Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This application claims the benefit of U.S. Provisional Patent Application No. 61/356,345, filed June 18, 2010.

BACKGROUND

The Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) standards provide specifications for high performance air interfaces for cellular mobile communications systems. In LTE, a wireless transmit receiver unit (WTRU) may communicate with an eNodeB (eNB). The WTRU may send the eNB certain feedback to give the eNB an indication of the quality of the channel across which the WTRU and eNB are communicating. One particular type of feedback is channel quality index (CQI) report (hereinafter “CQI”). CQI may be transmitted by the WTRU on a periodic basis or an aperiodic basis. A periodic CQI may be transmitted on the physical uplink control channel (PUCCH) or the physical uplink shared channel (PUSCH). An aperiodic CQI may be transmitted on the PUSCH. It is desired to provide more efficient systems and methods for CQI and other feedback reporting.

EP 1353452 discloses a mobile communication apparatus with multiple transmission and reception antennas and a mobile communication method therefor. In the mobile communication apparatus including a base station and a mobile station, the base station with at least one transmission antenna restores long-term information, short-term information, a signal to interference and noise ratio (SINR) from a feedback signal received from the mobile station, spatially processes dedicated physical channel (DPCH) signals using basis information generated from the restored long-term information, short-term information and SINR and transmits the results of adding pilot channel (PICH) signals to the spatially processed results to the mobile station. The mobile station with at least one reception antenna determines a first characteristic corresponding to the channel downlink characteristic for each of the transmission and reception antennas, from the PICH signals transmitted from the base station, determines the long-term information, the short-term information, and downlink power control information including the SINR, which reflect the first characteristic, converts the determined long-term information, short-term information, and downlink power control information into the feedback signal, and transmits the feedback signal to the base station. The long-term information includes effective long-term eigenvectors and effective long-term eigenvalues, the short-term information includes effective short-term eigenvectors, and the downlink power control information indicates whether to increase or decrease downlink transmission power. Therefore, with the great advantage of closed communications systems the effects of interference, noise, and fading can be minimized, whereas throughput can be maximized.

EP 1306983 discloses a mobile communication apparatus for performing communication between a base station and a mobile station. In the mobile communication apparatus the base station restores long-term and short-term information determined in consideration of first characteristics in the mobile station from a feedback signal received from the mobile station, spatially processes dedicated physical channel signals using basis information produced from the restored long-term and short-term information, and transmits the results of addition of the spatially-processed signals to pilot signals to the mobile station. The mobile station has at least one reception antenna. The first characteristics are the characteristics of the downlink channels of the respective transmission and reception antennas.

WO 2008/021027 discloses a method of statistical feedback for MIMO transmit beamforming comprising combining a short term channel state information and long term statistics in deriving a precoding matrix. At least one measurable parameter is observed, and a forgetting factor is determined based upon the observed parameter.

US 2009/203335 discloses an apparatus and method for partial adaptive transmission in a MIMO system. The method includes estimating a correlation matrix between Transmit (Tx) antennas and an average Signal to Noise Ratio (SNR) and generating a long-term precoding matrix composed of a predetermined number of dominant eigen dimensions of the correlation matrix by using the estimated correlation matrix and average SNR. The apparatus and method provide a new adaptive MIMO transmission method capable of reducing the feedback information overhead and maximizing performance.

"Closed loop MIMO precoding" discloses a mechanism for feedback of precoding information from a receiver to a transmitter and the precoding procedure in order to improve the closed loop MIMO.

SUMMARY

Disclosed herein are systems and methods for long-term feedback transmitting and rank reporting. According to an aspect, a method of feedback reporting may be implemented at a WTRU. The method may include determining a long-term precoder and a short-term precoder. The method may also include calculating channel quality index (CQI) based on the long-term precoder and the short-term precoder. Further, the method may include transmitting the CQI to
a base station.

[0009] The Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, not is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to any limitations that solve any or all disadvantages noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The following detailed description of embodiments is better understood when read in conjunction with the appended drawings. For the purposes of illustration, there is shown in the drawings exemplary embodiments; however, the subject matter is not limited to the specific elements and instrumentalities disclosed. In the drawings:

Figure 1A is a system diagram of an example communications system in which one or more disclosed embodiments may be implemented;

Figure 1B is a system diagram of an example wireless transmit/receive unit (WTRU) that may be used within the communications system illustrated in Figure 1A;

Figure 1C is a system diagram of an example radio access network and an example core network that may be used within the communications system illustrated in Figure 1A;

Figure 2 is a block diagram of a wireless communication system including a plurality of WTRUs and an eNodeB (eNB);

Figure 3 is a function block diagram of a WTRU and the base station of the wireless communication system of Figure 2;

Figure 4 is a diagram of an example reporting sequence;

Figure 5 is a flow chart of a method of feedback reporting in accordance with embodiments of the present disclosure;

Figure 6 is a flow chart of a method of measuring and reporting CSI feedback to a base station in accordance with embodiments of the present disclosure; and

Figure 7 is a flow chart of a method of feedback reporting in accordance with embodiments of the present disclosure.

DETAILED DESCRIPTION

[0011] When referred to hereafter, the terminology "wireless transmit/receive unit (WTRU)" includes, but is not limited to, a user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a pager, a cellular telephone, a personal digital assistant (PDA), a computer, or any other type of user device capable of operating in a wireless environment. When referred to hereafter, the terminology "base station" includes, but is not limited to, a NodeB, a site controller, an access point (AP), or any other type of interfacing device capable of operating in a wireless environment.

