EUROPEAN PATENT SPECIFICATION

(44) Date of publication and mention of the grant of the patent:

(21) Application number: 12747088.8

(22) Date of filing: 23.01.2012

(51) Int Cl.:
- H02B 1/052 (2006.01)
- H05K 7/02 (2006.01)
- H05K 7/12 (2006.01)

(86) International application number:
PCT/JP2012/051364

(87) International publication number:
WO 2012/111390 (23.08.2012 Gazette 2012/34)

(54) DIN-RAIL MOUNT TYPE DEVICE
VORRICHTUNG ZUR BEFESTIGUNG AUF DIN-SCHIENEN
DISPOSITIF DE TYPE À MONTER SUR UN RAIL DIN

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 17.02.2011 JP 2011032062

(43) Date of publication of application:

(73) Proprietor: Kabushiki Kaisha Yaskawa Denki
Kitakyushu-Shi, Fukuoka 806-0004 (JP)

(72) Inventors:
- KUSUMI Michinori
 Kitakyushu-shi, Fukuoka 806-0004 (JP)
- UESUGI Hajime
 Kitakyushu-shi, Fukuoka 806-0004 (JP)

(74) Representative: Viering, Jentschura & Partner mbB
Patent- und Rechtsanwälte
Am Brauhaus 8
01099 Dresden (DE)

(56) References cited:
- JP-A-1 208 895
- JP-U-H0 487 692
- JP-U-H0 508 988
- JP-U-H0 137 589
- JP-U-432 584
- JP-U-H0 487 692
- JP-U-H0 121 989

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

TECHNICAL FIELD

[0001] The disclosed embodiment relates to a DIN-rail mount type device which is removably mounted to a DIN rail.

BACKGROUND ART

[0002] The DIN-rail mount type device of prior art which is removably mounted to the DIN rail is known (e.g., refer to Patent Document 1). A housing (unit main body) of the DIN-rail mount type device of prior art (programmable controller unit) includes a rail groove (engagement recess) provided to extend in a width direction of the housing at its back face, is engaged with the DIN rail via the rail groove and locked to the DIN rail by a lock member (slider lock device) to be mounted to the DIN rail.

Prior Art Document

Patent Document

DISCLOSURE OF THE INVENTION

Problem to be solved by the Invention

[0004] In the DIN-rail mount type device of prior art described above, a lock member protrudes out of a housing in a state of being removed from the DIN rail as well as in a state of being mounted to the DIN rail. Therefore, the following problems may arise. Specifically, there are problems in which an operator working on the DIN-rail mount type device in a state of being removed is caught by the protruded lock member by his hand to get wounded, or when the DIN-rail mount type device is packaged, the lock member gets stuck with the package material to make a work difficult. Further, there are problems in which the lock member may be damaged while the DIN-rail mount type device is conveyed, or the DIN-rail mount type device cannot be horizontally placed with a lock member side facing downward. Furthermore, there is a problem in which, if the DIN-rail mount type device includes a fixing mechanism such as a spring, and when the DIN-rail mount type device is not mounted to the DIN rail but fixed with the spring or the like, a wasteful installation space for avoiding the protruding lock member is required.

[0005] JP H04 32584 U discloses a rail mount type device which is removably mounted to a rail, wherein the rail mount type device comprises a housing; a rail groove provided along a width direction of the housing on a face of the housing and being capable of fitting with the rail; a slider groove provided along a width direction of the rail groove on the face of the housing; and a lock member configured to slide so as to move forward and backward with respect to the rail groove in the slider groove, and to be able to retain a fitting state between the rail groove and the rail by engaging a one-side end with an engagement portion of the rail fitted into the rail groove, wherein: the lock member is configured to be able to move to a first position where the one-side end protrudes from the slider groove into the rail groove, and other-side end protrudes out of the housing and to a second position where the one-side end protrudes from the slider groove into the rail groove and the other-side end is stored in the slider groove, configured to be able to retain the fitting state between the rail groove and the rail by engaging the one-side end with the engagement portion of the rail at the first position, and configured to be able to move to the second position only when the rail is not fitted into the rail groove. Some further devices are disclosed in JP H04 87692 U, JP 2003 298252 A, and JP 11 10 31 81 A.

[0006] The present invention was made in consideration of those problems, and is directed to provide the DIN-rail mount type device capable of storing the lock member so as not to protrude out of the housing.

Means for Solving the Problem

[0007] The above-described object is achieved with a DIN-rail mount type device having the features of claim 1.

