TOP-FIRING HOT BLAST STOVE

There is provided a top-firing hot blast stove including a burner and a burner duct capable of stabilizing an ignition point at a desired position inside the burner duct and suppressing occurrence of blinking phenomenon so as to achieve high combustion efficiency.

A top-firing hot blast stove 10 includes a checker chamber 4 and a combustion chamber 3 which includes a burner system and placed above the checker chamber 4. The burner system includes: a burner 1 provided with a fuel gas pipe 1c and combustion air pipes 1b, 1d; and a burner duct 2 communicating with a burner exit 1a of the burner 1, the burner duct 2 communicating with the combustion chamber 3 through a burner duct outlet 2b, wherein an aperture enlarged portion 2c where an aperture D1 of the burner duct 2 is enlarged is provided over a section from a middle of the burner duct 2 to the burner duct outlet 2b, so that an eddy current ED of the mixed gas MG flowing toward the combustion chamber 3 through the burner duct 2 is formed in the aperture enlarged portion 2c.
Description

Technical Field

[0001] The present invention relates to a top-firing hot blast stove having a characteristic burner system.

Background Art

[0002] Regenerative hot blast stoves, which generate hot blast by circulating air to a checker chamber having heat stored therein and supply the hot blast to a blast furnace, include an internal-combustion hot blast stove having both a combustion chamber and a checker chamber provided in a cylinder shell and an external-combustion hot blast stove having a combustion chamber and a checker chamber provided in separate cylinder shells so that both the chambers communicate with each other at one end of both the shells. As a regenerative hot blast stove which can be made at a lower equipment cost than the external-combustion hot blast stove while retaining the performance comparable with the external-combustion hot blast stove, a top-firing hot blast stove having a combustion chamber, which is connected to a burner, provided above a checker chamber is disclosed in Patent Literature 1.

[0003] Now, referring to a schematic view of Figure 7, the structure of a conventional top-firing hot blast stove will be outlined. As shown in the drawing, a conventional top-firing hot blast stove F has a combustion chamber N placed above a checker chamber T. In so-called combustion operation, mixed gas including fuel gas and combustion air supplied from a burner B to the combustion chamber N (X1 direction) ignites and combusts in the process of passing through a burner duct BD, and flows into the combustion chamber N as high-temperature combustion gas. A plurality of the burner ducts BD are provided for the combustion chamber N when two-dimensionally viewed. High-temperature combustion gas flows downward while swirling inside the combustion chamber with a large turning radius. While the combustion gas flows downward in the checker chamber T (X2 direction), the heat of the gas is stored in the checker chamber T, and the combustion gas which has passed through the checker chamber T is exhausted through a gas duct E. Note that the burner B and the burner duct BD are collectively referred to as a burner system in this specification.

[0004] In so-called air blasting operation for supplying hot blast to an unshown blast furnace, a shutoff valve V inside the burner duct BD is controlled to be closed so that air of about 150°C for example is supplied to the checker chamber T through a blast pipe S. In the process of going upward inside the checker chamber T, the air turns into hot blast of about 1200°C for example, and this hot blast is supplied to the blast furnace through a hot-blast pipe H (X3 direction).

[0005] Enhancement in combustion efficiency of the burners mounted on the top-firing hot blast stove is one of the important objects in the technical field concerned. In order to achieve the enhancement in combustion efficiency, it is known that not only preparing mixed gas including sufficiently mixed fuel gas and combustion air but also stabilizing an ignition point are quite important. It is also known that without a stabilized ignition point, the ignition point is fluctuated inside the burner duct or the combustion chamber, which thereby causes oscillating combustion.

[0006] In order to stabilize the ignition point, Patent Literature 2 discloses a gas burner for a hot blast stove having a ring-shaped projection provided between a burner and a burner port (burner duct) for stabilizing an ignition position by using an area around the projection as an ignition point. The structure of this hot blast stove gas burner is simulated in Figure 8.

