably supported and can be prevented from being deformed in the horizontal direction.

[0028] Figs. 11 and 12 show the second lower member 13 which has the locking projections 13b and locking projections 13a. The second lower member 13 is a bottomed container which is opened upwards and in the direction the first lower member 12 is coupled. The second lower member 13 has a side wall 37, a side wall 38, which is approximately L-shaped when viewed from top, an opening 39, an arc-shaped side wall 40 and a bottom part 41. The locking projections 13b may be locked to the locked parts 12b of the first lower member 12 which are arranged adjacently to the locking projections 13b, and the locking projections 13a may be locked to the locked parts 11a on the outer side surfaces of the frame 11. The side walls 37, 38, 40 and the bottom part 41 are reinforced by bending parts at a plurality of positions to each other.

[0029] The base member 14 is a board-like block in which electrical components mainly including a large number of connectors, fuses and relays are installed. The base member 14 has a plurality of locked parts 14a which the outer side surfaces of the block is integrally provided with. The base member 14 is made to have such a size and such a shape that the base member 14 may be stored in the frame 11 except the unit storing room 20. The locked parts 14a of the base member 14 may be fitted to the locking parts 11b at the inner side surfaces of the frame 11. The locked part 14a which is positioned at the front surface of the block may be locked to the locking part 21a of the separating wall 21.

[0030] Figs. 13 to 15 show the upper cover 15. The upper cover 15 is formed to cover the upper opening of the frame 11. The upper cover 15 includes a top part 42 and side walls 43 to 46 which are connected around the top part 42. Among these parts, the top part 42 and the side wall 44 are generally flatly formed. The side walls 43 to 46 are formed to have shapes and sizes generally corresponding to those of the side walls 16 to 19 of the frame 11 in a top view. The side wall 45 is substantially L-shaped as a whole in a top view and is connected with the side walls 43, 44, 46 to form a circle.

[0031] Parts of the side wall 43 and the side wall 45 are provided with locking projections 15a, one for each side wall, so that the parts of the side walls 43 and 45 are protruded outwards. The locking projections 15a are provided at positions corresponding to the positions of the locked parts 11a, which the side wall 16 and the side wall 18 of the frame 11 are provided with, one for each side wall. Therefore, when the upper part of the frame 11 is covered by the upper cover 15, the locking projections 15a may be engaged with the locked parts 11a.

[0032] A step part 47 is continuously formed on the inner side surfaces of the side walls 43 to 46 of the upper cover 15 at positions of the same distance from the top part 42. The upper edges of the side walls 16 to 19 of the frame 11 may be accommodated by the step part 47 at the inner side surfaces of the side walls 43 to 46. That is, the upper cover 15 is installed stably on the frame 11 when the step part 47 is supported by the upper edges of the side walls 16 to 19. An extended wall 48 is extended downward from the lower parts of the side wall 44 and the part of the side wall 45 that is connected to the side wall 44.

[0033] Furthermore, a separating wall 49 which is generally U-shaped and which defines a rectangular space with the side wall 44 is provided at the inner side surface of the upper cover 15. The separating wall 49 has a shape and a size, in a top view, that correspond to those of the separating wall 21 which the frame 11 is provided with. When the frame 11 is covered by the upper cover 15, the
lower end edge of the separating wall 49 of the upper cover 15 is closely connected with the upper end edge of the separating wall 21 of the frame 11. Therefore, the separating wall 49 forms a space together with the top part 42 to seal the unit storing room 20 of the frame 11 from above. Thus, while the separating wall 49 thermally shields the inside of the unit storing room 20 from the outside, the separating wall 49 is bonded onto the separating wall 21 which forms the unit storing room 20. Thereby, the top part 42 is supported by the separating wall 49, and therefore the top part 42 can be prevented from being unintentionally bended (dented). Numbers 50 show a plurality of reinforcing ribs which the inner surfaces of the side walls 43 to 46 are provided with.

