Control unit for vehicle steering system

A vehicle steering system (1) includes: an electric motor (51) that applies a torque to a steering shaft (35) with the use of field units that differ in number of turns; and a control unit (67) that controls the torque of the electric motor (51) on the basis of a steering torque that is a torque input to the steering shaft (35) in response to an operation of a steering wheel (12). The control unit (67) controls at least one of motor currents that are supplied to the field units of the electric motor (51).
1. Field of the Invention

[0001] The invention relates to a control unit for a vehicle steering system that includes an electric motor that applies torque to a steering shaft with the use of first field means and second field means that differ in number of turns. 2. Discussion of Background

[0002] A vehicle steering system described in Japanese Patent Application Publication No. 2010-115954 (JP 2010-115954 A) controls the magnitude of torque that is applied from an electric motor to a steering shaft on the basis of a steering torque, a steering speed and a vehicle speed.

[0003] In a vehicle that includes the above-described vehicle steering system, when a required torque is high, the power consumption of the vehicle steering system becomes excessively large.

SUMMARY OF THE INVENTION

[0004] The invention provides a control unit for a vehicle steering system, which is able to reduce the power consumption of the vehicle steering system.

[0005] According to a feature of an example of the invention, in a control unit for a vehicle steering system that includes an electric motor that applies a torque to a steering shaft with the use of first field means and second field means that differ in number of turns, in which the control unit controls the torque of the electric motor on the basis of a steering torque, a steering speed and a vehicle speed, at least one of a current that is supplied from an electric motor to a steering shaft with the use of first field means and second field means.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The foregoing and further objects, features and advantages of the invention will become apparent from the following description of example embodiments with reference to the accompanying drawings, wherein like numerals are used to represent like elements and wherein:

FIG. 1 is a schematic view that shows the overall structure of a vehicle steering system according to an embodiment of the invention; FIG. 2 is a view that shows the configuration of an electric motor in the vehicle steering system according to the embodiment; FIG. 3 is a graph that shows the correlation between a rotational speed of the electric motor and a rotational torque of the electric motor in the vehicle steering system according to the embodiment; FIG. 4 is a flowchart that shows the procedure of a steering assist process executed by a control unit in the vehicle steering system according to the embodiment;

FIG. 5 is a sectional view that shows the sectional structure of part of an electric motor in a vehicle steering system according to an alternative embodiment of the invention; and FIG. 6 is a graph that shows the correlation between a steering torque and a torque generated by a second field unit and the correlation between a steering torque and a torque generated by a first field unit in the vehicle steering system according to the alternative embodiment of the invention.

DETAILED DESCRIPTION OF EMBODIMENTS

[0007] Hereinafter, embodiments of the invention will be described with reference to the accompanying drawings.

[0008] The configuration of a vehicle steering system 1 will be described with reference to FIG. 1. The vehicle steering system 1 includes a main power supply 21, an auxiliary power supply 22, a steering device 30 and a steering assist device 40. The steering device 30 changes the steered angle of steered wheels 11 in response to an operation of a steering wheel 12. The steering assist device 40 assists a driver in performing an operation of the steering wheel 12.

[0009] The steering device 30 includes a column shaft 31, an intermediate shaft 32, and a rack-and-pinion mechanism 34. The column shaft 31 and the intermediate shaft 32 transmit torque, input into the steering wheel 12, to a pinion shaft 33. The rack-and-pinion mechanism 34 transmits the rotation of the pinion shaft 33 to a rack shaft 36. A steering shaft 35 is formed of the column shaft 31, the intermediate shaft 32 and the pinion shaft 33.

[0010] The steering assist device 40 includes a steering assist actuator 50 and a steering assist control unit 60. The steering assist actuator 50 applies a torque \(\tau \) to the column shaft 31. The steering assist control unit 60 controls the steering assist actuator 50.

[0011] The steering assist actuator 50 includes an electric motor 51, a rotor 52 of the electric motor 51, and a speed reduction mechanism 53. The speed reduction mechanism 53 reduces the speed of rotation of the rotor 52 and transmits the rotation with a reduced speed to the column shaft 31.

[0012] The electric motor 51 rotates the rotor 52 on the basis of a first motor current \(I_a \) supplied from a first driving circuit 62 or a second motor current \(I_b \) supplied from a second driving circuit 63. The speed reduction mechanism 53 reduces the speed of rotation of the rotor 52 and transmits the rotation with a reduced speed to the column shaft 31.