[0012] Figure 1A is a diagram of an example communications system 100 in which one or more disclosed embodiments may be implemented. The communications system 100 may be a multiple access system that provides content, such as voice, data, video, messaging, broadcast, etc., to multiple wireless users. The communications system 100 may enable multiple wireless users to access such content through the sharing of system resources, including wireless bandwidth. For example, the communications systems 100 may employ one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA), single-carrier FDMA (SC-FDMA), and the like.

[0013] As shown in Figure 1A, the communications system 100 may include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, 102d, a radio access network (RAN) 104, a core network 106, a public switched telephone network (PSTN) 108, the Internet 110, and other networks 112, though it will be appreciated that the disclosed embodiments contemplate any number of WTRUs, base stations, networks, and/or network elements. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. By way of example, the WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals and may include user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a pager, a cellular telephone, a personal digital assistant (PDA), a smartphone, a laptop, a netbook, a personal computer, a wireless sensor, consumer electronics, and the like.

[0014] The communications systems 100 may also include a base station 114a and a base station 114b. Each of the base stations 114a, 114b may be any type of device configured to wirelessly interface with at least one of the WTRUs 102a, 102b, 102c, 102d to facilitate access to one or more communication networks, such as the core network 106, the Internet 110, and/or the networks 112. By way of example, the base stations 114a, 114b may be a base transceiver station (BTS), a Node-B, an eNode B, a Home Node B, a Home eNode B, a site controller, an access point (AP), a wireless router, and the like. While the base stations 114a, 114b are each depicted as a single element, it will be appreciated that the base stations 114a, 114b may include any number of interconnected base stations and/or network elements.

[0015] The base station 114a may be part of the RAN 104, which may also include other base stations and/or network
elements (not shown), such as a base station controller (BSC), a radio network controller (RNC), relay nodes, etc. The base station 114a and/or the base station 114b may be configured to transmit and/or receive wireless signals within a particular geographic region, which may be referred to as a cell (not shown). The cell may further be divided into cell sectors. For example, the cell associated with the base station 114a may be divided into three sectors. Thus, in one embodiment, the base station 114a may include three transceivers, i.e., one for each sector of the cell. In another embodiment, the base station 114a may employ multiple-input multiple output (MIMO) technology and, therefore, may utilize multiple transceivers for each sector of the cell.

[0016] The base stations 114a, 114b may communicate with one or more of the WTRUs 102a, 102b, 102c, 102d over an air interface 116, which may be any suitable wireless communication link (e.g., radio frequency (RF), microwave, infrared (IR), ultraviolet (UV), visible light, etc.). The air interface 116 may be established using any suitable radio access technology (RAT).

[0017] More specifically, as noted above, the communications system 100 may be a multiple access system and may employ one or more channel access schemes, such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, the base station 114a in the RAN 104 and the WTRUs 102a, 102b, 102c may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may establish the air interface 116 using wideband CDMA (WCDMA). WCDMA may include communication protocols such as High-Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High-Speed Downlink Packet Access (HSDPA) and/or High-Speed Uplink Packet Access (HSUPA).

[0018] In another embodiment, the base station 114a and the WTRUs 102a, 102b, 102c may implement a radio technology such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may establish the air interface 116 using Long Term Evolution (LTE) and/or LTE-Advanced (LTE-A).

[0019] In other embodiments, the base station 114a and the WTRUs 102a, 102b, 102c may implement radio technologies such as IEEE 802.16 (i.e., Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, Interim Standard 2000 (IS-2000), Interim Standard 95 (IS-95), Interim Standard 856 (IS-856), Global System for Mobile communications (GSM), Enhanced Data rates for GSM Evolution (EDGE), GSM EDGE (GERAN), and the like.

[0020] The base station 114b in Figure 1A may be a wireless router, Home Node B, Home eNode B, or access point, for example, and may utilize any suitable RAT for facilitating wireless connectivity in a localized area, such as a place of business, a home, a vehicle, a campus, and the like. In one embodiment, the base station 114b and the WTRUs 102c, 102d may implement a radio technology such as IEEE 802.11 to establish a wireless local area network (WLAN). In another embodiment, the base station 114b and the WTRUs 102c, 102d may implement a radio technology such as IEEE 802.15 to establish a wireless personal area network (WPAN). In yet another embodiment, the base station 114b and the WTRUs 102c, 102d may utilize a cellular-based RAT (e.g., WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.) to establish a picocell or femtocell. As shown in Figure 1A, the base station 114b may have a direct connection to the Internet 110. Thus, the base station 114b may not be required to access the Internet 110 via the core network 106.

[0021] The RAN 104 may be in communication with the core network 106, which may be any type of network configured to provide voice, data, applications, and/or voice over internet protocol (VoIP) services to one or more of the WTRUs 102a, 102b, 102c, 102d. For example, the core network 106 may provide call control, billing services, mobile location-based services, pre-paid calling, Internet connectivity, video distribution, etc., and/or perform high-level security functions, such as user authentication. Although not shown in Figure 1A, it will be appreciated that the RAN 104 and/or the core network 106 may be in direct or indirect communication with other RANs that employ the same RAT as the RAN 104 or a different RAT. For example, in addition to being connected to the RAN 104, which may be utilizing an E-UTRA radio technology, the core network 106 may also be in communication with another RAN (not shown) employing a GSM radio technology.

[0022] The core network 106 may also serve as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include circuit-switched telephone networks that provide plain old telephone service (POTS). The Internet 110 may include a global system of interconnected computer networks and devices that use common communication protocols, such as the transmission control protocol (TCP), user datagram protocol (UDP) and the internet protocol (IP) in the TCP/IP internet protocol suite. The networks 112 may include wired or wireless communications networks owned and/or operated by other service providers. For example, the networks 112 may include another core network connected to one or more RANs, which may employ the same RAT as the RAN 104 or a different RAT.

