EUROPEAN PATENT SPECIFICATION

(54) SELF-ASSEMBLING NANOPARTICLES FOR THE RELEASE OF BISPHOSPHONATES IN THE TREATMENT OF HUMAN CANCERS
SELBSTANORDNENDE NANOPARTIKEL ZUR FREISETZUNG VON BISPHOSPHONATEN ZUR BEHANDLUNG VON KREBS BEI MENSCHEN
NANOPARTICULES AUTO-ASSEMBLANTES POUR LA LIBÉRATION DE BISPHOSPHONATES DANS LE TRAITEMENT DES CANCERS HUMAINS

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 01.10.2010 IT FI20100206

(43) Date of publication of application: 07.08.2013 Bulletin 2013/32

(73) Proprietors:
• De Rosa, Giuseppe
 80131 Napoli (IT)
• Caraglia, Michele
 83031 Ariano Irpino (IT)
• Istituti Fisioterapici Ospitalieri
 00144 Roma (IT)
• Tassone, Pierfrancesco
 88100 Catanzaro (IT)
• La Rotonda, Maria Immacolata
 80100 Napoli (IT)
• Abbruzzese Saccardi, Alberto
 80100 Napoli (IT)

(72) Inventors:
• SALZANO, Giuseppina
 I-80020 Casavatore (IT)
• MARRA, Monica
 I-80136 Napoli (IT)
• LEONETTI, Carlo
 I-00159 Roma (IT)

(74) Representative: Valenza, Silvia et al
Notarbartolo & Gervasi S.p.A.
Corso di Porta Vittoria 9
20122 Milano (IT)

(56) References cited:
WO-A2-2008/005509 WO-A2-2008/008917

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention refers to the field of pharmaceutical formulations containing bisphosphonates for the treatment and prevention of human cancers.

State of the art

Bisphosphonate (BPs) are the most potent inhibitor of bone resorption and represent the treatment of choice for different diseases, such as osteoporosis, Paget's disease and bone metastases. In oncology, their role in metastatic bone disease is well established, but there is increasing interest in their potential role in preventing and treating cancer-induced bone loss and their possible anti-tumour effects. Increasing evidence is accumulating that BPs are able to directly affect tumour cells, in addition to their direct effects upon osteoclasts. The potency of the antitumour effect in vitro generally mirrors the potency of the anti-resorptive ability with amino-BPs (NBPs), in particular, zoledronic acid (ZOL) being the most potent in both respects. BPs induce apoptosis of tumour cells and inhibit tumour cell growth, in vitro, of a variety of tumour cell types, including breast (Senaratne et al. 2000, Jagdev et al. 2001a), prostate (Lee et al. 2001), melanoma (Riebeling et al. 2002), osteosarcoma (Mackie et al. 2001, Sonnemann et al. 2001) and myeloma (Shipman et al. 1998) tumour cells.

As known, ZOL belongs to the class of NBPs that are used for the treatment of the complications derived from bone metastases so called skeletal related events (pain, spontaneous fractures, bone radiotherapy requirement etc.) and for the prevention of the cancer treatment induced osteopenia (hormone therapy in the treatment of prostate and breast cancer). However, up-to-date ZOL has not still been used as a drug with direct anti-cancer activity and its ability to act directly against bone metastases has never been demonstrated also for the limits of radiologic detection and measurement of cancer in the bone. Moreover, no survival advantage was reported in the patients treated with NBP if compared with patients not treated with NBP, with the exception of the study by M. Gnant et al (N Engl J Med. 2009) that demonstrates a survival advantage in the adjuvant setting of hormone-dependent breast cancer treated with ZOL.

On the other hand, direct effects on tumour mass induced by ZOL have been never reported with the exception of sporadic case reports (Kijima et al. Int J Urol. 2008; Okamoto et al. Ann Oncol. 2009; Boudou-Rouquette et al. Ann Oncol. 2009).

One of the most important limits of NBPs, which makes the direct anti-cancer activity difficult to demonstrate in vivo, is their pharmacokinetic profile. In fact, there is rapid elimination of ZOL from plasma resulting from renal excretion and rapid uptake and accumulation within bone. An intravenous administration of ZOL at the dose of 4 mg over 15 min results in a sharp increase in its concentration, with estimated distribution and elimination plasma half-lives of 15 min (t1/2) and 105 min (t1/2β) respectively. The maximum plasma concentration (Cmax) of ZOL is about 1 μM; that is 10- to 100-fold less than that required in vitro studies to induce apoptosis and growth inhibition in tumor cell lines. Moreover, approximately 55% of the initially administered dose of the drug is retained in the skeleton, from which it is slowly released back into circulation (Caraglia M. et al. Endocr Relat Cancer. 2006).

In the light of these considerations, there is a need to develop new ZOL formulations with a lower affinity for bone and a longer half-life in the circulation that would result in increased probability to affect peripheral tumours. At the state of the art it is known that employing nanotechnologies, and in particular stealth liposomes (that is those comprising hydrophilic polymers, e.g. polyethyenglycol or PEG, in their compositions), allows the use of ZOL in several tumors (US2007/0218116; IT FI2009A000190 in the name of the same Applicants). In particular, the employ of ZOL containing liposomes allows a considerable tumor growth reduction in different cancer animal models. In the same animal model the tumors resulted to be resistant to ZOL.

However, the formulation strategy developed so far present some inconvenient such as a reduced liposomes physical stability which requires the liposomes to be lyophilised, a low encapsulation efficiency (about 5% corresponding to 100 μg ZOL/mg of lipids) and a certain drug loss following rehydration after lyophilization.

In which BP is used to bind biological surface, such as tooth or bone. Moreover, the patent application WO2008/005509 describes PLGA-PEG nanoparticles chemically conjugated at the carboxyl terminal to a biphosphonate which were added in trace amount to a solution of CaCO3 (average size 800nm) resulting in an aggregation of the CaCO3 particles. Such a composition is suitable for delivering particles to a tooth or bone. Thus, this composition can be used to modify biological surface of tooth or bone, while is not suitable to avoid BP accumulation into the bone and cannot be used to target tumors.

