EUROPEAN PATENT SPECIFICATION

A WIRELESS POWER RECEIVING UNIT, A WIRELESS POWER TRANSFERRING UNIT, A WIRELESS POWER TRANSFERRING DEVICE AND USE OF A WIRELESS POWER TRANSFERRING DEVICE

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Date of publication and mention of the grant of the patent:
29.01.2014 Bulletin 2014/05

Application number: 10723091.4
Date of filing: 26.05.2010

Proprietor: ABB Research Ltd.
8050 Zürich (CH)

Inventor: TENGNER, Tomas
S-723 43 Västerås (SE)

Representative: Ahrengart, Kenneth
Intellectual Property
Ingenjör Bååths Gata 11
721 83 Västerås (SE)

References cited:
GB-A- 2 388 716
US-A1- 2010 081 483
US-B1- 6 980 077

Date of publication of application:
10.04.2013 Bulletin 2013/15

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to a wireless power receiving unit for receiving power according to the preamble of claim 1 and a wireless power transferring unit for transferring power according to the preamble of claim 12.

The present invention also relates to a wireless power transferring device according to claim 14, which power transferring device comprises a wireless power transferring unit and a wireless power receiving unit, and use of the wireless power transferring device according to claim 15.

FIELD OF THE INVENTION

PRIOR ART

Wireless power transferring devices, such as Inductively Coupled Power Transfer systems (ICPT), are used for transferring power from a power transferring unit to a power receiving unit. Wireless power transferring devices are for example used for charging battery units of an electric vehicle.

The power transferring unit is adapted to generate an alternating magnetic field of high frequency. The magnetic field couples the power transferring unit to the power receiving unit over a gap with a medium. The gap is often denoted "air gap" even if other medium than air is used in the gap.

The power receiving unit is adapted to be subjected to the alternating magnetic field and induce an alternating current. The induced alternating current is for example used to power a load or rectified and used for charging batteries.

A problem with wireless power transferring devices is that ferromagnetic materials, such as a steel body of a vehicle, in vicinity of the device is subjected to the alternating magnetic field, wherein the material is heated up due to eddy currents. Accordingly, the energy transfer efficiency between the power transferring unit and the power receiving unit is not optimal. Furthermore, it is important to limit the spread of the alternating magnetic field to the surrounding environment since high flux of the alternating magnetic field could have biological impact on people and animals.

US2009/0267558 discloses a wireless power charging system comprising a primary core and a secondary core. The primary core comprises a transmission shield panel. The secondary core comprises an eddy current reducing member and receiving shield panel.

WO2008/140333 discloses an inductive power transfer unit for charging electrical vehicles. The unit comprises a coil and a ferrite core, which ferrite core comprises a plurality of bars protruding away from a center of the unit. The outer part of the bars comprises insulating pads of foam or rubber adapted to protect the bars from mechanical stress caused by impacts and vibrations. US

OBJECTS AND SUMMARY OF THE INVENTION

The object of the present invention is to provide a wireless power receiving unit with improved power receiving efficiency, a wireless power transferring unit with improved power transferring efficiency, and wireless power transferring device with improved power transferring and receiving efficiency. A further object of the present invention is to provide a wireless power receiving unit, a wireless power transferring unit and wireless power transferring device that limits the spread of the alternating magnetic field to the surrounding environment.

This object is achieved by a wireless power receiving unit as defined in the preamble of claim 1, characterized in that the power receiving unit comprises a receiving guide member arranged to provide a transition for the magnetic field between the medium and the receiving concentrator core, and abutting the receiving concentrator core, which receiving guide member has a magnetic permeability in the range between the magnetic permeability of the receiving concentrator core and the medium.

The receiving concentrator core is being positioned in vicinity of the induction coil and is adapted to be subjected to the alternating magnetic field from the power transferring unit. The receiving concentrator core is adapted to concentrate the magnetic field and enhance the magnetic coupling between the power transferring unit and the power receiving unit.

The receiving guide member is abutting the receiving concentrator core, wherein the receiving guide member provides a transition for the magnetic field between the medium and the receiving concentrator core. Thereby, the receiving guide member enhances the exposure of the induction coil to the magnetic field, wherein the efficiency of the power receiving unit is improved.

The term "receiving concentrator core" refers to a member with property of high magnetic permeability, high magnetic saturation point, low electrical conductivity and soft magnetic characteristics with low hysteresis.

The medium has a magnetic permeability that is lower than the magnetic permeability of the receiving concentrator core. The magnetic field is coupled over the medium between the power receiving unit and power transferring unit.

According to one embodiment of the invention, the medium is non-magnetic, wherein the relative magnetic permeability of the medium is approximately 1.

According to one embodiment of the invention, the receiving guide member has a relative magnetic permeability of more than 5.