Advantages of the Invention

[0008] According to the DIN-rail mount type device of the present invention, the lock member can be stored so as not to protrude from the housing.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Fig. 1 is a perspective view illustrating an outer appearance of a DIN-rail mount type device according to an embodiment. Fig. 2A is a plan view of a housing viewed from a back face side thereof. Fig. 2B is a vertical cross-sectional view thereof along the line IIB-IIB in Fig. 2A. Fig. 3A is a plan view of a lock member viewed from a face side corresponding to the back face side of the housing. Fig. 3B is a vertical cross-sectional view of the lock member along the line IIIB-IIIB in Fig. 3A. Fig. 4A is a plan view of a DIN-rail mount type device mounted to a DIN rail viewed from the back face side of the housing with the lock member retained at an unlock position. Fig. 4B is a vertical cross-sectional view of the DIN-rail mount type device along the line IVB-IVB in Fig. 4A. Fig. 5 illustrates a state in which a tip end of a spring...
portion and an unlocking recess release engagement with each other.

Fig. 6A is a plan view of the DIN-rail mount type device mounted to the DIN rail viewed from the back face side of the housing with the lock member retained at a lock position.

Fig. 6B is a vertical cross-sectional view of the DIN-rail mount type device along the line VIB-VIB in Fig. 6A.

Fig. 7A is a plan view of the DIN-rail mount type device removed from the DIN rail viewed from the back face side of the housing with the lock member retained at a storage position.

Fig. 7B is a vertical cross-sectional view of the DIN-rail mount type device along the line VIIB-VIIB in Fig. 7A.

Fig. 8 is a perspective view illustrating an outer appearance of a DIN-rail mount type device according to a modification in which a lock mechanism is provided at a plurality of positions.

BEST MODE FOR CARRYING OUT THE INVENTION

[0010] With reference to drawings, an embodiment will be described below. When "front", "back", "left", "right", "up", and "down" are noted in each drawing below, a "frontward", "backward", "leftward", "rightward", "upward", and "downward" in the description of the specification indicate the noted directions.

[0011] In Figs. 1, 2A and 2B, and Figs. 3A and 3B, a DIN-rail mount type device 100 according to a present embodiment is referred to a device removably mounted to a DIN rail 200 complying with DIN (Deutsche Industrie Normen: German Industry Standard). As the DIN-rail mount type device 100, for example, a control device such as a controller unit, PLC (programmable logic controller) unit, inverter unit, servo unit, power unit, I/O unit, sensor unit, switch unit, safety unit, and relay unit is used. Alternatively, devices other than the control device may be used. As illustrated in Fig. 1, the DIN-rail mount type device 100 includes a front face that is a fore face (not illustrated), a back face 111B that is a rear face, an upper face 111F (refer to Fig. 2B), a lower face 111D, and right and left side faces 111S, and includes a housing 110 formed in a substantially cuboidal shape, and a lock member 150. According to the present embodiment, the back face 111B of the housing 110 corresponds to a face of the housing described in claims. Alternatively, a face other than the back face 111B of the housing 110 (e.g., front face and the like of the housing 110) may be used as a face of the housing.

[0012] As illustrated in Fig. 1 and Figs. 2A and 2B, the back face 111B of the housing 110 is provided with a rail groove 112 capable of fitting with a DIN rail 200 to extend all over a length in a right and left direction of the back face 111B along a width direction, in other words, the right and left direction of the housing 110. An edge (appropriately described as an "upper side edge" hereinafter) 114U at an upper side of the rail groove 112 is protrudingly provided with an engagement portion 115 to be engaged with an engagement portion (appropriately described as an "upper-side engagement portion" hereinafter) 201U at the upper side of the DIN rail 200.

[0013] Further, a face at a lower side than the rail groove 112 on the back face 111B of the housing 110 is provided with a slider groove 113 to be slidably fitted with the lock member 150 to extend all over the length in an upward and downward direction of the face along the width direction, in other words, the upward and downward direction of the rail groove 112. A bottom face corresponding to a front side of the slider groove 113 is provided with a groove 116 extending upward from the lower edge of the bottom face along the upward and downward direction to correspond to a position of a spring portion 154 (details will be described below) provided for the lock member 150.

[0014] As illustrated in Figs. 2A and 2B, the groove 116 is provided with three recesses 117, 118, and 119 capable of engaging with a tip end 154T of the spring portion 154 provided for the lock member 150 (refer to Fig. 3B, details will be described below).

[0015] Of the above-described recesses 117, 118, and 119, as described below with reference to Fig. 4B, the recess 117 provided at the lowest side is the recess to be engaged with the tip end 154T of the spring portion 154 when the lock member 150 moves to an unlock position described below. Hereinafter, this recess 117 is appropriately described as the "unlocking recess 117".

[0016] Of the above-described recesses 117, 118, and 119, as described below with reference to Fig. 6B, the recess 118 provided between the unlocking recess 117 and the recess 119 is the recess to be engaged with the tip end 154T of the spring portion 154 when the lock member 150 moves to an unlock position described below. Hereinafter, this recess 118 is appropriately described as the "locking recess 118".

[0017] Of the above-described recesses 117, 118, and 119, as described below with reference to Fig. 7B, the recess 119 provided at a top side is the recess to be engaged with the tip end 154T of the spring portion 154 when the lock member 150 moves to the storage position described below. Hereinafter, this recess 119 is appropriately described as the "storing recess 119".