[0034] The frame 11, the first lower member 12, the second lower member 13, the base member 14 and the upper cover 15 of such structures are assembled as follows. First, the first lower member 12 is arranged below the frame 11, and the lower end edges of the side walls 16 and 17 and the separating wall 21 of the frame 11 are supported on the rib 34 of the first lower member 12. The locking projections 12a, which the outer side surfaces of the first lower member 12 are provided with, are inserted into the locked parts 11a at the lower part of the frame 11. At this time, the lower edge of the separating wall 21 is on the rib 34 and is located between the raised pieces 34a and the side wall 33. Therefore, a pressure below, which is applied on the separating wall 21 from a large number of bundled electric wires to be described below in the frame 11 can be prevented from affecting the unit storing room 20. That is, the separating wall 21 can be prevented from being bended.

[0035] Then, while the opening part side of the second lower member 13 is made to face the side wall 33 side of the first lower member 12, the two (big and small) lock projections 13b at the opening part side are inserted into the locked parts 12b of the first lower member 12 from below. Before or after the engagement of the locking projections 13b with the locked parts 12b, the locking projections 13a at the outer side surfaces of the second lower member 13 are inserted into and locked to the locked parts 11a at the outer side surfaces of the frame 11, which are at opposed positions, from below. Thereby, the frame 11, the first lower member 12 and the second lower member 13 are connected.

[0036] Then, the base member 14 is inserted into the upper part of the frame 11 from above. At this time, the locking projections (locked parts) 14a, which the outer side surfaces of the base member 14 are provided with, are locked to the locking parts 11b, which the inner peripheral surfaces of the frame 11 are provided with. Thereby, the base member 14 is stably held at the upper part of the frame 11. The upper cover 15 is put on the frame 11 which stores the base member 14. A large number of electric wires which are connected to the relays and fuses installed in the base member 14 are arranged in the frame 11 under the base member 14. At this time, the locking projections 15a of the upper cover 15 are locked to the locked parts 11a at the outer peripheral surfaces of the frame 11 which are at positions corresponding to the lock projections 15a, one for each. Thereby, the upper cover 15 is installed to the frame 11 without a wobble. Finally, the electrical junction box A as shown in Fig. 1 is formed.

[0037] In this case, in the unit storing room 20 which is defined by the separating wall 21 in the frame 11, the lower part is blocked since a part of the lower end edges of the side walls 16 and 17 of the frame 11 and the lower end edge of the separating wall 21 are closely connected onto the rib 34 of the first lower member 12. The upper part is closed since a part of the lower end edges of the side walls 43 and 44 of the upper cover 15 and the lower edge of the separating wall 49 are closely connected to a part of the upper end edges of the side walls of the frame 11 and the upper end edge of the separating wall 21.

[0038] Therefore, the inside of the unit storing room 20 becomes a space which is thermally shielded from the inside and outside of the frame 11 except the unit storing room 20, and the thermal transfer between the unit storing room 20, which stores the electronic control unit, and the inside of the frame 11, which stores the connector-attached electric wires which are connected to the electronic control unit, is regulated.

[0039] In the electrical junction box A, the electric wires together with the base member 14 are stored in the frame 11 except the unit storing room 20. Ends of the electric wires and the connectors which are attached to the ends are inserted into the unit storing room 20 through the cut 35 of the first lower member 12 and the cut 24 which the separating wall 21 in the frame 11 is provided with. The connectors which are stored in the unit storing room 20 are fitted to the terminals of the electronic control unit prepared by the automobile manufacturer. Then, the electronic control unit is stored in the unit storing room.

[0040] The steps to store an electronic control unit 63 prepared by the automobile manufacturer in the unit storing room 20 of the frame 11 of the electrical junction box A are shown in Figs. 17A to 17C. First, as shown in Fig. 17A, electric wires (harness) 62 attached with connectors 61 which are inserted inside the unit storing room 20 through the cut 24 and the cut 35 are lifted by fingers or a jig inserted from the side of the upper opening part of the unit storing room 20, and are installed (fitted) to the terminals (not shown in the figure) of the prepared electronic control unit 63.

