METHOD FOR MELTING A PSEUDO BETA-TITANIUM ALLOY COMPRISING (4.0-6.0)% AL - (4.5-6.0)% MO - (4.5-6.0)% V - (2.0-3.6)% CR, (0.2-0.5)% FE - (0.1-2.0)% ZR

This invention relates to the field of nonferrous metallurgy, and specifically to the production of pseudo β-titanium alloys comprising titanium and also the following alloying elements: molybdenum, vanadium, chromium, zirconium, iron and aluminum. The proposed alloy contains the following components: 25-27% by mass of molybdenum; 25-27% by mass of vanadium; 14-16% by mass of chromium; 9-11% by mass of titanium; aluminium as the base, and iron and zirconium in the form of technically pure metals. The technical result of the invention is the possibility of producing a pseudo β-titanium alloy with a highly homogeneous chemical composition, which is alloyed with high-melting elements, has a ≤6% content of aluminium and has stable high-impact properties in combination with high-impact strength.