Production of hydrocarbons

A process for producing hydrocarbons and, optionally, oxygenates of hydrocarbons is provided. A synthesis gas comprises hydrogen, carbon monoxide and N-containing contaminants selected from the group consisting of HCN, NH₃, NO, RₙNH₃₋ₓ, R¹-CN and heterocyclic compounds containing at least one nitrogen atom as a ring member of a heterocyclic ring of the heterocyclic compound. The N-containing contaminants constitute, in total, at least 100 vppb but less than 1 000 000 vppb of the synthesis gas. The synthesis gas is contacted at an elevated temperature and an elevated pressure, with a particulate supported Fischer-Tropsch synthesis catalyst. The catalyst comprises a catalyst support, Co in catalytically active form supported on the catalyst support, and a dopant selected from the group consisting of platinum (Pt), palladium (Pd), ruthenium (Ru) and/or rhenium (Re). The dopant level is expressed by a formula. Hydrocarbons and, optionally, oxygenates of hydrocarbons are obtained.
THIS INVENTION relates to the production of hydrocarbons. More particularly, it relates to a process for producing hydrocarbons and, optionally, oxygenates of hydrocarbon.

Hydrocarbon synthesis from hydrogen and carbon monoxide in the presence of a Fischer-Tropsch catalyst is commonly known as Fischer-Tropsch synthesis (FTS). FTS forms part of Gas-To-Liquids, Coal-To-Liquids, and Biomass-To-Liquids processes in which natural gas, coal, and biomass respectively are usually converted by means of a three step process into liquid hydrocarbons. The three process steps are normally (i) production of synthesis gas (or ‘syngas’) comprising a mixture of hydrogen and carbon monoxide from natural gas, coal, or biomass, (ii) conversion of the syngas into a waxy syncrude by means of FTS, and (iii) a hydrotreating step to convert the waxy syncrude into liquid transportation fuels such as diesel, petrol, jet fuel, as well as naphtha. As the aim of the FTS process is to make long chain hydrocarbons, CH₄ is unwanted and the CH₄ selectivity should hence be as low as possible. Furthermore, the C₅⁺ selectivity should be as high as possible to maximize the long chain hydrocarbon production. Normally, a lower CH₄ selectivity translates into a higher C₅⁺ selectivity.

When the FTS process is a so-called low temperature Fischer-Tropsch process, the conversion of the syngas into syncrude is normally effected at a relatively low temperature of from 180°C to 270°C, and can be carried out in either a fixed bed reactor or a slurry phase reactor as a three phase process comprising a solids phase (catalyst), a gaseous phase (syngas and gaseous products) and a liquid phase (liquid products). The Fischer-Tropsch catalyst is then normally a particulate supported catalyst comprising an active catalyst component such as Co supported on a catalyst support. The catalyst usually also includes a dopant in the form of platinum (Pt), palladium (Pd), rhenium (Re) or rhenium (Re) which enhances the reduction of the active catalyst component during activation of the catalyst and thus increasing the activity of the catalyst. Platinum as a dopant is usually present in the catalyst at levels of at least 0.0025g Pt/g active catalyst component.

Syngas used on laboratory scale is usually clean syngas which is free of unwanted contaminants, and it is this syngas that is used in most experimental work for FTS. However, commercially available syngas often contains some unwanted contaminants such as sulphur containing compounds, for example mercaptans, dihydrogen sulphide and COS, as well as nitrogen containing compounds, for example, ammonia (NH₃), hydrogen cyanide (HCN) and nitrogen oxide (NO). Generally, all these sulphur and nitrogen containing compounds have a negative impact on the FTS performance of supported cobalt catalysts since they deactivate the catalyst, resulting in loss of catalyst activity.

As regards nitrogen containing contaminants, NH₃ and HCN need to be removed to levels of substantially no NH₃ and HCN as taught by, for example, US 7022742, or at least to NH₃ and HCN levels of less than 100vppb (volume parts per billion), preferably less than 10vppb, as taught by, for example, US 6284807 and US 2007/0158241. The removal of NH₃ and HCN improves the lifetime of the supported cobalt catalysts, and thus reduces that part of the catalyst deactivation attributable to NH₃ and HCN poisoning. Purification of the syngas prior to FTS is, however, costly.

On the other hand, the Applicant is also aware of WO 2005/071044 which describes a FTS process using a syngas that contains 100-3000vppb of HCN and/or NH₃. In the process of WO 2005/071044, the cobalt catalyst activity decreases by 35% to 50% due to HCN and NH₃. The reduced catalyst activity is counteracted by increasing the FTS temperature. However, increasing the FTS temperature normally leads to an unwanted increase in the CH₄ selectivity.

Surprisingly, it has now been found that, in a process for producing hydrocarbons by means of FTS, high levels of nitrogen contaminants can be tolerated while maintaining good catalyst activity and low catalyst CH₄ selectivity, thereby avoiding the cost of having to purify the syngas to remove all of, or substantially all of, such nitrogen contaminants. This is achieved by using a catalyst with dopant levels as specified below.

Thus, according to a first aspect of the invention, there is provided a process for producing hydrocarbons and, optionally, oxygenates of hydrocarbons, which process includes contacting a synthesis gas comprising hydrogen, carbon monoxide and N-containing contaminants selected from the group consisting of HCN, NH₃, NO, R,NH₃₃, where R is an organic group and x is 1, 2 or 3, with R being the same or different when x is 2 or 3, R'-CN where R' is an organic group, and heterocyclic compounds containing at least one nitrogen atom as a ring member of a heterocyclic ring of the heterocyclic compound, with the N-containing contaminants constituting, in total, at least 100vppb but less than 1 000 000vppb of the synthesis gas, at a temperature of at least 180°C and a pressure of at least 10 bar(a) (1000 kPa(a)), with a particulate supported Fischer-Tropsch synthesis catalyst which comprises a catalyst support, Co in catalytically active form supported on the catalyst support, and a dopant selected from the group consisting of platinum (Pt), palladium (Pd), rhenium (Ru), rhenium (Re) and a mixture of two or more thereof at a dopant level expressed by formula 1:

\[
\frac{\nu}{0.024} \text{ Ru} + \frac{x}{0.0030} \text{ Pd} + \frac{\nu}{0.0025} \text{ Pt} + \frac{z}{0.1} \text{ Re} \leq a
\]

where
w is expressed as g Ru/g Co;
y is expressed as g Pt/g Co;
z is expressed as g Re/g Co; and

\[0 \leq a < 1, \]

to obtain hydrocarbons and, optionally, oxygenates of hydrocarbons, by means of Fischer-Tropsch synthesis reaction of the hydrogen with the carbon monoxide.

[0009] Thus, in one embodiment of the invention, a can be 0. In other words, the catalyst then contains no dopant. It was surprisingly found that when the syngas contains significant quantities of N-containing contaminants, the catalyst can thus even contain no dopant and still retain satisfactory activity. Even more surprisingly, the activity of the catalyst without dopant increases when the syngas contains significant quantities of N-containing contaminants, compared to a clean syngas.

[0010] However, in another embodiment of the invention, a may be larger than 0. In this embodiment, a may preferably be at least 0.07. More preferably, a may be at least 0.15. In some cases, a may be at least 0.30. Thus, it was also surprisingly found that when the syngas contains significant levels of N-containing contaminants, a reduction in the catalyst dopant level, as compared to what is conventionally required, is possible, while still retaining catalyst activity, and, importantly, achieving low CH₄ selectivity.