[0018] As illustrated in Fig. 1 and Figs. 3A and 3B, the lock member 150 slides along the upward and downward direction to move forward and backward with respect to the rail groove 112 in the slider groove 113, and an engagement-side end 151 that is an end (one-side end) at a side corresponding to the upper side of the lock member 150 is engaged with an engagement portion (appropriately described as a "lower-side engagement portion" hereinafter) 201D at a lower side of the DIN rail 200 fitted into the rail groove 112, in the manner that a fitting state between the rail groove 112 and the DIN rail 200 can be retained. The lock member 150 can slide along the upward and downward direction between the unlock posi-
tion and the storage position in the slider groove 113, and can move to the unlock position, the lock position, and the storage position.

[0019] The unlock position refers to a position (position of the lock member 150 indicated below with reference to Figs. 4A and 4B) where the engagement-side end 151 is stored in the slider groove 113 and an operation-side end 152 that is an end (other-side end) at a side corresponding to a lower side of the lock member 150 protrudes more downward out of the housing 110. The unlock position corresponds to a third position described in claims.

[0020] The lock position refers to a position (position of the lock member 150 indicated below with reference to Figs. 6A and 6B) where the engagement-side end 151 protrudes more upward than the slider groove 113, in other words, into the rail groove 112, and the operation-side end 152 protrudes more downward out of the housing 110. The lock position corresponds to a first position described in claims. The lock member 150, at this lock position, engages the engagement-side end 151 with an engagement portion 201D at a lower side of the DIN rail 200 to retain the fitting state between the rail groove 112 and the DIN rail 200 (details will be described below).

[0021] The storage position refers to a position (position of the lock member 150 indicated below with reference to Figs. 7A and 7B) where the engagement-side end 151 protrudes from the slider groove 113 into the rail groove 112, and the operation-side end 152 is stored in the slider groove 113. The storage position corresponds to a second position described in claims. When the DIN rail 200 is not fitted into the rail groove 112, in other words, only when the DIN-rail mount type device 100 is removed from the DIN rail 200, the lock member 150 can move to this storage position.

[0022] Further, the lock member 150 includes a through hole 153 provided along a direction corresponding to a forward and backward direction, and two spring portions 154 that are extendedly provided at the edge of a side corresponding to the upper side of the through hole 153 in a direction corresponding to a downward direction and is capable of being elastically bent in a direction corresponding to a depth direction, in other words, the forward and backward direction of the housing 110. According to this example, the number of the spring portions 154 is defined as two, but, the number of the spring portions 154 is not limited thereto, and may be one, or three or more. Further, according to this example, the spring portion 154 is extendedly provided at the edge of the side corresponding to the upper side of the through hole 153 in the direction corresponding to the downward direction, but, the spring portion 154 is limited thereto, and may be extendedly provided at the edge of the side corresponding to the lower side of the through hole 153 in a direction corresponding to an upward direction.

[0023] The spring portion 154 is formed to protrude in a direction corresponding to a frontward direction, and includes the above-described unlocking recess 117 provided in the slider groove 113 and corresponding to the unlock position, the above-described locking recess 118 corresponding to the lock position, and the tip end 154T capable of engaging with the above-described storing recess 119 corresponding to the storage position. When the lock member 150 slides in the slider groove 113, the tip end 154T of the spring portion 154 is sequentially engaged with the unlocking recess 117, the locking recess 118, and the storing recess 119, in the manner that the lock member 150 can be retained at the unlock position, the lock position, and the storage position.

[0024] Specifically, when the lock member 150 slides in the slider groove 113, while the spring portion 154 is being elastically bent in the forward and backward direction, the spring portion 154 engages the tip end 154T with any of the unlocking recess 117, the locking recess 118, and the storing recess 119 and releases the engagement of the tip end 154T therewith. More specifically, when the lock member 150 slides in the slider groove 113 while the spring portion 154 is being elastically bent backward and the tip end 154T reaches any of the recesses of the unlocking recess 117, the locking recess 118, and the storing recess 119, bending backward becomes smaller in the manner that the tip end 154T is engaged with the reached recess and retains the lock member 150 at a corresponding position. When the lock member 150 slides to another position, the spring portion 154 is elastically bent backward to release the engagement between the tip end 154T and the above-described recess and enables the lock member 150 to move.

[0025] Further, the operation-side end 152 of the lock member 150 includes a dent 155, a recess 156, and a protrusion 157 as illustrated in Figs. 3A and 3B. The dent 155 is a part inwardly dented on a face in a direction corresponding to the right and left direction. The recess 156 is provided on a face in a direction corresponding to a forward direction. By providing the dent 155 and the recess 156 at the operation-side end 152, the operator can hold (pick) the dent 155 and operate the recess 156 with a driver in a state where the operation-side end 152 protrudes downward out of the housing 110, and then can operate the operation-side end 152 to operate the lock member 150. The protrusion 157 is protrudingly provided on a face in a direction corresponding to a backward direction. When the operation-side end 152 is stored in the slider groove 113, the protrusion 157 comes into contact with an end face 120 (refer to Figs. 2A and 2B) located behind the slider groove 113 to function as a stopper.

