Disclosed is a power supply unit including a DC-DC converter including an output terminal and resistor coupling terminal and an external resistor coupled to the resistor coupling terminal, where the DC-DC converter includes a first power generation unit which outputs a predetermined current to the output terminal, and a sensing circuit unit that includes a sensing resistor located between the first power generation unit and the output terminal and stops an operation of the first power generation unit depending on a current value flowing in the sensing resistor. A power supply unit and an organic light emitting display including the power supply unit include a sensing circuit unit that stops operation of the power supply unit to prevent an additional damage when an abnormal current occurs.
Description

BACKGROUND

Field

[0001] The present invention relates to a power supply unit and an organic light emitting display including the same that includes a sensing circuit unit.

Description of the Related Technology

[0002] Recently, various flat panel displays capable of reducing weight and volume, which are disadvantages of a cathode ray tube, have been developed. Examples of the displays include Liquid Crystal Display (LCD), Field Emission Display (FED), Plasma Display Panel (PDP), Organic Light Emitting Display (OLED), and the like.

[0003] Among the flat panel displays, the organic light emitting display device, which displays an image using an organic light emitting diode generating light by recombination between an electron and a hole, has advantages in that it has a rapid response speed and is driven at low power.

[0004] Typically, an organic light emitting display (OLED) is classified as a passive matrix OLED (PMOLED) or an active matrix OLED (AMOLED), depending on the driving system of the organic light emitting element.

[0005] An active matrix OLED (AMOLED) typically includes a plurality of scan lines, a plurality of data lines, and a plurality of pixels which are coupled to the lines and arranged in form of a matrix.

[0006] An organic light emitting display typically includes a power supply unit which generates powers required for driving the pixels by converting an external power. The power supply unit supplies the generated powers to the pixels for displaying the image through the power line. However, the power lines can be shortcircuited with each other or with other lines due to the deflection during manufacturing or failure during the use. Therefore, if the power supply unit is continued to be driven despite the short-circuit, additional damage such as fire may occur.

SUMMARY OF CERTAIN INVENTIVE ASPECTS

[0007] Therefore, an object of the present invention is to provide a power supply unit and an organic light emitting display including the same that includes a sensing circuit unit, thereby stopping an operation of the power supply unit to prevent an additional damage when an abnormal current occurs.

[0008] Another object of the present invention is to provide a power supply unit and an organic light emitting display including the same that can easily adjust a value of the abnormal current by changing only a resistance value of an external resistor even if a DC-DC converter is implemented using an integrated circuit chip.

[0009] According to one embodiment, there is provided a power supply unit including: a DC-DC converter including a first power generation unit, an output terminal, a sensing circuit unit between the first power generation unit and the output terminal, and a resistor coupling terminal, where the sensing circuit includes a sensing resistor; and an external resistor coupled to the resistor coupling terminal, where the first power generation unit is configured to output a current to the output terminal, the sensing circuit unit is configured to cause a stop in operation of the first power generation unit based on a value of a current flowing in the sensing resistor exceeding a predetermined value, where the output terminal is configured to output a first power.

[0010] In addition, the sensing circuit unit may further include a first resistor connected between a common node of the first power generation unit and the sensing resistor and a first node, a first transistor connected between the first node and the resistor coupling terminal, an operational amplifier configured to control the first transistor using an input reference voltage and a voltage input to the first node, and a comparator configured to supply a driving stop signal to the first power generation unit if both a voltage of the output terminal and a voltage input to the first node which are identical.

[0011] In addition, the operational amplifier may include a non-inverting terminal with the reference voltage input thereto, an inverting terminal with the voltage of the resistor coupling terminal input thereto, and an output terminal connected to a gate electrode of the first transistor.

[0012] In addition, the sensing circuit unit may further include a first resistor connected between a common node of the first power generation unit and the sensing resistor and a first node, a first transistor connected between the first node and a first reference current source, a second resistor connected between the output terminal and a second node, a second transistor connected between the second node and a second reference current source, a third transistor connected between the first node and the resistor coupling terminal and having a gate electrode connected to a common node of the first transistor and the first reference current source, and a comparator configured to supply a driving stop signal to the first power generation unit if both a reference voltage and a voltage input to the resistor coupling terminal are identical.
In addition, the second transistor may include a gate electrode coupled to a gate electrode of the first transistor and to the second reference current source.