[0011] As indicated hereinafore, a<1. Preferably, a<0.93. More preferably, a<0.8. Still more preferably, a<0.65. When the catalyst contains only Ru as dopant, w is thus less than 0.024g Ru/g Co. Preferably, w<0.022g Ru/g Co. More preferably, w<0.019g Ru/g Co. Still more preferably, w<0.015g Ru/g Co. In a particular embodiment, w<0.01g Ru/g Co. When the catalyst contains only Pd as dopant, \(x \) is thus less than 0.0030g Pd/g Co. Preferably, \(x<0.0028g \) Pd/g Co. More preferably, \(x<0.0026g \) Pd/g Co. When the catalyst contains only Pt as dopant, \(y \) is thus less than 0.0025g Pt/g Co. Preferably, \(y<0.0023g \) Pt/g Co. More preferably, \(y<0.0020g \) Pt/g Co. Still more preferably, \(y<0.0019g \) Pt/g Co. When the catalyst contains only Re as dopant, \(z \) is thus less than 0.1g Re/g Co. Preferably, \(z<0.093g \) Re/g Co. More preferably, \(z<0.080g \) Re/g Co. Still more preferably, \(z<0.065g \) Re/g Co, and even \(z<0.055g \) Re/g Co. It will be appreciated that the above dopant levels may also apply where more than one dopant is used, provided that formula 1 is complied with.

[0012] The syngas may contain, in total, at least 200pppb N-containing contaminants. Preferably, the syngas contains at least 250pppb N-containing contaminants. More preferably, the syngas contains at least 500pppb N-containing contaminants. Typically, the syngas contains at least 1000pppb N-containing contaminants. Preferably, the syngas contains not more than 100,000pppb N-containing contaminants. More preferably, the syngas contains not more than 20,000pppb N-containing contaminants. Typically, the syngas may contain not more than 10,000pppb N-containing contaminants. For example, in one embodiment of the invention, the syngas may contain about 2000pppb N-containing contaminants. However, in another embodiment, the syngas may contain about 5000pppb N-containing contaminants. Typically, when the syngas is that of a gas-to-liquid process, it contains HCN and NH₃ as N-containing contaminants; when it is that of a coal-to-liquids process, it contains NH₃ and NO as N-containing contaminants.

[0013] Preferably, R in RₓNH₃-x is a hydrocarbyl group and/or an oxygenated hydrocarbyl group. More preferably, R in RₓNH₃-x is an alkyl group and/or an alcohol. Preferably, \(x \) is 1 or 2. In a preferred embodiment of the invention RₓNH₃-x is dipropylamine (CH₃CH₂CH₂)₂NH. Alternatively, RₓNH₃-x can be diethanolamine or methyl-diethanolamine.

[0014] Preferably, R is in R₁-CN is a hydrocarbyl group. More preferably, R in R₁-CN is an alkyl group. In one preferred embodiment of the invention, R₁ is methyl.

[0015] The heterocyclic compounds may include oxygen containing groups. Examples of such oxygen containing compounds and non-oxygen containing compounds are 4-piperidineoctophenone (heterocyclic with oxygen), 1,4-bipiperidine (heterocyclic, no oxygen), 1-piperidinopropionitile (monocyclic), and 3-piperidino-1,2-propanediol (monocyclic with oxygen).

[0016] The syngas may be substantially free of phosphorous containing compounds, especially one or more phosphines.

[0017] The process according to the invention may, as indicated hereinafore, optionally also produce oxygenates of hydrocarbons. Preferably, the Fischer-Tropsch synthesis (‘FTS’) process is carried out for a period of more than 24 hours. Preferably, the FTS process is a three-phase Fischer-Tropsch process. More preferably, the FTS process is a slurry bed Fischer-Tropsch process for producing a wax product.

[0018] The contacting of the synthesis gas or syngas with the particulate supported FTS catalyst may thus be effected in a fixed bed reactor, in a slurry bed reactor, or even in a fixed fluidized bed reactor. However, a three-phase slurry bed reactor is preferred.

[0019] The temperature at which the contacting of the synthesis gas with the catalyst is effected may be from 180°C to 250°C. Typically, the contacting temperature may be about 210°C-240°C.

[0020] The pressure at which the contacting is effected may be from 10 bar(a) (1000kPa(a)) to 70 bar(a) (7000kPa(a)).
In a preferred embodiment of the invention, the modifying component decreases the dissolution of the catalyst (especially during Fischer-Tropsch synthesis). Such an aqueous environment may include an aqueous acid solution support in an aqueous environment and/or suppresses the susceptibility of the catalyst support to hydrothermal attack. The modifying component, when present, may comprise a component that causes one or more of the following:

(i) decreases the dissolution of the catalyst support in an aqueous environment;
(ii) suppresses the susceptibility of the catalyst support to hydrothermal attack (especially during Fischer-Tropsch synthesis);
(iii) increases the pore volume of the catalyst support;
(iv) increases the strength and/or attrition and/or abrasion resistance of the catalyst support.

In a preferred embodiment of the invention, the modifying component decreases the dissolution of the catalyst support in an aqueous environment and/or suppresses the susceptibility of the catalyst support to hydrothermal attack (especially during Fischer-Tropsch synthesis). Such an aqueous environment may include an aqueous acid solution and/or an aqueous neutral solution, especially such an environment encountered during an aqueous phase impregnation catalyst preparation step. Hydrothermal attack is considered to be the sintering of the catalyst support (for example aluminium oxide) during hydrocarbon synthesis, especially Fischer-Tropsch synthesis, due to exposure to high temperature and water.

The modifying component may include or consist of Si, Zr, Co, Ti, Cu, Zn, Mn, Ba, Ni, Na, K, Ca, Sn, Cr, Fe, Li, Ti, Sr, Ga, Sb, V, Hf, Th, Ce, Ge, U, Nb, Ta, La and mixtures of one or more thereof. More particularly, the modifying component may be selected from the group consisting of Si; Zr; Cu; Zn; Mn; Ba; La; Ni and mixtures of two or more thereof. Preferably, the modifying component is selected from the group consisting of Si and Zr. In a preferred embodiment of the invention, the modifying component is Si.

In one preferred embodiment of the invention, the catalyst support may comprise a catalyst support basis, which optionally includes a modifying component selected from Si and Zr, and with the catalyst support basis being selected from the group consisting of alumina in the form of one or more aluminium oxides; silica (SiO2) and titania (TiO2). Preferably, the catalyst support basis is the alumina in the form of one or more aluminium oxides. It preferably then includes a modifying component which is preferably selected from Si and Zr, more preferably Si. In another preferred embodiment of the invention, the catalyst support may be selected from alumina in the form of one or more aluminium oxides, silica (SiO2), titania (TiO2), magnesia (MgO), silica modified aluminium oxide, and mixtures thereof. Preferably, the support is then a silica modified aluminium oxide, for example the product obtainable under the trademark Siralox from Sasol Germany. Siralox is a spray-dried silica containing aluminium oxide support. The silica modified aluminium oxide support may be the product described in US 5,045,519 which is incorporated herein by reference.

The one or more aluminium oxides may be selected from the group including or, preferably, consisting of, gamma alumina, delta alumina, theta alumina and a mixture of two or more thereof. Preferably, the group includes, or preferably, consists of gamma alumina, delta alumina and a mixture of gamma alumina and delta alumina. The aluminium oxide catalyst support may be that obtainable under the trademark Puralox, preferably Puralox SCCa2/150 from SASOL Germany GmbH. Puralox SCCa2/150 (trademark) is a spray-dried aluminium oxide support consisting of a mixture of gamma and delta aluminium oxide.

The aluminium oxide is preferably a crystalline compound which can be described by the formula Al2O3.xH2O where 0 < x > 1. The term "aluminium oxide" thus excludes Al(OH)3, AlO(OH), but includes compounds such as gamma, delta and theta alumina.

In one embodiment of the invention, a catalyst support in the form of one or more aluminium oxides or a silica modified aluminium oxide is preferred over supports such as silica and titania, since it is believed that such supports provide a much more attrition resistant catalyst than do silica and titania supports. The catalyst support in the form of one or more aluminium oxides or a silica modified aluminium oxide may also include La. It is believed that La improves attrition resistance.
In one embodiment of the invention, a catalyst support in the form of one or more aluminium oxides or a silica modified aluminium oxide may include titanium, preferably in an amount, expressed as elemental titanium, of at least 500 ppm by weight. Preferably, the titanium, expressed as elemental titanium, may be present in the catalyst support from about 1000 ppm to about 2000 ppm by weight. It is believed that the addition of the titanium increases the activity of a catalyst formed from such a support, especially in the case of a cobalt FT catalyst, particularly when no noble metal promoters and preferably no Re or Te promoters are present in the catalyst. Preferably, the titanium is then included in the internal structure of the support. It is then also preferred that no titanium be deposited onto the support outer surfaces. It is believed that the addition of this titanium in the support also improves the attrition resistance of a catalyst formed from such a support.