[0026] When the DIN-rail mount type device 100 is mounted to the DIN rail 200 herein, first, the operator engages (hooks) the engagement portion 115 protrudingly provided at the edge 114U at the upper side of the rail groove 112 with the engagement portion 201U at the upper side of the DIN rail 200 fixed with a fixing member such as a screw (not illustrated) onto a wall (not illustrated) for example, and then fits the DIN rail 200 into the
rail groove 112. With this arrangement, the DIN-rail mount type device 100 can be mounted to the DIN rail 200. However, at this point, the lock member 150 fitted into the slider groove 113 is retained at the unlock position, and thus the fitting state between the rail groove 112 and the DIN rail 200 is not retained.

[0027] As illustrated in Figs. 4A and 4B, in a state where the lock member 150 is retained at the unlock position, the lock member 150 engages the tip end 154T of the spring portion 154 with the unlocking recess 117 provided on the bottom face of the slider groove 113. At this point, the engagement-side end 151 is stored in the slider groove 113, and the lock member 150 is not engaged with the engagement portion 201D at the lower side of the DIN rail 200. In addition, the operation-side end 152 protrudes downward out of the housing 110. In other words, in a state where the lock member 150 is retained at the unlock position, it does not engage the engagement-side end 151 with the engagement portion 201D at the lower side of the DIN rail 200, and thus does not retain the fitting state between the rail groove 112 and the DIN rail 200. In other words, the lock member 150 does not retain the fitting state between the rail groove 112 and the DIN rail 200.

[0028] In this state, when the operator pushes the lock member 150 to the upper side via the operation-side end 152 protruding downward out of the housing 110, as illustrated in Fig. 5, the spring portion 154 is elastically bent backward, and the engagement between the tip end 154T of the spring portion 154 and the unlocking recess 117 is released and the lock member 150 slides to the upper side. When the tip end 154T of the spring portion 154 has moved up to a position of the locking recess 118, the backward bending of the spring portion 154 becomes smaller in the manner that the spring portion 154 can engage with the locking recess 118, and then the lock member 150 is retained at the lock position.

[0029] As illustrated in Figs. 6A and 6B, in a state where the lock member 150 is retained at the lock position, the lock member 150 engages the tip end 154T of the spring portion 154 with the locking recess 118 provided on the bottom face of the slider groove 113. At this point, the engagement-side end 151 of the lock member 150 protrudes from the slider groove 113 into the rail groove 112, and engages with the engagement portion 201D at the lower side of the DIN rail 200. Further, in addition, the operation-side end 152 protrudes downward out of the housing 110. In other words, in a state where the lock member 150 is retained at the lock position, the lock member 150 engages the engagement-side end 151 with the engagement portion 201D at the lower side of the DIN rail 200 to retain the fitting state between the rail groove 112 and the DIN rail 200. More specifically, the lock member 150 retains the fitting state between the rail groove 112 and the DIN rail 200.

[0030] In this state, when the DIN-rail mount type device 100 is removed from the DIN rail 200, the operator first draws the lock member 150 downward via the operation-side end 152 protruding downward out of the housing 110, and moves the lock member 150 to the unlock position to make a state where the lock member 150 does not retain the fitting state between the rail groove 112 and the DIN rail 200. In this state, the DIN-rail mount type device 100 is removed from the DIN rail 200. At this point, to cause the lock member 150 protruding downward out of the housing 110 not to protrude out of the housing 110, the lock member 150 may be moved to the storage position. In other words, the operator pushes the lock member 150 upward via the operation-side end 152 protruding downward out of the housing 110 to engage the tip end 154T of the spring portion 154 with the storing recess 119. With this arrangement, the lock member 150 is retained at the storage position.

[0031] As illustrated in Figs. 7A and 7B, in a state where the lock member 150 is retained at the storage position, the lock member 150 engages the tip end 154T of the spring portion 154 with the storing recess 119 provided on the bottom face of the slider groove 113. At this point, the engagement-side end 151 of the lock member 150 protrudes from the slider groove 113 into the rail groove 112. In addition, the operation-side end 152 is stored in the slider groove 113. In other words, in the state where the lock member 150 is retained at the storage position, the operation-side end 152 of the lock member 150 is stored in the slider groove 113, and thus the lock member 150 does not protrude downward out of the housing 110. Further, in this state, the protrusion 157 of the operation-side end 152 is in contact with the above-described end face 120.