[0041] Then, as shown in Fig. 17 B, after the connectors 61 and the terminals at the side of the electronic control unit 63 are fitted surely, while the electric wires 62 are bended to a generally U shape in the first lower member 12 and the unit storing room 20, the electronic control unit 63 is pushed into the unit storing room 20. The pushing operation is performed until the top surface of the electronic control unit 63 is sunk near the opening part of the unit storing room 20. Then, the upper cover 15 is put on the frame 11 from above the large number
of electric wires, which are arranged inside the frame 11 except the unit storing room 20, and the base member 14, below, which is arranged above the electric wires as described above.

[0042] Thereby, the electrical junction box A that can be carried in an automobile is formed. However, in the operation of connecting (fitting) the connectors 61 to the terminals of the electronic control unit 63, for example, it is necessary that one hand supports the electronic control unit 63, and the other hand strongly grasps the connectors 61 at the ends of the electric wires 62 onto which a force to draw the electric wires 62 back into the unit storing room 20 is applied due to gravity. The connecting operation is troublesome.

[0043] When the electronic control unit is held as described above, the hand which supports the electronic control unit 63 is free, or this hand only slightly holds the electronic control unit so that the electric wires 62 and the connectors 61 near the bottom part of the unit storing room 20 can be lifted to the opening part of the unit storing room 20 and easily fitted to the terminals of the electronic control unit 63. After the operation of connecting all electric wires to the electronic control unit 63 is finished, as shown in Fig. 17C, the electronic control unit 63 is stored in the unit storing room 20 while the side of the terminals, which the connectors are connected to, faces downward. Thereby, the operation of storing the electronic control unit 63 into the unit storing room is performed by the automobile manufacturer efficiently.

[0044] The connectors 61 and the electric wires 62, just before being connected to the terminals of the electronic control unit 63, are positioned near the bottom part of the unit storing room 20 due to gravity. Therefore, when the connectors 61 are connected to the terminals of the electronic control unit 63, it is necessary to pick up all connectors 61 near the bottom of the unit storing room 20 from the inside of the unit storing room 20 and keep lifting the connectors 61 above the opening part of the unit storing room 20. Otherwise, when one connector 61 is connected to the terminals of the electronic control unit 63, other connectors which are lifted with the connector 61 described above will drop to the bottom of the unit storing room 20 due to gravity. In this case, when the dropped connectors 61 are to be connected to the terminals, the connectors 61 sink in the unit storing room 20, together with the attached electric wires must be picked up and lifted again. It is extremely troublesome to repeat the operation.

[0045] Thus, in this embodiment, once the plurality of electric wires 62 attached with the connectors 61 are lifted from inside the unit storing room 20, the plurality of electric wires 62 are bundled by a band 64, and the band 64 is locked by a latching pin (projection) 25 which is a latching part. Fig. 18 shows that the latching pin 25 as the latching part is protruded from the outer side surface of the side wall 18 of the frame 11. The latching pin 25 is protruded from and provided integrally with the surface of the side wall 18 by using the same material as the frame 11 when the frame 11 is formed. Alternatively, the latching pin 25 is provided by making a screw shaft, which is screwed into the side wall 18 from the inner side of the side wall 18, to be protruded outwards. The band 64 is made of elastic rubber. After the plurality of electric wires 62 are bundled near the head parts of the connectors 61, the band 64 is caught by the latching pin 25. The band 64 is provided with a plurality of circular holes (or rectangular slits, cuts) along the longitudinal direction at predetermined intervals. After the plurality of electric wires 62 are bundled, the latching pin penetrates two opposed holes at the intersection position of the band 64 so that the band 64 is caught by the latching pin 25. When the electronic control unit 63 is stored in the unit storing room 20, required electric wires 62 are separated by loosening the band 64, and the connectors 61 of the separated electric wires 62 are connected with the terminals which are exposed to the bottom surface of the electronic control unit 63 while the remaining electric wires 62 are bundled by the band 64 and caught by the latching pin 25. Thereby, the operation of connecting the connectors 61 to the terminals can be performed easily and quickly. As a result, the operation of connecting a plurality of connectors 61 to the terminals of the electronic control unit 63 can be efficiently performed by the automobile manufacturer or the like. A versatile connecting band such as a rubber band, a hook and loop fastener which is called a magic tape (registered trademark) or a resin tie band can be used as the band 64.