The catalyst support may be a porous support.

In one embodiment of the invention, the catalyst support may comprise porous particles coated with carbon. In an alternative embodiment of the invention, the porous particles may be free of such a carbon coating.

The catalyst may thus comprise a silicon modified aluminium oxide catalyst support, with the cobalt being in its metallic state so as to be in its catalytically active form.

More specifically, the modified catalyst support may be that obtained by contacting a silicon precursor, eg an organic silicon compound such as tetra ethoxy silane ('TEOS') or tetra methoxy silane ('TMOS') with the catalyst support, eg by means of impregnation, precipitation or chemical vapour deposition, to obtain a silicon-containing modified catalyst support; and calcining the silicon-containing modified catalyst support, eg in a rotary calciner, at a temperature from 100°C to 800°C, and for a period of from 1 minute to 12 hours. Preferably, the calcination temperature may be from 450°C to 550°C; the calcination period is preferably from 0.5 hours to 4 hours.

The process may include subjecting the hydrocarbons and, if present, the oxygenates of hydrocarbons, to hydroprocessing, thereby to convert them to liquid fuels and/or to chemicals.

According to a second aspect of the present invention, there is provided the use of a particulate supported Fischer-Tropsch synthesis catalyst which comprises a catalyst support, Co in catalytically active form supported on the catalyst support, and a dopant selected from the group consisting of platinum (Pt), palladium (Pd), ruthenium (Ru), rhenium (Re) and a mixture of two or more thereof at a dopant level expressed by formula 1:

\[
\frac{w}{0.024} Ru + \frac{x}{0.0030} Pd + \frac{y}{0.0025} Pt + \frac{z}{0.1} Re \leq a
\]

where

\(w\) is expressed as g Ru/g Co;
\(x\) is expressed as g Pd/g Co;
\(y\) is expressed as g Pt/g Co;
\(z\) is expressed as g Re/g Co; and
\(0 < a \leq 1\).

In a process for producing hydrocarbons and, optionally, oxygenates of hydrocarbons, which process includes contacting a synthesis gas comprising hydrogen, carbon monoxide and N-containing contaminants selected from the group consisting of HCN, NH₃, NO, RₙNH₃₋ₓ where R is an organic group and x is 1, 2 or 3, with R being the same or different when x is 2 or 3, and R'CN where R' is an organic group, and heterocyclic compounds containing at least one nitrogen atom as a ring member of a heterocyclic ring of the heterocyclic compound, with the N-containing contaminants constituting, in total, at least 100vppb but less than 1 000 000vppb of the synthesis gas, at a temperature of at least 180°C and a pressure of at least 10 bar(a) (1000 kPa(a)), with the catalyst, to obtain hydrocarbons by means of Fischer-Tropsch synthesis reaction of the hydrogen with the carbon monoxide.

The catalyst, synthesis gas, Fischer-Tropsch synthesis, and the contacting of the catalyst with the synthesis gas may be as hereinbefore described with reference to the first aspect of the invention.

Preferably the catalyst is used in the process in order to reduce methane selectivity of the Fischer-Tropsch synthesis ('FTS') reaction.

The invention will now be described in more detail with reference to the following non-limiting examples.

Examples 1-5 (using Pt as dopant)

Several Fischer-Tropsch synthesis ("FTS") catalysts containing 30g Co/100g support (1.5g Si/100g Puralox SCCa2/150) and promoted with Pt were prepared on a particulate modified 1.5g Si/100g Puralox SCCa2/150 (trademark) pre-shaped support using aqueous slurry phase impregnation and drying, followed by direct fluidised bed calcination in air, and reduction in hydrogen.

Catalyst Examples 1-5 contained different levels of Pt reduction promoter:
Example 1 (invention): 0g Pt/g Co
Example 2 (invention): 0.00083g Pt/g Co
Example 2A (invention): 0.0010g Pt/g Co
Example 3 (comparative): 0.0025g Pt/g Co
Example 4 (comparative): 0.0050g Pt/g Co
Example 5 (comparative): 0.0167g Pt/g Co

[0045] In particular, the particulate supported FTS catalyst of Example 3 was prepared as follows:

43.70g Co(NO$_3$)$_2$.6H$_2$O were dissolved in 40ml distilled water, and 0.024g of Pt(NH$_3$)$_4$.(NO$_3$)$_2$ (dissolved in 10ml distilled water) were added to this solution, whereafter 50.0g of the 1.5g Si/100g Puralox SCCa 2/150 modified pre-shaped support were added to the solution. Aqueous slurry phase impregnation and vacuum drying were effected, while increasing the temperature from 60°C to 85°C. This vacuum dried intermediate was directly subjected to a fluidized bed calcination step using a continuous air flow of 1.7dm3/min, while increasing the temperature from 25°C to 250°C at 1°C/min and keeping it at 250°C for 6 hours. 50.0g of this intermediate calcined material was subjected to the following 2nd cobalt/platinum impregnation and calcination step: 23.51 g Co(NO$_3$)$_2$.6H$_2$O was dissolved in 40ml distilled water and 0.039g of Pt(NH$_3$)$_4$.(NO$_3$)$_2$ (dissolved in 10ml distilled water) were added to this solution, whereafter 50.0g of the ex 1st cobalt/platinum impregnated and calcined intermediate was added. Aqueous slurry phase impregnation and vacuum drying were effected, while increasing the temperature from 60°C to 85°C. This vacuum dried intermediate was directly subjected to a fluidized bed calcination step, according to the following procedure using a continuous air flow of 1.7 dm3/min, while increasing the temperature from 25°C to 250°C at 1°C/min and keeping it at 250°C for 6 hours.

[0046] This calcined catalyst intermediate or precursor was reduced at 1 bar (100 kPa) in pure H$_2$ (space velocity = 2000ml$_g$ H$_2$/g catalyst/h) whilst the temperature was increased from 25°C to 425°C at a rate of 1°C/min whereafter the temperature was kept constant at this temperature of 425°C for 16 hours. This provided a particulate supported FTS catalyst which comprises alumina in the form of one or more aluminium oxides and Co metal that is in the catalytically active form of cobalt, supported on the catalyst support. The dopant in this case is Pt.

[0047] The catalysts of Examples 1, 2, 2A, 3, 4, and 5 were prepared in the same manner, apart from adjusting the amount of platinum precursor to ensure that the correct composition was obtained. The catalysts of Examples 1, 2 and 2A are according to the invention, while the catalysts of Examples 3, 4, and 5 are comparative.

Example 6 (using clean syngas)

[0048] The catalysts of Examples 1-5 were tested in a fixed bed high throughput reactor system, using FTS inlet conditions of about 3.0 bar(a) (300 kPa(a)) H$_2$O, 6.3 bar(a) (630 kPa(a)) H$_2$ and 4.5 bar(a) (450 kPa(a)) CO, having a total pressure of 15 bar(a) (1500 kPa(a)) and obtaining outlet conditions of around 4.4 bar(a) (440 kPa(a)) H$_2$O, 4.6 bar(a) (460 kPa(a)) H$_2$ and 3.9 bar(a) (390 kPa(a)) CO, which was achieved with a syngas conversion of around 25%. Reaction temperatures of 230°C and 210°C were tested. The syngas feed was clean and did not contain any nitrogen containing compounds.

[0049] After five days of operation, the relative activity and CH$_4$ selectivity data obtained were as reported in Tables 1 and 2. CH$_4$ selectivity data are a good indicator for total hydrocarbon and C$_5$+ selectivity as they are normally directly linked, i.e. the lower the CH$_4$ selectivity the higher the C$_5$+ selectivity is.