[0023] Some or all of the WTRUs 102a, 102b, 102c, 102d in the communications system 100 may include multi-mode capabilities, i.e., the WTRUs 102a, 102b, 102c, 102d may include multiple transceivers for communicating with different wireless networks over different wireless links. For example, the WTRU 102c shown in Figure 1A may be configured to communicate with the base station 114a, which may employ a cellular-based radio technology, and with the base station 114b, which may employ an IEEE 802 radio technology.

[0024] Figure 1B is a system diagram of an example WTRU 102. As shown in Figure 1B, the WTRU 102 may include
a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a keypad 126, a display/touchpad 128, non-removable memory 130, removable memory 132, a power source 134, a global positioning system (GPS) chipset 136, and other peripherals 138. It will be appreciated that the WTRU 102 may include any subcombination of the foregoing elements while remaining consistent with an embodiment. It is noted that the components, functions, and features described with respect to the WTRU 102 may also be similarly implemented in a base station.

The processor 118 may be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Array (FPGAs) circuits, any other type of integrated circuit (IC), a state machine, and the like. The processor 118 may perform signal coding, data processing, power control, input/output processing, and/or any other functionality that enables the WTRU 102 to operate in a wireless environment. The processor 118 may be coupled to the transceiver 120, which may be coupled to the transmit/receive element 122. While Figure 1B depicts the processor 118 and the transceiver 120 as separate components, it will be appreciated that the processor 118 and the transceiver 120 may be integrated together in an electronic package or chip.

The transmit/receive element 122 may be configured to transmit signals to, or receive signals from, a base station (e.g., the base station 114a) over the air interface 116. For example, in one embodiment, the transmit/receive element 122 may be an antenna configured to transmit and/or receive RF signals. In another embodiment, the transmit/receive element 122 may be an emitter/detector configured to transmit and/or receive IR, UV, or visible light signals, for example. In yet another embodiment, the transmit/receive element 122 may be configured to transmit and receive both RF and light signals. It will be appreciated that the transmit/receive element 122 may be configured to transmit and/or receive any combination of wireless signals.

In addition, although the transmit/receive element 122 is depicted in Figure 1B as a single element, the WTRU 102 may include any number of transmit/receive elements 122. More specifically, the WTRU 102 may employ MIMO technology. Thus, in one embodiment, the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) for transmitting and receiving wireless signals over the air interface 116.

The transceiver 120 may be configured to modulate the signals that are to be transmitted by the transmit/receive element 122 and to demodulate the signals that are received by the transmit/receive element 122. As noted above, the WTRU 102 may have multi-mode capabilities. Thus, the transceiver 120 may include multiple transceivers for enabling the WTRU 102 to communicate via multiple RATs, such as UTRA and IEEE 802.11, for example.

The processor 118 of the WTRU 102 may be coupled to, and may receive user input data from, the speaker/microphone 124, the keypad 126, and/or the display/touchpad 128 (e.g., a liquid crystal display (LCD) display unit or organic light-emitting diode (OLED) display unit). The processor 118 may also output user data to the speaker/microphone 124, the keypad 126, and/or the display/touchpad 128. In addition, the processor 118 may access information from, and store data in, any type of suitable memory, such as the non-removable memory 130 and/or the removable memory 132. The non-removable memory 130 may include read-only memory (ROM), random-access memory (RAM), a hard disk, or any other type of memory storage device. The removable memory 132 may include a subscriber identity module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 may access information from, and store data in, memory that is not physically located on the WTRU 102, such as on a server or a home computer (not shown).

The processor 118 may receive power from the power source 134, and may be configured to distribute and/or control the power to the other components in the WTRU 102. The power source 134 may be any suitable device for powering the WTRU 102. For example, the power source 134 may include one or more dry cell batteries (e.g., nickel-cadmium (NiCd), nickel-zinc (NiZn), nickel metal hydride (NiMH), lithium-ion (Li-ion), etc.), solar cells, fuel cells, and the like.

The processor 118 may also be coupled to the GPS chipset 136, which may be configured to provide location information (e.g., longitude and latitude) regarding the current location of the WTRU 102. In addition to, or in lieu of, the information from the GPS chipset 136, the WTRU 102 may receive location information over the air interface 116 from a base station (e.g., base stations 114a, 114b) and/or determine its location based on the timing of the signals being received from two or more nearby base stations. It will be appreciated that the WTRU 102 may acquire location information by way of any suitable location-determination method while remaining consistent with an embodiment.

The processor 118 may further be coupled to other peripherals 138, which may include one or more software and/or hardware modules that provide additional features, functionality and/or wired or wireless connectivity. For example, the peripherals 138 may include an accelerometer, an e-compass, a satellite transceiver, a digital camera (for photographs or video), a universal serial bus (USB) port, a vibration device, a television transceiver, a hands free headset, a Bluetooth® module, a frequency modulated (FM) radio unit, a digital music player, a media player, a video game player module, an Internet browser, and the like.

Figure 1C is a system diagram of the RAN 104 and the core network 106 according to an embodiment. As
noted above, the RAN 104 may employ an E-UTRA radio technology to communicate with the WTRUs 102a, 102b, 102c over the air interface 116. The RAN 104 may also be in communication with the core network 106.

[0034] The RAN 104 may include eNode-Bs 140a, 140b, 140c, though it will be appreciated that the RAN 104 may include any number of eNode-Bs while remaining consistent with an embodiment. The eNode-Bs 140a, 140b, 140c may each include one or more transceivers for communicating with the WTRUs 102a, 102b, 102c over the air interface 116. In one embodiment, the eNode-Bs 140a, 140b, 140c may implement MIMO technology. Thus, the eNode-B 140a, for example, may use multiple antennas to transmit wireless signals to, and receive wireless signals from, the WTRU 102a.