[0032] In this state, when the DIN-rail mount type device 100 is mounted to the DIN rail 200, the operator pushes the lock member 150 downward via the engagement-side end 151 protruding into the rail groove 112, draws the operation-side end 152 more downward than the slider groove 113, and draws the operation-side end 152 downward to engage the tip end 154T of the spring portion 154 with the unlocking recess 117. With this arrangement, since the lock member 150 is retained at the unlock position, as described above, the DIN-rail mount type device 100 can be mounted to the DIN rail 200.

[0033] As described above, the DIN-rail mount type device 100 according to the present embodiment includes the housing 110 provided with the rail groove 112 and the slider groove 113 on its back face 111B, and the lock member 150 that slides to move forward and backward with respect to the rail groove 112 in the slider groove 113 and can retain the fitting state between the rail groove 112 and the DIN rail 200 by engaging the engagement-side end 151 with the engagement portion 201D at the lower side of the DIN rail 200. The lock member 150 can move to the unlock position, lock position, and storage position described above, and only when the DIN rail 200 is not fitted into the rail groove 112, the lock member 150 can move to the storage position.

[0034] With this arrangement, in a state where the DIN rail 200 is not fitted into the rail groove 112, in other words,
in a state where the DIN-rail mount type device 100 is removed from the DIN rail 200, the lock member 150 moves to the storage position in the manner that the operation-side end 152 of the lock member 150 is stored in the slider groove 113 and thus does not protrude out of the housing 110. As a result, the operator working on the DIN-rail mount type device 100 in a removed state can be prevent from getting wounded by the protruding lock member 150, and further packaging can be facilitated. Further, the lock member 150 can be prevented from being damaged while it is conveyed, and the DIN-rail mount type device 100 can be horizontally placed with a side of the lock member 150 facing downward. Furthermore, if the DIN-rail mount type device 100 includes the fixing mechanism such as the screw, and when it is not mounted to the DIN rail 200 but fixed with the screw or the like, the wasteful installation space for avoiding the protruding lock member 150 is required when the lock member 150 protrudes. However, according to the present embodiment, since the lock member 150 can be stored, the installation space can be minimized.

Moreover, since, only when the DIN rail 200 is not fitted into the rail groove 112, the lock member 150 can move to the storage position, in a state where the DIN rail 200 is fitted into the rail groove 112, whether the fitting state is retained or not, the lock member 150 is located at a position other than the storage position (i.e., the lock position or the unlock position). In the state where the DIN rail 200 is fitted into the rail groove 112, to switch the fitting state between retaining (locking) and releasing (unlocking), the operator is required to operate the lock member 150, but, since the lock member 150 is located at the position other than the storage position (the lock position or the unlock position) and thus the operation-side end 152 protrudes out of the housing 110, the operator can easily operate the lock member 150 using the operation-side end 152.

Further, when the operation-side end 152 is located at the storage position where the lock member 150 is stored in the slider groove 113, the engagement-side end 151 of the lock member 150 protrudes from the slider groove 113 into the rail groove 112. At this point, since the DIN rail 200 is not fitted into the rail groove 112, the operator pushes downward the engagement-side end 151 protruding into the rail groove 112 to draw the operation-side end 152 lower than the slider groove 113, in the manner that the operation-side end 152 can protrude out of the housing 110. As a result, the operator can operate the lock member 150 from the storage position to the lock position and the unlock position using the operation-side end 152.

Furthermore, according to the present embodiment, the following effects can be acquired. Specifically, for example, when, in a state where the lock member 150 retains the fitting state between the rail groove 112 and the DIN rail 200 (described as a "lock state" hereinafter), the lock member 150 is to be set at the above-described storage position, and when, in a state where the fitting state is not retained (described as an "unlock state"), the lock member 150 is to be set to the above-described unlock position, since the operation-side end 152 of the lock member 150 is stored in the slider groove 113 and does not protrude downward out of the housing 110 in the lock state, even if the operator attempts to switch the lock state to the unlock state, an operation of the lock member 150 becomes difficult.

According to the present embodiment, since the operation-side end 152 of the lock member 150 protrudes downward out of the housing 110 even in the lock state, the operator can operate the lock member 150 using the operation-side end 152 to easily switch the lock state to the unlock state. Further, since the operation-side end 152 of the lock member 150 protrudes out of the housing 110 even in the unlock state, the operator can operate the lock member 150 using the operation-side end 152 to easily switch the unlock state to the lock state. As described above, switching operability between the lock state and the unlock state can be improved.

Furthermore, according to the present embodiment, particularly, the spring portion 154 is included that is capable of retaining the lock member 150 at the unlock position, the lock position, and the storage position when the lock member 150 is sequentially engaged with the unlocking recess 117, the locking recess 118, and the storing recess 119 provided in the slider groove 113 when the lock member 150 slides in the slider groove 113. The spring portion 154 is sequentially engaged with the unlocking recess 117, the locking recess 118, and the storing recess 119 provided in the slider groove 113 to retain the lock member 150 at the unlock position, the lock position, and the storage position.

The present embodiment is not limited to the above-described content, and variety of modifications may be made to the embodiments without departing from the spirit and technical idea of the present invention. Examples of such modifications will be described below.