[0007] As shown in the drawing, fuel gas and combustion air supplied through a burner B are mixed inside the burner B or the burner duct BD to generate mixed gas. A ring-shaped projection R is provided at a middle position inside the burner duct BD, and an aperture of the burner duct BD is narrowed by this projection R. Consequently, the burner duct BD has an upstream space BD1 and a downstream space BD2 on a combustion chamber N side, separated by the projection R in a gas flow direction.

[0008] Since the ring-shaped projection R is thus provided inside the burner duct BD to narrow the aperture, an area around the projection R tends to serve as an ignition point, and therefore a so-called flame-holding portion is formed in this area. Furthermore, the projection R generates gas turbulence, which further promotes mixing between fuel gas and combustion air.

[0009] When the projection R as shown in the drawing is provided at a middle position in the burner duct BD to form a flame-holding portion, the projection R for narrowing the aperture is to be present on the downstream side of the upstream space BD1. Accordingly, if fire is ignited inside the upstream space BD 1, gas inside the upstream space BD 1 is heated and the volume thereof is rapidly expanded. Due to this rapid gas volume expansion, pressure inside the upstream space BD1 increases, which hinders supply of fuel gas and combustion air from the burner B, and leads to a problem of extinguishing.

[0010] When gas supply is hindered and thereby extinguishing occurs, the pressure inside the upstream space BD1 declines. As a result, the hindered supply of the fuel gas and the combustion air is resumed, and fire is ignited again.

[0011] Thus, providing the projection R at a middle position inside the burner duct BD causes a so-called "blinking phenomenon" involving repeated ignition and extinguishing, which poses a new problem to be solved.
In the top-firing hot blast stove of the present invention, the aperture enlarged portion is maintained at a high temperature, so that the aperture enlarged portion is made to function as a flame-holding portion, where a stabilized ignition point can be formed. It is to be noted that the eddy current generated in the aperture enlarged portion includes not only an eddy current of mixed gas but also another eddy current of combustion gas generated by the mixed gas ignited in the aperture enlarged portion. Since the aperture enlarged portion faces the combustion chamber, a region with a narrowed aperture is not present on the downstream side in the gas flow unlike the case of the conventional technology, and therefore the blinking phenomenon involving repeated extinguishing and ignition would not occur.

Since this burner duct structure is implemented by structure modification as very simple as expanding only a part of the aperture, it does not involve increase in a manufacturing cost.

In order to accomplish the above object, a top-firing hot blast stove according to the present invention includes: a checker chamber including a blast pipe for receiving supply of hot blast air; and a combustion chamber which includes a hot-blast pipe and a burner system for supplying hot blast to a blast furnace and which is placed above the checker chamber, wherein the checker chamber is heated by combustion of mixed gas including fuel gas and combustion air supplied from the burner system to the combustion chamber, and hot blast which is generated while the hot blast air passes through the checker chamber is supplied to the blast furnace through the hot-blast pipe, wherein the burner system includes: a burner provided with a fuel gas pipe and a combustion air pipe; and a burner duct communicating with a burner exit of the burner, the burner duct communicating with the combustion chamber through a burner duct outlet, wherein an aperture enlarged portion where an aperture of the burner duct is enlarged is provided over a section from a middle of the burner duct to the burner duct outlet, so that an eddy current of the mixed gas flowing toward the combustion chamber through the burner duct is formed in the aperture enlarged portion.

In the top-firing hot blast stove of the present invention, modification is applied to the burner duct constituting the burner system of the top-firing hot blast stove. In addition, the top-firing hot blast stove has a characteristic aperture enlarged portion where the aperture of the burner duct is enlarged over a section from the middle of the burner duct to the burner duct outlet which communicates with the combustion chamber. When the mixed gas including fuel gas and combustion air flows through the aperture enlarged portion, an eddy current is generated therein. As the eddy current sucks in high temperature atmosphere inside the adjacent combustion chamber, the aperture enlarged portion is maintained at high temperature, so that the aperture enlarged portion is made to function as a flame-holding portion, where a stabilized ignition point can be formed. It is to be noted that the eddy current generated in the aperture enlarged portion includes not only an eddy current of mixed gas but also another eddy current of combustion gas generated by the mixed gas ignited in the aperture enlarged portion.