According to one embodiment of the invention, the receiving concentrator core comprises a metal oxide such as Fe2O3 with ZnO, NiO, MnO, CuO, etcetera, or
a combination thereof. Preferable, the receiving concentrator core comprises a so-called soft ferrite, which soft ferrite does not retain significant magnetization.

[0017] According to one embodiment of the invention, the relative magnetic permeability of the receiving concentrator core is between 100-20000, preferably between 1000-3000.

[0018] According to one embodiment of the invention, the power receiving unit and power transferring unit are separated by a gap with the medium.

[0019] According to one embodiment of the invention, the medium is air or water, wherein the magnetic permeability of the receiving guide member is in the range between the magnetic permeability of the receiving concentrator core and the air or water.

[0020] According to one embodiment of the invention, the receiving guide member at least partly surrounds the receiving concentrator core.

[0021] According to one embodiment of the invention, the receiving guide member comprises an inner part abutting the receiving concentrator core and an outer part abutting the surrounding medium. Accordingly, the receiving guide member is between the receiving concentrator core and the surrounding medium.

[0022] According to one embodiment of the invention, the magnetic permeability of the receiving guide member is decreasing from the inner part to the outer part. The decreasing of the magnetic permeability from the inner part to the outer part improves the transition for the magnetic field from the medium to the receiving concentrator core.

[0023] According to one embodiment of the invention, the magnetic permeability of the receiving guide member is decreasing continuously from the inner part to the outer part. The continuous decreasing of the magnetic permeability from the inner part to the outer part improves the transition for the magnetic field from the medium to the receiving concentrator core.

[0024] According to one embodiment of the invention, the receiving guide member comprises an inner ring abutting the receiving concentrator core and an outer ring abutting the surrounding medium, wherein the magnetic permeability of the inner ring is higher than the outer ring.

[0025] According to one embodiment of the invention, the receiving guide member comprises one or more intermediate rings between the inner ring and the outer ring, wherein the magnetic permeability of the intermediate rings are lower than the inner ring and higher than the outer ring.

[0026] According to one embodiment of the invention, the induction coil comprises a center axis and the receiving concentrator core comprises an envelope surface, which envelope surface is directed away from the center axis, wherein the receiving guide member is abutting the envelope surface of the receiving concentrator core.

[0027] According to one embodiment of the invention, the receiving guide member is manufactured of a resin, such as an epoxy resin, a polyurethane resin, a melamine resin, etcetera, comprising iron powder. Thereby, the electric conductivity is low and the magnetic permeability is dependent on the iron powder concentration in the resin.

[0028] According to one embodiment of the invention, the power receiving unit comprises a shield member adapted to shield the magnetic field, wherein the shield member comprises a conductive non-magnetic material.

[0029] According to one embodiment of the invention, the shield member is adapted to be located in between the induction coil and an arrangement comprising a ferromagnetic conductive material.

[0030] According to one embodiment of the invention, the power receiving unit is adapted to be connected to a battery unit, wherein the alternating current induced in the induction coil is adapted to charge the battery unit.

[0031] According to one embodiment of the invention, the shield member is made of aluminum or copper.

[0032] According to one embodiment of the invention, the power receiving unit is adapted to be arranged at vehicle and directed towards the power transferring unit arranged at the ground.

[0033] The object of the invention is further achieved by a wireless power transferring unit as defined in the preamble of claim 12, characterized in that the power transferring unit comprises a transferring guide member arranged to provide a transition for the magnetic field between the medium and the transferring concentrator core, and at least partly abutting the transferring concentrator core, which transferring guide member has a magnetic permeability in the range between the magnetic permeability of the transferring concentrator core and the medium.

[0034] The transferring concentrator core is being positioned in vicinity of the generating coil. The transferring concentrator core is adapted to be subjected to the alternating magnetic field from the generating coil.

[0035] The transferring guide member is abutting the transferring concentrator core, wherein the transferring guide member provides a transition for the magnetic field from the transferring concentrator core to the surrounding medium. Thereby, the transferring guide member guides the magnetic field toward the power receiving unit.

[0036] According to one embodiment of the invention, the transferring guide member has a relative magnetic permeability of more than 5.

[0037] According to one embodiment of the invention, the transferring guide member at least partly surrounds the transferring concentrator core.

[0038] According to one embodiment of the invention, the transferring guide member comprises an inner part abutting the transferring concentrator core and an outer part abutting the surrounding medium.

[0039] According to one embodiment of the invention, the magnetic permeability of the transferring guide member is decreasing from the inner part to the outer part.

[0040] According to one embodiment of the invention, the magnetic permeability of the transferring guide mem-
According to one embodiment of the invention, the transferring guide member comprises an inner ring abutting the transferring concentrator core and an outer ring abutting the surrounding medium, wherein the magnetic permeability of the inner ring is higher than the outer ring.

