EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 13.07.2016 Bulletin 2016/28

Application number: 13001344.4

Date of filing: 10.02.2009

Insert for an optical fiber assembly and optical fiber assembly using such an insert

Insert pour assemblage de fibre optique et assemblage de fibre optique utilisant un tel insert

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

Date of publication of application: 10.07.2013 Bulletin 2013/28

Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 09001814.4 / 2 216 668

Proprietor: Tyco Electronics Raychem BVBA 3010 Kessel-Lo (BE)

Inventors:
• Bryon, Roel Modest Willy 3200 Aarschot (BE)
• Vastmans, Kristof 3370 Boutersem (BE)
• van Genechten, Geert 2222 Wiekevorst (BE)
• Verheyden, Danny Willy August 3200 Gelrode (BE)
• Breux, Pascal 50300 St Martin des Champs (FR)
• Lesueur, Philippe 22560 Trebeurden (FR)

Representative: Grünecker Patent- und Rechtsanwälte PartG mbB Leopoldstraße 4 80802 München (DE)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to an insert for guiding a part of an optical cable comprising at least one optical fiber element according to the preamble of claim 1. A generic insert is for instance known from FR 2 917 182. Said generic insert comprises an insert with the features defined in the preamble of claim 1 and in addition thereto, the insert disclosed therein comprises two support elements for supporting and guiding the optical fiber element. These support elements for the optical fiber element are placed in a direction vertical to a cable guidance plate. The support elements protrude from a sidewall and extend perpendicular to the direction of the optical cable in the region of the optical cable. The support elements are spaced apart to the cut-out portion in which the optical fiber element is exposed. Said support elements have sharp edged in the guiding direction of the optical fiber elements. The support elements have lower surfaces and longitudinal grooves directing away from the optical cable side on the opposite side to the support element.

[0002] However, the generic insert disclosed in FR 2 917 182 has the disadvantage that the optical fiber element can be damaged by pulling said optical fiber element out of the optical cable in the region of the cut-out portion. A further insert is disclosed in JP 2007-121773. Said insert is received within a housing, which housing has to two openings, which receive an optical cable from opposing ends. In particular, said patent document discloses an organizer for organizing individual optical fiber elements exposed within the housing.

[0003] Such an insert is generally provided in a housing of an optical fiber assembly, wherein said housing is sealed by sealing means against environmental influences. Said insert comprises an optical cable guidance means for guiding the optical cable across the insert for providing an access to an optical fiber element. The jacket of the optical cable is partially removed, thereby exposing at least one optical fiber element in the cut-out portion of the optical cable.

[0004] In general, when a user is connected to an optical cable, a few or even one optical fiber element comprised in the optical cable needs to be spliced, that is the optical fiber element needs to be connected to a further optical fiber element coming from the user side by a method of splicing. Said optical fiber element is surrounded by the jacket of the optical cable. In case of plural optical fiber elements comprised in a single optical cable, each of said optical fiber elements being surrounded by a separate jacket, the same is likewise surrounded by the optical cable jacket.

[0005] For splicing the optical fiber element, the part of the optical cable which should provide access to the optical fiber element to be spliced has a cut-out portion formed by partially removing the cable jacket, wherein said part of the optical cable is guided and retained by the insert. The optical fiber element exposed in the cut-out portion is accessible through a recess formed in the insert and surrounding the exposed optical fiber element. Further, for the step of splicing said optical fiber element, some length thereof needs to be made available.

[0006] On a general basis, the optical fiber element to be spliced is pulled out from the cut-out portion of the optical cable. Said pull out action is generally performed in a speed up manner to ensure a provision of sufficient length in a short time. The jacket of the optical fiber element and the optical fiber element as such can be damaged by e.g. pulling out the optical fiber element around an edge of the cable jacket formed at an intersection of the cut-out portion of the optical cable.

[0007] The present invention aims to provide an insert for an optical fiber assembly through which an optical fiber element comprised in an optical cable guided by said insert can be accessed without damage. A further object of the present invention is to provide an optical fiber assembly which uses such an insert.

[0008] The above objectives are achieved by an insert as defined in claim 1 and an optical fiber assembly as specified in claim 7. The inventive insert comprises a bend element which protrudes in a running direction of the optical fiber element at an end portion of the insert and which projects into the recess in a curved manner.

[0009] With the present invention, an insert is provided, which reliably prevents a damage of the optical fiber element during a pull-out action. While pulling out the optical fiber element from the optical cable, said optical fiber element is guided along the curved portion of the bend element. Thereby, the optical fiber element can be smoothly guided and pulled out from the optical cable through the recess without sliding at sharp edges like an edge formed at the intersection of the cable jacket in the cut-out portion.