Since the aperture enlarged portion faces the combustion chamber, a region with a narrowed aperture is not present on the downstream side in the gas flow unlike the case of the conventional technology, and therefore the blinking phenomenon involving repeated extinguishing and ignition would not occur.

Further, since the aperture enlarged portion serves as the flame-holding portion as described above, the aperture enlarged portion can be controlled as a stabilized ignition point.

Since this burner duct structure is implemented by structure modification as very simple as expanding only a part of the aperture, it does not involve increase in a manufacturing cost.

In order to accomplish the above object, a top-firing hot blast stove according to the present invention includes: a checker chamber including a blast pipe for receiving supply of hot blast air; and a combustion chamber which includes a hot-blast pipe and a burner system for supplying hot blast to a blast furnace and which is placed above the checker chamber, wherein the checker chamber is heated by combustion of mixed gas including fuel gas and combustion air supplied from the burner system to the combustion chamber, and hot blast which is generated while the hot blast air passes through the checker chamber is supplied to the blast furnace through the hot-blast pipe, wherein the burner system includes: a burner provided with a fuel gas pipe and a combustion air pipe; and a burner duct communicating with a burner exit of the burner, the burner duct communicating with the combustion chamber through a burner duct outlet, wherein an aperture enlarged portion where an aperture of the burner duct is enlarged is provided over a section from a middle of the burner duct to the burner duct outlet, so that an eddy current of the mixed gas flowing toward the combustion chamber through the burner duct is formed in the aperture enlarged portion.

In the top-firing hot blast stove of the present invention, modification is applied to the burner duct constituting the burner system of the top-firing hot blast stove. In addition, the top-firing hot blast stove has a characteristic aperture enlarged portion where the aperture of the burner duct is enlarged over a section from the middle of the burner duct to the burner duct outlet which communicates with the combustion chamber. When the mixed gas including fuel gas and combustion air flows through the aperture enlarged portion, an eddy current is generated therein. As the eddy current sucks in high temperature atmosphere inside the adjacent combustion chamber, the aperture enlarged portion is maintained at high temperature, so that the aperture enlarged portion is made to function as a flame-holding portion, where a stabilized ignition point can be formed. It is to be noted that the eddy current generated in the aperture enlarged portion includes not only an eddy current of mixed gas but also another eddy current of combustion gas generated by the mixed gas ignited in the aperture enlarged portion.
bitary position closer to the burner side than the shutoff valve provided in the middle of the burner duct, and to exclude the positions closer to the combustion chamber as in the conventional technology. When the aperture narrowed portion is provided in the vicinity of the burner exit, fire would not ignite on the upstream side of the aperture narrowed portion, and therefore the blinking phenomenon would not occur.

According to the burner duct of this embodiment, mixing between fuel gas and combustion air is further promoted in the aperture narrowed portion. As a result, sufficiently-mixed mixed gas is introduced into the aperture enlarged portion serving as a flame-holding portion, where the gas is ignited and combusted.

In a preferable embodiment, the length of the aperture enlarged portion to the burner duct outlet is in a range of 0.3D to 1.4D where D represents a diameter of the burner duct.

Inventors of the present invention conducted an experiment to compare the combustion efficiency in a burner system of conventional structure and in the burner system constituting the top-firing hot blast stove of the present invention.

More specifically, the level of combustion efficiency is specified with the amount of unburnt CO gas. The amount of unburnt CO gas in each experiment model is measured by using, as a parameter, the length of the aperture enlarged portion which is a characteristic structure of the burner duct constituting the hot blast stove of the present invention, i.e., the length of the aperture enlarged portion to the burner duct outlet.