It is therefore evident the need of providing pharmaceutical formulations containing NBPs which overcome the above said problems and are efficient for the treatment of tumors.
Summary of the invention

[0010] The object of the present invention are nanocomplexes, also called nanoparticles (NP), according to claim 1. The aforementioned nanocomplexes can be also named self-assembling nanoparticles. The aforementioned nanocomplexes are useful as pharmaceutical formulation for the treatment or the prevention of tumor growth and/or metastasis. The tumors can be solid or haematological tumors, such as prostate cancer, lung cancer, head/neck cancer, colon cancer, liver cancer, breast cancer, pancreas cancer, kidney cancer, bladder cancer, male and female urogenital tract cancer, bone cancer, multiple myeloma, melanoma, lymphoma, primitive and secondary tumors.

[0011] In particular, the invention related to a bisphosphonate, for example the zoledronic acid (ZOL), complexed with nanoparticles based on calcium and phosphate salts; such particles are mixed with other particles, for example liposomes. The nanocomplexes, object of this invention, have advantages such as the possibility to be easily prepared immediately before use, a high drug loading, a high reproducibility of the results. Nanocomplexes, according with this invention, are nanoparticulate entities, for which, surprisingly, images were acquired by cold field electron gun scanning electron microscopy (cFEG-SEM) (figure 1). These nanocomplexes have a mean diameter ranging from 10 to 500 nm. Moreover, such system has showed an antitumor effect higher than that observed with ZOL-containing liposomes previously developed (Marra et al. Biotechnology Advances 2011).

Detailed Description of the Invention

[0013] It has been surprisingly found, and it is object of the present invention, that bisphosphonates, in pharmaceutical formulation based on the combination of lipid and inorganic nanovectors can be successfully used for the treatment of different solid and haematological tumors, such as prostate cancer, lung cancer, head/neck cancer, colon cancer, liver cancer, breast cancer, pancreas cancer, kidney cancer, bladder cancer, male and female urogenital tract cancer, bone cancer, multiple myeloma, melanoma, lymphomas.

[0014] In a preferred embodiment ligands can be added on the NP surface in order to target specific cells. Ligands can be selected among those having specificity for receptors that are over-expressed on specific cells, for example cancerous cells, but are normally or minimally expressed on normal, healthy cells. These molecules should have high affinity to their cognate receptors, plus can have innate abilities to induce receptor-mediated endocytosis. The targeting layer poses as the outmost exterior of the NP, where targeting ligands are generally presented on top of the stealth layer. Structures such as antibodies, antibody fragments, proteins, small molecules, aptamers and peptides have all demonstrated abilities to induce NP-targeting to cancer cells (M. Wang and M. Thanou , Pharmacological Research 2010; Huynh, et al. Nanomedicine 2010.). As representative embodiment, NP with human-transferrin on their surface were prepared and characterized (see experimental section).

[0015] The formulation can be administered to the patient by parenteral administration, for example by intravenous, intraperitoneal, intratumoral, intraarterial injection, depending on the type of tumor to treat. Other routes of administration, such as oral or transdermal, cannot be excluded.

[0016] The formulation can be used for different BPs, such as clodronate, alendronate, etidronate, pamidronate, tiludronate, ibandronato, neridronato, zoledronato, minodronato and risedronate, and their biological derivates or produgs. The selected BP is preferably the zoledronic acid.

[0017] The amount of BP loaded into the nanoparticles is preferably comprised between 0.001 μg e 100 mg di BP/ml of suspension, more preferably between 50 μg and 0.250 mg BP/ml of suspension.

[0018] According with the invention, the nanovectors are structures with a size ranging between ten and hundreds of nanometers able, when associated to a drug, to change its pharmacokinetic profile.

[0019] According with the invention, the nanovectors are nanoparticles, nanocapsules or nanospheres, liposomes or other nanovectors such as niosomes, micelles.

[0020] In the present invention, self-assembling nanoparticles are preferred.

[0021] According with our invention, the nanovectors have to be preferably prepared by mixing of solutions and/or dispersions. In particular, the formulation, consists in self-assembling nanovectors prepared before use.
According to the invention, the nanovectors can be prepared by mixing two or more aqueous or organic solutions or suspensions.

According the invention, the lipid nanoparticles, can be liposomes or other nanovectors such as niosomes and micelles. These nanoparticles are preferably self-assembling nanoparticles, preferably stealth nanoparticles (NPs bearing an hydrophilic polymer, i.e. polyethylene glycol or PEG, on their surface).

According with the invention, the self-assembling nanoparticles are formed starting from inorganic nanoparticles and lipid nanoparticles bearing an hydrophilic polymer.

In particular, according with the invention, the inorganic nanovectors are nanoparticles based on inorganic salts. For example and preferably, it is possible to use nanoparticles based on inorganic salts containing Ca, Mg, Sr, Zn, and mixtures thereof. Preferably, these inorganic nanovectors are based on Ca and P and, in particular, on nano-precipitated calcium hydrogen phosphate.

The lipid nanoparticles are preferably liposomes, preferably composed on phosphoglycerides and sfigolipids, together with their products of hydrolysis, sterols, cationic lipids, anionic lipids, neutral lipids, lipids conjugated with synthetic or natural polymers or lipids bound to fluorescent probes, or lipids bound to proteins or peptides, or lipids conjugated with molecules able to specifically interact with receptor of the cell membrane. In particular, these liposomes are based on mix of 1,2-dioleoyl-3-trimethylammonium-propane (chloride salt) (DOTAP), cholesterol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG 2000), preferably in amount ranging between 0-100%, 0-80% and 100-0% (p/p), respectively.

In a preferred embodiment, DSPE-PEG 2000 is premixed with the other components of the liposomal mix.

For an aspect, the invention concerns to a method for the preparation of the complexes, comprising the following steps:

a. mixing of a suspension containing inorganic nanovectors with a solution containing the bisphosphonate, to obtain a suspension of the bisphosphonate complexed to the nanovectors;

b. mixing of a suspension of the lipid nanoparticle bearing an hydrophilic polymer with the suspension obtained from the step a.

For preparing NPs bearing a ligand for receptors overexpressed by cancer cells the ligand can be added, incubating the NP obtained according to the process as above described, in a solution containing the ligand; or, in alternative, it can be included in the NP first incubating the lipid nanoparticles bearing an hydrophilic polymer in a solution containing the ligand and then mixing the obtained ligand-nanovectors complexes or conjugated with the suspension obtained from the step a.

For an aspect the invention concerns a kit to prepare the aforementioned pharmaceutical formulations; such kit contains:

- at least a container containing a bisphosphonate, in solution or at the solid state;
- at least a container containing a suspension of inorganic nanovectors;
- at least a container containing a suspension containing lipid nanoparticles bearing an hydrophilic polymer.