[0035] Each of the eNode-Bs 140a, 140b, 140c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, scheduling of users in the uplink and/or downlink, and the like. As shown in Figure 1C, the eNode-Bs 140a, 140b, 140c may communicate with one another over an X2 interface.

[0036] The core network 106 shown in Figure 1C may include a mobility management gateway (MME) 142, a serving gateway 144, and a packet data network (PDN) gateway 146. While each of the foregoing elements are depicted as part of the core network 106, it will be appreciated that any one of these elements may be owned and/or operated by an entity other than the core network operator.

[0037] The MME 142 may be connected to each of the eNode-Bs 142a, 142b, 142c in the RAN 104 via an S1 interface and may serve as a control node. For example, the MME 142 may be responsible for authenticating users of the WTRUs 102a, 102b, 102c, bearer activation/deactivation, selecting a particular serving gateway during an initial attach of the WTRUs 102a, 102b, 102c, and the like. The MME 142 may also provide a control plane function for switching between the RAN 104 and other RANs (not shown) that employ other radio technologies, such as GSM or WCDMA.

[0038] The serving gateway 144 may be connected to each of the eNode Bs 140a, 140b, 140c in the RAN 104 via the S1 interface. The serving gateway 144 may generally route and forward user data packets to/from the WTRUs 102a, 102b, 102c. The serving gateway 144 may also perform other functions, such as anchoring user planes during inter-eNode B handovers, triggering paging when downlink data is available for the WTRUs 102a, 102b, 102c, managing and storing contexts of the WTRUs 102a, 102b, 102c, and the like.

[0039] The serving gateway 144 may also be connected to the PDN gateway 146, which may provide the WTRUs 102a, 102b, 102c with access to packet-switched networks, such as the Internet 110, to facilitate communications between the WTRUs 102a, 102b, 102c and IP-enabled devices.

[0040] The core network 106 may facilitate communications with other networks. For example, the core network 106 may provide the WTRUs 102a, 102b, 102c with access to circuit-switched networks, such as the PSTN 108, to facilitate communications between the WTRUs 102a, 102b, 102c and traditional land-line communications devices. For example, the core network 106 may include, or may communicate with, an IP gateway (e.g., an IP multimedia subsystem (IMS) server) that serves as an interface between the core network 106 and the PSTN 108. In addition, the core network 106 may provide the WTRUs 102a, 102b, 102c with access to the networks 112, which may include other wired or wireless networks that are owned and/or operated by other service providers.

[0041] Figure 2 illustrates a block diagram of a wireless communication system 200 including a plurality of WTRUs 210 and an eNodeB (eNB) 220. As shown in Figure 2, the WTRUs 210 are in communication with the eNB 220. Although three WTRUs 210 and one eNB 220 are shown in Figure 2, it should be noted that any combination of wireless and wired devices may be included in the wireless communication system 200.

[0042] Figure 3 is a function block diagram 300 of a WTRU 210 and the base station 220 of the wireless communication system 200 of Figure 2. As shown in Figure 2, the WTRU 210 is in communication with the eNB 220. The WTRU 210 is configured to receive instructions and parameters for feedback reporting, including, for example, a CQI, from the eNB 220. The eNB 220 may be configured to transmit, and the WTRU 210 configured to receive and monitor signals on the broadcast channel (BCH). The WTRU 210 may also be configured to receive messages on the BCH, measure CQI, and transmit CQI reports to the eNB 220. The WTRU 210 may transmit on any uplink channel, such as a RACH, for example. The WTRU 210 may be configured to transmit and receive radio resource control (RRC) messages and layer 1 (L1) messages.

[0043] In addition to the components that may be found in a typical WTRU, the WTRU 210 includes a processor 315, a receiver 316, a transmitter 317, and an antenna 318. The WTRU 210 may also include a user interface 321, which may include, but is not limited to, an LCD or LED screen, a touch screen, a keyboard, a stylus, or any other typical input/output device. The WTRU 210 may also include memory 319, both volatile and non-volatile, as well as interfaces 320 to other devices, such as universal serial bus (USB) ports, serial ports and the like. The receiver 316 and the transmitter 317 are in communication with the processor 315. The antenna 318 is in communication with both the receiver 316 and the transmitter 317 to facilitate the transmission and reception of wireless data.

[0044] In addition to the components that may be found in a typical eNB, the eNB 220 includes a processor 325, a receiver 326, a transmitter 327, and an antenna 328. The receiver 326 and the transmitter 327 are in communication with the processor 325. The antenna 328 is in communication with both the receiver 326 and the transmitter 327 to facilitate the transmission and reception of wireless data.
When a WTRU begins communicating with an eNB, it may access a shared uplink channel, such as the random access channel. Accessing the RACH is a process that may include multiple messaging between a WTRU and an eNB. This is because the RACH is contentious, and many WTRUs may be attempting to use the RACH at the same time.

Channel state information (CSI) feedback may be reported in the format of rank, precoder matrix index (PMI), and channel quality indicator (CQI). PMI may be calculated at a WTRU by quantizing the communication channel against a predefined codebook. CSI feedback may include CQI/PMI/rank indication (RI) reports and may be provided on either a periodic or an aperiodic basis. Parameters required to control the information reported by the WTRU may be either based on system bandwidth, or may be provided in an RRC connection setup, reconfiguration, and reestablishment messages. The information reported by the WTRU may vary based on the transmission mode, which may be defined in the same RRC messages. Table 1 below sets forth a summary of example R8/R9 reporting modes.