As a result of the experiment, it is demonstrated that the amount (proportion) of unburnt CO decreased the most when the length of the aperture enlarged portion to the burner duct outlet was in a range of 0.3D to 1.4D where D represents a diameter of the burner duct.

The above experimental result is for specifying a length range of the aperture enlarged portion which provides an optimum value of the combustion efficiency. The inventors of the present invention consider that the length of the aperture enlarged portion specified in this experiment is an optimum length from viewpoints that with the length of the aperture enlarged portion being longer than 1.4D, flame holding performance in the aperture enlarged portion may be deteriorated, resulting in deterioration in stability of the ignition position, and that with the length of the aperture enlarged portion being shorter than 0.3D, the combustion gas which swirls with a large turning radius inside the combustion chamber may reach the inside of the aperture enlarged portion as a cross wind, which thereby causes extinguishing.

Advantageous Effects of Invention

According to the top-firing hot blast stove of the present invention as is clear from the above description, the burner duct constituting a burner system which is a component member of the top-firing hot blast stove has an aperture enlarged portion with an enlarged aperture provided over a section from the middle of the burner duct to the burner duct outlet which communicates with the combustion chamber. Accordingly, when mixed gas including fuel gas and combustion air flows through the aperture enlarged portion, an eddy current is generated therein. As the eddy current sucks in high temperature atmosphere inside the adjacent combustion chamber, the aperture enlarged portion is maintained at high temperature, which makes it possible to stabilize an ignition point with the aperture enlarged portion as a flame-holding portion and to suppress the blinking phenomenon so that the combustion efficiency can be enhanced.

Brief Description of Drawings

Figure 1 is a schematic view showing one embodiment of a top-firing hot blast stove of the present invention, in which flows of mixed gas, combustion gas, hot blast air, and hot blast are shown together.

Figure 2 is a cross sectional view taken along arrow line II-II of Figure 1.

Figure 3 is a cross sectional view taken along arrow line III-III of Figure 1, showing flows of combustion gas in the combustion chamber.

Figure 4 is a longitudinal sectional view showing one embodiment of a burner duct.

Figure 5 is a longitudinal sectional view showing another embodiment of the burner duct.

Figure 6 is a graph showing an experimental result regarding the relationship between a length of the aperture enlarged portion of the burner duct and the amount of unburnt CO.

Figure 7 is a schematic view showing one embodiment of a conventional top-firing hot blast stove, in which flows of mixed gas, combustion gas, hot blast air, and hot blast are shown together.

Figure 8 is a schematic view showing conventional burner duct structure.

Description of Embodiments

Hereinafter, a description will be given of embodiments of a top-firing hot blast stove of the present invention with reference to the drawings.

Figure 1 is a schematic view showing one embodiment of a top-firing hot blast stove of the present invention, in which flows of mixed gas, combustion gas, hot blast air, and hot blast are shown together. Figure 2 is a cross sectional view taken along arrow line II-II of Figure 1. Figure 3 is a cross sectional view taken along arrow line III-III of Figure 1, showing flows of combustion gas in the combustion chamber. Figure 4 is a longitudinal sectional view showing one embodiment of a burner duct.

In a top-firing hot blast stove 10 shown in Figure 1, a combustion chamber 3 is placed above a checker
Referring again to Figure 1, when hot blast is supplied from a burner 1 (X1 direction) ignites and combusts in the process of passing through a burner duct 2, and flows into the combustion chamber 3 as high-temperature combustion gas. It is to be noted that the burner 1 and the burner duct 2 constitutes a burner system.

As shown in Figure 3, four burner ducts 2 are provided on the combustion chamber 3 as viewed two-dimensionally. Each of the burner ducts 2 is connected to the combustion chamber 3 at an eccentric position so that an inflow direction of the combustion gas to the combustion chamber 3 does not pass through center O of the combustion chamber 3 which is in a circular form when two-dimensionally viewed. As a result, the combustion gas which has flowed into the combustion chamber 3 from each one of the burner ducts 2 interferes with the combustion gas which has flowed into the combustion chamber 3 from its adjacent burner duct 2. Thus, the flow direction of each combustion gas is changed so as to form a large swirling flow X4 of combustion gas in the combustion chamber 3 as shown in the drawing.