In addition, the first resistor and the second resistor may have the same resistance.

In addition, the first transistor and the second transistor may be P-type transistors.

In addition, the third transistor may be N-type transistor.

In addition, a current value supplied by the first reference current source and a current value supplied by the second reference source may be identical.

In addition, the DC-DC converter may further include an input terminal electrically coupled to a power unit.

In addition, the power supply unit may further include a first inductor connected between the power unit and the input terminal.

In addition, the first power generation unit may include a fourth transistor connected between the input terminal and a ground power, a fifth transistor connected between the input terminal and the sensing resistor, and a first switching control unit configured to control the fourth transistor and the fifth transistor.

In addition, the DC-DC converter may be implemented using an integrated chip.

According to another embodiment of the present invention, there is provided an organic light emitting display including: a plurality of pixels supplied with each of a scan signal, a data signal and a first power; a scan driving unit for supplying the scan signal to the pixels through a scan line; a data driving unit for supplying the data signal to the pixels a data line; and a power supply unit that includes a DC-DC converter including a first power generation unit, an output terminal, a sensing circuit unit between the first power generation unit and the output terminal, a resistor coupling terminal, and an external resistor coupled to the resistor coupling terminal, the first power generation unit configured to output a current to the output terminal, the sensing circuit unit including a sensing resistor and a first node, a first transistor connected between the first node and a first reference current source, and a comparator configured to supply a driving stop signal to the first power generation unit if an input reference voltage and a voltage input to the resistor coupling terminal are identical.

In addition, the DC-DC converter may further include an input terminal electrically coupled to a power unit.

In addition, the organic light emitting display may further include a first inductor connected between the power unit and the input terminal.

In addition, the first power generation unit may include a fourth transistor connected between the input terminal and a ground power, a fifth transistor connected between the input terminal and the sensing resistor, and a first switching control unit configured to control the fourth transistor and the fifth transistor.

In addition, the DC-DC converter may be implemented using an integrated chip.
BRIEF DESCRIPTION OF THE DRAWINGS

[0036] The accompanying drawings, together with the description, illustrate some embodiments of the present invention, and, together, serve to explain the principles of the present invention.

[0037] Fig. 1 is a diagram illustrating an embodiment of an organic light emitting display.

[0038] Fig. 2 is a diagram illustrating an embodiment of the pixels shown in Fig. 1.

[0039] Fig. 3 is a diagram illustrating an embodiment of the power supply unit shown in Fig. 1.

[0040] Fig. 4 is a diagram illustrating an embodiment of the sensing circuit unit shown in Fig. 3.

[0041] Fig. 5 is a diagram illustrating another embodiment of the sensing circuit unit shown in Fig. 3.

DETAILED DESCRIPTION

[0042] Hereinafter, certain embodiments of the present invention will be described with reference to the accompanying drawings. When a first element is described as being coupled to a second element, the first element may be not only directly coupled to the second element but may also be indirectly coupled to the second element via a third element. Further, some of the elements that are not essential to the complete understanding of the invention are omitted for clarity. Also, like reference numerals generally refer to like elements throughout.

[0043] Fig. 1 is a diagram illustrating an embodiment of an organic light emitting display according to the invention.

[0044] Referring to Fig. 1, the organic light emitting display includes a pixel unit 20 including the pixels 10 connected to the scan lines Sn and data lines Dm. A scan driving unit 30 generates the scan signals to the scan lines S1 through Sn. A data driving unit 40 generates the data signals to the data lines D1 through Dm. A power supply unit 50 supplies the first power ELVDD to the second power ELVSS. Further, some of the elements that are not essential to the complete understanding of the invention are omitted for clarity.

[0045] Each of the pixels 10 supplied with the first power ELVDD and the second power ELVSS from the power supply unit 50 generates, via an organic light emitting diode, a light corresponding to the data signal by a current flowing from the first power ELVDD to the second power ELVSS.

[0046] The scan driving unit 30 generates the scan signals by control of the timing control unit 50 and supplies the generated scan signals to the scan lines S1 through Sn.

[0047] The data driving unit 40 generates the data signals by control of the timing control unit 50 and supplies the generated data signals to the data lines D1 through Dm.