[0050] The relative activity was calculated using a generic cobalt Fischer-Tropsch kinetic equation and comparing each tested catalyst with an internal reference catalyst.

Example 7 (with HCN in the syngas)

[0051] The catalysts of Examples 1-5 were tested in a fixed bed high throughput reactor system, using FTS inlet conditions of about 3.0 bar(a) (300 kPa(a)) H$_2$O, 6.3 bar(a) (630 kPa(a)) H$_2$ and 4.5 bar(a) (450 kPa(a)) CO, having a total pressure of 15 bar(a) (1500 kPa(a)) and obtaining outlet conditions of around 4.4 bar(a) (440 kPa(a)) H$_2$O, 4.6 bar(a) (460 kPa(a)) H$_2$ and 3.9 bar(a) (390 kPa(a)) CO. Reaction temperatures of 230°C and 210°C were tested. The syngas feed contained 5000vppb HCN.

[0052] After five days of operation, the relative activity and CH$_4$ selectivity data obtained were as reported in Table 1.
Table 1: Relative activity and CH₄ selectivity after five days of FTS at 230°C for Examples 1-5 using (i) a clean synthesis gas feed, not containing any N-containing compounds and (ii) a synthesis gas feed containing 5000vppb HCN. Error in activity is ± 0.1 units and error in CH₄ selectivity is ± 0.1 percentage point.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Pt level (g Pt/g Co)</th>
<th>Relative activity (clean gas; no N contaminant)</th>
<th>Relative activity (5000vppb HCN)</th>
<th>% CH₄ (C atom %) (clean gas; no N contaminant)</th>
<th>% CH₄ (C atom %) (5000vppb HCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>0</td>
<td>1.8</td>
<td>2.4</td>
<td>6.3</td>
<td>4.6</td>
</tr>
<tr>
<td>Example 2</td>
<td>0.00083</td>
<td>3.8</td>
<td>2.9</td>
<td>5.7</td>
<td>5.0</td>
</tr>
<tr>
<td>Example 3</td>
<td>0.0025</td>
<td>4.0</td>
<td>2.8</td>
<td>6.0</td>
<td>5.1</td>
</tr>
<tr>
<td>Example 4</td>
<td>0.0050</td>
<td>4.1</td>
<td>2.7</td>
<td>6.0</td>
<td>5.3</td>
</tr>
<tr>
<td>Example 5</td>
<td>0.0167</td>
<td>4.1</td>
<td>2.6</td>
<td>6.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Example 8 (with NH₃ in the syngas)

The catalysts of Examples 1-5 were tested in a fixed bed high throughput reactor system, using FTS inlet conditions of about 3.0 bar(a) (300 kPa(a)) H₂O, 6.3 bar(a) (630 kPa(a)) H₂ and 4.5 bar(a) (450 kPa(a)) CO, and obtaining outlet conditions of around 4.4 bar(a) (440 kPa(a)) H₂O, 4.6 bar(a) (460 kPa(a)) H₂ and 3.9 bar(a) (390 kPa(a)) CO, which was achieved with a syngas conversion of around 25%. Reaction temperatures of 230°C and 210°C were used. The syngas feed contained 5000vppb NH₃.

After five days of operation, the relative activity and CH₄ selectivity data obtained were as reported in Table 2.

Table 2: Relative activity and CH₄ selectivity after five days of FTS at 230°C for Examples 1-5 using (i) a clean synthesis gas feed, not containing any N-containing compounds (Example 6) and (ii) a synthesis gas feed containing 5000vppb NH₃. Error in activity is ± 0.1 units and error in CH₄ selectivity is ± 0.1 percentage point.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Pt level (g Pt/g Co)</th>
<th>Relative activity (clean gas; no N contaminant)</th>
<th>Relative activity (5000vppb NH₃)</th>
<th>% CH₄ (C atom %) (clean gas; no N contaminant)</th>
<th>% CH₄ (C atom %) (5000vppb NH₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>0</td>
<td>1.8</td>
<td>2.8</td>
<td>6.3</td>
<td>4.8</td>
</tr>
<tr>
<td>Example 2</td>
<td>0.00083</td>
<td>3.8</td>
<td>3.2</td>
<td>5.7</td>
<td>5.2</td>
</tr>
<tr>
<td>Example 3</td>
<td>0.0025</td>
<td>4.0</td>
<td>3.1</td>
<td>6.0</td>
<td>5.3</td>
</tr>
<tr>
<td>Example 4</td>
<td>0.0050</td>
<td>4.1</td>
<td>2.9</td>
<td>6.0</td>
<td>5.5</td>
</tr>
<tr>
<td>Example 5</td>
<td>0.0167</td>
<td>4.1</td>
<td>2.8</td>
<td>6.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Example 9 (with diethanolamine (DEA) in the syngas)

The catalyst of Example 2A (invention, 0.001 g Pt/g Co) was tested in a fixed bed high throughput reactor system, using FTS inlet conditions of about 3.0 bar(a) (300 kPa(a)) H₂O, 6.3 bar(a) (630 kPa(a)) H₂ and 4.5 bar(a) (450 kPa(a)) CO, having a total pressure of 15 bar(a) (1500 kPa(a)) and obtaining outlet conditions of around 4.4 bar(a) (440 kPa(a))...
kPa(a)) H_2O, 4.6 bar(a) (460 kPa(a)) H_2 and 3.9 bar(a) (390 kPa(a)) CO. Reaction temperatures of 230°C and 210°C were tested. The syngas feed contained (i) 100vppb DEA and (ii) 1000vppb DEA.

After five days of operation, the relative activity and CH$_4$ selectivity data obtained were as reported in Table 3.

Table 3: Relative activity and CH$_4$ selectivity after 5 days of FTS at 230°C for Example 2A using (i) a clean synthesis gas feed, not containing any N-containing compounds; (ii) a synthesis gas feed containing 100vppb DEA; and (iii) a synthesis gas feed containing 1000vppb DEA. Error in activity is ±0.1 units and error in CH$_4$ selectivity is ±0.1 percentage point.

<table>
<thead>
<tr>
<th>DEA level in syngas feed</th>
<th>Relative activity</th>
<th>% CH$_4$ (C atom %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0vppb (clean gas)</td>
<td>3.9</td>
<td>5.8</td>
</tr>
<tr>
<td>100vppb</td>
<td>3.9</td>
<td>5.7</td>
</tr>
<tr>
<td>1000vppb</td>
<td>3.5</td>
<td>5.3</td>
</tr>
</tbody>
</table>

It can be concluded from Table 3 that there is no notable activity loss when 100vppb DEA is present, but indeed some activity loss when 1000vppb DEA is present. There is a small selectivity gain in lower methane produced when 100vppb DEA is present, but a more notable gain in methane produced when 1000vppb DEA is present.

Example 10 (with methyl-diethanolamine (mDEA) in the syngas)

The catalyst of Example 2A (invention, 0.001 g Pt/g Co) was tested in a fixed bed high throughput reactor system, using FTS inlet conditions of about 3.0 bar(a) (300 kPa(a)) H_2O, 6.3 bar(a) (630 kPa(a)) H_2 and 4.5 bar(a) (450 kPa(a)) CO, having a total pressure of 15 bar(a) (1500 kPa(a)) and obtaining outlet conditions of around 4.4 bar(a) (440 kPa(a)) H_2O, 4.6 bar(a) (460 kPa(a)) H_2 and 3.9 bar(a) (390 kPa(a)) CO. Reaction temperatures of 230°C and 210°C were tested. The syngas feed contained (i) 100vppb mDEA and (ii) 1000vppb mDEA.

After five days of operation, the relative activity and CH$_4$ selectivity data obtained were as reported in Table 4.

Table 4: Relative activity and CH$_4$ selectivity after 5 days of FTS at 230°C for Example 2A using (i) a clean synthesis gas feed, not containing any N-containing compounds; (ii) a synthesis gas feed containing 100vppb mDEA; and (iii) a synthesis gas feed containing 1000vppb mDEA. Error in activity is ±0.1 units and error in CH$_4$ selectivity is ±0.1 percentage point.