[0046] In the above description, the latching pin 25 as the latching part is provided at the upper part of the side wall 18 close to the storing opening, but the latching pin 25 may be provided at any site on the outer side surface of the side wall 18, and also may be provided at a part on the outer side surfaces of the side walls 16 and 17.

[0047] With reference to Fig. 18, it is described that the band 64 is locked to the latching pin 25 which the side wall 18 of the frame 11 is provided with, and the electric wires 62 are held near the opening part of the unit storing room 20. However, the electric wires 62 also can be held near the opening part of the unit storing room 20 like above if the band 64 is locked to a latching part which the outer side surface of the side wall 17 or a member which surrounds the unit storing room 20 is provided with. For example, a part of the band 64 by which the plurality of electric wires 62 are bundled is locked to a projection or a hook part as the latching part which is provided on the outer side surface of the side wall 44 of the upper cover 15 which is put on the frame 11 so that the unit storing room 20 is enclosed. A detailed example of the frame 11 which is formed with a latching part is described as follows.

[0048] Fig. 19 shows that grooves 71 as the latching part are drilled at the outer side surface of the side wall 17 of the frame 11. The grooves 71 are grooves which are formed by drilling parts of the side wall 17 in the di-
In this case, the plurality of electric wires 62 attached with the connectors 61 which are lifted from within the unit storing room 20 are bundled by the band 64 as described above, and a part of the band 64 is caught in the grooves 71 at the outer side surface of the side wall 17. When the connectors 61 are connected to the corresponding terminals of the electronic control unit 63, either of the electric wires 62 is separated from others by temporarily loosening the band 64. The connector 61 at the end of the separated electric wire 62 is connected to the corresponding terminal of the electronic control unit 63.

The other electric wires 62 except the separated electric wires 62 are bundled by the band 64 and locked to the grooves 71. Therefore, the connectors 61 at the ends of these electric wires 62 are above the opening part of the unit storing room 20, and will not be drawn back into the unit storing room 20. Accordingly, the operator unites the band 64 temporarily again, separates another electric wire 62 from the other electric wires 62 adjacent to each other and connects the connector 61 at the end of the electric wire 62 to another corresponding terminal on the lower surface of the electronic control unit 63. In this case, other electric wires 62 except the separated electric wire 62 are bundled and tied by the band 64 and locked to the groove 71. Therefore, the connectors 61 at the ends of these electric wires 62 are above the opening part of the unit storing room 20, and will not be drawn back into the unit storing room 20.

In this way, all connectors 61 of the electric wires 62, which are bundled by the band 64 which is locked to the groove 71, can be sequentially connected (fitted) to the terminals of the electronic control unit 63, respectively. In this case, when the connectors 61 of the electric wires 62 are connected to the terminals of the electronic control unit 63 respectively, there are no traditional troublesome operation that the electric wires 62 which are lifted up from inside the unit storing room 20 are supported by one hand in order not to be drawn back into the unit storing room 20 again. Therefore, the operation of connecting the connectors 61 to the terminals of the electronic control unit 63 respectively is efficiently performed.

Fig. 20 shows that the outer surfaces of the side wall 17 of the frame 11 is provided with a substantially L-shaped hook pin 72 as the latching part. A Part of the band 64 by which the plurality of electric wires are bundled is caught by the hook pin 72. Thereby, while it is difficult for the band 64 to fall off from the hooked pin 72, the band 64 can be held stably onto the hook pin 72. The hook pin 72 is protruded from and provided integrally with the surface of the side wall 17 by using the same material as the frame 11, and is provided, for example, by embedding only the base of a short metal rod such as a stainless steel rod in the side wall 17, or by making a screw shaft which is screwed into the side wall 44 from the inner side of the side wall 44 to be screwed into the hook pin 73.