[0048] As the scan signals are sequentially supplied to the scan lines S1 through Sn, the pixels 10 are sequentially selected for each of lines, and the data signals transmitted from the data lines D1 through Dm are supplied to the selected pixels 10.

[0049] Fig. 2 is a diagram illustrating one embodiment of the pixels shown in Fig. 1. Fig. 2 shows a pixel connected to n-th scan line Sn and m-th data line Dm for convenience of description.

[0050] Referring to Fig. 2, each pixel 10 includes the organic light emitting diode OLED, and a pixel circuit 12 for controlling the organic light emitting diode OLED which is connected to the data line Dm and the scan line Sn.

[0051] An anode electrode of the organic light emitting diode OLED is connected to the pixel electrode 12, and a cathode electrode thereof is connected to the second power ELVSS.

[0052] The organic light emitting diode OLED generates a light having a predetermined luminance depending on the current supplied from the pixel circuit 12.

[0053] The pixel circuit 12 controls an amount of current supplied to the organic light emitting diode OLED depending on the data signal supplied to the data line Dm when the scan signal is supplied to the scan line Sn. For this purpose, the pixel circuit 12 includes a second transistor T2 connected between the first power ELVDD and the organic light emitting diode OLED, a first transistor T1 connected between the second transistor T2, the data line Dm and the scan line Sn, and a storage capacitor Cst connected between a gate electrode and a first electrode.

[0054] The gate electrode of the first transistor T1 is connected to the scan line Sn and the first electrode of the first transistor T1 is connected to the data line Dm. Also, a second electrode of the first transistor T1 is connected to one side terminal of the storage capacitor Cst. The first electrode is set to either a source electrode or a drain electrode, and the second electrode is set to the other of the source or drain electrode. In some embodiments, if the first electrode is set to the source electrode, the second electrode is set to the drain electrode.

[0055] The first transistor T1 connected to the scan line Sn and the data line Dm is turned on when the scan signal is supplied from the scan line Sn, and then supplies the data signal supplied from the data line Dm to the storage capacitor Cst. The storage capacitor Cst is thus charged with a voltage corresponding to the data signal.

[0056] The gate electrode of the second transistor T2 is connected to one side terminal of the storage capacitor Cst, and the first electrode of the second transistor T2 is connected to the other side terminal of the storage capacitor Cst and the first power ELVDD. Also, the second electrode of the second transistor T2 is connected to the anode electrode of the organic light emitting diode OLED.
of the organic light emitting diode OLED.

[0057] The second transistor T2 controls an amount of current flowing from the first power ELVDD to the second power ELVSS via the organic light emitting diode OLED depending on a value of voltage stored in the storage capacitor Cst. The organic light emitting diode OLED generates a light corresponding to the amount of current supplied from the second transistor T2.

[0058] The pixel configuration of Fig. 2 as described above is merely one embodiment of the present invention, and the pixel 10 of the present invention is not limited to the pixel configuration as described above. The pixel circuit 12 has a circuit configuration capable of supplying the current to the organic light emitting diode OLED, and may be selected in any one of currently known various configurations.

[0059] Returning to Fig. 1, the power supply unit 60 is supplied with an input power Vin from a power unit 70, and then converts the input power Vin to generate the first power ELVDD and the second power ELVSS supplied to each pixel 10.

[0060] In some embodiments, the first power ELVDD is set to a positive polarity voltage, and the second power ELVSS is set to a negative polarity voltage.

[0061] The power unit 70 may be a battery supplying a direct current power to the power supply unit 60, or a rectifier device converting an alternating current power to a direct current power and outputting the converted power, or another type of power unit.

[0062] Fig. 3 is a diagram illustrating an embodiment of the power supply unit shown in Fig. 1.

[0063] Referring to Fig. 3, an embodiment of the power supply unit 60 includes a DC-DC converter 80 and an external resistor Rex.

[0064] The DC-DC converter 80 generates the first power ELVDD using the input power Vin, and can include an output terminal OUT1 for outputting the first power ELVDD, a resistor coupling terminal CR coupled to the external resistor Rex, and an input terminal IN electrically coupled to the power unit 70.

[0065] The DC-DC converter 80 may be implemented using an integrated chip (IC Chip). The external resistor Rex located outside the DC-DC converter 80 can be connected to the resistor coupling terminal CR, and a first inductor L1 located outside the DC-DC converter 80 can be connected to the input terminal IN.