[0013] The steering assist control unit 60 includes a torque sensor 61, the first driving circuit 62, the second driving circuit 63, a main power supply relay 64, an auxiliary power supply relay 65, an auxiliary power supply
The column shaft is rotated by the steering torque column shaft via the speed reduction mechanism to which the torque is converted by the rack-and-pinion mechanism into intermediate shaft. The rotation of the pinion shaft field unit that generate magnetic force for rotating the electric motor as the first motor current.

The steering wheel is changed.

The movement of the rack shaft, the orientation of the rack-and-pinion movement of the rack shaft. With the axial linear motion of the rack shaft, the control unit executes a process of providing instructions on the control signal for controlling the first driving circuit on the basis of a signal output from the torque sensor. In addition, the control unit executes the following processes as a steering assist process. That is, the control unit executes a process of outputting one of the first control signal Sa for controlling the first driving circuit and the second control signal Sb for controlling the second driving circuit on the basis of a signal output from the torque sensor. In addition, the control unit executes a process of providing instructions on the connecting state to each of the main power supply relay and the auxiliary power supply relay on the basis of a signal output from the torque sensor.

The vehicle steering system operates as follows. When the steering wheel is rotated by a driver, the steering torque is generated in the column shaft. The torque of the electric motor 51 is applied to the column shaft via the speed reduction mechanism. The column shaft 31 is rotated by the steering torque to which the torque is added. The rotation of the column shaft is transmitted to the pinion shaft via the intermediate shaft. The rotation of the pinion shaft is converted by the rack-and-pinion mechanism into an axial linear motion of the rack shaft. With the axial movement of the rack shaft, the orientation of the steered wheels is changed.

The configuration of the electric motor 51 will be described in detail with reference to FIG. 2. The electric motor 51 is a three-phase induction motor. The electric motor 51 includes a first field unit and a second field unit that generate magnetic force for rotating the rotor.
[0025] The details of the steering assist process executed by the control unit 67 will be described with reference to FIG. 4. The control unit 67 repeatedly executes the steering assist process at predetermined control intervals. That is, after the process reaches the end step, the process of step S11 is kept unexecuted until a predetermined control interval elapses, and the process of step S11 is executed again when the predetermined control interval has elapsed.

[0026] In step S11, the steering torque τ is acquired from the torque sensor 61. In step S12, it is determined whether the steering torque τ is higher than or equal to a predetermined value A. That is, it is determined whether the steering wheel 12 is being operated in one of a state where the vehicle is stopped and a state where the vehicle is travelling at a low speed. When an affirmative determination is made in step S12, the process proceeds to step S21. When a negative determination is made in step S12, the process proceeds to step S31.

[0027] In step S21, the main power supply relay 64 is turned off. That is, supply of electric power to the first driving circuit 62 and the second driving circuit 63 from the main power supply 21 is stopped. In step S22, the auxiliary power supply charging relay 66 is turned off. That is, charging of the auxiliary power supply 22 by the main power supply 21 is stopped.

[0028] In step S23, the auxiliary power supply relay 65 is turned on. That is, supply of electric power by the auxiliary power supply 22 to the first driving circuit 62 and the second driving circuit 63 is started. In step S24, the torque τ_m that is applied to the column shaft 31 is calculated. In this case, the torque τ_m that is proportional to the steering torque τ acquired in step S11 is calculated.

[0029] In step S25, the second motor current I_b is calculated such that the torque τ_m calculated in step S24 is output from the electric motor 51. In step S26, the second control signal S_b is generated such that the second motor current I_b calculated in step S25 is supplied from the second driving circuit 63 to the electric motor 51.

[0030] In step S31, the main power supply relay 64 is turned on. That is, supply of electric power by the main power supply 21 to the first driving circuit 62 and the second driving circuit 63 is started. In step S32, the auxiliary power supply charging relay 66 is turned on. That is, charging of the auxiliary power supply 22 by the main power supply 21 is started.

[0031] In step S33, the auxiliary power supply relay 65 is turned off. That is, supply of electric power by the auxiliary power supply 22 to the first driving circuit 62 and the second driving circuit 63 is stopped. In step S34, the torque τ_m that is applied to the column shaft 31 is calculated. In this case, the torque τ_m that is proportional to the steering torque τ acquired in step S11 is calculated.