In this case, the plurality of electric wires 62 attached with the connectors 61 which are lifted from within the unit storing room 20 are bundled by the band 64 as described above, and while a part of the band 64 is caught by the hook pin 72 at the outer side surface of the side wall 17, the band 64 can be locked and held from the distal end part of the hook pin 72 through the curved part to a position near the base part. Thereby, the band 64 will not easily fall off through the L-shaped curved part even if the band 64 accommodates a small external force.

Thus, a part of the band 64 by which the plurality of electric wires 62 are bundled is caught by the hook pin 73. The hook pin 73 is protruded from and provided integrally with the surface of the side wall 44 by using the same material as the frame 11, and is provided, for example, by embedding only the base of a short metal rod such as a stainless steel rod in the side wall 44, or by making a screw shaft which is screwed into the side wall 44 from the inner side of the side wall 44 to be screwed into the hook pin 73.

In this case, the plurality of electric wires 62 attached with the connectors 61 which are lifted from within the unit storing room 20 are bundled by the band 64 as described above, and while a part of the band 64 is caught by the hook pin 73 on the side wall 44. The band 64 is guided from the distal end part of the hook pin 73 through the curved part to a position near the base part, and is locked and held. Thereby, the band 64 will not easily fall off from the hook pin 73 which is curved into an L shape even if a small external force is applied. The operation of connecting the connectors 61 to the terminals of the electronic control unit 63 is performed similarly to the case of using the grooves 71 or the hook pin 72 described above.

In the present embodiment, the lower member is divided in two parts: the first lower member 12 and the second lower member 13. The first lower member 12 communicates with the inside of the unit storing room 20 in the frame 11, and a space, which is shielded from the frame 11 except the unit storing room 20 and the second lower member 13, is formed. Therefore, the inside of the...
unit storing room 20 can be thermally shielded and separated from the outside, and the waterproofness and the strength of the lower member can be improved surely. As a result, the stability and reliability of the electronic control unit stored in the unit storing room 20 can be secured. When the first lower member 12 is installed to the frame 11, the lower edge of the separating wall 21 in the frame 11 is supported on the rib 34 between the side wall 33 of the first lower member 12 and the raised pieces 34a. Therefore, there are merits that the separating wall 21 can be stably supported and can be regulated from being deformed in the horizontal direction.

Furthermore, the step part 47 is formed to a circle shape on the inner side surfaces of the side walls 43 to 46 of the upper cover 15 at the sites of the same distance from the top part 42, and the step part 47 is formed to be supported by the upper edges of the side walls 16 to 19 of the frame 11. Therefore, the upper cover 15 is stably installed to the frame 11 while a part of the upper cover 15 overlaps the frame 11 in the horizontal direction.

In addition, the upper cover 15 is formed with the separating wall 49 which is substantially U-shaped and which defines a rectangular space with the side wall 44. Therefore, when the frame 11 is covered by the upper cover 15, the upper end edge of the separating wall 49 is closely connected with the upper end edge of the separating wall 21 at the side of the frame 11 so that the separating wall 49 forms a space together with the top part 42 to seal the unit storing room 20 of the frame 11 from above. As a result, while the inside of the unit storing room 20 can be thermally shielded from the outside, the separating wall 49 reinforces the top part 42 so that the top part 42 can be avoided from being unintentionally bended (dented).

As described above, in this embodiment, since the electrical junction box (storing box) A which has the unit storing room 20 in which the electronic control unit 63 is stored includes the latching part 25 by which the electric wires 62 and the connectors 61 connected to one end of the electric wires 62 which pass through the inner side of the unit storing room 63 and are drawn out from the storing opening, which becomes the entrance when the electronic control unit 63 is stored, are caught, when the connectors 61 are embedded into the terminals of the electronic control unit 63, the electric wires 62 and the connectors 61 are easily held by hand. Thus, the workload when the above embedding is performed and the electronic control unit 63 is set into the unit storing room 20 is reduced.