[0066] In addition, the DC-DC converter 80 can include a first power generation unit 110 and a sensing circuit unit 200.

[0067] The power generation unit 110 converts the voltage of the input power Vin to generate the first power ELVDD, and outputs the generated first power ELVDD to the output terminal OUT1 of the DC-DC converter 80.

[0068] The sensing circuit unit 200 includes a sensing resistor Rsen located between the first power generation unit 110 and the output terminal OUT1, and can stop operation of first power generation unit 110 depending on a value of current Iout flowing in the sensing resistor Rsen.

[0069] If the magnitude of the current Iout flowing in the sensing resistor Rsen is at a predetermined value, it is considered as abnormal in the display, and operation of the first power generation unit 110 is therefore stopped.

[0070] The sensing circuit unit 200 may output a driving stop signal Fst to the first power generation unit 110 in order to stop operation of the first power generation unit 110.

[0071] Referring to Fig. 3, the first power generation unit 110 includes a fourth transistor M4, a fifth transistor M5, and a first switch control unit 115.

[0072] The fourth transistor M4 is coupled between the input terminal IN and the ground power, and the fifth transistor M5 is coupled between the input terminal IN and the sensing resistor Rsen.

[0073] The first switch control unit 115 controls the fourth transistor M4 and the fifth transistor M5. In addition, the first switch control unit 115 converts the input power Vin to the first power ELVDD having the desired voltage level by controlling the on-off operations of the fourth transistor M4 and the fifth transistor M5.

[0074] The first inductor L1 is connected between the power unit 70 and the input terminal IN.

[0075] The fourth transistor M4 and the fifth transistor M5 can be alternately turned on, and therefore can be formed of different conductor types. As an example, if the fourth transistor M4 is formed of a P-type conductor, then the fifth transistor M5 can be formed of an N-type conductor.

[0076] In addition, if the driving stop signal Fst is transmitted from the sensing circuit unit 200, then the first switch control unit 115 can stop the operation of the first power generation unit 110 by holding both the fourth transistor M4 and the fifth transistor M5 in off states.

[0077] The DC-DC converter 80 further includes a second power generation unit 120 for generating the second power ELVSS.

[0078] The second power generation unit 120 can output the second power ELVSS through a separate output terminal OUT2.

[0079] In addition, the input power Vin can be input to the second power generation unit 120 from the power unit 70 through a power input terminal A1, and the second power generation unit 120 is coupled to the second inductor L2 located outside the DC-DC converter 80 through an inductor connection unit A2.

[0080] Referring to Fig. 3, the second power generation unit 120 includes a sixth transistor M6, a seventh transistor M7, and a second switch control unit 125.
The sixth transistor M6 is coupled between the power input terminal A1 and inductor coupling terminal A2, and the seventh transistor M7 is coupled between the inductor coupling terminal A2 and the output terminal OUT2.

The second switch control unit 125 controls the sixth transistor M6 and the seventh transistor M7. In addition, the second switching control unit 125 can convert the input power Vin to the second power (ELVSS) having the desired voltage level by controlling the on-off states of the sixth transistor M6 and the seventh transistor M7.

The second inductor L2 is electrically coupled to the second power generation unit 120 by connecting to the inductor coupling terminal A2.

The sixth transistor M6 and the seventh transistor M7 can be alternatively turned on, and therefore can be formed of different conductor types. As an example, if the sixth transistor M6 is formed of an N-type conductor, then the seventh transistor M7 can be formed of a P-type conductor.

The configurations of the first power generation unit 110 and the second power generation unit 120 as described above are merely an embodiment for implementing the present invention, and therefore the present invention is not limited thereto.

Fig. 4 is a diagram illustrating an embodiment of the sensing circuit unit shown in Fig. 3.

Referring to Fig. 4, an embodiment of the sensing circuit unit 200 includes a sensing resistor Rsen, a first resistor R11, a first transistor M11, an operational amplifier 210, and a comparator 220.

The sensing resistor Rsen is placed between the first power generation unit 110 and the output terminal of the DC-DC converter 80. Specifically, the sensing resistor Rsen is coupled to the fifth transistor M5 included in the first power generation unit 110.

The first resistor R11 is connected between second node N21, which is a common node between the first power generation unit 110 and the sensing resistor Rsen, and a first node N11.