<table>
<thead>
<tr>
<th>mDEA level in syngas feed</th>
<th>Relative activity</th>
<th>% CH$_4$ (C atom %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0vppb (clean gas)</td>
<td>3.9</td>
<td>5.8</td>
</tr>
<tr>
<td>100vppb</td>
<td>3.8</td>
<td>5.7</td>
</tr>
<tr>
<td>1000vppb</td>
<td>3.2</td>
<td>5.1</td>
</tr>
</tbody>
</table>

It can be concluded from Table 4 that there is a small activity loss when 100vppb mDEA is present, but indeed greater activity loss when 1000vppb mDEA is present. There is a small selectivity gain in lower methane produced when 100vppb mDEA is present, but a more notable gain in methane produced when 1000vppb mDEA is present.

Example 11 (with CH$_3$CN in the syngas)

The catalysts of Examples 2A and 3 were tested in a fixed bed high throughput reactor system, using FTS inlet conditions of about 3.0 bar(a) (300 kPa(a)) H_2O, 6.3 bar(a) (630 kPa(a)) H_2 and 4.5 bar(a) (450 kPa(a)) CO, having a total pressure of 15 bar(a) (1500 kPa(a)) and obtaining outlet conditions of around 4.4 bar(a) (440 kPa(a)) H_2O, 4.6 bar (a) (460 kPa(a)) H_2 and 3.9 bar(a) (390 kPa(a)) CO. Reaction temperatures of 230°C and 210°C were tested. The syngas feed contained (i) 500vppb CH$_3$CN; (ii) 1000vppb CH$_3$CN; and (iii) 5000vppb CH$_3$CN.

After five days of operation, the relative activity and CH$_4$ selectivity data obtained were as reported in Table 5.
It can be concluded from Table 5 that there is a substantial activity loss when 500vppb CH$_3$CN is present, but then it seems to stabilize out when the CH$_3$CN level is increased. There is also a substantial selectivity gain in lower methane when 500vppb CH$_3$CN is present, which also seems to stabilize out when higher levels are present. The selectivity gain is larger for Example 2A, which contains less Pt than for Example 3, which contains more Pt.

Example 12 (using clean syngas)

The catalysts of Examples 2A and 3 were tested in a slurry-phase micro-reactor system, using FTS inlet conditions of about 0 bar(a) (0 kPa(a)) H$_2$O, 9.4 bar(a) (940 kPa(a)) H$_2$ and 5.7 bar(a) (570 kPa(a)) CO, having a total pressure of 18 bar(a) (1800 kPa(a)) and obtaining outlet conditions of around 4.5 bar (a) (450 kPa(a)) H$_2$O, 4.3 bar(a) (430 kPa(a)) H$_2$ and 3.8 bar(a) (380 kPa(a)) CO, which was achieved with a syngas conversion of around 63%. A reaction temperature of 230°C was used. The syngas feed was clean and did not contain any nitrogen containing compounds. After 30 days of operation, the relative activity and CH$_4$ selectivity data obtained were as reported in Table 6. As indicated herebefore, CH$_4$ selectivity data are a good indicator for total hydrocarbon and C$_5$+ selectivity as they are normally directly linked, i.e. the lower the CH$_4$ selectivity the higher the C$_5$+ selectivity is.

Example 13 (with HCN in the syngas)

The catalysts of Examples 2A and 3 were tested in a slurry-phase micro-reactor system, using FTS inlet conditions of about 0 bar(a) (0 kPa(a)) H$_2$O, 9.4 bar(a) (940 kPa(a)) H$_2$ and 5.7 bar(a) (570 kPa(a)) CO, having a total pressure of 18 bar(a) (1500 kPa(a)) and obtaining outlet conditions of around 4.5 bar(a) (450 kPa(a)) H$_2$O, 4.3 bar(a) (430 kPa(a)) H$_2$ and 3.8 bar(a) (380 kPa(a)) CO, which was achieved with a syngas conversion of around 63%. A reaction temperature of 230°C was used. The syngas feed contained 2000vppb HCN. After 30 days of operation, the relative activity and CH$_4$ selectivity data obtained were as reported in Table 6.

Table 5: Relative activity and CH$_4$ selectivity after 5 days of FTS at 230°C for Examples 2A and 3 using (i) a clean synthesis gas feed, not containing any N-containing compounds; (ii) a synthesis gas feed containing 500vppb CH$_3$CN; (iii) a synthesis gas feed containing 1000vppb CH$_3$CN and (iv) a synthesis gas feed containing 5000vppb CH$_3$CN. Error in activity is \pm 0.1 units and error in CH$_4$ selectivity is \pm 0.1 percentage point.

<table>
<thead>
<tr>
<th>CH$_3$CN level in syngas feed</th>
<th>Relative activity for Example 2A (invention, 0.001 g Pt/g Co)</th>
<th>% CH$_4$ (C atom %) for Example 2A (invention, 0.001 g Pt/g Co)</th>
<th>Relative activity for Example 3 (comparative, 0.0025 g Pt/g Co)</th>
<th>% CH$_4$ (C atom %) for Example 3 (comparative, 0.0025 g Pt/g Co)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0vppb (clean gas)</td>
<td>3.9</td>
<td>5.8</td>
<td>4.0</td>
<td>6.0</td>
</tr>
<tr>
<td>500vppb</td>
<td>3.2</td>
<td>4.8</td>
<td>3.1</td>
<td>5.1</td>
</tr>
<tr>
<td>1000vppb</td>
<td>3.1</td>
<td>4.7</td>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td>5000vppb</td>
<td>3.0</td>
<td>4.6</td>
<td>3.0</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Table 6: Relative activity and CH$_4$ selectivity after 30 days of FTS at 230°C for Examples 2A and 3 using (i) a clean synthesis gas feed, not containing any N-containing compounds and (ii) a synthesis gas feed containing 2000vppb HCN. Error in activity is \pm 0.1 units and error in CH$_4$ selectivity is \pm 0.1 percentage point.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Pt level (g Pt/g Co)</th>
<th>Relative activity (clean gas; no N contaminant)</th>
<th>Relative activity (2000vppb HCN)</th>
<th>% CH$_4$ (C atom %) (clean gas; no N contaminant)</th>
<th>% CH$_4$ (C atom %) (2000vppb HCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 2A (invention)</td>
<td>0.001</td>
<td>3.3</td>
<td>2.5</td>
<td>6</td>
<td>4.5</td>
</tr>
<tr>
<td>Example 3 (comparative)</td>
<td>0.0025</td>
<td>3.2</td>
<td>2.5</td>
<td>6.3</td>
<td>5.3</td>
</tr>
</tbody>
</table>
Example 14 (with NO in the syngas)

[0069] The catalyst of Example 3 (comparative, 0.0025 g Pt/g Co) were tested in a slurry-phase micro-reactor system, using FTS inlet conditions of about 0 bar(a) (0 kPa(a)) H₂O, 9.4 bar(a) (940 kPa(a)) H₂ and 5.7 bar(a) (570 kPa(a)) CO, having a total pressure of 18 bar(a) (1800 kPa(a)) and obtaining outlet conditions of around 4.5 bar(a) (450 kPa(a)) H₂O, 4.3 bar(a) (430 kPa(a)) H₂ and 3.8 bar(a) (380 kPa(a)) CO, which was achieved with a syngas conversion of around 63%. A reaction temperature of 230°C was used. The syngas feed contained 2000vppb NO.

[0070] After 30 days of operation, the relative activity and CH₄ selectivity data obtained were as reported in Table 7a.