Preferably the kit according to the invention can include at least a container containing a ligand, or a solution thereof, for receptors overexpressed in cancer cells. Alternatively, the ligand can be already present into the container containing a suspension containing lipid nanovectors.

The present invention can be better understood from the following examples.

Example 1

Preparation of stealth self assembly nanoparticles containing ZOL

Ingredients: calcium chloride 18 mM, hydrogen phosphate dibasic 10.8 mM, 10 or 50 mg of zoledronic acid. 1,2-dioleoyl-3-trimethylammonium-propane chloride (DOTAP) and 1,2-diacyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) cholesterol (chol).

Step 1: Preparation of calcium phosphate nanoparticles and their complexes with ZOL

An aqueous solution of calcium chloride (18 mM) was added, dropwise and under magnetic stirring, to an aqueous solution on dibasic hydrogen phosphate (10.8 mM). The pH of both solutions was adjusted beforehand to 9.5 with NaOH. CaP NPs were obtained by filtration of the suspension through a 0.22 μm filter. CaP NPs were stored at 4°C before use. CaP/ZOL-NPs complexes (CaPZ NPs) were prepared by mixing a CaP NPs dispersion with an aqueous
solution of ZOL at different ZOL concentrations (10 mg/ml of ZOL in water or 50 mg/ml of ZOL in phosphate buffer at pH 9.5), at a volume ratio of 50:1.

Step 2: Preparation of liposomes

[0034] Liposomes consisting of DOTAP/chol (1:1 weight ratio) or DOTAP/chol/DSPE-PEG 2000 (1:1:0.5 or 1:1:1 weight ratio) were prepared by hydration of a thin lipid film followed by extrusion. Briefly, the lipid mixture were dissolved in 1 ml of a mixture chloroform/methanol (2:1 v/v), the resulting solution was added to a 50 ml round-bottom flask, and the solvent was removed under reduced pressure by a rotary evaporator under nitrogen atmosphere. Then, the lipid film was hydrated with 1 ml of sterile water and the resulting suspension was gently mixed in the presence of glass beads, after that the flask was left at room temperature for still 2 h. The liposome suspension was then extruded using a thermobarrel extruder system passing repeatedly the suspension under nitrogen through polycarbonate membranes with decreasing pore sizes (0.4-0.1 μm). After preparation, liposomes were stored at 4°C. Each formulation was prepared in triplicate.

Step 3: Preparation of self assembly nanoparticles containing ZOL

[0035] CaP ZOL NP obtained according to Step 1 were mixed with cationic liposomes obtained according to Step 2. Briefly, 500 μl of CaP Z NPs were mixed with 500 μl of DOTAP/chol liposomes, at a final ZOL concentration 0.25 or 0.05 mg/ml suspension. One milliliter of a LCaPZ NPs suspension was then mixed with 50 μl micellar dispersion of DSPE-PEG2000 (47 mg/ml) and then incubated at 50-60°C for 10 min. The resulting suspension (post-PLCaPZ NPs) was then allowed to cool to room temperature before use.

Example 2

Preparation of stealth self assembly nanoparticles containing ZOL

[0036] Ingredients: calcium chloride 18 mM, hydrogen phosphate dibasic 10,8 mM, 10 or 50 mg of zoledronic acid, 1,2-dioleoyl-3-trimethylammonium-propane chloride (DOTAP) and 1,2-diacyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) cholesterol (chol).

Step 1 and Step 2 was similar to that described in Example 1.

[0037] Step 3: Equal volumes of suspensions containing DOTAP/chol/DSPEG2000 liposomes and CaP Z NPs, respectively, were mixed in a glass tube and the resulting dispersion was allowed to stand at room temperature for 10 min (pre-PLCaPZ NPs).

Nanoparticles characterization

[0038] The mean diameter of cationic liposomes and PLCaPZ NPs, were determined at 20°C by photon correlation spectroscopy (PCS). Each sample was diluted in deionizer/filtered water and analyzed with detector at 90° angle. As measure of the particle size distribution, polydispersity index (P.I) was used. For each batch, mean diameter and size distribution were the mean of three measures. For each formulation, the mean diameter and P.I. were calculated as the mean of three different batches.

[0039] The zeta-potential (ζ) of the NPs surface was measured in water by means of a Zetasizer Nano Z. Data of ζ were collected as the average of 20 measurements. Morphological analysis of LCaPZ, post- and pre-PLCaPZ NPs were investigated by cold field emission gun-scanning electron microscopy (cFEG-SEM), as reported by De Rosa et al. (De Rosa et al. International Journal of Pharmaceutics 2008). For cFEG-SEM analysis, samples were prefixed in a mix of 4% formaldehyde and 1% glutaraldehyde in distilled water for 1 h. Then, samples were rinsed in distilled water by ultracentrifugation (80,000 rpm) and post-fixed by adding 1% OsO4 for 1 h. After a further washing with distilled water, pellets were filtered on a polycarbonate filter (0.1 μm) in a Swinnex filtration apparatus (Millipore, USA). A second filter was placed over the first to form a sandwich in which liposomal pellets were trapped. Samples were then dehydrated in a graded alcohol series (10, 30 and 50% for 10min, 70 and 80% for 30min, 95% for 1 h and 100% overnight at 4 °C) and critically point dried. At the end of the treatment, the Swinnex was opened and both filters were placed on a stub cleaned with acetone to remove any grease. Double adhesive carbon disks (EMS, USA) were stuck onto the stub, and the filters containing the samples were placed over it. Finally, the stubs were sputter coated with a nanometric layer of gold. Observations were carried out by a cold cathode Field Emission Gun Scanning Electron Microscope (FEG Jeol 6700F, Jeol Ltd., Japan). The pictures of the NPs surface at higher magnifications were taken at 2-5 kV (see Figure 1).
ZOL analysis was carried out by reverse phase high performance liquid chromatography (RP-HPLC). The HPLC system consisted of an isocratic pump equipped with a 7725i injection valve, SPV-10A UV-Vis detector set at the wavelength of 220 nm. The system was controlled by a SCL-10A VP System Controller connected with a computer. Chromatograms were acquired and analysed by a Class VP Client/Server 7.2.1 program. The quantitative analysis of ZOL was performed on a Gemini 5 mm C18 column (250 X 4.60 mm, 110 Å Phenomenex, Klwid, USA) equipped with a security guard. The mobile phase was a mixture 20:80 (v/v) of acetonitrile and an aqueous solution (8 mM di-potassium hydrogen orthophosphate, 2 mM di-sodium hydrogen orthophosphate and 7 mM tetra-n-butyl ammonium hydrogen sulphate, adjusted at pH of 7.0 with sodium hydroxide). ZOL determination was performed in isocratic condition, at a flow rate of 1 ml/min at room temperature.