According to one embodiment of the invention, the transferring guide member comprises one or more intermediate rings between the inner ring and the outer ring, wherein the magnetic permeability of the intermediate rings are lower than the inner ring and higher than the outer ring.

According to one embodiment of the invention, the generating coil comprises a center axis and the transferring concentrator core comprises an envelope surface, which envelope surface is directed away from the center axis, wherein the transferring guide member is abutting the envelope surface of the transferring concentrator core.

According to one embodiment of the invention, the transferring guide member is manufactured of a resin, such as an epoxy resin, a polyurethane resins, a melamine resin, etcetera, comprising iron powder. Thereby, the electric conductivity is low and the magnetic permeability is dependent on the iron powder concentration in the resin.

According to one embodiment of the invention, the power transferring unit comprises a shield member adapted to shield the magnetic field, wherein the shield member comprises a conductive non-magnetic material.

According to one embodiment of the invention, the receiving concentrator core is high in comparison to the surrounding air. In an embodiment the relative magnetic permeability of the receiving concentrator core 12 is between 100-20000, preferably between 1000-3000. The frequency of the alternating magnetic field is in the range of 5 - 200 kHz, preferably 10 - 100 kHz. The frequency of the alternating magnetic field are being used. The magnetic permeability of a material is described by the relative magnetic permeability, which is the ratio between the magnetic permeability of the material and vacuum. The relative magnetic permeability of air is close to 1. The relative magnetic permeability of the receiving concentrator core 12 is high in comparison to the surrounding air. In an embodiment the relative magnetic permeability of the receiving concentrator core 12 is between 100-20000, preferably between 1000-3000.

The object of the invention is further achieved by a wireless power transferring device according to claim 14 and the use of a wireless power transferring device according to claim 15, wherein the power transferring device comprises a wireless power transferring unit and a wireless power receiving unit.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows a wireless power transferring device comprising a wireless power transferring unit and a wireless power receiving unit.

Fig. 2a shows a cross section of a first embodiment of a wireless power receiving unit.

Fig. 2b shows a cross section of a second embodiment of a wireless power receiving unit.

Fig. 3 shows a cross section of a wireless transferring unit.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION

Figure 1 shows a wireless power transferring device 1 comprising a wireless power transferring unit 3 and a wireless power receiving unit 5. The wireless power transferring device 1 is adapted to transfer power from the power transferring unit 3 to the power receiving unit 5. The power transferring unit 3 and the power receiving unit 5 is separated by an air gap 7.

The power transferring device 1 is adapted to transfer power to a vehicle, wherein the power transferring unit 3 is located at the ground and the power receiving unit 5 is located at a lower part of the vehicle.

The wireless power receiving unit 5 is adapted to receive power from the power transferring unit 3. The wireless power receiving unit 5 comprises an induction coil 10, a receiving concentrator core 12, and a receiving guide member 14.

The induction coil 10 is adapted to be subjected to power in the form of an alternating magnetic field from the power transferring unit 3. Thereby an alternating current is induced in the induction coil 10.

The receiving concentrator core 12 comprises a material with low electric conductivity and high magnetic permeability, such as Fe2O3 with ZnO, NiO, MnO, CuO, etcetera.

The receiving guide member 14 is adapted to guide the magnetic field lines between the air gap 7 and the receiving concentrator core 12 and to provide a smooth transition between the air and the receiving concentrator core 12.

The receiving guide member 14 has a magnetic permeability in the range between the magnetic permeability of the receiving concentrator core 12 and the magnetic permeability of the air.

The magnetic permeability of a material is described by the relative magnetic permeability, which is the ratio between the magnetic permeability of the material and vacuum. The relative magnetic permeability of air is close to 1. The relative magnetic permeability of the receiving concentrator core 12 is high in comparison to the surrounding air. In an embodiment the relative magnetic permeability of the receiving concentrator core 12 is between 100-20000, preferably between 1000-3000.
The induction coil 10 comprises a center axis 16. The receiving concentrator core 12 comprises an envelope surface 18. The receiving concentrator core 12 is a disc, which periphery forms the envelope surface 18. The envelope surface 18 of the receiving concentrator core 12 is directed away from the center axis 16. The receiving guide member 14 is abutting the envelope surface 18 of the receiving concentrator core 12.

The receiving concentrator core 12 is not limited to the disclosed cylindrical form but other forms that are adapted to concentrate the magnetic field are possible, such as a disc with a plurality of sides facing away from the center axis 16, a plurality of bars protruding away from the center axis 16, a ring, etcetera.

The receiving guide member 14 comprises a cylindrical tube with an inner part 19 and an outer part 20, see fig. 2a and 2b. The inner part 19 of the receiving guide member 14 comprises an inner surface that is abutting the envelope surface 18 of the receiving concentrator core 12. The receiving guide member 14 is surrounded by air. The outer part 20 of the receiving guide member 14 comprises an outer surface 23 that is abutting the surrounding air.