The first transistor M11 is connected between the first node N11 and the resistor coupling terminal CR. The first transistor M11 can be coupled to the external resistor Rex via the resistor coupling terminal CR.

The reference voltage VREF1 and the voltage of the resistor coupling terminal CR are input to the operational amplifier 210 in order to control the first transistor M11.

The reference voltage VREF1 may be input to a non-inverting input terminal of the operational amplifier 210 and the voltage VCR of the resistor coupling terminal CR may be input to an inverting input terminal coupled to the resistor coupling terminal CR. In addition, the output terminal of the operational amplifier 210 may be connected to the gate electrode of the first transistor M11.

The voltage ELVDD of the output OUT11 and a voltage VN11 of the first node N11 are input to the comparator 220, and then, if both voltages are identical, then the comparator 220 can supply the driving stop signal Fst to the first power generation unit 110.

A first voltage ΔV1 across the sensing resistor Rsen and a second voltage ΔV2 across the first resistor R11 are identical, then the comparator 220 can supply the driving stop signal Fst to the first power generation unit 110.

Referring to the circuit configuration of Fig 4, the first voltage ΔV1 and the second voltage ΔV2 are expressed as follows:

\[ΔV1 = I_{out} \times Rsen \]

\[ΔV2 = \frac{VREF1}{Rex} \times R11 \]

The voltage ELVDD of the output terminal OUT1 and the voltage (VN11) of the first node N11 are identical means that the first voltage ΔV1 and the second voltage ΔV2 are identical, thus the above two equations can be expressed as follows:

\[\frac{VREF1}{Rex} \times R11 = I_{out} \times Rsen \]
The above equations can be expressed as:

\[\textit{R}_{\text{ex}} = \frac{\textit{V}_{\text{REF1}} \times \textit{R}_{11}}{\textit{I}_{\text{out}} \times \textit{R}_{\text{sen}}} \]

Values of the reference voltage \(V_{\text{REF1}} \), the first resistor \(R_{11} \), and the sensing resistor \(R_{\text{sen}} \) are predetermined values on manufacturing the DC-DC converter 80 which is implemented using an IC chip, and the user can adjust the current value which the sensing circuit unit 200 determines as abnormal, by changing only the resistance value of the external resistor \(R_{\text{ex}} \) connected to the resistor coupling terminal CR.

For example, if the reference voltage \(V_{\text{REF1}} \) is set to 1V, the first resistor \(R_{11} \) is set to 7.5K\(\Omega \), the sensing resistor \(R_{\text{sen}} \) is set to 1\(\Omega \), and the external resistor \(R_{\text{ex}} \) of 7.5K\(\Omega \) is coupled to the DC-DC converter 80, then the comparator 220 can output the driving stop signal \(F_{\text{st}} \) to the first switching control unit 115 of the first power generation unit 110 once value of the current \(I_{\text{out}} \) flowing in the sensing resistor \(R_{\text{sen}} \) is 1A.

The first switch control unit 115 to which the driving stop signal \(F_{\text{st}} \) is input can stop the driving of the first power generation unit 110 by turning-off both transistors M4 and M5 included in the first power generation unit 110.

Fig. 5 is a diagram illustrating another embodiment of the sensing circuit unit shown in Fig. 3.

Referring to Fig. 5, this embodiment of the sensing circuit unit 200 includes the sensing resistor \(R_{\text{sen}} \), a first resistor \(R_{12} \), a second resistor \(R_{22} \), a first transistor M12, a second transistor M22, a third transistor M32, a comparator 310, a first reference current source 321, and a second reference current source 322.

The sensing resistor \(R_{\text{sen}} \) is placed between the first power generation unit 110 and the output OUT1 of the DC-DC converter 80. Specifically, the sensing resistor \(R_{\text{sen}} \) is coupled to the fifth transistor M5 included in the first power generation unit 110.

The first resistor \(R_{12} \) is connected between a third node N32, which is a common node between the first power generation unit 110 and the sensing resistor \(R_{\text{sen}} \), and the first node N12.

The first transistor M12 is connected between the first node N12 and the first reference current source 321. The source electrode of the first transistor M12 is connected to the first node N12, and the drain electrode of the first transistor M12 is connected to the first reference current source 321.