For CaPZ, post and pre-PLCaPZ NPs the amount of un-complexed ZOL was determined as follows: 1 ml of NPs dispersion was ultracentrifugated (Optima Max E, Beckman Coulter, USA) at 80.000 rpm at 4°C for 40 min. Supernatants were carefully removed and ZOL concentration was determined by RP-HPLC. The results have been expressed as complexation efficiency, calculated as the ratio between the amount of ZOL present in the supernatants and the amount of ZOL theoretical loaded.

Cell culture and proliferation assay.

Human melanoma cells (M14) and doxorubicin resistant cells (M14+) were provided by Prof. G. Arancia form the National Institute of Health of Rome. All the other cell lines were provided by ATCC and were grown in medium as suggested by ATCC in a humidified atmosphere of 95% air/5% CO2 at 37 °C. Proliferation of human cancer cell lines was performed in the presence of increasing concentrations of different drugs by MTT assay as previously described by Caraglia et al. (Oncogene 2004).

In vivo experiment

PC3M-luc2 is a luciferase expressing cell line which was stably transfected with the luc2 firefly luciferase gene (Caliper Life Sciences, Hopkinton, MA, USA). Human xenografts were imaged using the IVIS imaging system 200 series (Caliper Life Sciences). Briefly, mice were anesthetized with a combination of tiletamine-zolazepam (Telazol, Virbac, Carros, France) and xylazine (xylazine/ Rompun BAYER) given intramuscularly at 2 mg/kg. Then mice were injected intraperitoneally with 150 mg/kg D-luciferin (Caliper Life Sciences), and imaged in the supine position 10-15 min after luciferin injection. Data were acquired and analyzed using the living image software version 3.0 (Caliper Life Sciences).

Evaluation of apoptosis by TUNEL technique

For TUNEL assay, after washing in PBS supplemented in 0.1% BSA, cells were treated with an in situ detection kit, according to the manufacturers instructions (Boehringer Mannheim Biochemicals). Nuclei with fragmented DNA were visualized by a fluorescence microscope.

Characteristic of the formulations object of the invention

The characteristics of the formulation containing ZOL are reported in table 1. We obtained pre-PLCaPZ NP with a mean diameter of about 150 nm with PI< 0.2. The actual loading of ZOL in pre-PLCaPZ NP was of about 0.175 mg/ml of dispersion, corresponding of a complexation efficiency of about 70%. On the contrary, post-PLCaPZ NP were characterized by a high mean diameter, around 300 nm, and an heterogeneous size distribution (IP= 0.3). In addition, the amount of ZOL loaded in post PLCaPZ NP was 5 times lower than that found in pre PLCaPZ NP, since an increase in concentration of ZOL from 0.05 to 0.25 results in aggregates formation. We also investigated morphological characteristics of LCaPZ NPs, pre and post-PLCaPZ NPs by cFEG-SEM analysis (Figure 1). In the case of LCaPZ NPs, regularly shaped NPs with a smooth surface were observed (Figure 1A). On the other hand, the analysis of the formulation containing pre-PLCaPZ NPs showed irregularly shaped particles with homogeneous size distribution and a rather rough surface (Figure 1B). On the contrary, the formulation containing post-PLCaPZ NP was characterized by an heterogeneous
particles dispersion (1C).

Table 1. Diameter, P.I., zeta potential (ζ) and complexation efficiency of post and pre-PLCaP NPs.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Mean diameter (nm) ± SD</th>
<th>P.I. ± SD</th>
<th>ζ (mV) ± SD</th>
<th>ZOL theoretical loading (mg/ml)</th>
<th>Complexation efficiency (%) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-PLCaPZ NPs</td>
<td>309.1 ± 163.0</td>
<td>0.363 ± 0.2</td>
<td>10.7 ± 5.5</td>
<td>0.05</td>
<td>100.0 ± 0.0</td>
</tr>
<tr>
<td>Pre-PLCaPZ NPs</td>
<td>147.5 ± 71</td>
<td>0.152 ± 0.06</td>
<td>17.5 ± 5.6</td>
<td>0.250</td>
<td>66.0 ± 1.0</td>
</tr>
</tbody>
</table>

In vitro anti-tumour activity of ZOL, alone or encapsulated in NPS in different cancer cell lines.

[0049] It was studied the effect of increasing concentrations of ZOL encapsulated in pre- and post-PLCaP NPs on growth inhibition of different human cancer cell lines, by MTT assay. In Table 2, the IC50 (50% inhibitory concentration) values of ZOL, free or encapsulated in pre- or post-PLCaP NPs, in the different cell lines analysed after 72 h, are reported. In all cases, when considering blank NPs, the cytotoxicity of post-PLCaP NPs was significantly higher than that observed for pre-PLCaP NPs. Moreover, when using ZOL-encapsulating NPs, we found a potentiation factor (PF) > 1.0 in all tested cell lines, if compared with the free ZOL. The two tested formulations showed different efficiency to deliver ZOL to the cells, and this effect was strictly dependent on the cell line, with the highest cell growth inhibition obtained on breast cancer cells. In particular, on MCF7, pre-PLCaP NPs caused an about 12-fold potentiation of ZOL-induced cytotoxicity, while a lower effect (about 8-fold) was found with post-PLCaP NPs.

Table 2. Growth inhibition and potentiation factors on tumour cell lines of different histological derivation.