Table 1

<table>
<thead>
<tr>
<th>Transmission Mode</th>
<th>Aperiodic Feedback</th>
<th>Periodic Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Port 0</td>
<td>Mode 2-0: WTRU selected sub band CQI: WB CQI + CQI over M best subbands</td>
<td>Mode 1-0: WB CQI</td>
</tr>
<tr>
<td>2: Tx Diversity</td>
<td></td>
<td>Mode 2-0: WTRU selected sub band CQI: WB CQI +</td>
</tr>
<tr>
<td>3: Open Loop SM (large delay CDD) (or Tx Diversity)</td>
<td>Mode 3-0: HL configured sub band CQI: WB CQI + subband CQI</td>
<td>WTRU reports CQI in preferred subband in each BW part, one B W part in each reporting opportunity</td>
</tr>
<tr>
<td></td>
<td>Notes: CQI for first CW, no PMI</td>
<td>Note: CQI for first CW, no PMI</td>
</tr>
<tr>
<td>4: Closed Loop SM</td>
<td>Mode 1-2: WB CQI/Multiple PMI: CQI for each CW; PMI for each subband</td>
<td>Mode 1-1: WB CQI / single PMI</td>
</tr>
<tr>
<td>6: Closed Loop Rank 1 Precoding (or Tx Div)</td>
<td>Mode 2-2: WTRU selected sub band CQI /multiple PMI: CQI per CW and PMI, both over full BW and M best subbands Mode 3-1: HL configured sub band CQI / single PMI: WB CQI + subband CQI, both per CW</td>
<td>Mode 2-1: WTRU selected subband CQI / single PMI (NDLRB > only): WB CQI/PMI + WTRU reports CQI in preferred subband in each BW part</td>
</tr>
<tr>
<td>8 (with PMI): Port 7/8 (or single port or Tx Div):</td>
<td>Mode 3-1: HL configured sub band CQI / single PMI (see above)</td>
<td></td>
</tr>
<tr>
<td>5: MU-MIMO (or Tx Div)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Periodic feedback may be transmitted on the PUCCH channel. In the alternative, periodic feedback may be transmitted on the PUSCH channel, if available. In LTE-A, PUCCH and PUSCH channels may be transmitted in the same subframe, thus in this case, periodic feedback may be transmitted on the same PUCCH channel. Periodic reporting may use a sequence of different types of reports including, but not limited to: Type 1 - subband CQI; Type 2 - wideband CQI/PMI; Type 3 - RI; and Type 4 - wideband CQI. Figure 4 illustrates a diagram of an example reporting sequence, where the number in each rectangle corresponds to the aforementioned report type.

Aperiodic feedback may be requested by a Format 0 downlink control information (DCI) or a random access response (RAR) when the CQI request bit is set or by some other indicator. This feedback may be transmitted on the PUSCH channel.

In accordance with embodiments of the present disclosure, reporting may be provided based on long-term feedback without relying on short-term feedback. Herein, the terms "long-term feedback" and "short-term feedback" may be used interchangeably with the terms "long-term precoder" and "short-term precoder," respectively. When channel coherence time (determined by the velocity of the WTRU) is smaller than the delay of the WTRU feedback (which may include WTRU measurement, encoding, transmission time, and time waiting for a feedback interval), then the WTRU may be considered to have high mobility. High mobility may be considered to occur at speeds greater than 30 kilometers per hour.

In an embodiment, pseudo-open-loop beamforming methods and systems are provided for allowing a system to take advantage of long-term feedback in the absence of short-term feedback. In a pseudo-open-loop beamforming configuration (or mode), a WTRU may report long-term feedback, but not the short-term precoder, and the
base station may use one predefined short-term precoder, denoted herein as \(W_2(i) \), to combine with the WTRU-reported long-term precoder \(W_1 \) to obtain an overall precoder \(W \) at a given sub-frame.

[0051] In an example, a WTRU may have knowledge of the predetermined short-term precoder \(W_2(i) \) so that it may calculate the reported CQI based on the assumption that the overall precoder may be built by combining the reported long-term feedback and the predefined short-term precoder, for example \(W = W_1 \times W_2(i) \). The predefined short-term precoder \(W_2(i) \) belongs to a predefined set of precoders \(\{ W_2(1), W_2(2), ..., W_2(N) \} \), where \(N \geq 1 \). Both the base station and the WTRU may know which \(W_2(i) \) to use in a given sub-frame according to a formula of system parameters such as sub-frame index, cell ID, WTRU ID, and the like. With long-term precoder reported, this example method may allow the base station to separate MU-MIMO users efficiently in spatial domain. In an example, the set of precoders may include one precoder, i.e., \(N = 1 \). With one precoder as in this example, the large-delay cyclic delay diversity (CDD) precoder may be used as the predefined short-term precoder.

[0052] Figure 5 illustrates a flow chart of a method of feedback reporting in accordance with embodiments of the present disclosure. In an example, the method may be implemented by the WTRU 210 shown in Figure 3, although the method may be implemented by any suitable WTRU.

[0053] Referring to Figure 5, the method includes determining a long-term precoder (step 500). For example, the WTRU 210 shown in Figure 3 may measure a communication channel between the WTRU 210 and a base station, such as the eNB 220 shown in Figure 2, to determine long-term wideband channel statistics (e.g., a correlation matrix). The statistics may be averaged over time and frequency (or may use an instantaneous measurement). The WTRU 210 may quantize the long-term wideband channel statistics according to the long-term codebook and may obtain a corresponding long-term precoding matrix index, which may represent long-term precoder \(W_1 \).

[0054] The method of Figure 5 includes determining a short-term precoder (step 502). For example, the WTRU 210 shown in Figure 3 may access a set of predefined short-term precoders and determine one of the precoders for use for the purpose of CQI determination in the subsequent steps according to the predefined rule described in [0057].