[0010] The bend element of the inventive insert is projecting the recess in a curved manner. This projection is to be understood at least as a projection in a direction perpendicular to the running direction of the optical fiber element and generally normal to the opening surface provided within the recess. Apart from this projection, the bend element may likewise project the recess in the running direction of the optical fiber element. With such a design, the bend element will protrude usually aligned with and parallel to the optical fiber elements made available in the cut-out portion.

[0011] According to a parallel aspect of the present invention, the same provides an optical fiber assembly for an optical cable with a housing comprising a housing lower body and a housing upper body enclosing the inventive insert and furthermore comprising a seal means for sealing the housing. In an optical fiber assembly such seal means are generally formed of a gel pad suitable to hermetically seal the housing at a port through which the at least one optical cable passes into the housing.

[0012] Preferred embodiments of the inventive insert are defined in the dependent claims.

[0013] The present invention will now be described in further detail by referring to a preferred embodiment de-
In the figures, reference numeral 2 identifies an insert which is adapted to be inserted into a housing (not shown). The optical cable assembly which can be obtained by using the insert according to the invention will be described at the end of this specific description.

As evident from fig. 1, the optical cable 12 is provided with a cut-out portion 16 which has been provided by partially removing the jacket 10 of the optical cable 12. In the shown embodiment said cut-out portion 16 is provided between two essentially semi-circular side surfaces 18 and two parallel surfaces 20 which extend parallel to the running direction of the optical fiber elements 14. The uncut, i.e. normal length of the optical cable 12 has a circular cross sectional shape. The optical cable guide means 8 adapted to receive the jacket 10 of an optical cable identified with reference numerals 12 surrounding the lower optical fiber elements 14.

As evident from fig. 1, the optical cable 12 is provided with a cut-out portion 16 which has been provided by partially removing the jacket 10 of the optical cable 12. In the shown embodiment said cut-out portion 16 is provided between two essentially semi-circular side surfaces 18 and two parallel surfaces 20 which extend parallel to the running direction of the optical fiber elements 14. The uncut, i.e. normal length of the optical cable 12 has a circular cross sectional shape. The optical cable guide means 8 adapted to receive the jacket 10 of an optical cable identified with reference numerals 12 surrounding the lower optical fiber elements 14.

Between the optical cable guide means 8 there is provided a rectangular recess 26 recessed within the insert base 4. On the long side of this recess 26 there are provided longitudinal rims 28 projecting the lower side of the insert base 4 and providing lateral guidance for the optical cable 12 in the cut-out portion 16. In the present embodiment, the longitudinal rims 28 have a distance essentially corresponding the diameter and thus the maximum thickness of the optical cable 12 in the cut-out portion 16.

The specific design of the embodiment which facilitates pulling out of selected optical fibre elements 14 from the optical cable 12 are described: reference is made to Fig. 2 showing details of the first and second form fit means 32, 34. The bottom side of crosslink 30 is in fact divided by a central groove 40 extending in the running direction of the optical cable 12 and forming two identical abutment faces 42 each being provided between said groove 40 and the longitudinal rim 28. Adjacent to the second form fit means 34, the groove 40 has a concave surface 41 which is shaped parallel to the longitudinal extension of the optical cable 12. Towards the recess 26, the concave shape 41 in longitudinal direction...
of the groove 40 is bent upwardly thereby merging into a convex bent element 44 which projects the upper side of the insert base 6 in a constantly smoothly curved manner to a bent of approximately 180° and also, projects from the recess 26 in longitudinal direction of the optical cable 12 (compare Fig. 3). The bent element 44 protrudes in the running direction of the optical fiber elements 14, i.e. it extends parallel to the longitudinal direction of the recess 26.

Adjacent to the groove 40, and in longitudinal extension of the running direction of the optical cable 12, both abutment faces 42 are likewise curved in a convex manner thereby providing a smoothly curved rim merging to the recess 26. The entire contour between the abutment faces 42 and a distal end 46 of the bend element 44 is smoothly curved. The distal end 46 of the bend element 44 extends essentially parallel to the plane of the insert base 4 and parallel to a loop holding member 48 which is connected to the outer circumferential surface of the semicircular shell 22 and in alignment with the distal end 46.

Those loop holding members 48 form part of a loop receiving arrangement 50 provided on the upper side of the insert base 4 and comprising lateral loop holding members 52 positioned in the middle of the insert base 4 in longitudinal direction and at the lateral rim thereof.