(1) When lock mechanisms are provided at a plurality of positions

According to the above-described present embodiment, one slider groove 113 is provided on the back face 111B of the housing 110, and the lock member 150 is provided in the slider groove 113, but they are not limited thereto. In other words, a plurality of slider grooves may be provided on the back face of the housing and the lock member 150 may be individually provided in each of the plurality of slider grooves.

In Fig. 8, a DIN-rail mount type device 100', which is a present modification, includes a front face (not illustrated), a back face 111B', an upper face 111U', a lower face (not illustrated), and both right and left side faces 111S, and a housing 110' formed in a substantially cuboidal shape, and the above-described lock member 150. According to the present modification, the back face 111B' of the housing 110' corresponds to the face of the
hanging described in the scope of the claims. Alternatively, the face other than the back face 111B' of the housing 110' (e.g., a front face of the housing 110') may be defined as the face of the housing.

The housing 110' has a greater length in the width direction, in other words, the right and left direction than that of the above-described housing 110, and a rail groove 112' capable of fitting with a DIN rail 200' having the greater length in the right and left direction than that of the above-described DIN rail 200 is provided on the back face 111B' so as to extend over an entire length in the right and left direction of the back face 111B' along the right and left direction. Further, on a face at a lower side than the rail groove 112' on the back face 111B' of the housing 110', a plurality of (three according to this example) slider grooves 113' into which the lock member 150 is slidably fitted is provided in parallel so as to extend over the entire length in the upward and downward direction of the face along the width direction, in other words, in the upward and downward direction of the rail groove 112'. A configuration of each of the three slider grooves 113' is same as that of the above-described slider groove 113. Furthermore, a configuration of the housing 110' that is not described above is substantially same as that of the above-described housing 110.

The lock member 150 is individually fitted into each of the above-described slider grooves 113'. In other words, the lock member 150 is individually provided in each of the above-described three slider grooves 113'. Each lock member 150 is individually retained at any of the above-described unlock position, the lock position, and the storage position by the spring portion 154 in each of the slider grooves 113'. According to the example illustrated in Fig. 8, each lock member 150 is retained at the lock position.

According to the present modification described above, the plurality of slider grooves 113' is provided on the back face 111B' of the housing 110', and each lock member 150 is individually provided in the plurality of slider grooves 113'. With this arrangement, even the DIN-rail mount type device (100; 100') configured to be removably mounted to a DIN rail (200; 200'), the DIN-rail mount type device (100; 100') comprising a housing (110; 110'); a rail groove (112; 112') provided along a width direction of the housing (110; 110') on a face (111B; 111B') of the housing (110; 110') and to be able to retain a fitting state between the rail groove (112; 112') and the DIN rail (200; 200'); a slider groove (113; 113') provided along a width direction of the rail groove (112; 112') on the face (111B; 111B') of the housing (110; 110'); and a lock member (150) configured to slide so as to move forward and backward with respect to the rail groove (112; 112') in the slider groove (113; 113'), and to be able to retain a fitting state between the rail groove (112; 112') and the DIN rail (200; 200') by engaging a one-side end (151) with an engagement-side end (other-side end) of a DIN rail (200; 200'), wherein:

(2) Others

In the above, the slider groove 113, 113' is provided on a face at the lower side than the rail groove 112, 112' on the back face 111B, 111B', but they are not limited thereto, and may be provided on a face at an upper side than the rail groove 112, 112' on the back face 111B, 111B'. Also in this case, the similar effects to those of the above-described embodiment and the modification of (1) can be acquired.

Claims

1. A DIN-rail mount type device (100; 100') configured to be removably mounted to a DIN rail (200; 200'), the DIN-rail mount type device (100; 100') comprising a housing (110; 110'); a rail groove (112; 112') provided along a width direction of the housing (110; 110') on a face (111B; 111B') of the housing (110; 110') and being capable of fitting with the DIN rail (200; 200'); a slider groove (113; 113') provided along a width direction of the rail groove (112; 112') on the face (111B; 111B') of the housing (110; 110'); and a lock member (150) configured to slide so as to move forward and backward with respect to the rail groove (112; 112') in the slider groove (113; 113'), and to be able to retain a fitting state between the rail groove (112; 112') and the DIN rail (200; 200') by engaging a one-side end (151) with an engagement portion (201D) of the DIN rail (200; 200') fitted into the rail groove (112; 112'), wherein:

(2) Others

In the above, the slider groove 113, 113' is provided on a face at the lower side than the rail groove 112, 112' on the back face 111B, 111B', but they are not limited thereto, and may be provided on a face at an upper side than the rail groove 112, 112' on the back face 111B, 111B'. Also in this case, the similar effects to those of the above-described embodiment and the modification of (1) can be acquired.