[0055] The method of Figure 5 includes transmitting a long-term PMI corresponding to the estimated long-term or wideband channel statistics (step 504). For example, the long-term PMI may be reported within, during, or at a specified long-term feedback report interval or upon aperiodic report request by the base station.

[0056] The method of Figure 5 includes calculating CQI based on the long-term precoder and the short-term precoder (step 506). For example, the WTRU 210 shown in Figure 3 may calculate the CQI based on an assumption that the overall precoder is built by combining the reported long-term precoder \(W_1 \) and a predefined short term precoder \(W_2(i) \), for example, \(W = W_1 \times W_2(i) \). The method may include subsequently reporting the short-term and/or sub-band CQI to the base station (step 508). In an example, the WTRU may transmit the CQI to the base station via one or more RRC messages.

[0057] In another embodiment, an RI feedback mechanism is provided. It is noted that in a codebook construction method that uses multi-granular feedback (MGF) in 3GPP RAN for LTE-A, the overall precoder \(W = W^{(1)} W^{(2)} \), and the \(N_T \times N_r \times r \) precoder \(W^{(2)} \). For the MGF-based codebook construction method according to an embodiment, the total rank information in bits may be defined as \(K = \log_2 \min(N_T, N_R) \). It is noted that \(N_T \) is the number of Tx antennas at the a base station (e.g., an eNB), and \(N_R \) is the number of Rx antennas at the WTRU. The RI of the outer precoder may be defined as \(K_2 = K - K_1 \). The RI of the inner precoder may be defined as \(K_1 = K - K_2 \).

[0058] The RI report of inner precoder \(W^{(1)} \), say \(R^{(1)} \), may have a reduced range and may include \(K_1 = \log_2(\min(N_T, N_R)/M) \) bits. For example, if the value of \(M \) is selected as 2, and the RI report of the inner precoder \(W^{(1)} \) may be limited to an even number rank. Then, for an example antenna configuration of \(N_T \times N_R = 8 \), then \(K_1 = 2 \) and the reported \(R^{(1)} \) can take values of 2, 4, 6, and 8. That is, for example, the inner precoder \(W^{(1)} \) may be reported to be 8x2, 8x4, 8x6, and 8x8.

[0059] The RI report of inner precoder \(W^{(2)} \) may have a reduced range and may include \(K_2 = \log_2 M \) bits. For example, the value of \(M \) may be chosen to be 2, and the RI report of the inner precoder \(W^{(2)} \) may be limited to an even number rank. Then, for an example antenna configuration of \(N_T \times N_R = 8 \), \(K_2 = 1 \), the reported \(R^{(2)} \) can take values of \(1^{(1)} \) or \(1^{(2)} \).

[0060] Figure 6 illustrates a flow chart of a method of measuring and reporting CSI feedback to a base station in accordance with embodiments of the present disclosure. In an example, the method may be implemented by the WTRU 210 shown in Figure 3, although the method may be implemented by any suitable WTRU.

[0061] Referring to Figure 6, the method includes determining a long-term precoder and short-term precoder (step 600). For example, the WTRU 210 shown in Figure 3 may measure a communication channel between the WTRU 210 and a base station, such as the eNB 220 shown in Figure 2, to determine a long-term wideband spatial correlation matrix. The matrix may be averaged over time and frequency (or may use an instantaneous measurement). The WTRU 210 may quantize the long-term wideband spatial correlation according to the long-term codebook and may obtain a corresponding long-term precoding matrix index, which may represent long-term precoder \(W_1 \). In the quantization, the WTRU 210 may select an appropriate rank of the long-term precoding matrix out of a predefined range of value (K 1 bits). The WTRU 210 shown in Figure 3 may access a set of predefined short-term precoders and select one of the precoders for use as the short-term precoder. The rank of the long-term precoder may also be feedback into various parts of the system.

[0062] The method of Figure 6 includes transmitting a long-term PMI corresponding to the estimated long-term or
wideband channel statistics (step 602). For example, the long-term PMI may be reported within, during, or at a specified long-term feedback report interval or upon aperiodic report request by the base station.

[0063] The method of Figure 6 includes determining a rank of the short-term precoder based on the rank of the long-term precoder (step 604). For example, the WTRU 210 shown in Figure 3 may select the short-term or sub-band PMI and rank according to a predefined criterion. In an example, the resulting CQI may be maximized for the corresponding overall codebook. The rank of the short-term or sub-band PMI may be selected out of a limited range of values (K2 bits), which may be dependent on the reported rank of the long-term precoder. The method of Figure 6 includes transmitting the short-term precoder and the rank of the short-term precoder to a base station (step 606).

[0064] In another embodiment within the framework of adaptive codebook construction, the long-term precoder W1 may be a quantized correlation matrix R. In this case, the rank of the long-term precoder W1 may be fixed to be a full rank and is not reported to the base station. Further, the rank report for short-term feedback (W2) may include K = log2(min(Nr, Nt)) bits. For example, for an 8x8 antenna configuration, the rank report for short-term feedback (W2) includes 3 bits.

[0065] Figure 7 illustrates a flow chart of a method of feedback reporting in accordance with embodiments of the present disclosure. In an example, the method may be implemented by the WTRU 210 shown in Figure 3, although the method may be implemented by any suitable WTRU.

[0066] Referring to Figure 7, the method includes determining a long-term precoder (step 700). For example, the WTRU 210 shown in Figure 3 may measure a communication channel between the WTRU 210 and a base station, such as the eNB 220 shown in Figure 2, to determine a long-term wideband spatial correlation matrix. The matrix may be averaged over time and frequency (or may use an instantaneous measurement). The WTRU 210 may quantize the long-term wideband spatial correlation according to the long-term codebook and may obtain a corresponding long-term precoding matrix index, which may represent long-term precoder W1. In the quantization, the WTRU 210 may assume the rank of the long-term precoding matrix to be full rank, log2(min(Nr, Nt)). In an example, the rank information may not be reported in the long-term feedback.