The second resistor \(R_{22} \) is connected between the output terminal OUT1 of the DC-DC converter 80 and the second node N22. In some embodiments, the second resistor \(R_{22} \) has the same resistance value as the first resistor \(R_{12} \).

The second transistor M22 is connected between the second node N22 and the second reference current source 322.

The gate electrode of the first transistor M12 and the gate electrode of the second transistor M22 may be coupled to each other, and the gate electrode of the second transistor M22 may be coupled to the second reference current source 322.

The source electrode of the second transistor M22 can be connected to the second node N22, the drain electrode of the second transistor M22 can be connected to the second reference current source 322, and the gate electrode of the second transistor M22 can be connected to the drain electrode of the second transistor M22.

Accordingly, the first transistor M12 and the second transistor M22 can be configured as a current mirror.

The third transistor M32 is connected between the first node N12 and the resistor coupling terminal CR, and the gate electrode thereof is connected to a fourth node N42, which is a common node between the first transistor M12 and the first reference current source 321.

The reference voltage \(V_{\text{REF2}} \) and a voltage \(V_{CR} \) of the resistor coupling terminal CR are input to the comparator 310, and then if both voltages are identical, the comparator 310 can supply the driving stop signal \(F_{\text{st}} \) to the first power generation unit 110.

A first reference current source 321 is coupled between the first transistor M21 and the ground power, and can generate a first reference current \(I_{\text{REF1}} \).

A second reference current source 322 is coupled between the second transistor M22 and the ground power, and can generate a second reference current \(I_{\text{REF2}} \).

In some embodiments, the first reference current \(I_{\text{REF1}} \) and the second reference current \(I_{\text{REF2}} \) have the same value.

Referring to the circuit configuration of Fig. 5, a first voltage \(\Delta V_{1} \) across the sensing resistor \(R_{\text{sen}} \) and a second voltage \(\Delta V_{2} \) across the first resistor \(R_{11} \) are expressed as follows:
\[\Delta V_1 = I_{\text{out}} \times R_{\text{sen}} \]

\[\Delta V_2 = (I_{\text{REF1}} + I_1) \times R_{12} \]

[0117] In addition, the voltage \(V_{N12} \) of the first node \(N12 \) corresponds to the difference between the voltage \(V_{N32} \) of the third node \(N32 \) and the second voltage \(\Delta V_2 \), and thus can be expressed as:

\[V_{N12} = V_{N32} - (I_{\text{REF1}} + I_1) \times R_{12} \]

[0118] The voltage \(V_{N32} \) of the third node \(N32 \) corresponds to the sum of the voltage \(E_{L\text{VDD}} \) of the output terminal \(\text{OUT1} \) and the first voltage \(\Delta V_1 \), and thus can be expressed as:

\[V_{N12} = \Delta V_1 + E_{L\text{VDD}} - (I_{\text{REF1}} + I_1) \times R_{12} \]

[0119] The voltage \(V_{N22} \) of the second node \(N22 \) can be expressed as:

\[V_{N22} = E_{L\text{VDD}} - I_{\text{REF2}} \times R_{22} \]

[0120] If the resistance values of the first resistor \(R_{12} \) and the second resistor \(R_{22} \) are identical, and the current values of the first reference current \(I_{\text{REF1}} \) and the second reference current \(I_{\text{REF2}} \) are identical, then the first transistor \(M_{12} \) and the second transistor \(M_{22} \) operate as a current mirror circuit, and thus the voltage \(V_{N12} \) of the first node \(N12 \) and the voltage \(V_{N22} \) of the second node \(N22 \) are set to be equal.

[0121] Using the conditions that the voltage \(V_{N12} \) of the first node \(N12 \) and the voltage \(V_{N22} \) of the second node \(N22 \) are identical, the following equation is derived:

\[I_1 = \frac{\Delta V_1}{R_{12}} = \frac{I_{\text{out}} \times R_{\text{sen}}}{R_{12}} \]