In this case, since the latching part 25 is formed at the side wall 17 which defines the unit storing room 20 so that the distance between the unit storing room 20 and the connectors 61 is decreased, the workload is reduced. Since the latching part 25 is formed on the peripheral member which surrounds the unit storing room 20, the freedom in design increases for the position where the latching part 25 is arranged. Since the latching part 25 is formed on the outer side surface of the side wall 17 which defines the unit storing room 20, when the connectors 61 are fitted into the terminals of the electronic control unit 63, the electric wires 62 and the connectors 61 are easily held by hand, and the distance between the unit storing room 20 and the connectors 61 is the shortest one. Furthermore, since the latching part is a projection such as the latching pin 25 which is protruded outwards from the side wall 17 which defines the unit storing room 20, the design modification to provide the latching part 25 can be very small. Furthermore, since part of the band 64 by which the electric wires 62 are bundled is caught by the latching pin (projection) 25, the band 64 can be prevented from being unintentionally untied from the latching part.

Although the invention is described in detail with reference to specific embodiments, it is apparent that various modifications and amendments may be made by those skilled in the art without departing from the spirit and scope of the invention.

This application is based on the Japanese patent application (patent application 2011-068351) filed on March 25th, 2011, whose content is incorporated herein by reference.

Industrial Applicability

The present invention is useful in the fields of a storing box and an electrical junction box which are carried in an automobile or the like and induce a unit storing room to store an electronic control unit.

Reference Signs List

A electrical junction box
11 frame (storing box)
11a locked part
11b locking part
12 first lower member
12a locking projection
12b locked part
13 second lower member
13a locking projection
13b locking projection
14 base member
14a locking projection (locked part)
15 upper cover
15a locking projection
16, 17, 18, 19 side wall
20 unit storing room
21 separating wall
21a locking part
22 cut
24 cut
25 latching part (latching pin)
26 rib
27, 28 connector storing frame
29 bottom part
30, 31, 32, 33 side wall
34 rib
35 cut
36 reinforcing rib
37, 38, 40 side wall
39 opening
41 bottom part
42 top part
43, 44, 45, 46 side wall
47 stepped part
48 extended wall
49 separating wall
50 reinforcing rib
51 connector
52 electric wires (harness)
53 electronic control unit
54 band
55 latching part (groove)
56 latching part (hook pin)

Claims

1. A storing box formed with a unit storing room storing an electronic control unit, wherein the storing box is formed with a latching part by which an electric wire or a connector connected to one end of the electric wire is caught, and the electric wire passes through an inner side of the unit storing room and is drawn out from a storing opening which is an entrance for storing the electronic control unit.

2. The storing box according to claim 1, wherein the latching part is formed at a side wall which defines the unit storing room.

3. The storing box according to claim 1, wherein the latching part is formed at a peripheral member below, which surrounds the unit storing room.

4. The storing box according to claim 2, wherein the latching part is formed on an outer side surface of the side wall which defines the unit storing room.

5. The storing box according to claim 4, wherein the latching part is a projection protruded outwards from the side wall which defines the unit storing room.

6. The storing box according to claim 5, wherein part of a band bundling the electric wire is caught by the projection.

7. An electrical junction box comprising the storing box according to any one of claims 1 to 6.
Fig. 8

Fig. 9
Fig. 14

Fig. 15
Fig. 16
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
H02G3/16(2006.01)i, B60R16/02(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H02G3/16, B60R16/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2009-201292 A (Sumitomo Wiring Systems, Ltd.), 03 September 2009 (03.09.2009), paragraphs [0018] to [0033]; fig. 1 to 7 (Family: none)</td>
<td>1-7</td>
</tr>
<tr>
<td>Y</td>
<td>JP 9-51624 A (Yazaki Corp.), 18 February 1997 (18.02.1997), paragraphs [0027] to [0037]; fig. 1 to 3 (Family: none)</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-337628 A (Sumitomo Wiring Systems, Ltd.), 27 November 2002 (27.11.2002), paragraphs [0017] to [0019]; fig. 4 (Family: none)</td>
<td>1-7</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means of publication prior to the international filing date
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 07 May, 2012 (07.05.12)

Date of mailing of the international search report 22 May, 2012 (22.05.12)

Name and mailing address of the ISA/Authorized officer
Japanese Patent Office

Facsimile No. Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description