<table>
<thead>
<tr>
<th>Cell lines</th>
<th>free ZOL</th>
<th>Post-PLCaPZ NPs</th>
<th>Blank Post-PLCaP NPs</th>
<th>P.F.</th>
<th>Pre-PLCaPZ NPs</th>
<th>Blank Pre PLCaP NPs</th>
<th>P.F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC3</td>
<td>12.5</td>
<td>2.2</td>
<td>23</td>
<td>5.7</td>
<td>3.6</td>
<td>57.4</td>
<td>3.5</td>
</tr>
<tr>
<td>DU145</td>
<td>25</td>
<td>7.4</td>
<td>42</td>
<td>3.4</td>
<td>11.6</td>
<td>120</td>
<td>2.2</td>
</tr>
<tr>
<td>Breast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCF7</td>
<td>120</td>
<td>14.7</td>
<td>33.3</td>
<td>8.1</td>
<td>10.1</td>
<td>120</td>
<td>11.8</td>
</tr>
<tr>
<td>MDA-MB468</td>
<td>28.4</td>
<td>13</td>
<td>65</td>
<td>2.2</td>
<td>11.3</td>
<td>120</td>
<td>2.5</td>
</tr>
<tr>
<td>CG5</td>
<td>74</td>
<td>7.5</td>
<td>30</td>
<td>9.9</td>
<td>16</td>
<td>120</td>
<td>4.6</td>
</tr>
<tr>
<td>Head/neck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB</td>
<td>22.8</td>
<td>5.6</td>
<td>19.4</td>
<td>4.07</td>
<td>11.1</td>
<td>120</td>
<td>2</td>
</tr>
<tr>
<td>Lung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1355</td>
<td>65</td>
<td>11</td>
<td>35</td>
<td>5.9</td>
<td>9.5</td>
<td>86</td>
<td>6.8</td>
</tr>
<tr>
<td>Pancreas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panne</td>
<td>32</td>
<td>12.7</td>
<td>44.5</td>
<td>1.4</td>
<td>18.5</td>
<td>84.8</td>
<td>1.6</td>
</tr>
<tr>
<td>BX-PC3</td>
<td>12.3</td>
<td>11.8</td>
<td>44.6</td>
<td>1.04</td>
<td>9</td>
<td>22</td>
<td>1.4</td>
</tr>
<tr>
<td>MIA PaCa</td>
<td>55</td>
<td>16.8</td>
<td>46</td>
<td>3.3</td>
<td>42</td>
<td>120</td>
<td>1.3</td>
</tr>
<tr>
<td>Multiple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myeloma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPMI</td>
<td>120</td>
<td>15.5</td>
<td>66</td>
<td>7.7</td>
<td>90</td>
<td>120</td>
<td>1.3</td>
</tr>
<tr>
<td>DOX</td>
<td>41.9</td>
<td>35</td>
<td>42</td>
<td>1.2</td>
<td>13.8</td>
<td>120</td>
<td>3</td>
</tr>
<tr>
<td>KMS</td>
<td>30</td>
<td>2.3</td>
<td>11.8</td>
<td>13</td>
<td>8</td>
<td>44.6</td>
<td>3.8</td>
</tr>
<tr>
<td>OPM2</td>
<td>83</td>
<td>35</td>
<td>69.7</td>
<td>2.4</td>
<td>33</td>
<td>95</td>
<td>2.5</td>
</tr>
</tbody>
</table>
In vivo evaluation of antitumoral activity of formulations containing ZOL on prostate cancer

PC-3 cells were injected into the left hind leg muscles of nude mice and six days after (when a tumor mass was evident) treatment started by intravenously injection of 20 μg of ZOL free or complexed with pre PLCaPZ NP, a formulation selected for the best technological characteristics. As control, a group of mice was treated with NP not containing ZOL, to evaluate the potential antitumoral effects. Mice were treated three times a week for three consecutive weeks. Antitumor efficacy of treatments was assessed by the following end-points: a) percent tumor weight inhibition (TWI%), calculated as \(1-(\text{mean tumor weight of treated mice/mean tumor weight of controls})\) x 100; b) tumor growth delay, evaluated as \(T - C\), where \(T\) and \(C\) are the median times for treated (\(T\)) and untreated tumors (\(C\)), respectively, to achieve equivalent size. The results reported in the table 3 show a growth inhibition of 17% in mice treated with ZOL free thus suggesting that PC-3 tumors are resistant to ZOL. On the contrary, ZOL complexed with pre PLCaPZ NP produce 44% inhibition of tumor growth. So, the the release of ZOL from NP is able to sensitize PC-3 cells to ZOL antitumoral effects. A comparison between stealth liposomes containing ZOL and pre PLCaPZ NP highlighted the major efficacy of the pre PLCaPZ NP formulation. In fact, this formulation produced a 10% increased antitumor efficacy compared to stealth liposomes.

<table>
<thead>
<tr>
<th>Treatment*</th>
<th>TWI (%) §</th>
<th>T-C (days) &</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOL 20 μg</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>Blank stealth liposome</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Stealth liposome containing ZOL 20 μg</td>
<td>35</td>
<td>9</td>
</tr>
<tr>
<td>Blank NPs</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>ZOL encapsulating NPs</td>
<td>44</td>
<td>11</td>
</tr>
</tbody>
</table>

*Days of treatment: 6, 8, 13, 15, 17, 20, 22, 24 after tumor cells injection. Drugs have been injected intravenously three times a week for three consecutive weeks. Treatment started six days after the tumor cells injection.

§ Percent tumor weight inhibition calculated at the nadir of the effect.

& Tumor growth delay, where \(T\) and \(C\) are the median times for treated (\(T\)) and untreated tumors (\(C\)), respectively, to achieve equivalent size.

Bioluminescence imaging analysis

After 4 months from tumor cell injection, no tumor was evident with both palpability and at the analysis of luminescence with a dedicated apparatus (figure 2) in animal treated with PLCaPZ NPs. In this mouse a progressive reduction of the luminescence associated to the tumour cells was observed with a complete regression of the luminescence at 56 days from the tumour cell injection. Blank PLCaPZ NPs did not induce any significant effect on the tumour weight if compared to free ZOL and untreated groups (data not shown). Finally, it is interesting to note that all the treatments were well tolerated by animals since no body weight loss and toxic deaths have been observed.

Example 3

Funzionalization of self-assembling NPs containing ZOL bearing human transferrin on their surface

Ingredient: 18 mM of calcium chloride, 10.8 mM of hydrogen phosphate dibasic, 50 mg of zoledronic acid, 1,2-dioleoyl-3-trimethylammonium-propane chloride (DOTAP) and 1,2-diacyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene-glycol)-2000] (DSPE-PEG2000) cholesterol (chol), 0.1 mM of human transferrin (Tf).