Example 15 (with CH₃CN in the syngas)

[0071] The catalyst of Example 3 (comparative, 0.0025 g Pt/g Co) were tested in a slurry-phase micro-reactor system, using FTS inlet conditions of about 0 bar(a) (0 kPa(a)) H₂O, 9.4 bar(a) (940 kPa(a)) H₂ and 5.7 bar(a) (570 kPa(a)) CO, having a total pressure of 18 bar(a) (1800 kPa(a)) and obtaining outlet conditions of around 4.5 bar(a) (450 kPa(a)) H₂O, 4.3 bar(a) (430 kPa(a)) H₂ and 3.8 bar(a) (380 kPa(a)) CO, which was achieved with a syngas conversion of around 63%. A reaction temperature of 230°C was used. The syngas feed contained 2000vppb CH₃CN.

[0072] After 30 days of operation, the relative activity and CH₄ selectivity data obtained were as reported in Table 7a.

[0073] Similar tests were done with CH₃CN at levels of 2000 vppb, 10 000 vppb, and 100 000 vppb CH₃CN. After 10 days of operation, the relative activity and CH₄ selectivity data obtained were as reported in Table 7b.

Example 16 (using different levels of HCN in the syngas)

[0074] The catalyst of Example 3 (comparative, 0.0025 g Pt/g Co) were tested in a slurry-phase micro-reactor system, using FTS inlet conditions of about 0 bar(a) (0 kPa(a)) H₂O, 9.4 bar(a) (940 kPa(a)) H₂ and 5.7 bar(a) (570 kPa(a)) CO, having a total pressure of 18 bar(a) (1800 kPa(a)) and obtaining outlet conditions of around 4.5 bar(a) (450 kPa(a)) H₂O, 4.3 bar(a) (430 kPa(a)) H₂ and 3.8 bar(a) (380 kPa(a)) CO, which was achieved with a syngas conversion of around 63%. A reaction temperature of 230°C was used. The syngas feed contained (i) 100vppb HCN; (ii) 200vppb HCN; (iii) 250vppb HCN; (iv) 500vppb HCN; (v) 2000vppb HCN; (vi) 3000vppb HCN; and (vii) 6000vppb HCN.

[0075] After 30 days of operation, the relative activity and CH₄ selectivity data obtained were as reported in Table 8.
It can be concluded from Table 8 that there is no notable activity loss at the lower levels of 100 and 200vppb HCN, some activity loss at 250vppb HCN, more at 500vppb HCN, and more at 2000vppb HCN after which it seems to stabilize.

The gain in selectivity (lower methane production) is between 3 and 20% for all of these HCN levels, and from 500vppb and onwards it seems to stabilize.

It can be concluded from Tables 1 to 8 that the catalyst activity of Pt containing cobalt catalysts decreases when using a syngas feed that contains nitrogen containing compounds such as HCN, NH₃, NO, CH₃CN, DEA, and mDEA.

It can surprisingly also be concluded from Tables 1 to 8 that for the Pt containing catalysts - When performing FTS in the presence of nitrogen containing compounds such as HCN, NH₃, NO, CH₃CN, DEA, and mDEA the activity loss is less for catalysts containing less Pt - The order of the activity is reversed in the presence of nitrogen containing compounds, i.e. the lower the catalyst Pt level the higher its activity (when nitrogen containing compounds are present in the syngas) - The selectivity gain is the highest for the lowest Pt levels in the presence of nitrogen containing compounds

It can also surprisingly be concluded from Table 1 that for the unpromoted cobalt catalyst - both the activity and selectivity are improved in the presence of nitrogen containing compounds such as HCN or NH₃

Regarding the CH₄ selectivity a similar pattern was observed for FTS tests using the catalysts of Examples 1-5 and which were performed at 210°C instead of 230°C, but its effects were less pronounced at 210°C. On the activity side, the negative effect of the N containing compounds was worse at 210°C.

Examples 17 and 18 (using Pd as dopant)

Two Fischer-Tropsch synthesis ("FTS") catalysts containing 30g Co/100g Support (1.5g Si/100g Puralox SCCa 2/150) and promoted with Pd were prepared on a particulate modified 1.5g Si/100g Puralox SCCa 2/150 (trademark) pre-shaped support using aqueous slurry phase impregnation and drying, followed by direct fluidised bed calcination in air, and reduction in hydrogen.

The two catalysts contained different levels of the Pd reduction promoter:

Example 17 (invention): 0.0025g Pd/g Co;
Example 18 (comparative): 0.0050g Pd/g Co.

The catalysts of Examples 17 and 18 were prepared in the same manner as that of Example 3, apart from using palladium nitrate as palladium precursor (instead of the platinum precursor) and adjusting the amount of palladium.

<table>
<thead>
<tr>
<th>HCN level in syngas feed</th>
<th>Relative activity</th>
<th>% CH₄ (C atom %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0vppb (clean gas)</td>
<td>3.2</td>
<td>6.3</td>
</tr>
<tr>
<td>100vppb</td>
<td>3.2</td>
<td>6.1</td>
</tr>
<tr>
<td>200vppb</td>
<td>3.2</td>
<td>6.0</td>
</tr>
<tr>
<td>250vppb</td>
<td>3.0</td>
<td>5.8</td>
</tr>
<tr>
<td>500vppb</td>
<td>2.8</td>
<td>5.5</td>
</tr>
<tr>
<td>2000vppb</td>
<td>2.5</td>
<td>5.3</td>
</tr>
<tr>
<td>3000vppb</td>
<td>2.5</td>
<td>5.3</td>
</tr>
<tr>
<td>6000vppb</td>
<td>2.4</td>
<td>5.0</td>
</tr>
</tbody>
</table>
precursor to ensure that the correct composition was obtained. The catalyst of Example 17 is according to the invention, while that of Example 18 is comparative.

Example 19

[0085] The catalysts of Examples 17 and 18 were tested in a fixed bed high throughput reactor system, using FTS inlet conditions of about 3.0 bar(a) (300 kPa(a)) H2O, 6.3 bar(a) (630 kPa(a)) H2 and 4.5 bar(a) (450 kPa(a)) CO, and obtaining outlet conditions of around 4.4 bar(a) (440 kPa(a)) H2O, 4.6 bar(a) (460 kPa(a)) H2 and 3.9 bar(a) (390 kPa (a)) CO, which was achieved with a syngas conversion of around 25%. The reaction temperature was 230°C. Comparative tests using clean syngas feed not containing any N-containing compounds, and contaminated syngas feed containing 5000vppb NH3 were carried out.

[0086] After five days of operation, the relative activity and CH4 selectivity data obtained were as reported in Table 9.

Example 19

Table 9: Relative activity and CH4 selectivity after five days of FTS at 230°C for Examples 9 and 10 using (i) a clean synthesis gas feed, not containing any N-containing compounds and (ii) a synthesis gas feed containing 5000vppb NH3. Error in activity is ± 0.1 units and error in CH4 selectivity is ± 0.1 percentage point.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Pd level (g Pd/g Co)</th>
<th>Relative activity (clean gas; no N contaminants)</th>
<th>Relative activity (5000vppb NH3)</th>
<th>% CH4 (C atom %) (clean gas; no N contaminants)</th>
<th>% CH4 (C atom %) (5000vppb NH3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1 (invention)</td>
<td>0</td>
<td>1.8</td>
<td>2.8</td>
<td>6.3</td>
<td>4.8</td>
</tr>
<tr>
<td>Example 17 (invention)</td>
<td>0.0025</td>
<td>3.0</td>
<td>2.8</td>
<td>6.4</td>
<td>5.7</td>
</tr>
<tr>
<td>Example 18 (comparative)</td>
<td>0.0050</td>
<td>3.1</td>
<td>2.5</td>
<td>7.0</td>
<td>6.2</td>
</tr>
</tbody>
</table>

[0087] It can be concluded from Table 9 that the catalyst activity of Pd containing cobalt catalysts decreases 7-19% when using a syngas feed that contains 5000vppb NH3.