Fig. 3 also shows a bar 54 extending across the recess 26 and being provided with a slot 56. This bar 54 has a lower surface adjacent to the parallel surfaces 20 of the cut-out portion 16 and in parallel with those parallel surfaces 20. Thus, the bar 54 may assist positioning of the cut-out portion 16 in a rotational free manner. The ultimate purpose of bar 54 is to hold all optical fibre elements 14 within a remaining groove formed by the jacket 10.

For splicing an individual optical fibre element selected from the optical fibre elements 14, the respective optical fibre element is selected and passed through slot 56. Then, an appropriate length of the selected optical fibre element is prepared by pulling this optical fibre element out of the optical cable 12. In the course of this pulling operation, the selected optical fibre element will be guided by the bend element 44. In case of a pulling action essentially parallel to the running direction of the optical fibre elements 14, the selected optical fibre element will be guided within groove 40. In case of pulling the selected optical fibre element essentially perpendicular to the plane receiving insert base 4, i.e. in the plane of the running direction of the optical fibre elements 14 but essentially perpendicular thereto, there is sufficient smooth guiding of the selected optical fibre element. This guiding prevents the optical fibre element from sliding along sharp edges and from being damaged upon the pulling out performance. In case the selected optical fibre element is by error is pulled out in a direction angular to the running direction of the remaining optical fibre elements 14, the entirely smooth surface of the lower side of the crosslink 30 and the transition of said crosslink 30 towards the recess 26 prevents damage of the optical fibre.

After complete pulling out of the selected fibre element, the same is cut and spliced. The excessive length of the selected fibre element and possibly any excessive length of a optical fibre cable coming from a user and being connected to the selected optical fibre element is received in the loop holding arrangement 50. Thus, the loop will run between the bend element 44 and the semicircular shell 22. Storing of the loop will not contribute to the height of the insert 2. Additionally, in case of need of splicing a further optical fibre element and selecting the same by pulling this optical fibre element out from the optical cable 12, pulling action of this further selected optical fibre element will not interfere with any loop of other optical fibre elements already stored in the insert.

For a complete description, in particular of the embodiment as depicted in Fig. 3, it should be mentioned that there are provided cable jacket termination units 58 formed as separate elements adapted to receive and hold the terminal end of a jacket of an optical fibre cable from a user. Those jacket termination units 58 are received in openings recessed in the insert base 4 and held therein by snapping mechanisms. The insert 2 prepared in the above-mentioned way will be incorporated into a housing which provides ports for all optical cables being fed into the housing. This housing is adapted to hermetically seal those optical cables to avoid entry of water and/or humidity into the housing.

Reference list

2 insert
4 insert base
6 post
8 optical cable guidance means
10 jacket
12 optical cable
14 optical fibre elements
16 cut-out portion
18 side surfaces
20 parallel surfaces
22 semicircular shell
24 lateral openings
26 recess
28 longitudinal rim
30 crosslink
32 abutment section (first form fit means)
34 second form fit means
36 a, b, c wall section
38 splice holding means
40 groove
41 concave surface
42 abutment face
44 bend element
An insert (2) for guiding a part of an optical cable (12) with an outer jacket comprising at least one optical fiber element (14) and accommodated in a housing of an optical fiber assembly, said part of the optical cable (12) has a cut-out portion (16) in the outer jacket exposing said at least one optical fiber element (14), wherein said insert (2) comprises an optical cable guidance means (8) for guiding said optical cable (12) across the insert (2), a recess (26) surrounding the exposed optical fiber element (14), a bend element (44) having a curved portion along which the optical fiber element (14) is guided, while pulling out the optical fiber element (14) from the optical cable (12), which bend element (44) is fixed to said crosslink (30), wherein the crosslink (30) is arranged adjacent to said guidance means (8) and wherein the guidance means (8) is adapted to receive said jacket of the optical cable (12) in a form fit manner.

The insert (2) according to claim 1, characterized in that said bend element (44) protrudes the recess (26) in a running direction of the optical fiber element (14).

The insert (2) according to any of the preceding claims, characterized in that said bend element (44) has a groove (40) for guiding the optical fiber element (14) in a pull back action.

The insert (2) according to claim 3, characterized in that said crosslink (30) has an abutment section on its lower side designed to abut against the cut-out portion of the optical cable (12), wherein said abutment section is divided by the groove (40) into two abutment faces (42).

The insert (2) according to any of the preceding claims, characterized in that said insert (2) further comprises loop holding arrangement (50) for holding a loop formed by the pulled-out optical fiber element (14), wherein said bend element (44) and said crosslink (30) form part of said loop holding arrangement (50).