The power receiving unit 5 is connected to a battery unit 21. The alternating current being induced in the induction coil 10 is adapted to be rectified and charge the battery unit 21.

The power receiving unit 5 further comprises a shield member 22. The shield member 22 is adapted to shield the surrounding from the alternating magnetic field and to concentrate the magnetic field to the area between the power transferring unit and the power receiving unit. The shield member 22 comprises a high conductive material such as aluminum, copper, etcetera.

The wireless power transferring unit 3 is adapted to transfer power to the power receiving unit 5. The power transferring unit 3 comprises a generating coil 40, a transferring concentrator core 42 and a transferring guide member 44. The power transferring unit 3 comprises the corresponding structure of the power receiving unit 5.

The generating coil 40 is adapted to be supplied with an alternating current from a power source 46. The generating coil 40 is adapted to generate an alternating magnetic field that is coupled to the power receiving unit 5.

The power source 46 comprises a compensator (not displayed) adapted to form a resonance circuit with a resonance frequency in the range of 5 - 200 kHz, preferably 10 - 100 kHz. The power receiving unit 5 preferably comprises a compensator, which compensator forms the same or similar resonance frequency.

The transferring concentrator core 42 surrounds the generating coil. The transferring concentrator core 42 is adapted to concentrate the magnetic field towards the power receiving unit 5. The transferring concentrator core 42 comprises a material with negligible electric conductivity and high magnetic permeability.

The transferring guide member 44 surrounds the transferring concentrator core 42. The transferring guide member 44 is adapted to provide a transition between air and the transferring concentrator core 42. The transferring guide member 44 has a magnetic permeability in the range between the magnetic permeability of the transferring concentrator core 42 and the magnetic permeability of the air.

The generating coil 40 comprises a center axis 48. The transferring concentrator core 42 comprises an envelope surface 50. The transferring concentrator core 42 is a disc, which periphery forms the envelope surface 50. The envelope surface 50 is directed away from the center axis 48. The transferring guide member 44 is abutting the envelope surface 50 of the transferring concentrator core 42.

The transferring concentrator core 42 is not limited to the disclosed cylindrical form but other forms that are adapted to concentrate the magnetic field are possible, such as a disc with a plurality of sides facing away from the center axis 48, a plurality of bars protruding away from the center axis 48, a ring, etcetera.

The transferring guide member 44 comprises a cylindrical tube with an inner part 52 and an outer part 54, see fig. 3. The inner part 52 of the transferring guide member 44 comprises an inner surface that is abutting the envelope surface 50 of the transferring concentrator core 42. The receiving guide member 44 is surrounded by air. The outer part 54 of the transferring guide member 44 comprises an outer surface 56 that is abutting the surrounding air.

The power transferring unit 3 further comprises a shield member 22. The shield member 22 is adapted to shield the surrounding from the alternating magnetic field. The shield member 22 comprises a high conductive material such as aluminum, copper, etcetera.

Figure 2a shows a first example of a cross section of a power receiving unit 5. In the shown figure the induction coil 10 comprises three loops of a conductor. In an embodiment the coil 10 comprises a single loop of the conductor. However, the induction coil 10 may comprise any number of loops.

The induction coil 10 is located in vicinity of the receiving concentrator core 12. An outer conductor of the induction coil 10 forms a loop with a first diameter D1. The induction coil 10 is comprises the center axis 16. The centre axis 16 of the induction coil 10 is directed towards the power transferring unit 3.

The receiving guide member 14 is abutting the envelope surface 18 of the receiving concentrator core 12. The envelope surface 18 of the receiving concentrator core 12 is directed away from the center axis 16.

The receiving guide member 14 comprises the outer surface 23, which outer surface 23 is abutting the surrounding air. The outer surface 23 is directed away from the center axis of the induction coil 10. Accordingly, the receiving guide member 14 is located between the receiving concentrator core 12 and the surrounding air.
The receiving guide member 14 has a magnetic permeability in a range between the magnetic permeability of the receiving concentrator core 12 and the surrounding air. Thereby the receiving guide member 14 provides a transition of the high magnetic permeability of the receiving concentrator core 12 to the magnetic permeability of the surrounding air.

In a preferable embodiment the magnetic permeability of the receiving guide member 14 is decreasing continuously from the inner part to the outer part. A continuously decrease of the magnetic permeability of the receiving guide member provides an ideal transition for the alternating magnetic field.

The power receiving unit 5 further comprises the shield member 22. The shield member 22 is adapted to shield the surrounding from the alternating magnetic field.