[0067] The method of Figure 7 includes transmitting, to a base station, a long-term PMI corresponding to the long-term precoder (step 702). For example, the WTRU 210 may transmit, to the eNB 220 shown in Figure 2, a long-term PMI corresponding to the estimated long-term wideband spatial correlation matrix. The long-term PMI may be reported within, during, or at a predefined long-term feedback report interval or upon aperiodic report request by the base station.

[0068] The method of Figure 7 includes determining a short-term precoder (step 704) and determining a rank of the short-term PMI (step 706). For example, the WTRU 210 may select the short-term or sub-band PMI W2 and rank according to a predefined criterion. In an example, the resulting CQI may be maximized for the corresponding overall codebook W = W1 × W2.

[0069] The method of Figure 7 includes transmitting, to the base station, the short-term PMI and the rank of the short-term PMI (step 708). For example, the WTRU 210 may report the selected short-term or sub-band PMI and associated rank information to base station.

[0070] Although features and elements are described above in particular combinations, one of ordinary skill in the art will appreciate that each feature or element can be used alone or in any combination with the other features and elements. In addition, the methods described herein may be implemented in a computer program, software, or firmware incorporated in a computer-readable medium for execution by a computer or processor. Examples of computer-readable media include electronic signals (transmitted over wired or wireless connections) and computer-readable storage media. Examples of computer-readable storage media include, but are not limited to, a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs). A processor in association with software may be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host computer.

[0071] Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit (IC), and/or a state machine.

[0072] A processor in association with software may be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, radio network controller (RNC), or any host computer. The WTRU may be used in conjunction with modules, implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker, a microphone, a television transceiver, a hands free headset, a keyboard, a BLUETOOTH® module, a frequency modulation (FM) radio unit, a liquid crystal display (LCD) display unit, an organic light-emitting diode (OLED) display unit, a digital music player, a media player, a video game player module, an Internet browser, and/or any wireless local area network (WLAN) module.

[0073] Although features and elements are described above in particular combinations, one of ordinary skill in the art will appreciate that each feature or element can be used alone or in any combination with the other features and elements.
In addition, the methods described herein may be implemented in a computer program, software, or firmware incorporated in a computer-readable medium for execution by a computer or processor. Examples of computer-readable media include electronic signals (transmitted over wired or wireless connections) and computer-readable storage media. Examples of computer-readable storage media include, but are not limited to, a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs). A processor in association with software may be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host computer.

Claims

1. A method of feedback reporting using long-term feedback when short-term feedback is absent, the method characterized by:

 at a wireless transmit receiver unit, WTRU, (102):

 determining (500) a long-term precoder based on a long-term precoding matrix index corresponding to one or more channel statistics;

 determining (502) a predefined short-term precoder based on a formula associated with one or more system parameters;

 calculating (506) channel quality index (CQI) based on a combination of the long-term precoder and the short-term precoder; and

 transmitting (508) the CQI to a base station (114).

2. The method of claim 1, wherein determining (500) the long-term precoder based on the long-term precoding matrix index corresponding to the one or more channel statistics comprises:

 measuring a communication channel between the WTRU (102) and the base station (114) to determine long-term wideband channel statistics;

 quantizing the long-term wideband channel statistics based on a long-term codebook; and

 obtaining the long-term precoding matrix index based on the long-term wideband channel statistics and quantized long-term wideband channel statistics.

3. The method of claim 1, wherein the predefined short-term precoder is part of a set of predefined precoders stored in the WTRU (102) and accessible thereby.

4. The method of claim 3, wherein determining (502) the predefined short-term precoder comprises:

 accessing the set of predefined precodes stored in the WTRU (102); and

 selecting the short-term precoder from the set of predefined precoders for a sub-frame using the formula associated with the one or more system parameters, wherein the one or more system parameters comprise at least one of the following: sub-frame index, cell identifier, ID, and WTRU ID.

5. The method of claim 1, wherein transmitting (508) the CQI to the base station (114) comprises transmitting the CQI to the base station via one or more radio resource control, RRC, messages.

6. The method of claim 1, comprising transmitting the long-term precoder to the base station (114).

7. The method of claim 6, wherein transmitting the long-term precoder comprises transmitting the long-term precoder to the base station (114) at a predefined interval.

Patentansprüche

1. Verfahren zur Rückinformation durch Anwenden von Rückinformation mit Langzeitcharakter, wenn Rückinformation mit Kurzzeitcharakter fehlt, wobei das Verfahren durch Folgendes gekennzeichnet ist:
an einer drahtlosen Sende-/Empfangseinheit WTRU (102):

Bestimmen (500) eines Langzeit-Vorcodierers auf Basis eines Langzeit-Vorcodiermatrixindex entsprechend einer oder mehrerer Kanalstatistiken;
Bestimmen (502) eines vordefinierten Kurzzeit-Vorcodierers auf Basis eines oder mehrerer Systemparameter;
Berechnen (506) eines Kanalqualitätsindex (CQI) auf Basis einer Kombination des Langzeit-Vorcodierers und des Kurzzeit-Vorcodierers; und
Senden (508) des CQI an eine Basisstation (114).