The combustion gas flows downward the checker chamber 4 while swirling as viewed two-dimensionally as shown in Figure 3 and forming a spiral flow descending in X2 direction of Figure 1 as viewed in longitudinal cross section. In the process of flowing downward, heat is stored in the checker chamber 4, and the combustion gas which has passed through the checker chamber 4 is exhausted through a gas duct pipe 7 in which a shutoff valve 7a is controlled to be opened. In the top-firing hot blast stove of conventional structure, the aforementioned two-dimensional swirling of combustion gas is promoted for the purpose of accelerating combustion. In the top-firing hot blast stove of conventional structure, the aforementioned two-dimensional swirling of combustion gas is formed mainly for supplying the combustion gas to the checker chamber 4 as uniformly as possible, and therefore the combustion chamber 3 can be downsized as compared with the combustion chamber in the hot blast stove of conventional structure.

As shown in Figure 2, the burner 1 has a concentric, three hole-type multiple pipe line structure. As shown in Figure 4, an inner pipe 1b has combustion air A1 flowing therein, a central pipe 1c has fuel gas G flowing therein, and an outer pipe 1d has additional combustion air A2 flowing therein. Since the respective pipe lines are reduced in diameter (inclined) toward the burner duct 2, the gases in the respective pipe lines are mixed with each other when they flow into the burner duct 2, so that mixed gas is generated. It is to be noted that the order of the fuel gas and the combustion air which flow through the respective pipe lines may be reversed, or a swirling blade may be provided in each pipe line to generate a spiral flow while gas flows through each pipe line, so that these spiral flows may be mixed inside the burner duct.

Referring again to Figure 1, when hot blast is supplied to an unshown blast furnace, a shutoff valve 2a in the burner duct 2 and a gas duct valve 7a in the gas duct pipe 7 are controlled to be closed, and through a blast pipe 6 with a shutoff valve 6a controlled to be opened, high temperature air of about 150°C for example is supplied to the checker chamber 4. In the process of going upward in the checker chamber 4, the high temperature air turns into hot blast of about 1200°C for example, and this hot blast is supplied to the blast furnace (X3 direction) through a hot-blast pipe 5 with a shutoff valve 5a controlled to be opened.

As shown in Figure 4, the burner duct 2 is provided with an aperture enlarged portion 2c (aperture D2) where an aperture D1 of the burner duct 2 is enlarged over a section from the middle thereof to a burner duct outlet 2b. An eddy current ED is generated while mixed gas MG, which flows through the burner duct 2 toward the combustion chamber 3, passes through the aperture enlarged portion 2c. As the eddy current ED sucks in high temperature atmosphere inside the adjacent combustion chamber 3 (see an arrow going from the combustion chamber 3 to the aperture enlarged portion 2c in Figure 4), the aperture enlarged portion 2c is maintained at high temperature. As a result, the aperture enlarged portion 2c serves as a flame-holding portion, where a stabilized ignition point position is formed. It is to be noted that the eddy current ED formed therein contains not only a mixed gas component but also a combustion gas component generated upon ignition of the mixed gas MG in the aperture enlarged portion 2c. As shown in Figure 4, corners of a portion of the burner duct 2 that changes to the aperture enlarged portion 2c are beveled (tapered). This makes it possible to facilitate generation of the eddy current ED, and also to considerably reduce fall of a refractory material and the like in this region as compared with the case where beveling is not performed.

The aperture enlarged portion 2c generates the eddy current ED of the mixed gas MG, sucks in high temperature atmosphere from the combustion chamber 3, and forms a flame-holding portion to thereby stabilize the ignition point. In addition, the aperture enlarged portion 2c does not throttle the gas flow at the downstream side, and therefore the blinking phenomenon involving repeated ignition and extinguishing does not occur.