[0032] In step S35, the first motor current I_a is calculated such that the torque τ_m calculated in step S34 is output from the electric motor 51. In step S36, the first control signal S_a is generated such that the first motor current I_a calculated in step S35 is supplied from the first driving circuit 62 to the electric motor 51.

[0033] With the vehicle steering system 1 according to the present embodiment, the following advantageous effects are obtained.

[0034] The first field unit 70 is set as a field unit with small number of turns and the second field unit 80 is set as a field unit with large number of turns. The control unit 67 controls at least one of the motor current that is supplied to the field unit with large number of turns and the motor current that is supplied to the field unit with small number of turns, on the basis of the steering torque τ. In a case where a predetermined motor current is supplied, the torque τ_m generated when the field unit with large number of turns is used is higher than the torque τ_m generated when the field unit with small number of turns is used. Therefore, when the second motor current I_b that is supplied to the field unit with large number of turns is controlled on the basis of the steering torque τ, the required torque τ_m is generated with a motor current that is smaller than a motor current that is required to generate the required torque τ_m in the configuration that includes only one type of field unit. That is, it is possible to provide the control unit 67 for the vehicle steering system 1, which is able to reduce the power consumption of the vehicle steering system 1.

[0035] When the steering torque τ is higher than or equal to the predetermined value A, the control unit 67 supplies the second motor current I_b to the field unit with large number of turns and does not supply the first motor current I_a to the field unit with small number of turns. With this configuration, when a high torque τ_m is required, the second motor current I_b is supplied only to the field unit with large number of turns, and supply of the first motor current I_a to the field unit with small number of turns is stopped. Therefore, it is possible to reduce the power consumption of the vehicle steering system 1.

[0036] When the steering torque τ is lower than the predetermined value A, the control unit 67 supplies the first motor current I_a to only the field unit with small number of turns, and does not supply the second motor current I_b to the field unit with large number of turns. When the vehicle is travelling at a normal travelling speed, it is sometimes required to change the steered angle at a speed higher than that when the steering wheel 2 is operated while the vehicle is stopped or when the vehicle is travelling at a low speed. In addition, when the vehicle is travelling at a normal travelling speed, the steering torque τ is lower than that when the steering wheel 2 is operated while the vehicle is stopped or when the vehicle is travelling at a low speed. Therefore, in the above-described configuration, when the steering torque τ is lower than the predetermined value A, that is, when the vehicle is highly likely to be travelling at a normal travelling speed, the field unit with small number of turns is used. Therefore, it is possible to appropriately respond to a request regarding a speed of change in the steered angle.

[0037] The invention is not limited to the above-de-
scribed embodiment, and the invention may be implemented in the following alternative embodiments. In addition, the following alternative embodiments are applied not only to the above-described embodiment, and the alternative embodiments may be implemented in combination.

[0038] In the above-described embodiment, the first U-phase conductive wire 74 to the first W-phase conductive wire 76 and the second U-phase conductive wire 84 to the second W-phase conductive wire 86 are respectively wound around the different teeth. Alternatively, as shown in FIG. 5, conductive wires of the same phase may be wound around a single tooth. In this case, the first U-phase conductive wire 74 and the second U-phase conductive wire 84 are wound around a single U-phase tooth 91. The first V-phase conductive wire 75 and the second V-phase conductive wire 85 are wound around a single V-phase tooth 92. The first W-phase conductive wire 76 and the second W-phase conductive wire 86 are wound around a single W-phase tooth 93.

[0039] In the above-described embodiment, the first field unit 70 and the second field unit 80 is used on the basis of the result of comparison as to whether the steering torque τ is higher than or equal to the predetermined value A. Alternatively, the first field unit 70 and the second field unit 80 may be used as follows. The calculated torque τm is regarded as the total torque. Then, the proportion of the torque generated by the first field unit 70 to the total torque and the proportion of the torque generated by the second field unit 80 to the total torque are determined on the basis of the steering torque τ. That is, the control unit 67 is able to control currents respectively supplied to the field unit with large number of turns and the field unit with small number of turns, on the basis of the steering torque τ.

[0040] FIG. 6 is a graph in which the proportion of the torque, generated by the field unit with small number of turns, to the total torque is indicated by a first torque coefficient TC, and the proportion of the torque, generated by the field unit with large number of turns, to the total torque is indicated by a second torque coefficient TD. As shown in FIG. 6, when the steering torque τ is higher than or equal to a predetermined value C, the second motor current Ib is determined such that as the total torque that is the torque τm required of the electric motor 51 increases, the proportion of the torque generated by the field unit with large number of turns to the total torque increases on the basis of the difference between the steering torque τ and the predetermined value C. In this case, the proportion of the torque generated by the field unit with small number of turns may be set such that the proportion becomes zero when the steering torque τ is higher than or equal to a predetermined value D that is higher than the predetermined value C.