[0122] If the reference voltage \(V_{\text{REF2}} \) and the voltage \(V_{CR} \) of the resistor coupling terminal \(CR \) are identical, then the comparator \(310 \) outputs the driving stop signal, and thus the following equation can be derived:

\[V_{CR} = I_1 \times R_{\text{ex}} = V_{\text{REF2}} = \frac{V_{\text{REF2}}}{I_1} = \frac{V_{\text{REF2}} \times R_{12}}{I_{\text{out}} \times R_{\text{sen}}} \]
Referring to the above equations, because values of the reference voltage \(V_{\text{REF2}} \), the first resistor \(R_{12} \), the second resistor \(R_{22} \), and the sensing resistor \(R_{\text{sen}} \) are predetermined values upon manufacturing of the DC-DC converter \(80 \) which is implemented using an IC chip, the user can adjust the current value which the sensing circuit unit \(200 \) determines as abnormal, by changing only the resistance value of the external resistor \(R_{\text{ex}} \) connected to the resistor coupling terminal \(\text{CR} \).

For example, if the reference voltage \(V_{\text{REF2}} \) is set to \(1 \)V, the first resistor \(R_{12} \) and the second resistor \(R_{22} \) is set to \(7.5 \)K\(\Omega \), the sensing resistor \(R_{\text{sen}} \) is set to \(1 \)\(\Omega \), and the external resistor \(R_{\text{ex}} \) of \(7.5 \)K\(\Omega \) is coupled to the DC-DC converter \(80 \), then the comparator \(310 \) can output the driving stop signal \(\text{Fst} \) to the first switching control unit \(115 \) of the first power generation unit \(110 \) once value of the current \(I_{\text{out}} \) flowing in the sensing resistor \(R_{\text{sen}} \) is \(1 \)A.

The first switch control unit \(115 \) to which the driving stop signal \(\text{Fst} \) is input can stop the driving of the first power generation unit \(110 \) by turning-off both the transistors \(M_4 \) and \(M_5 \) included in the first power generation unit \(110 \).

While the present invention has been described in connection with certain embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, and equivalents thereof.

Claims

1. A power supply unit including:
 - a DC-DC converter including a first power generation unit, an output terminal, a sensing circuit unit between the first power generation unit and the output terminal, and a resistor coupling terminal, wherein the sensing circuit includes a sensing resistor; and
 - an external resistor coupled to the resistor coupling terminal,
 wherein the first power generation unit is configured to output a current to the output terminal, the sensing circuit unit is configured to cause a stop in operation of the first power generation unit based on a value of a current flowing in the sensing resistor exceeding a predetermined value, and wherein the output terminal is configured to output a first power.

2. A power supply unit according to claim 1, wherein the sensing circuit unit further includes:
 - a first resistor connected to a common node between the first power generation unit and the sensing resistor, and a first node,
 - a first transistor connected to the first node and the resistor coupling terminal,
 - an operational amplifier configured to control the first transistor using an input reference voltage and a voltage input to the first node, and
 - a comparator configured to supply a driving stop signal to the first power generation unit if both a voltage of the output terminal and a voltage input to the first node are identical.

3. A power supply unit according to claim 2, wherein the operational amplifier comprises a non-inverting terminal with the reference voltage input thereto, an inverting terminal with the voltage of the resistor coupling terminal input thereto, and an output terminal connected to a gate electrode of the first transistor.

4. A power supply unit according to claim 1, wherein the sensing circuit unit further includes:
 - a first resistor connected to a common node between the first power generation unit and the sensing resistor, and a first node,
 - a first transistor connected to the first node and a first reference current source,
 - a second resistor connected to the output terminal and a second node,
 - a second transistor connected to the second node and a second reference current source,
 - a third transistor connected to the first node and the resistor coupling terminal, and having a gate electrode connected to a common node between the first transistor and the first reference current source, and
 - a comparator configured to supply a driving stop signal to the first power generation unit if both a reference voltage and a voltage input to the resistor coupling terminal are identical.

5. A power supply unit according to claim 4, wherein a gate electrode of the second transistor is coupled to a gate electrode of the first transistor and to the second reference current source.
6. A power supply unit according to claim 4 or 5, wherein the first resistor and the second resistor have a same resistance.

7. A power supply unit according to claim 4, 5 or 6, wherein the first transistor and the second transistor are P-type transistors.

8. A power supply unit according to claim 7, wherein the third transistor is N-type transistor.

9. A power supply unit according to one of claims 4 to 8, wherein the first reference current source and the second reference source are adapted to supply identical current values.

10. A power supply unit according to any preceding claim, wherein the DC-DC converter further includes an input terminal electrically coupled to a power unit.