Step 1: Preparation of PEGylated cationic liposomes

Liposomes consisting of DOTAP/chol/DSPE-PEG 2000 (1:1:0.5 weight ratio) were prepared by hydration of a thin lipid film followed by extrusion. Briefly, the lipid mixture were dissolved in 1 ml of a mixture chloroform/methanol (2:1 v/v), the resulting solution was added to a 50 ml round-bottom flask, and the solvent was removed under reduced pressure by a rotary evaporator under nitrogen atmosphere. Then, the lipid film was hydrated with 1 ml of sterile water and the resulting suspension was gently mixed in the presence of glass beads, after that the flask was left at room temperature for still 2 h. The liposome suspension was then extruded using a thermobarrel extruder system passing...
repeatedly the suspension under nitrogen through polycarbonate membranes with decreasing pore sizes (1.4-0.4 μm). After preparation, liposomes were stored at 4°C. Each formulation was prepared in triplicate.

Step 2: Preparation of calcium phosphate nanoparticles and their complexes with ZOL

[0054] An aqueous solution of calcium chloride (18 mM) was added, dropwise and under magnetic stirring, to an aqueous solution of dibasic hydrogen phosphate (10.8 mM). The pH of both solutions was adjusted beforehand to 9.5 with NaOH. CaP NPs were obtained by filtration of the suspension through a 0.22 μm filter. CaP NPs were stored at 4°C before use. CaP/ZOL-NPs complexes (CaPZ NPs) were prepared by mixing a CaP NPs dispersion with an aqueous solution of (50 mg/ml of ZOL in phosphate buffer at pH 9.5), at a volume ratio of 50:1.

Step 3: Preparation of self-assembly NPs containing ZOL

[0055] Equal volumes of suspensions containing DOTAP/chol/DSPEG2000 liposomes, prepared according to Step 1, and CaPZ NPs, prepared according to Step 2, were mixed in a glass tube and the resulting dispersion was allowed to stand at room temperature for 10 min (PLCaPZ NPs).

Step 4: Preparation of post-Tf-PLCaPZ NPs

[0056] PLCaPZ NPs bearing Tf on their surface (post-Tf-PLCaPZ NPs) were prepared by incubation of PLCaPZ NPs dispersion, prepared according to Step 3, with Tf solutions (10 mg/ml in phosphate buffer at pH 7.4) for 15 min, at room temperature, at a volume ratio of 1:0.5.

Example 4

Funzionalization of self-assembly NPs containing ZOL bearing human transferrin on their surface

[0057] Ingredient: 18 mM of calcium chloride, 10,8 mM of hydrogen phosphate dibasic, 50 mg of zoledronic acid, 1,2-dioleoyl-3-trimethylammonium-propane chloride (DOTAP) and 1,2-diacyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene-glycol)-2000] (DSPE-PEG2000) cholesterol (chol), 0.1 mM of Tf.

Step 1: Preparation of Transferrin-PEGylated cationic liposomes

[0058] Tf-PEGylated cationic liposomes were prepared by pre-incubating of PEGylated cationic liposomes, obtained according to Step 1 of the Example 3, with human transferrin (10 mg/ml in phosphate buffer at pH 7.4) at a volume ratio of 1:1. The resulting liposomes were allowed to stand at room temperature for 15 min before the use.

Step 2: Preparation of pre-Tf-PLCaPZ NPs

[0059] Tf-PEGylated cationic liposomes, prepared according to Step 1, were mixing with CaPZ NPs, prepared according to Step 2 of the Example 3, at a volume ratio of 1:0.5. The resulting dispersion was incubated at room temperature for 15 min before the use.

NP characterization

[0060] The mean diameter of Tf-PLCaPZ NPs, were determined at 20°C by photon correlation spectroscopy (PCS) (N5, Beckman Coulter, Miami, USA). Each sample was diluted in deionizer/filtered (0.22 μm pore size, polycarbonate filters, MF-Millipore, Microglass Heim, Italy) water and analyzed with detector at 90° angle. As measure of the particle size distribution, polydispersity index (P.I) was used. For each batch, mean diameter and size distribution were the mean of three measures. For each formulation, the mean diameter and P.I. were calculated as the mean of three different batches. The zeta-potential (ζ) of the NPs surface was measured in water by means of a Zetasizer Nano Z (Malvern, UK). Data of ζ were collected as the average of 20 measurements. ZOL analysis was carried out by reverse phase high performance liquid chromatography (RP-HPLC). For pre and post-Tf-PLCaPZ NPs, the amount of un-complexed ZOL was determined as follows: 1 ml of NPs dispersion was ultracentrifugated (Optima Max E, Beckman Coulter, USA) at 80,000 rpm at 4°C for 40 min. Supernatants were carefully removed and ZOL concentration was determined by RP-HPLC. The results have been expressed as complexion efficiency, calculated as the ratio between the amount of ZOL present in the supernatants and the amount of ZOL theoretical loaded.
Characteristic of pre and post-Tf-PLCaPZ NPs

[0061] The characteristics of the formulation containing human transferrin are reported in the table. Both pre and post-Tf-PLCaPZ NPs prepared with the different methods, had a mean diameter of about 150 nm with PI< 0.2. Compared with unconjugated NPs, Tf-conjugated NPs (pre and post-Tf-PLCaPZ NPs) showed a significant decrease of the net positive charge of the NPs was observed, confirming the presence of Tf on NP surface.

<table>
<thead>
<tr>
<th>Formulations</th>
<th>Mean diameter (nm) ± SD</th>
<th>I.P. ± SD</th>
<th>ζ ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>post-Tf-PLCaPZ NPs</td>
<td>144.4 ± 10.3</td>
<td>0.142 ± 0.07</td>
<td>+9.9 ± 1.5</td>
</tr>
<tr>
<td>pre-Tf-PLCaPZ NPs</td>
<td>147.7 ± 15.0</td>
<td>0.169 ± 0.05</td>
<td>+11.3 ± 1.1</td>
</tr>
</tbody>
</table>

Claims

1. A nanocomplex, or self-assembling nanoparticle, comprising a bisphosphonate compound complexed with inorganic nanovectors and lipid nanoparticle bearing a hydrophilic polymer; wherein the bisphosphonate is first complexed to inorganic nanovectors and the resulting particles are then complexed to lipid nanoparticle bearing a hydrophilic polymer and wherein the inorganic nanovectors consist of nanoparticles of a Ca-, Mg-, Sr- or Zn- inorganic salt.

2. A nanocomplex according to claim 1, wherein the lipid nanoparticle comprise a ligand for receptors overexpressed by cancer cells.