The insert (2) according to any of the preceding claims, characterized in that said insert (2) further comprises a hold-down device (54) for holding remaining optical fiber elements (14) in the cut-out portion, wherein said hold-down device (54) has a slot (56) for separating an optical fiber element (14) from the cut-out portion.

An optical fiber assembly for an optical cable comprising:

- a housing with a housing lower body and a housing upper body enclosing an insert according to any of the preceding claims, and
- a sealing means for sealing the housing.

1. Einsatz (2) für das Führen eines Teils eines Glasfaserkabels (12) mit einem äußeren Mantel, das mindestens ein Glasfaserelement (14) aufweist und in einem Gehäuse einer Glasfaseranordnung aufgenommen wird, wobei der Teil des Glasfaserkabels (12) einen ausgeschnittenen Teil (16) in dem äußeren Mantel aufweist, der das mindestens eine Glasfaserelement (14) freilegt, wobei der Einsatz (2) aufweist:

- ein Glasfaserkabelführungsmittel (8) für das Führen des Glasfaserkabels (12) über den Einsatz (2);
- eine Vertiefung (26), die das freigelegte Glasfaserelement (14) umgibt;
- ein Biegeelement (44) mit einem gekrümmten Teil, entlang von dem das Glasfaserelement (14) geführt wird, während das Glasfaserelement (14) aus dem Glasfaserkabel (12) gezogen wird, wobei das Biegeelement (44) an einem Ende der Vertiefung (26) angeordnet ist und gekrümmt von der Vertiefung (26) vorsteht, wobei der Einsatz (2) dadurch gekennzeichnet ist, dass er aufweist:

- einen Mantel des Glasfaserkabels (12) überbrückt und sich quer zu der Laufrichtung des Glasfaserkabels erstreckt, wobei die Brücke (30) in Nachbarschaft zu dem Führungsmittel (8) angeordnet ist und wobei das Führungsmittel (8) ausgebildet ist, um den Mantel des Glasfaserkabels (12)
5. Einsatz (2) nach Anspruch 1, dadurch gekennzeichnet, dass das Biegeelement (44) aus der Vertiefung (26) in einer Laufrichtung des Glasfaserelements (14) vorsteht.

3. Einsatz (2) nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass das Biegeelement (44) eine Nut (40) zum Führen des Glasfaserelements (14) in einer Rückziehaktion aufweist.

4. Einsatz (2) nach Anspruch 3, dadurch gekennzeichnet, dass die Brücke (30) einen Anstoßabschnitt an einer unteren Seite aufweist, der ausgeschnittenen Teil des Glasfaserkabels (12) anzustoßen, wobei der Anstoßabschnitt durch die Nut (40) in zwei Anstoßflächen (42) geteilt wird.

5. Einsatz (2) nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass der Einsatz (2) weiterhin eine Schlingenhalteanordnung (50) zum Halten einer durch das herausgezogene Glasfaserelement (14) gebildeten Schlinge aufweist, wobei das Biegeelement (44) und die Brücke (30) einen Teil der Schlingenhalteanordnung (50) bilden.

6. Einsatz (2) nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass der Einsatz (2) weiterhin eine Niederhaltevorrichtung (54) zum Halten der restlichen Glasfaserelemente (14) in dem ausgeschnittenen Teil aufweist, wobei die Niederhaltevorrichtung (54) einen Schlitz (56) für das Trennen eines Glasfaserelements (14) von dem ausgeschnittenen Teil aufweist.

7. Glasfasereanordnung für ein Glasfaserkabel, die aufweist:

- ein Gehäuse mit einem unteren Gehäusekörperr und einem oberen Gehäusekörper, die einen Einsatz gemäß einem der vorausgehenden Ansprüche einschließen, und
- ein Dichtungsmittel zum Abdichten des Gehäuses.

Revendications

1. Insert (2) pour guider une partie d’un câble optique (12) avec une enveloppe extérieure comprenant au moins un élément de fibre optique (14) et logé dans un boîtier d’un assemblage de fibre optique, ladite partie du câble optique (12) ayant une partie découpée (16) dans l’enveloppe extérieure exposant le-
un boîtier avec un corps inférieur de boîtier et un corps supérieur de boîtier enfermant un insert selon l’une quelconque des revendications précédentes, et un moyen d’étanchéité pour assurer l’étanchéité du boîtier.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• FR 2917182 [0001] [0002] • JP 2007121773 A [0002]