DESCRIPTION OF SYMBOLS

100 DIN-rail mount type device
110 housing
111B back face
112 rail groove
113 slider groove
117 unlocking recess (recess)
118 locking recess (recess)
119 storing recess (recess)
150 lock member
151 engagement-side end (one-side end)
152 operation-side end (other-side end)
154 spring portion
200 DIN rail
201D engagement portion at lower side (engagement portion)
groove (113; 113'), configured to be able to retain the fitting state between the rail groove (112; 112') and the DIN rail (200; 200') by engaging the one-side end (151) with the engagement portion (201D) of the DIN rail (200; 200') at the first position, and configured to be able to move to the second position only when the DIN rail (200; 200') is not fitted into the rail groove (112; 112'),

wherein:

the lock member (150) is configured to be able to move to a third position where the one-side end (151) is stored in the slider groove (113; 113') and the other-side end (152) protrudes out of the housing (110; 110'), and to move between the third position and the second position, characterized in that:

the lock member (150) comprises at least one spring portion (154) configured to be able to retain, when the lock member (150) moves in the slider groove (113; 113'), the lock member (150) at the first position, the second position, and the third position by sequentially engaging with a plurality of recesses (117, 118, 119) provided in the slider groove (113; 113').

2. The DIN-rail mount type device (100; 100') according to claim 1, wherein:

the spring portion (154) is configured to engage or release with the recess (117, 118, 119) while being elastically bent in a depth direction of the housing (110; 110').

3. The DIN-rail mount type device (100') according to any one of claims 1 to 2, Wherein:

a plurality of the slider grooves (113') is provided in parallel on the face (111B') of the housing (110'); and

the lock member (150) is individually provided in the plurality of the slider grooves (113').

Patentansprüche

1. Eine Vorrichtung des DIN-Tragschiene-Montagetyps (100; 100'), welche eingerichtet ist, um entfernbare an einer DIN-Tragschiene (200; 200') montiert zu sein, wobei die Vorrichtung des DIN-Tragschiene-Montagetyps (100; 100') aufweist:

 - ein Gehäuse (110; 110')
 - eine Schienennut (112; 112'), welche entlang einer Breitenrichtung des Gehäuses (110; 110') an einer Fläche (111B; 111B') des Gehäuses (110; 110') bereitgestellt ist und welche in der Lage ist, in die DIN-Tragschiene (200; 200') eingepasst zu werden;
 - eine Verschiebenut (113; 113'), welche entlang einer Breitenrichtung der Schienennut (112; 112') an der Fläche (111B; 111B') des Gehäuses (110; 110') bereitgestellt ist; und
 - ein Verriegelungselement (150), welches eingerichtet ist, um verschoben zu werden, um sich in Bezug auf die Schienennut (112; 112') in der Verschiebenut (113; 113') vorwärts und rückwärts zu bewegen, und um in der Lage zu sein, einen Befestigungszustand zwischen der Schienennut (112; 112') und der DIN-Tragschiene (200; 200') aufrechtzuhalten, indem ein Eine- Sei- te-Ende (151) in einen Eingriffsabschnitt (201D) der in die Schienennut (112; 112') eingepassten DIN-Tragschiene (200; 200') eingreift, wobei:

 - das Verriegelungselement (150), eingerichtet ist, um in der Lage zu sein, sich in eine erste Position zu bewegen, in der das Eine-Seite-Ende (151) von der Verschiebenut (113; 113') in die Schienennut (112; 112') vorsteht und ein Andere-Seite-Ende (152) aus dem Gehäuse (110; 110') vorsteht, und in eine zweite Position, in der das Eine-Seite-Ende (151) von der Verschiebenut (113; 113') in die Schienennut (112; 112') vorsteht und das Andere-Seite-Ende (152) in der Verschiebenut (113; 113') verstauste ist, und eingerichtet ist, um in der Lage zu sein, den Befestigungszustand zwischen der Schienennut (112; 112') und der DIN-Tragschiene (200; 200') aufrechtzuerhalten, indem das Eine-Seite-Ende (151) in den Eingriffabschnitt (201D) der DIN-Tragschiene (200; 200') in der ersten Position eingreift, und eingerichtet ist, um in der Lage zu sein, sich nur in die zweite Position zu bewegen, wenn die DIN-Tragschiene (200; 200') nicht in der Schienennut (112; 112') montiert ist, wobei:

 - das Verriegelungselement (150) eingerichtet ist, um in der Lage zu sein, sich in eine dritte Position zu bewegen, und um sich zwischen der dritten Position und der zweiten Position zu bewegen, dadurch gekennzeichnet, dass:
das Verriegelungselement (150) mindestens einen Federabschnitt (154) aufweist, der eingerichtet ist, um, wenn sich das Verriegelungselement (150) in der Verschiebenut (113; 113') bewegt, in der Lage zu sein, das Verriegelungselement (150) in der ersten Position, der zweiten Position und der dritten Position zu halten, indem er nacheinander in eine Mehrzahl von Vertiefungen (117, 118, 119), welche in der Verschiebenut (113; 113') bereitgestellt sind, eingreift.