The shield member 22 is located further away from the power transferring unit 3 in comparison to the receiving concentrator core 12. The power receiving unit 5 is adapted to be attached to an arrangement 24 comprising a ferromagnetic material, such as the lower steel body of a vehicle.

The shield member 22 is adapted to be located in between the receiving concentrator core 12 and the arrangement 24 comprising the ferromagnetic material. Thereby, the shield member 22 shields the arrangement 24 from the alternating magnetic field.

Figure 2b shows a second embodiment of a cross section of the power receiving unit 5. The receiving guide member 14 of the power receiving unit 5 in fig. 2b has a different structure from the receiving guide member 14 in fig. 2a. The receiving guide member 14 in fig. 2a and fig. 2b are otherwise the same.

The receiving guide member 14 comprises an inner ring 26, an outer ring 28 and an intermediate ring 29. The inner ring 26 comprises an inner surface that is abutting the envelope surface 18 of the receiving concentrator core 12. The outer ring 28 comprises an outer surface 52 that is abutting the surrounding air. The intermediate ring 29 is between the inner ring 26 and the outer ring 28. The intermediate ring 29 is abutting both the inner ring 26 and the outer ring 28.

The magnetic permeability of the inner ring 26 is higher than the outer ring 28 and the intermediate ring 29. The magnetic permeability of the intermediate ring 29 is in the range between the inner ring 26 and the outer ring 28.

Accordingly, the magnetic permeability of the receiving guide member 14 is decreasing in a stepwise manner from the receiving concentrator core 12 to the surrounding air. Thereby the receiving guide member 14 provides a stepwise transition of the high magnetic permeability of the receiving concentrator core 12 to the magnetic permeability of the surrounding air.

Figure 3 shows a cross section of the power transferring unit 3. The power transferring unit 3 comprises the generating coil 40, the transferring concentrator core 42 and the transferring guide member 44.

The transferring guide member 44 is arranged to concentrate the generated magnetic field between the air gap 7 and the transferring concentrator core 42 and to provide a smooth transition between the air and the transferring concentrator core 42.

The structure of the power transferring unit 3 is the same or substantially the same as in the power receiving unit 5.

The generating coil 40 is located in vicinity of the transferring core 42. The conductor 10 of the generating coil 40 forms three loops, wherein an outer loop of the conductor 10 has a second diameter D2. However, the generating coil 40 may comprise any number of loops. The generating coil 40 is comprises the center axis 48. The centre axis 48 of the generating coil 40 is directed towards the power receiving unit 5.

The transferring guide member 44 is abutting the envelope surface 50 of the transferring concentrator core 42. The envelope surface 50 of the transferring concentrator core 42 is directed away from the center axis 50. The transferring guide member 44 is abutting the surrounding air. Accordingly, the transferring guide member 44 is located radially between the transferring concentrator core 42 and the surrounding air.

The transferring guide member 44 has a magnetic permeability in a range between the magnetic permeability of the transferring concentrator core 42 and the surrounding air. Thereby the transferring guide member 44 provides a smooth transition between the high magnetic permeability of the transferring concentrator core 42 to the magnetic permeability of the surrounding air.

The invention is not limited to the disclosed embodiment but may be varied and modified within the scope of the following claims.

For example, the power transferring device 1 is adapted to transfer power both direction between the power transferring unit 3 and the power receiving unit 5. In an embodiment, the power transferring unit 3 and the power receiving unit 5 are identical or substantially identical units.

Claims

1. A wireless power receiving unit (5) for receiving power, wherein the power receiving unit (5) comprises:

 - an induction coil (10), which induction coil (10) is adapted to be subjected to power in the form of an alternating magnetic field from a power transferring unit (3) so that an alternating current is induced in the induction coil (10), and
 - a receiving concentrator core (12) for concentrating the magnetic field towards the induction coil (10), wherein the receiving concentrator core (12) is surrounded by a medium,
characterized in that

the power receiving unit (5) comprises a receiving guide member (14) arranged to provide a transition for the magnetic field between the medium and the receiving concentrator core (12), and abutting the receiving concentrator core (12), which receiving guide member (14) has a magnetic permeability in the range between the magnetic permeability of the receiving concentrator core (12) and the medium.

2. A wireless power receiving unit (5) according to claim 1, characterized in that the receiving guide member (14) at least partly surrounds the receiving concentrator core (12).

3. A wireless power receiving unit (5) according to any of claim 1 and 2, characterized in that the receiving guide member (14) comprises an inner part (19) abutting the receiving concentrator core (12) and an outer part (20) abutting the surrounding medium.

4. A wireless power receiving unit (5) according to claim 3, characterized in that the magnetic permeability of the receiving guide member (14) is decreasing from the inner part (19) to the outer part (20).

5. A wireless power receiving unit (5) according to claim 3 and 4, characterized in that the magnetic permeability of the receiving guide member (14) is decreasing continuously from the inner part (19) to the outer part (20).