Thus, the illustrated burner duct 2 is implemented by structure modification as very simple as providing the aperture enlarged portion 2c in certain area on the combustion chamber 3 side. This makes it possible to provide the burner duct capable of ensuring ignition stability upside the burner duct 2 and suppressing the blinking phenomenon so as to achieve excellent combustibility without increase in a manufacturing cost.

A burner duct 2A shown in Figure 5 is structured such that a ring-shaped aperture narrowed portion 2d where the aperture of the burner duct 2A is reduced is provided in the vicinity of a burner exit 1a. In the drawing, reference numeral D3 represents an inner diameter of the aperture narrowed portion 2d.

Fuel gas G and combustion air A1, A2 flowing through the pipe lines 1b, 1c, and 1d, which are inclined
from the burner 1 toward the burner duct 2A, are mixed immediately after flowing into the burner duct 2A. Since the aperture narrowed portion 2d is provided in the vicinity of the burner exit 1a in the burner duct 2A, mixing between the fuel gas G and the combustion air A1, A2 is further promoted. The eddy current ED is then generated while the mixed gas MG, which flows through the burner duct 2A toward the combustion chamber 3, passes through the aperture enlarged portion 2c. As the eddy current ED sucks in high temperature atmosphere inside the adjacent combustion chamber 3 (see an arrow going from the combustion chamber 3 to the aperture enlarged portion 2c in Figure 5), the aperture enlarged portion 2c is maintained at high temperature. As a result, the aperture enlarged portion 2c serves as a flame-holding portion, where a stabilized ignition point position is formed. Although the illustrated aperture narrowed portion 2d is placed at a position slightly distant from the burner exit 1a, it may be placed at the position of the burner exit 1a.

[Experiment regarding combustion efficiency in burner duct and result thereof]

[0044] The inventors of the present invention conducted an experiment to compare the combustion efficiency in a burner system of conventional structure (Comparative Example) and in the burner system constituting the top-firing hot blast stove of the present invention (Example).

[0045] The experiment on the burner system shown in Figure 4 is outlined as described below. That is, a plurality of types of burner systems were experimentally produced with a length L of the aperture enlarged portion in the burner duct varied in the range from 0D1 to 2D1, and the amount of unburnt CO gas in respective burner systems was measured, and a measured amount without the aperture enlarged portion was normalized to 1 to specify the respective measured amounts in proportion to the normalized value. The result thereof is shown in Figure 6.

[0046] As clear from Figure 6, it was demonstrated that the amount of unburnt CO gas tends to decrease until the length of the aperture enlarged portion is equal to 0.3D1, and reaches an inflection point at this 0.3D1 point where the value becomes 1/4 of the value without the aperture enlarged portion. As the length of the aperture enlarged portion becomes longer, the value is reduced to 1/13, and then shifts to increase before reaching an inflection point at 1.4D1 where the value becomes 1/4 of the value without the aperture enlarged portion.

[0047] It was demonstrated in this experiment that the length of the aperture enlarged portion is desirably in the range of 0.3D1 to 1.4D1 from a viewpoint of fuel consumption performance. The inventors of the present invention also state other reasons why the length of the aperture enlarged portion in this range is desirable. That is, the obtained length range is specified as an optimum range on the ground that with the length of the aperture enlarged portion being too long, flame holding performance in the aperture enlarged portion may be deteriorated, resulting in deterioration in stability of the ignition position, while with the length of the aperture enlarged portion being too short, combustion gas which swirls with a large turning radius inside the combustion chamber may reach the inside of the aperture enlarged portion as a cross wind, which thereby causes extinguishing.

[0048] Although each embodiment of the present invention has been described in full detail with reference to drawings, it should be understood that concrete structure is not limited to the embodiments described, and various medications and variations in design which come within the scope and the spirit of the present invention are therefore intended to be embraced therein.