3. A nanocomplex according to claim 2, wherein the ligand can be selected among antibodies, antibody fragments, proteins, peptides, aptamer and small molecules.

4. A nanocomplex according to claim 3 wherein the ligand is human-transferrin.

5. A nanocomplex according to any one of the claims 1-4, wherein said salt is Ca- and P-based.

6. A nanocomplex according to any one of the claims 1-5, wherein said lipid nanoparticle bearing a hydrophilic polymer is a liposome.

7. A nanocomplex according to claim 6, wherein said lipid nanoparticle consists of a lipid mixture comprising phospholipids and sphingolipids together with their hydrolysis products, sterols, cationic lipids, anionic lipids, neutral lipids, lipids conjugated with synthetic or naturally occurring polymers or lipids linked to fluorescent probes, or lipids linked to proteins or peptides, or lipids conjugated with molecules capable of specifically interacting with receptors present on the cell membrane; they preferably consist of mixtures comprising 1,2-dioleoyl-3-trimethylammonium-propane chloride (DOTAP), cholesterol, 1,2-diacyl-sn-glycerol-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG 2000).

8. A nanocomplex according to any one of the claims 1-7, wherein said biphosphonate is selected from clodronate, alendronate, etidronate, pamidronate, tiludronate, ibandronate, neridronate, zoledronate, minodronate and risedronate.

9. A nanocomplex according to any one of the claims 1-8, for use as a pharmaceutical formulation.

10. A nanocomplex according to any one of the claims 1-8, for use in the treatment of solid or hematological tumors such as prostate, lung, head/neck, colon, liver, breast, pancreas, kidneys, bladder, male and female urogenital tract, bones, multiple myeloma, primitive and secondary tumours of the central nervous system and lymphomas.

11. A process for preparing nanocomplexes according to any one of the claims 1-8, comprising the following steps:
 a. mixing a suspension containing the inorganic nanovectors with a solution containing the biphosphonate, to obtain a suspension containing biphosphonate complexed to inorganic nanovectors, and then
 b. mixing a suspension of lipid nanoparticle bearing a hydrophilic polymer with the suspension obtained from step (a).
12. A process according to claim 11 for preparing nanocomplexes according to any one of the claims 1-8 wherein the lipid nanoparticles comprise a ligand for receptors overexpressed by cancer cells, said process comprising:

- after step (b) incubating the obtained nanocomplexes with a solution of the ligand;

or alternatively, before step (b), incubating the lipid nanoparticles in a solution containing the ligand and then performing the step (b) mixing the obtained ligand-nanovectors complexes with the suspension obtained from the step (a).

13. A kit for preparing nanocomplexes according to any one of the claims 1-8, said kit comprising

- at least one vessel with a solution of a biphosphonate or the bisphosphonate in solid form;
- at least one vessel with a suspension of inorganic nanovectors;
- at least one vessel containing a suspension containing lipid nanoparticles bearing a hydrophilic polymer.

14. A kit according to claim 13 wherein the suspension containing the lipid nanoparticles contains also the ligand or the kit further comprises at least one vessel containing the ligand as powder or in aqueous solution.

Patentansprüche

1. Nanokomplex oder selbstbildende Nanopartikel, aufweisend eine Bisphosphonat-Zusammensetzung, die mit anorganischen Nanovektoren und Lipid-Nanopartikeln, die ein hydrophiles Polymer tragen, komplexiert ist; wobei das Bisphosphonat zunächst mit anorganischen Nanovektoren komplexiert wird und die erhaltenen Partikel dann mit Lipid-Nanopartikeln, die ein hydrophiles Polymer tragen, komplexiert werden, und wobei die anorganischen Nanovektoren aus Nanopartikeln eines anorganischen Ca-, Mg-, Sr- oder Zn-Salzes bestehen.

2. Nanokomplex gemäß Anspruch 1, wobei die Lipid-Nanopartikel einen Liganden für Rezeptoren aufweisen, die durch Krebszellen überexprimiert werden.

5. Nanokomplex gemäß einem der Ansprüche 1 bis 4, wobei das Salz Ca- und P-basiert ist.

6. Nanokomplex gemäß einem der Ansprüche 1 bis 5, wobei die Lipid-Nanopartikel, die ein hydrophiles Polymer tragen, ein Liposom sind.

7. Nanokomplex gemäß Anspruch 6, wobei die Lipid-Nanopartikel aus einer Lipid-Mischung bestehen, aufweisend Phosphodiglyceride und Sphingolipide zusammen mit ihren Hydrolyseprodukten, Sterinen, kationischen Lipiden, anionischen Lipiden, neutralen Lipiden, Lipiden, die mit synthetischen oder natürlich vorkommenden Polymeren konjugiert sind, oder Lipiden, die an fluoreszierende Marker gebunden sind, oder Lipiden, die an Proteine oder Peptide gebunden sind, oder Lipiden, die mit Molekülen konjugiert sind, die speziell mit Rezeptoren interagieren, die auf der Zellmembran vorkommen; wobei diese; bevorzugt aus Mischungen bestehen, aufweisend 1,2-Dioleoyl-3-Trimethylammonium-Propan-Chlorid (DOTAP), Cholesterin, 1,2-Diacyl-Sn-Glycerid-3-Phosphoethanolamin-N-[Methoxy(Polyethylen glykol)-2000] (DSPE-PEG 2000).

9. Nanokomplex gemäß einem der Ansprüche 1 bis 8 zur Verwendung als pharmazeutische Rezeptur.

10. Nanokomplex gemäß einem der Ansprüche 1 bis 8 zur Verwendung bei der Behandlung von soliden und hämatologischen Tumoren wie Prostata, Lunge, Kopf / Hals, Darm, Leber, Brust, Bauchspeicheldrüse, Nieren, Blase,
männlicher und weiblicher Urogenitaltrakt, Knochen, multiplem Myelom, primitivem und sekundärem Tumor des zentralen Nervensystems und Lymphom.

11. Verfahren zum Herstellen von Nanokomplexen gemäß einem der Ansprüche 1 bis 8, aufweisend folgende Schritte:
 a. Mischen einer die anorganischen Nanovektoren enthaltende Suspension, mit einer Lösung die das enthält, um eine Suspension zu erhalten, die Biphosphonat, das zu anorganischen Nanovektoren komplexierte Biphosphonat enthält, und danach
 b. Mischen einer Suspension von Lipid-Nanopartikeln, die ein hydrophiles Polymer tragen, mit der Suspension, die aus Schritt (a.) erhalten wurde.