6. A wireless power receiving unit (5) according to any of the preceding claims, characterized in that the receiving guide member (14) comprises an inner ring (26) abutting the receiving concentrator core (12) and an outer ring (28) abutting the surrounding medium, wherein the magnetic permeability of the inner ring (26) is higher than the outer ring (28).

7. A wireless power receiving unit (5) according to any of the preceding claims, characterized in that the induction coil (10) comprises a center axis (16) and the receiving concentrator core (12) comprises an envelope surface (18), which envelope surface (18) is directed away from the center axis (16), wherein the receiving guide member (14) is abutting the envelope surface (18) of the receiving concentrator core (12).

8. A wireless power receiving unit (5) according to any of the preceding claims, characterized in that the power receiving unit (5) comprises a shield member (22) adapted to shield the magnetic field, wherein the shield member (22) comprises a conductive non-magnetic material.

9. A wireless power receiving unit (5) according to claim

8, characterized in that the shield member (22) is adapted to be located in between the induction coil (10) and an arrangement (24) comprising a ferromagnetic conductive material.

10. A wireless power receiving unit (5) according to any of the preceding claims, characterized in that the power receiving unit (5) is adapted to be connected to a battery unit (21), wherein the alternating current induced in the induction coil (10) is adapted to charge the battery unit (21).

11. A wireless power receiving unit (5) according to any of the preceding claims, characterized in that the power receiving unit (5) is adapted to be arranged at vehicle and directed towards the power transferring unit (3) arranged at the ground.

12. A wireless power transferring unit (3) for transferring power, wherein the power transferring unit (3) comprises:

- a generating coil (40), which generating coil (40) is adapted to generate power in the form of an alternating magnetic field that is subjected to a power receiving unit (5), and
- a transferring concentrator core (42) for concentrating the magnetic field towards the power receiving unit (5), wherein the transferring concentrator core (42) is surrounded by a medium, characterized in that

the power transferring unit (3) comprises a transferring guide member (44) arranged to provide a transition for the magnetic field between the medium and the transferring concentrator core (42), and at least partly abutting the transferring concentrator core (42), which transferring guide member (44) has a magnetic permeability in the range between the magnetic permeability of the transferring concentrator core (42) and the medium.

13. A wireless power transferring unit (3) according to claim 12, characterized in that the transferring guide member (44) at least partly surrounds the transferring concentrator core (42).

14. A wireless power transferring device (1) comprising a wireless power transferring unit (3) according to claim 12-13 and a wireless power receiving unit (5) according to claim 1-11.

15. Use of wireless power transferring device (1) according to claim 14 for transferring power to a vehicle.
Patentansprüche

1. Drahtlose Leistungsempfangseinheit (5) zum Empfangen von Leistung, wobei die Leistungsempfangseinheit (5) Folgendes aufweist:

- eine Induktionsspule (10), wobei die Induktionsspule (10) angepasst ist, um derart Leistung in der Form eines magnetischen Wechselfelds von einer Leistungsübertragungseinheit (3) ausgesetzt zu werden, dass ein Wechselstrom in der Induktionsspule (10) induziert wird, und
- einen Empfangskonzentrator (12) zum Konzentrieren des Magnetfelds in Richtung der Induktionsspule (10), wobei der Empfangskonzentrator (12) von einem Medium umgeben ist, dadurch gekennzeichnet, dass:

 die Leistungsempfangseinheit (5) ein Empfangsführungsglied (14) aufweist, das angeordnet ist, um einen Übergang für das Magnetfeld zwischen dem Medium und dem Empfangskonzentrator (12) bereitzustellen und an den Empfangskonzentrator (12) anstößt, wobei das Empfangsführungsglied (14) eine magnetische Permeabilität im Bereich zwischen der magnetischen Permeabilität des Empfangskonzentrators (12) und des Mediums aufweist.

2. Drahtlose Leistungsempfangseinheit (5) nach Anspruch 1, dadurch gekennzeichnet, dass das Empfangsführungsglied (14) den Empfangskonzentrator (12) zumindest teilweise umgibt.

3. Drahtlose Leistungsempfangseinheit (5) nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass das Empfangsführungsglied (14) einen inneren Teil (19), der an den Empfangskonzentrator (12) anstößt, und einen äußeren Teil (20) aufweist, der an das umgebende Medium anstößt.

4. Drahtlose Leistungsempfangseinheit (5) nach Anspruch 3, dadurch gekennzeichnet, dass die magnetische Permeabilität des Empfangsführungsglieds (14) vom inneren Teil (19) zum äußeren Teil (20) abnimmt.