[0088] It can surprisingly also be concluded from Table 9 that for the Pd containing catalysts:
- When performing FTS in the presence of NH3 the activity loss is less for catalysts containing less Pd
- The order of the activity is reversed in the presence of NH3, i.e. the lower the catalyst Pd level the higher its activity (when NH3 is present in the syngas)

Examples 20 and 21 (using Ru as dopant)

[0089] Two Fischer-Tropsch synthesis ("FTS") catalysts containing 30g Co/100g support (1.5g Si/100g Puralox SCCa 2/150) and promoted with ruthenium were prepared on a particulate modified 1.5g Si/100g Puralox SCCa 2/150 (trademark) pre-shaped support using aqueous slurry phase impregnation and drying, followed by direct fluidised bed calcination in air, and reduction in hydrogen.

[0090] The two catalysts contained different levels of the Ru reduction promoter:
- Example 20 (invention): 0.0050 g Ru/g Co;
- Example 21 (comparative): 0.024 g Ru/g Co.

[0091] The catalysts of Examples 20 and 21 were prepared in the same manner as that of Example 3, apart from using ruthenium nitrate as a ruthenium precursor (instead of the platinum precursor) and adjusting the amount of ruthenium precursor to ensure that the correct composition was obtained. The catalyst of Example 20 is according to the invention, while that of Example 21 is comparative.

Example 22

[0092] The catalyst of Examples 20 and 21 were tested in a fixed bed high throughput reactor system, using FTS inlet conditions of about 3.0 bar(a) (300 kPa(a)) H2O, 6.3 bar(a) (630 kPa(a)) H2 and 4.5 bar(a) (450 kPa(a)) CO, and obtaining
outlet conditions of around 4.4 bar (440 kPa(a)) H₂O, 4.6 bar (460 kPa(a)) H₂ and 3.9 bar (390 kPa(a)) CO, which was achieved with a syngas conversion of around 25%. The temperature was 230°C. Comparative tests using clean syngas feed not containing any N-containing compounds, and contaminated syngas feed containing 5000 vppb HCN, were carried out.

[0093] After five days of operation, the relative activity and CH₄ selectivity data obtained were as reported in Table 10.

Table 10: Relative activity and CH₄ selectivity after five days of FTS at 230°C for Examples 20 and 21 using (i) a clean synthesis gas feed, not containing any N-containing compounds and (ii) a synthesis gas feed containing 5000 vppb HCN. Error in activity is ± 0.1 units and error in CH₄ selectivity is ± 0.1 percentage point.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Ru level (g Ru/g Co)</th>
<th>Relative activity (clean gas; no N contaminants)</th>
<th>Relative activity (5000 vppb HCN)</th>
<th>% CH₄ (C atom %) (clean gas; no N contaminants)</th>
<th>% CH₄ (C atom %) (5000 vppb HCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1 (invention)</td>
<td>0</td>
<td>1.8</td>
<td>2.8</td>
<td>6.3</td>
<td>4.8</td>
</tr>
<tr>
<td>Example 20 (invention)</td>
<td>0.0050</td>
<td>2.6</td>
<td>2.2</td>
<td>7.0</td>
<td>4.9</td>
</tr>
<tr>
<td>Example 21 (comparative)</td>
<td>0.024</td>
<td>3.1</td>
<td>2.0</td>
<td>7.0</td>
<td>5.7</td>
</tr>
</tbody>
</table>

[0094] It can be concluded from Table 10 that the catalyst activity of Ru containing cobalt catalysts decreases 15-35% when using a syngas feed that contains 5000 vppb HCN.

[0095] It can surprisingly also be concluded from Table 10 that for the Ru containing catalysts

- When performing FTS in the presence of HCN the activity loss is less for catalysts containing less Ru
- The order of the activity is reversed in the presence of HCN, i.e. the lower the catalyst Ru level the higher its activity (when HCN is present in the syngas)
- The CH₄ selectivity gain is the highest for the lowest Ru levels in the presence of HCN.

Example 23 (using Re as dopant)

[0096] A Fischer-Tropsch synthesis (“FTS”) catalysts containing 30g Co/100g Support (1.5g Si/100g Puralox SCCa 2/150) and promoted with Re was prepared on a particulate modified 1.5g Si/100g Puralox SCCa 2/150 (trademark) pre-shaped support using aqueous slurry phase impregnation and drying, followed by direct fluidised bed calcination in air, and reduction in hydrogen. This sample contained 0.0025g Re/g Co (according to the invention).

[0097] Catalyst Example 23 was prepared in the same manner as that of Example 3, apart from using perrhenic acid (HReO₄) as a rhenium precursor (instead of the platinum precursor) and adjusting the amount of rhenium precursor to ensure that the correct composition was obtained.

Example 24 (using NH₃ in the syngas)

[0098] The catalyst of Example 23 (invention, 0.0025 g Re/g Co) was tested in a fixed bed high throughput reactor system, using FTS inlet conditions of about 3.0 bar (300 kPa(a)) H₂O, 6.3 bar (630 kPa(a)) H₂ and 4.5 bar (450 kPa(a)) CO, having a total pressure of 15 bar (1500 kPa(a)) and obtaining outlet conditions of around 4.4 bar (440 kPa(a)) H₂O, 4.6 bar (460 kPa(a)) H₂ and 3.9 bar (390 kPa(a)) CO. Reaction temperature of 230°C was tested. The syngas feed contained 5000 vppb NH₃.

[0099] After five days of operation, the relative activity and CH₄ selectivity data obtained were as reported in Table 11.

Table 11: Relative activity and CH₄ selectivity after 5 days of FTS at 230°C for Example 23 using (i) a clean synthesis gas feed not containing any N-containing compounds; and (ii) a synthesis gas feed containing 5000 vppb NH₃. Error in activity is ± 0.1 units and error in CH₄ selectivity is ± 0.1 percentage point.

<table>
<thead>
<tr>
<th>NH₃ level in syngas feed</th>
<th>Relative activity</th>
<th>% CH₄ (C atom %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 vppb (clean gas)</td>
<td>3.4</td>
<td>6.7</td>
</tr>
<tr>
<td>5000 vppb</td>
<td>2.3</td>
<td>4.8</td>
</tr>
</tbody>
</table>
It can be concluded from Table 11 that there is a notable activity loss when 5000vppb NH₃ is present. There is also a notable selectivity gain in lower methane production when 5000vppb NH₃ is present.

To summarize -

- It was thus surprisingly found that when FTS is carried out under conditions where N-contaminant levels in the syngas are above 100vppb, a reduction in the level of dopants such Pd, Pt, Ru and Re in the catalyst results in lower methane selectivity (see Tables 1 to 11).
- Furthermore, it is known in the art that when FTS is carried out under conditions of no N-contaminants in the syngas, the use of no dopants in the catalyst results in unacceptable low activity compared to the same conditions but with dopants present in the catalyst (see Table 1, data for 0 HCN). From Tables 1 to 4 (data for 5000ppb HCN or NH₃), it is clear that under conditions where N-contaminants are present in the syngas, the highest catalyst dopant levels do not result in the highest activity. This is surprising since it is known that when the syngas contains no N-contaminants, the higher the catalyst dopant level, the higher the catalyst activity.
- Another surprising result was that the activity for catalysts containing no dopant increased under N-contamination conditions compared to no N-contamination conditions (Tables 1 to 4). This is a reversal of the trend noticed when catalyst dopants are present, since it is clear from Table 1 that with catalyst dopants the activity decreases when switching from no N-contaminants to the presence of N-contaminants.

From the above, it is thus clear that when working under syngas N-contamination conditions, lower catalyst dopant levels (including no dopant being present) can be used, resulting in acceptable activity (compared to higher catalyst dopant levels under N-contamination), and a lower CH₄ selectivity (it is known that a lowering in CH₄ selectivity goes hand-in-hand with an increase in C₅⁺ selectivity) is also achieved, resulting in as more efficient process. Since the catalyst dopants are expensive, lower dopant levels results in a less costly catalyst. Furthermore, tolerance of significant levels of N-contaminants in the syngas mean that costly syngas processing to rid the syngas of such contaminants can be avoided or at least reduced.