2. Verfahren nach Anspruch 1, wobei das Bestimmen (500) des Langzeit-Vorcodierers auf Basis des Langzeit-Vorcodiermatrixindex entsprechend einer oder mehrerer Kanalstatistiken Folgendes aufweist:

Messen eines Kommunikationskanals zwischen der WTRU (102) und der Basisstation (114) zum Bestimmen von Langzeit-Breitbandkanal-Statistik;
Quantisieren der Langzeit-Breitbandkanal-Statistik auf Basis eines Langzeit-Codebuchs; und
Erhalten des Langzeit-Vorcodiermatrixindex auf Basis der Langzeit-Breitbandkanal-Statistik und der quantisierten Langzeit-Breitbandkanal-Statistik.

3. Verfahren nach Anspruch 1, wobei der vordefinierte Kurzzeit-Vorcodierer Teil eines Satzes von vordefinierten, in der WTRU (102) gespeicherten und für diese zugreifbaren Vorcodierern.

4. Verfahren nach Anspruch 3, wobei das Bestimmen (502) des Kurzzeit-Vorcodierers Folgendes aufweist:

Zugreifen auf den Satz von vordefinierten, in der WTRU (102) gespeicherten Vorcodes; und
Auswählen des Kurzzeit-Vorcodierers aus dem Satz vor vordefinierten Vorcodierern für einen Subframe unter Anwendung der dem einen oder den mehreren Systemparametern zugeordneten Formel, wobei der eine oder die mehreren Systemparameter wenigstens eines von Folgendem aufweisen: Subframe-Index, Zellenidentifikator, ID, und WTRU-ID.

5. Verfahren nach Anspruch 1, wobei das Senden (508) des CQI an die Basisstation (114) Senden des CQI an die Basisstation über eine oder mehrere Radio Ressource Control-Nachrichten (RRC-Nachrichten) aufweist.

6. Verfahren nach Anspruch 1, aufweisend Senden des Langzeit-Vorcodierers an die Basisstation (114).

7. Verfahren nach Anspruch 6, wobei Senden des Langzeit-Vorcodierers Senden des Langzeit-Vorcodierers an die Basisstation (114) in einem vordefinierten Intervall aufweist.

Revendications

1. Procédé de rapport de rétroaction utilisant une rétroaction à long terme lorsqu’une rétraction à court terme est absente, le procédé étant caractérisé par :

à une unité émettrice-réceptrice sans fil, WTRU, (102) :

la détermination (500) d’un précodeur à long terme sur la base d’un indice de matrice de précodage à long terme correspondant à une ou plusieurs statistiques de canal ;
la détermination (502) d’un précodeur à court terme prédéfini sur la base d’une formule associée à un ou plusieurs paramètres de système ;
le calcul (506) d’un indice de qualité de canal (CQI) sur la base d’une combinaison du précodeur à long terme et du précodeur à court terme ; et
la transmission (508) du CQI à une station de base (114).

2. Procédé selon la revendication 1, dans lequel la détermination (500) du précodeur à long terme sur la base de l’indice de matrice de précodage à long terme correspondant à l’une ou plusieurs statistiques de canal comprend :

la mesure d’un canal de communication entre la WTRU (102) et la station de base (114) pour déterminer des
statistiques de canal de bande large à long terme ;
la quantification des statistiques de canal de bande large à long terme sur la base d'un livre de code à long terme ; et
l'obtention de l'indice de matrice de précodage à long terme sur la base des statistiques de canal de bande large à long terme et des statistiques de canal de bande large à long terme quantifiées.

3. Procédé selon la revendication 1, dans lequel le précodeur à court terme prédéfini fait partie d'un ensemble de précodeurs prédéfinis mémorisés dans la WTRU (102) et il est accessible de ce fait.

4. Procédé selon la revendication 3, dans lequel la détermination (502) du précodeur à court terme prédéfini comprend :
l'accès à l'ensemble de précodes prédéfinis mémorisés dans la WTRU (102) ; et
la sélection du précodeur à court terme dans l'ensemble de précodes prédéfinis pour une sous-trame en utilisant la formule associée à l'un ou plusieurs paramètres de système, dans lequel l'un ou plusieurs paramètres de système comprennent au moins l'un de : un indice de sous-trame, un identifiant, ID, de cellule, et un ID de WTRU.

5. Procédé selon la revendication 1, dans lequel la transmission (508) du CQI à la station de base (114) comprend la transmission du CQI à la station de base par l'intermédiaire d'un ou plusieurs messages de commande de ressource radio, RRC.

6. Procédé selon la revendication 1, comprenant la transmission du précodeur à long terme à la station de base (114).

7. Procédé selon la revendication 6, dans lequel la transmission du précodeur à long terme comprend la transmission du précodeur à long terme à la station de base (114) à un intervalle prédéfini.
Figure 1B
Figure 4

Example:

- $J = 2$ BW parts
- $K = 2$ repetitions
- $MRI = 2$

Notation:
- $H = 1$ if no SB CQI
- $H = J \times K + 1$
- $J = \#$ BW parts
- $K = \#$ repetitions

Reference subframe:
- RI
- WB CQI
- SB 1 CQI
- SB 2 CQI
- SB 1 CQI
- SB 2 CQI
- SB 1 CQI
- SB 2 CQI
- RI
- WB CQI

H x MRI x NP

H x NP

Offset CQI

Offset RI
Figure 5
DETERMINE A
LONG-TERM
PRECODER AND
SHORT-TERM
PRECODER
600

DETERMINE A LONG-
TERM PMI
602

DETERMINE A RANK
OF THE SHORT-TERM
PRECODER
604

TRANSMIT THE
SHORT-TERM
PRECODER AND THE
RANK OF THE SHORT-
TERM PRECODER
606

Figure 6
Figure 7
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 61356345 A [0001]
- EP 1306983 A [0004]
- WO 2008021027 A [0005]
- US 2009203335 A [0006]