[0041] The torque τm required of the electric motor 51 changes depending on the steering torque τ. On the other hand, in terms of power consumption, it is preferable to increase the proportion of the torque, generated by the field unit with large number of turns, to the torque τm of the electric motor 51 with an increase in the torque τm required of the electric motor 51. Therefore, in the above-described configuration, the proportions of the torques, respectively generated by the field units, to the torque τm of the electric motor 51 are determined on the basis of the steering torque τ. Therefore, it is possible to further enhance the effect of reducing power consumption through the usage of the field unit with large number of turns.

[0042] In the above-described embodiment, using only the result of comparison between the steering torque τ and the predetermined value A, the field unit that is used to drive the electric motor 51 is selected from the first field unit 70 and the second field unit 80 and the power supply that is used to supply electric power is selected from the main power supply 21 and the auxiliary power supply 22. However, different predetermined values may be used for determination of the field unit that is used and for determination of the power supply that is used. For example, a predetermined value A may be used for determination of the field unit that is used and a predetermined value B may be used for determination of the power supply that is used.

[0043] In the above-described embodiment, only the result of comparison between the steering torque τ and the predetermined value A is used to determine whether the steering wheel 12 is being operated while the vehicle is stopped or the vehicle is travelling at a low speed. Alternatively, the determination may be made on the basis of the result of comparison between the travelling speed V of the vehicle and a predetermined value E in addition to the result of comparison between the steering torque τ and the predetermined value A. In this case, when the steering torque τ is higher than or equal to the predetermined value A and the travelling speed V is lower than the predetermined value E, it is determined that the steering wheel 12 is being operated while the vehicle is stopped or the vehicle is travelling at a low speed, and the second field unit 80 is used. Otherwise, the first field unit 70 is used.

[0044] In the above-described embodiment, it is determined on the basis of the steering torque τ which of the first field unit 70 and the second field unit 80 is used. Alternatively, a configuration where when a failure of one of the field units has been detected, the other one of the field units is used may be employed. Examples of a failure of the field unit may include a break of one of coils of the field unit, a short-circuit of one of switching elements of the driving device that drives the field unit, and a stuck-open failure of one of the switching elements.

[0045] In the above-described embodiment, when the steering torque τ is higher than or equal to the predetermined value A, only the auxiliary power supply 22 is used. Alternatively, in this case, the main power supply 21 may be used in combination with the auxiliary power supply 22.
Claims

1. A control unit for a vehicle steering system that includes an electric motor that applies a torque to a steering shaft using first field means and second field means that differ in number of turns, the control unit controlling the torque of the electric motor based on a steering torque that is a torque input into the steering shaft in response to an operation of a steering wheel, characterized in that the control unit controls, based on the steering torque, at least one of a current that is supplied to field means with large number of turns and a current that is supplied to field means with small number of turns, the field means with large number of turns being one of the first field means and the second field means, which has a larger number of turns than the other field means, and the field means with small number of turns being the other one of the first field means and the second field means, which has a smaller number of turns than the one of the field means.

2. The control unit for the vehicle steering system according to claim 1, wherein when the steering torque is higher than or equal to a predetermined value (A), a current is supplied to the field means with large number of turns, and no current is supplied to the field means with small number of turns.

3. The control unit for the vehicle steering system according to claim 2, wherein when the steering torque is lower than the predetermined value (A), a current is supplied to the field means with small number of turns, and no current is supplied to the field means with large number of turns.

4. The control unit for the vehicle steering system according to claim 1, wherein a proportion of a torque that is generated by the field means with large number of turns to an output torque of the electric motor and a proportion of a torque that is generated by the field means with small number of turns to the output torque of the electric motor are changed based on the steering torque.

5. The control unit for the vehicle steering system according to any one of claims 1 to 4, wherein:

the vehicle steering system includes a main power supply and an auxiliary power supply that are individually connected to each of the field means with large number of turns and the field means with small number of turns; and when the steering torque is higher than or equal to a predetermined value (B), a current is supplied from the auxiliary power supply to at least one of the field means with large number of turns and the field means with small number of turns.
Fig. 2
Fig. 3
Fig. 4
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description