5. Drahtlose Leistungsempfangseinheit (5) nach Anspruch 3 und 4, dadurch gekennzeichnet, dass die magnetische Permeabilität des Empfangsführungsglieds (14) kontinuierlich vom inneren Teil (19) zum äußeren Teil (20) abnimmt.

6. Drahtlose Leistungsempfangseinheit (5) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Empfangsführungsglied (14) einen inneren Ring (26), der an den Empfangskonzentrator (12) anstößt, und einen äußeren Ring (28) aufweist, der an das umgebende Medium anstößt, wobei die magnetische Permeabilität des inneren Rings (26) höher ist als diejenige des äußeren Rings (28).

7. Drahtlose Leistungsempfangseinheit (5) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Induktionsspule (10) eine Mittelachse (16) aufweist und der Empfangskonzentrator (12) eine Hüllfläche (18) aufweist, wobei die Hüllfläche (18) von der Mittelachse (16) weggerichtet ist, wobei das Empfangsführungsglied (14) an die Hüllfläche (18) des Empfangskonzentrators (12) anstößt.

8. Drahtlose Leistungsempfangseinheit (5) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leistungsempfangseinheit (5) ein Abschirmglied (22) aufweist, das angepasst ist, um das Magnetfeld abzuschirmen, wobei das Abschirmglied (22) ein leitfähiges unmagnetisches Material aufweist.

9. Drahtlose Leistungsempfangseinheit (5) nach Anspruch 8, dadurch gekennzeichnet, dass die Leistungsempfangseinheit (5) ein Abschirmglied (22) angepasst ist, um sich zwischen der Induktionsspule (10) und einer Anordnung (24) zu befinden, die ein ferromagnetisches leitfähiges Material aufweist.

10. Drahtlose Leistungsempfangseinheit (5) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leistungsempfangseinheit (5) angepasst ist, um mit einer Batterieeinheit (21) verbunden zu sein, wobei der Wechselstrom, der in der Induktionsspule (10) induziert wird, angepasst ist, um die Batterieeinheit (21) zu laden.

11. Drahtlose Leistungsempfangseinheit (5) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leistungsempfangseinheit (5) angepasst ist, um an einem Fahrzeug angeordnet zu sein, und in Richtung der Leistungsübertragungseinheit (3) gerichtet zu sein, die an der Erde angeordnet ist.

12. Drahtlose Leistungsübertragungseinheit (3) zum Übertragen von Leistung, wobei die Leistungsübertragungseinheit (3) Folgendes aufweist:

- eine Erzeugungsspule (40), wobei die Erzeugungsspule (40) angepasst ist, um Leistung in der Form eines magnetischen Wechselfeldes zu erzeugen, das einer Leistungsempfangseinheit ausgesetzt ist (5), und
- einen Übertragungskonzentrator (42) zum
Konzentrieren des Magnetfelds in Richtung der Leistungsempfangseinheit (5), wobei der Übertragungskonzentratorkern (42) von einem Medium umgeben ist,

dadurch gekennzeichnet, dass:

die Leistungsübertragungseinheit (3) ein Übertragungsführungselement (44) aufweist, das angeordnet ist, um einen Übergang für das Magnetfeld zwischen dem Medium und dem Übertragungskonzentratorkern (42) bereitzustellen und zumindest teilweise an den Übertragungskonzentratorkern (42) anstoßt, wobei das Übertragungsführungsglied (44) eine magnetische Permeabilität im Bereich zwischen der magnetischen Permeabilität des Übertragungskonzentratorkerns (42) und des Mediums aufweist.

13. Drahtlose Leistungsübertragungseinheit (3) nach Anspruch 12, dadurch gekennzeichnet, dass das Übertragungsführungsglied (44) den Übertragungskonzentratorkern (42) zumindest teilweise umgibt.

14. Drahtlose Leistungsübertragungsvorrichtung (1), die eine drahtlose Leistungsübertragungseinheit (3) nach Anspruch 12 bis 13 und eine drahtlose Leistungsempfangseinheit (5) nach Anspruch 1 bis 11 aufweist.

15. Verwendung einer drahtlosen Leistungsübertragungsvorrichtung (1) nach Anspruch 14 zum Übertragen von Leistung an ein Fahrzeug.

Revendications

1. Unité de réception d’énergie sans fil (5) servant à recevoir de l’énergie, l’unité de réception d’énergie (5) comprenant :

- une bobine d’induction (10), laquelle bobine d’induction (10) est adaptée à être exposée à de l’énergie sous la forme d’un champ magnétique alternatif émanant d’une unité de transfert d’énergie (3) de façon à induire un courant alternatif dans la bobine d’induction (10), et
- un noyau concentrateur de réception (12) servant à concentrer le champ magnétique en direction de la bobine d’induction (10), lequel noyau concentrateur de réception (12) est entouré d’un milieu,

l’unité de réception d’énergie sans fil (5) étant caractérisée en ce qu’elle comprend un élément-guide de réception (14) agencé pour procurer une transition pour le champ magnétique entre le milieu et le noyau concentrateur de réception (12) et venant en butée contre le noyau concentrateur de réception (12), lequel élément-guide de réception (14) possède une perméabilité magnétique compris entre la perméabilité magnétique du noyau concentrateur de réception (12) et celle du milieu.