11. A power supply unit according to claim 10, further comprising a first inductor connected between the power unit and the input terminal.

12. A power supply unit according to claim 11, wherein the first power generation unit includes:

 a fourth transistor connected to the input terminal and a ground power,
 a fifth transistor connected to the input terminal and the sensing resistor, and
 a first switching control unit configured to control the fourth transistor and the fifth transistor.

13. A power supply unit according to any preceding claim, wherein the DC-DC converter is implemented by an integrated chip.

14. An organic light emitting display including:

 a plurality of pixels supplied with each of a scan signal, a data signal and a first power;
 a scan driving unit for supplying the scan signal to the pixels through a scan line;
 a data driving unit for supplying the data signal to the pixels through a data line; and
 a power supply unit according to any preceding claim, wherein the resistor coupling terminal is configured to supply the first power to the pixels.
FIG. 1
FIG. 2
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>-----</td>
<td>2-9</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-----</td>
<td>2-9</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 5 642 034 A (AMANO NOBUTAKA [JP]) 24 June 1997 (1997-06-24) * the whole document *</td>
<td>1,10-14</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-----</td>
<td>2-9</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 4 278 930 A (ROGERS ROBERT G) 14 July 1981 (1981-07-14) * the whole document *</td>
<td>1,10-14</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-----</td>
<td>2-9</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-----</td>
<td>2-9</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

CATEGORY OF CITED DOCUMENTS

- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **A**: technological background
- **P**: intermediate document
- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **A**: member of the same patent family, corresponding document
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>"Power sensing circuit breaks new ground", maxim integrated</td>
<td>1,10-14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22 May 2005 (2005-05-22), XP002697918, Retrieved from the Internet:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>URL:http://www.maximintegrated.com/app-notes/index.mvp/id/3669</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[retrieved on 2013-05-27]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>* the whole document *</td>
<td>2-9</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 6 185 082 B1 (YANG TA-YUNG [TW])</td>
<td>1,10-14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 February 2001 (2001-02-06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>* the whole document *</td>
<td>2-9</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>* the whole document *</td>
<td>2-9</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sculley, D.: "Other Op-Amp ideas", Tuft University</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 July 2006 (2006-07-23), XP002697919, Retrieved from the Internet:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>URL:http://www.eecs.tufts.edu/~dsculley/tutorial/opamps/opamps7.html</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[retrieved on 2013-05-27]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* the whole document *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munich</td>
<td>3 June 2013</td>
<td>Bader, Arnaud</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **A**: technological background
- **O**: non-written disclosure
- **P**: intermediate document
- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **S**: member of the same patent family, corresponding document
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
</table>

The present search report has been drawn up for all claims

Place of search: Munich
Date of completion of the search: 3 June 2013
Examiner: Bader, Arnaud

<table>
<thead>
<tr>
<th>CATEGORY OF CITED DOCUMENTS</th>
<th>T: theory or principle underlying the invention</th>
</tr>
</thead>
<tbody>
<tr>
<td>X: particularly relevant if taken alone</td>
<td></td>
</tr>
<tr>
<td>Y: particularly relevant if combined with another document of the same category</td>
<td></td>
</tr>
<tr>
<td>A: technological background</td>
<td></td>
</tr>
<tr>
<td>O: non-written disclosure</td>
<td></td>
</tr>
<tr>
<td>P: intermediate document</td>
<td></td>
</tr>
<tr>
<td>E: earlier patent document, but published on, or after the filing date</td>
<td></td>
</tr>
<tr>
<td>D: document cited in the application</td>
<td></td>
</tr>
<tr>
<td>L: document cited for other reasons</td>
<td></td>
</tr>
<tr>
<td>A: member of the same patent family, corresponding document</td>
<td></td>
</tr>
</tbody>
</table>
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

03-06-2013

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 5041777 A</td>
<td>20-08-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H07182055 A</td>
<td>21-07-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5642034 A</td>
<td>24-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4278930 A</td>
<td>14-07-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6046896 A</td>
<td>04-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6204648 B1</td>
<td>20-03-2001</td>
</tr>
<tr>
<td>US 6185082 B1</td>
<td>06-02-2001</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009207279 A</td>
<td>10-09-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009225478 A1</td>
<td>10-09-2009</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82