2. Die Vorrichtung des DIN-Tragschiene-Montagetyps (100; 100') gemäß Anspruch 1, wobei:

der Federabschnitt (154) eingerichtet ist, um in die Vertiefung (117, 118, 119) einzugreifen oder davon gelöst zu sein, während er elastisch in einer Tiefenrichtung des Gehäuses (110; 110') gebogen ist.

3. Die Vorrichtung des DIN-Tragschiene-Montagetyps (100') gemäß irgendeinem der Ansprüche 1 bis 2, wobei:

 eine Mehrzahl von Verschiebenuten (113') parallel zueinander an der Fläche (mB') des Gehäuses (110; 110') bereitgestellt ist; und das Verriegelungselement (150) einzeln in der Mehrzahl von Verschiebenuten (113') bereitgestellt ist.

Revendications

1. Dispositif du type à monter sur un rail DIN (100 ; 100') configuré de façon à pouvoir être monté de manière amovible sur un rail DIN (200 ; 200') ; le dispositif du type à monter sur un rail DIN (100 ; 100') comprenant :

 un logement (110 ; 110') ;
 une rainure de rail (112; 112') disposée le long de la direction de la largeur du logement (110 ; 110') sur une face (111B ; 111B') du logement (110 ; 110'), et susceptible de se fixer sur un rail DIN (200 ; 200') ;
 une rainure de dispositif coulissant (113 ; 113') disposée le long de la direction de la largeur de la rainure de rail (112 ; 112') sur la face (111B ; 111B') du logement (110 ; 110') ; et un élément de verrouillage (150) configuré de façon à coulisser de manière à se déplacer en avant et en arrière par rapport à la rainure de rail (112 ; 112') dans la rainure de dispositif coulissant (113 ; 113'), et de façon à pouvoir maintenir un état de fixation entre la rainure de rail (112 ; 112') et le rail DIN (200 ; 200') en mettant en prise une extrémité une face (151) avec une partie mise en prise (201D) du rail DIN (200 ; 200') fixée dans la rainure de rail (112 ; 112'), dans lequel :

 l’élément de verrouillage (150) est configuré de façon à pouvoir se déplacer vers une première position où l’extrémité une face (151) fait saillie à partir de la rainure de dispositif coulissant (113 ; 113') dans la rainure de rail (112 ; 112'), et l’extrémité autre face (152) fait saillie hors du logement (110 ; 110'), et vers une deuxième position où l’extrémité une face (151) fait saillie à partir de la rainure de dispositif coulissant (113 ; 113') dans la rainure de rail (112 ; 112') et l’extrémité autre face (152) est disposée dans la rainure de dispositif coulissant (113 ; 113'), est configuré de façon à pouvoir maintenir l’état de fixation entre la rainure de rail (112 ; 112') et le rail DIN (200 ; 200') en mettant en prise l’extrémité une face (151) avec la partie mise en prise (201D) du rail DIN (200 ; 200') au niveau de la première position, et est configuré de façon à pouvoir se déplacer vers la deuxième position seulement lorsque le rail DIN (200 ; 200') n’est pas fixé dans la rainure de rail (112 ; 112') ; dans lequel :

 l’élément de verrouillage (150) est configuré de façon à pouvoir se déplacer vers une troisième position où l’extrémité une face (151) est disposée dans la rainure de dispositif coulissant (113 ; 113'), et l’extrémité autre face (152) fait saillie hors du logement (110 ; 110'), et à pouvoir se déplacer entre la troisième position et la deuxième position, caractérisé en ce que :

 l’élément de verrouillage (150) comprend au moins une partie ressort (154) configurée de façon à pouvoir maintenir, lorsque l’élément de verrouillage (150) se déplace dans la rainure de dispositif coulissant (113 ; 113'), l’élément de verrouillage (150) au niveau de la première position, de la deuxième position, et de la troisième position en venant en prise de manière séquentielle avec une pluralité de renforcements (117, 118, 119)
disposés dans la rainure de dispositif coulissant (113 ; 113').

2. Dispositif du type à monter sur un rail DIN (100; 100') selon la revendication 1, dans lequel :

la partie ressort (154) est configurée de façon à venir en prise avec le renflement (117, 118, 119), ou à se dégager de celui-ci, tout en étant pliée de manière élastique dans la direction de la profondeur du logement (110 ; 110').

3. Dispositif du type à monter sur un rail DIN (100; 100') selon la revendication 1 ou la revendication 2, dans lequel :

une pluralité de rainures de dispositif coulissant (113') sont prévues en parallèle sur la face (111B') du logement (110') ; et l'élément de verrouillage (150) est prévu de manière individuelle dans la pluralité de rainures de dispositif coulissant (113').
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP H0432584 U [0005]
- JP H0487692 U [0005]
- JP 2003298252 A [0005]
- JP 11103181 A [0005]