Reference Signs List

[0049] 1 ... burner, 1b ... inner pipe, 1c ... central pipeline, 1d ... outer pipe, 1a ... burner exit, 2, 2A ... burner duct, 2a ... shutoff valve, 2b ... burner duct outlet, 2c ... aperture enlarged portion, 2d ... aperture narrowed portion, 3 ... combustion chamber, 4 ... checker chamber, 5 ... hot-blast pipe, 6 ... blast pipe, 7 ... gas duct pipe, 10 ... top-firing hot blast stove, G ... fuel gas, A1, A2 ... combustion air, MG ... mixed gas, ED ... eddy current

Claims

1. A top-firing hot blast stove, comprising:

a checker chamber including a blast pipe for receiving supply of hot blast air; and a combustion chamber which includes a hot-blast pipe and a burner system for supplying hot blast to a blast furnace and which is placed above the checker chamber, wherein the checker chamber is heated by combustion of mixed gas including fuel gas and combustion air supplied from the burner system to the combustion chamber, and hot blast which is generated while the hot blast air passes through the checker chamber is supplied to the blast furnace through the hot-blast pipe, wherein the burner system includes: a burner provided with a fuel gas pipe and a combustion air pipe; and a burner duct communicating with a burner exit of the burner, the burner duct communicating with the combustion chamber through a burner duct outlet, wherein the burner duct has an inner diameter D1 up to a middle of the burner duct and includes an aperture enlarged portion where an inner diameter of the burner duct is enlarged to have an inner diameter D2 provided over a section from the middle of the burner duct to the burner duct outlet, so that an eddy current of the mixed gas
flowing toward the combustion chamber through the burner duct is formed in the aperture enlarged portion, wherein a length of the aperture enlarged portion to the burner duct outlet is in a range of 0.3D1 to 1.4D1 where D1 represents the inner diameter of the burner duct up to the middle, and wherein the eddy current sucks in high temperature atmosphere from the combustion chamber and forms a flame-holding portion to stabilize an ignition point.

2. The top-firing hot blast stove according to claim 1, wherein the burner duct includes, at a burner exit position, an aperture narrowed portion where the inner diameter of the burner duct is reduced, and the mixed gas including the fuel gas and the combustion air is formed in the aperture narrowed portion.
Fig. 4
Fig. 6

Unburnt CO

Length of aperture enlarged portion

(Without aperture enlarged portion)

\(L \) (proportion to aperture \(D_1 \))
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION

PCT/JP2012/056339

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 41-6681 B1 (Chugai Bo Co., Ltd.), 15 March 1966 (15.03.1966), page 1, right column, line 6 to page 2, left column, line 7; fig. 1 (Family: none)</td>
<td>1, 2</td>
</tr>
<tr>
<td>A</td>
<td>JP 50-123006 A (Nippon Steel Corp.), 27 September 1975 (27.09.1975), claims (Family: none)</td>
<td>1, 2</td>
</tr>
<tr>
<td>A</td>
<td>JP 41-1272 B1 (DDL Werke AG.), 01 February 1966 (01.02.1966), page 2, left column, lines 2 to 4; fig. 1 (Family: none)</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

- **A** - Document defining the general state of the art which is not considered to be of particular relevance.
- **E** - Earlier application or patent but published on or after the international filing date.
- **T** - Document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).
- **O** - Document referring to an oral disclosure, use, exhibition or other means.
- **P** - Document published prior to the international filing date but later than the priority date claimed.

Date of the actual completion of the international search

11 June, 2012 (11.06.12)

Date of mailing of the international search report

19 June, 2012 (19.06.12)

Name and mailing address of the ISA/Authorized officer

Japanese Patent Office

Facsimile No.

Telephone No.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CD-ROM of the specification and drawings annexed to the request of Japanese Utility Model Application No. 112680/1991 (Laid-open No. 61604/1993) (Sumitomo Metal Industries, Ltd.), 13 August 1993 (13.08.1993), paragraph [0021]; fig. 1 (Family: none)</td>
<td>1, 2</td>
</tr>
</tbody>
</table>
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description