2. Unité de réception d’énergie sans fil (5) selon la revendication 1, caractérisée en ce que l’élément-guide de réception (14) entoure au moins partiellement le noyau concentrateur de réception (12).

3. Unité de réception d’énergie sans fil (5) selon l’une quelconque des revendications 1 et 2, caractérisée en ce que l’élément-guide de réception (14) comprend une partie intérieure (19) venant en butée contre le noyau concentrateur de réception (12) et une partie extérieure (20) venant en butée contre le milieu entourant.

4. Unité de réception d’énergie sans fil (5) selon la revendication 3, caractérisée en ce que la perméabilité magnétique de l’élément-guide de réception (14) décroît de la partie intérieure (19) à la partie extérieure (20).

5. Unité de réception d’énergie sans fil (5) selon les revendications 3 et 4, caractérisée en ce que la perméabilité magnétique de l’élément-guide de réception (14) décroît de façon continue de la partie intérieure (19) à la partie extérieure (20).

6. Unité de réception d’énergie sans fil (5) selon l’une quelconque des revendications précédentes, caractérisée en ce que l’élément-guide de réception (14) comprend une bague intérieure (26) venant en butée contre le noyau concentrateur de réception (12) et une bague extérieure (28) venant en butée contre le milieu entourant, la perméabilité magnétique de la bague intérieure (26) étant supérieure à celle de la bague extérieure (28).

7. Unité de réception d’énergie sans fil (5) selon l’une quelconque des revendications précédentes, caractérisée en ce que la bobine d’induction (10) comprend un axe central (16) et le noyau concentrateur de réception (12) comprend une surface enveloppe (18), laquelle surface enveloppe (18) est orientée à l’opposé de l’axe central (16), l’élément-guide de réception (14) venant en butée contre la surface enveloppe (18) du noyau concentrateur de réception (12).

8. Unité de réception d’énergie sans fil (5) selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle comprend un élément de blindage (22) adapté à procurer un blindage vis-à-vis du champ magnétique, l’élément de blindage (22) comprenant un matériau conducteur non magnétique.
9. Unité de réception d’énergie sans fil (5) selon la revendication 8, caractérisée en ce que l’élément de blindage (22) est adapté à être placé entre la bobine d’induction (10) et un agencement (24) comprenant un matériau ferromagnétique conducteur.

10. Unité de réception d’énergie sans fil (5) selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle est adaptée à être reliée à une unité batterie (21), le courant alternatif induit dans la bobine d’induction (10) étant adapté à charger l’unité batterie (21).

11. Unité de réception d’énergie sans fil (5) selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle est adaptée à être agencée sur un véhicule et orientée vers l’unité de transfert d’énergie (3) agencée au sol.

12. Unité de transfert d’énergie sans fil (3) servant à transférer de l’énergie, l’unité de transfert d’énergie (3) comprenant :

- une bobine génératrice (40), laquelle bobine génératrice (40) est adaptée à générer de l’énergie sous la forme d’un champ magnétique alternatif qui est exposé à une unité de réception d’énergie (5), et
- un noyau concentrateur de transfert (42) servant à concentrer le champ magnétique en direction de l’unité de réception d’énergie (5), lequel noyau concentrateur de transfert (42) est entouré d’un milieu,

l’unité de transfert d’énergie sans fil (3) étant caractérisée en ce qu’elle comprend un élément-guide de transfert (44) agencé pour procurer une transition pour le champ magnétique entre le milieu et le noyau concentrateur de transfert (42) et venant au moins partiellement en butée contre le noyau concentrateur de transfert (42), lequel élément-guide de transfert (44) possède une perméabilité magnétique comprise entre la perméabilité magnétique du noyau concentrateur de transfert (42) et celle du milieu.

13. Unité de transfert d’énergie sans fil (3) selon la revendication 12, caractérisée en ce que l’élément-guide de transfert (44) entoure au moins partiellement le noyau concentrateur de transfert (42).

14. Dispositif de transfert d’énergie sans fil (1) comprenant une unité de transfert d’énergie sans fil (3) selon les revendications 12 et 13 et une unité de réception d’énergie sans fil (5) selon les revendications 1 à 11.

15. Utilisation d’un dispositif de transfert d’énergie sans fil (1) selon la revendication 14 pour transférer de l’énergie vers un véhicule.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 20090267558 A [0006]
- WO 2008140333 A [0007]
- US 2010081483 A [0007]