Claims

1. A process for producing hydrocarbons and, optionally, oxygenates of hydrocarbons, which process includes contacting a synthesis gas comprising hydrogen, carbon monoxide and N-containing contaminants selected from the group consisting of HCN, NH₃, NO, RₓNH₃₋ₓ where R is an organic group and x is 1, 2 or 3, with R being the same or different when x is 2 or 3, R¹-CN where R¹ is an organic group, and heterocyclic compounds containing at least one nitrogen atom as a ring member of a heterocyclic ring of the heterocyclic compound, with the N-containing contaminants constituting, in total, at least 100vppb but less than 1 000 000vppb of the synthesis gas, at a temperature of at least 180 °C and a pressure of at least 10 bar(a), with a particulate supported Fischer-Tropsch synthesis catalyst which comprises a catalyst support, Co in catalytically active form supported on the catalyst support, and a dopant selected from the group consisting of platinum (Pt), palladium (Pd), ruthenium (Ru), rhenium (Re) and a mixture of two or more thereof at a dopant level expressed by formula 1:

\[
\frac{w}{u} \text{Ru} + \frac{x}{u} \text{Pd} + \frac{y}{u} \text{Pt} + \frac{z}{u} \text{Re} = a
\]

where

- w is expressed as g Ru/g Co, and w < 0.019g Ru/g Co; x is expressed as g Pd/g Co;
- y is expressed as g Pt/g Co;
- z is expressed as g Re/g Co; and z < 0.005g Re/g Co; and a=0,

to obtain hydrocarbons and, optionally, oxygenates of hydrocarbons, by means of Fischer-Tropsch synthesis reaction of the hydrogen with the carbon monoxide.

2. The process according to claim 1, wherein the synthesis gas contains at least 200vppb but less than 100 000vppb total N-containing contaminants.
3. The process according to any one of claims 1 or 2, wherein the synthesis gas is substantially free of phosphorous containing compounds.

4. The process according to any one of claims 1 to 3, wherein the Fischer-Tropsch synthesis reaction takes place in a slurry bed Fischer-Tropsch reactor, with wax products being produced.

5. The process according to any one of claims 1 to 4, which includes subjecting the hydrocarbons, and, when present, the oxygenates of hydrocarbons, to hydroprocessing, thereby to convert them to liquid fuels and/or to chemicals.

6. Use of a particulate supported Fischer-Tropsch synthesis catalyst which comprises a catalyst support, Co in catalytically active form supported on the catalyst support, and a dopant selected from the group consisting of platinum (Pt), palladium (Pd), ruthenium (Ru), rhenium (Re) and a mixture of two or more thereof at a dopant level expressed by formula 1:

\[
\begin{align*}
\frac{w}{Ru} + \frac{x}{Pd} + \frac{y}{Pt} + \frac{z}{Re} &= a \\
0.024 &+ 0.0030 &+ 0.0025 &+ 0.1
\end{align*}
\]

where

\(w\) is expressed as g Ru/g Co, and \(w < 0.019\) g Ru/g Co;
\(x\) is expressed as g Pd/g Co;
\(y\) is expressed as g Pt/g Co;
\(z\) is expressed as g Re/g Co, and \(z < 0.005\) g Re/g Co; and
\(a=0,\)

in a process for producing hydrocarbons and, optionally, oxygenates of hydrocarbons, which process includes contacting a synthesis gas comprising hydrogen, carbon monoxide and N-containing contaminants selected from the group consisting of HCN, NH\(_3\), NO, R\(_x\)NH\(_{3-x}\) where R is an organic group and x is 1, 2 or 3, with R being the same or different when x is 2 or 3, and R\(^1\)-CN where R\(^1\) is an organic group, and heterocyclic compounds containing at least one nitrogen atom as a ring member of the heterocyclic compound, with the N-containing contaminants constituting, in total, at least 100 vppb but less than 1 000 000 vppb of the synthesis gas, at a temperature of at least 180°C and a pressure of at least 10 bar(a), with the catalyst, to obtain hydrocarbons by means of Fischer-Tropsch synthesis reaction of the hydrogen with the carbon monoxide, the Fischer Tropsch synthesis catalyst being used in the process in order to obtain such a process with a Fischer-Tropsch catalyst having increased activity.

7. Use of a dopant selected from the group consisting of platinum (Pt), palladium (Pd), ruthenium (Ru), rhenium (Re) and a mixture of two or more thereof at a dopant level expressed by formula 1:

\[
\begin{align*}
\frac{w}{Ru} + \frac{x}{Pd} + \frac{y}{Pt} + \frac{z}{Re} &= a \\
0.024 &+ 0.0030 &+ 0.0025 &+ 0.1
\end{align*}
\]

where

\(w\) is expressed as g Ru/g Co, and \(w < 0.019\) g Ru/g Co;
\(x\) is expressed as g Pd/g Co;
\(y\) is expressed as g Pt/g Co;
\(z\) is expressed as g Re/g Co, and \(z < 0.005\) g Re/g Co; and
\(a=0,\)

in a particulate supported Fischer-Tropsch synthesis catalyst which comprises a catalyst support and Co in catalytically active form supported on the catalyst support, and the catalyst being used in a process for producing hydrocarbons and, optionally, oxygenates of hydrocarbons, which process includes contacting a synthesis gas...
comprising hydrogen, carbon monoxide and N-containing contaminants selected from the group consisting of HCN, NH₃, NO, RₓNH₃ₓ where R is an organic group and x is 1, 2 or 3, with R being the same or different when x is 2 or 3, and R¹-CN where R¹ is an organic group, and heterocyclic compounds containing at least one nitrogen atom as a ring member of a heterocyclic ring of the heterocyclic compound, with the N-containing contaminants constituting, in total, at least 100ppb but less than 1 000 000ppb of the synthesis gas, at a temperature of at least 180°C and a pressure of at least 10 bar(a), with the catalyst, to obtain hydrocarbons by means of Fischer-Tropsch synthesis reaction of the hydrogen with the carbon monoxide, the dopant being used in the Fischer-Tropsch synthesis catalyst at the level set out above in order to increase the activity of the Fischer-Tropsch synthesis catalyst in the Fischer-Tropsch synthesis reaction.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* paragraphs [0004] - [0005], [0007], [0010], [0016], [0025], [0026], [0034] - [0037], [0041] - [0043] *</td>
<td></td>
<td>C07C29/156</td>
</tr>
<tr>
<td></td>
<td>* tables 1-5 *</td>
<td></td>
<td>C10G2/00</td>
</tr>
<tr>
<td></td>
<td>* examples 1-5 *</td>
<td></td>
<td>C07C1/04</td>
</tr>
<tr>
<td></td>
<td>-----</td>
<td></td>
<td>B01J23/75</td>
</tr>
<tr>
<td></td>
<td>B01J37/18</td>
<td></td>
<td>B01J37/02</td>
</tr>
<tr>
<td></td>
<td>* abstract *</td>
<td></td>
<td>B01J35/00</td>
</tr>
<tr>
<td></td>
<td>* page 237, left-hand column, line 5 - line 44; figure 1 *</td>
<td></td>
<td>B01J23/889</td>
</tr>
<tr>
<td></td>
<td>* page 238, left-hand column, line 12 - right-hand column, line 9 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* figure 1 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-----</td>
<td></td>
<td>C10G</td>
</tr>
<tr>
<td></td>
<td>-/--</td>
<td></td>
<td>B01J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C07C</td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

Place of search: Munich
Date of completion of the search: 26 September 2013
Examiner: Marchand, Karin
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 6 284 807 B1 (LEVINESS STEPHEN C [US] ET AL) 4 September 2001 (2001-09-04) * column 2, line 8 - column 4, line 30 * * column 6, line 37 - column 7, line 35 *</td>
<td>1-7</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.
ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 13 00 3284

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

26-09-2013

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO 2005071044 A1</td>
<td>04-08-2005</td>
</tr>
<tr>
<td>US 6284807 B1</td>
<td>04-09-2001</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 7022742 B [0005]
- US 6284807 B [0005]
- US 20070158241 A [0005]
- WO 2005071044 A [0006]
- US 5045519 A [0028]