12. Verfahren gemäß Anspruch 11 zum Herstellen von Nanokomplexen gemäß einem der Ansprüche 1 bis 8, wobei die Lipid-Nanopartikel einen Liganden für Rezeptoren aufweisen, die durch Krebszellen überexprimiert werden, wobei das Verfahren aufweist:
 - nach Schritt (b.) Inkubieren der erhaltenen Nanokomplexe mit einer Lösung des Liganden;
 oder alternativ vor Schritt (b.) Inkubieren der Lipid-Nanopartikel in einer Lösung, die den Liganden enthält, und dann Ausführen von Schritt (b.) durch Mischen der erhaltenen Ligand-Nanovektor-Komplexe mit der Suspension, die aus Schritt (a.) erhalten wurde.

13. Set zur Herstellung von Nanokomplexen gemäß einem der Ansprüche 1 bis 8, aufweisend:
 - zumindest einen Behälter mit einer Lösung eines Biphosphonats oder des Bisphosphonats in fester Form;
 - zumindest einen Behälter mit einer Suspension anorganischer Nanovektoren;
 - zumindest einen Behälter mit einer Suspension die Lipid-Nanopartikel enthält, die ein hydrophiles Polymer tragen.

14. Set gemäß Anspruch 13, wobei die Suspension, die die Lipid-Nanopartikel enthält, zudem den Liganden enthält, oder das Set des Weiteren zumindest einen Behälter aufweist, der den Liganden als Pulver oder in wässriger Lösung enthält.

Revendications

1. Nanocomplexe, ou nanoparticule auto-assemblante, comprenant un composé de bisphosphonate complexé avec des nanoparticules inorganiques et des nanoparticules lipidiques portant un polymère hydrophile ; dans lequel le bisphosphonate est d’abord complexé à des nanoparticules inorganiques et les particules résultantes sont ensuite complexées à des nanoparticules lipidiques portant un polymère hydrophile et dans lequel les nanoparticules inorganiques sont constituées de nanoparticules d’un sel inorganique de Ca, Mg, Sr ou Zn.

2. Nanocomplexe selon la revendication 1, dans lequel les nanoparticules lipidiques comprennent un ligand pour des récepteurs surexprimés par des cellules cancéreuses.

3. Nanocomplexe selon la revendication 2, dans lequel le ligand peut être choisi parmi des anticorps, des fragments d’anticorps, des protéines, des peptides, des aptamères et des petites molécules.

4. Nanocomplexe selon la revendication 3 dans lequel le ligand est la transferrine humaine.

5. Nanocomplexe selon l’une quelconque des revendications 1 à 4, dans lequel ledit sel est à base de Ca et P.

6. Nanocomplexe selon l’une quelconque des revendications 1 à 5, dans lequel ladite nanoparticule lipidique portant un polymère hydrophile est un liposome.

7. Nanocomplexe selon la revendication 6, dans lequel ladite nanoparticule lipidique est constituée d’un mélange de lipides comprenant des phosphoglycéridés et des sphingolipides conjointement avec leurs produits d’hydrolyse, des stérols, des lipides cationiques, des lipides anioniques, des lipides neutres, des lipides conjugués avec des polymères synthétiques ou existant à l’état naturel ou des lipides liés à des sondes fluorescentes, ou des lipides
liés à des protéines ou des peptides, ou des lipides conjugués avec des molécules capables d’interagir spécifiquement avec des récepteurs présents sur la membrane cellulaire ; elles sont constituées de préférence de mélanges comprenant du chlorure de 1,2-dioléoyl-3-triméthylammonium-propane (DOTAP), du cholestérol, du 1,2-diacyl-sn-glycérol-3-phosphoéthanolamine-N-[méthoxy(polyéthylène glycol)-2000] (DSPE-PEG 2000).

8. Nanocomplexe selon l’une quelconque des revendications 1 à 7, dans lequel ledit bisphosphonate est choisi parmi le clodronate, l’alendronate, l’étidronate, le pamidronate, le tiludronate, l’ibandronate, le néridronate, le zolédronate, le minodronate et le risédronate.

9. Nanocomplexe selon l’une quelconque des revendications 1 à 8, pour une utilisation en tant que formulation pharmaceutique.

11. Procédé pour la préparation de nanocomplexes selon l’une quelconque des revendications 1 à 8, comprenant les étapes suivantes :

a. le mélange d’une suspension contenant les nanovecteurs inorganiques avec une solution contenant le bisphosphonate, pour obtenir une suspension contenant le bisphosphonate complexé à des nanovecteurs inorganiques, et ensuite

b. le mélange d’une suspension de nanoparticules lipidiques portant un polymère hydrophile avec la suspension obtenue de l’étape (a).

12. Procédé selon la revendication 11 pour la préparation de nanocomplexes selon l’une quelconque des revendications 1 à 8 dans lequel les nanoparticules lipidiques comprennent un ligand pour des récepteurs surexprimés par des cellules cancéreuses, ledit procédé comprenant :

- après l’étape (b), l’incubation des nanocomplexes obtenus avec une solution du ligand ;

ou en variante, avant l’étape (b), l’incubation des nanoparticules lipidiques dans une solution contenant le ligand et ensuite la réalisation de l’étape (b) de mélange des complexes ligand-nanovecteurs obtenus avec la suspension obtenue de l’étape (a).

13. Kit pour la préparation de nanocomplexes selon l’une quelconque des revendications 1 à 8, ledit kit comprenant

- au moins un récipient avec une solution d’un bisphosphonate ou le bisphosphonate sous forme solide ;
- au moins un récipient avec une solution de nanovecteurs inorganiques ;
- au moins un récipient contenant une suspension contenant des nanoparticules lipidiques portant un polymère hydrophile.

14. Kit selon la revendication 13 dans lequel la suspension contenant les nanoparticules lipidiques contient également le ligand

ou

le kit comprend en outre au moins un récipient contenant le ligand sous forme de poudre ou dans une solution aqueuse.
FIG. 1
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 20070218116 A [0006]
- IT FI20090190 A [0006]
- WO 2008005509 A [0008]

Non-patent literature cited in the description

- KIJIMA et al. Int J Urol., 2008 [0004]
- M. WANG; M. THANOU. Pharmacological Research, 2010 [0014]
- HUYNH. Nanomedicine, 2010 [0014]
- CARAGLIA et al. Oncogene, 2004 [0042]