European Patent Specification

EP 2 556 806 B1

Date of publication and mention of the grant of the patent:
02.03.2016 Bulletin 2016/09

Application number: 11006590.1

Date of filing: 11.08.2011

Int Cl.: A61F 2/12 (2006.01)

Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Date of publication of application: 13.02.2013 Bulletin 2013/07

Proprietor: Polytech Health&Aesthetics GmbH
64807 Dieburg (DE)

Inventors:
- Bögershausen, Oliver
 64293 Darmstadt (DE)
- O'Leary, Patrick
 64832 Babenhausen (DE)

Representative: Metten, Karl-Heinz
Boehmert & Boehmert
Anwaltspartnerschaft mbB
Patentanwälte Rechtsanwälte
Pettenkoferstrasse 20-22
80336 München (DE)

References cited:
- EP-A2- 0 804 910
- "Diagon\Gel 4Two Series: The evolutionary breast implants", 30 September 2010 (2010-09-30), XP55014675, Dieburg Retrieved from the Internet:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to an implantable medical prosthesis, in particular an implantable internal breast implant.

[0002] Augmentation or reconstruction of the breast through the use of implantable medical prostheses is commonly used in reconstructive and plastic surgery.

[0003] The prostheses used for these procedures have a basic problem associated with the upper pole, namely insufficient rigidity to maintain the upper pole when in a vertical position. Undesirable alterations of the breast shape are often observed which are commonly referred to as prosthesis wrinkling, knuckling or scalloping. Usually these adverse phenomena are observed at the poles of the prosthesis or along the perimeter of the prosthesis shell.

[0004] In order to maintain the shape of the upper pole, attempts have been made to use a gel-type filling with a more rigid consistence, which however, leads to a firmer feeling implant, which often appears unnatural and thus is not desirable. On the other hand, a prosthesis with a soft and thus naturally feeling consistency shows a particular risk of the above mentioned adverse effects.

[0005] EP-A 804910 discloses an external breast prosthesis of two shell shaped bodies made of silicone composition of different thickness and each welded into plastic films, the outer body simulating the breast shape and having a hardness matching the softly resilient composition of the natural breast tissue and the inner body having a softer gel-like consistency which prosthesis is being provided with a permanently tacky adhesive layer which layer comprises first area arranged on the outer prosthesis body and a second area arranged on the inner body thereof.

[0006] The prosthesis in accordance with EP A 804910 is not implanted into the body but is attached to the body of the wearer through the mentioned adhesive layers and thus is not a breast implant.

[0007] EP A 2 286 761 discloses a form stable implant comprising an elastomeric shell having anterior and posterior portions, superior and inferior aspects and a perimeter region where the anterior and posterior portions meet and a plurality of cohesive gel fillers having at least two different degrees of gel cohesiveness. Preferably the gel cohesiveness is greatest at the inferior portion of the implant. According to figure 3 of EP A 2 286 761 the gel cohesiveness may be greatest in the upper aspect of the implant. The more cohesive gel is primarily extending along the posterior portion of the implant.

[0008] US 3 681 787 discloses a breast prosthesis suitable for implanting into the human breast comprising a container filled with silicone rubber gels of varying stiffness with the stiffest, most viscous gel filling the outer portion of the container and less viscous gels forming further layers with the center portion being filled with the softest material. The outer layers as well as the further layers extend from the anterior part to the posterior part of the container, i.e. they are positioned horizontally.

[0009] A commercial product available from Inamed Aesthetics under the product name McGhan Style 510 Dual Gel comprises a posterior part of a soft gel and an anterior part of a more rigid gel where the entirety of the anterior part is comprised of the more rigid gel.

[0010] A series of breast implants under the tradename Diagon/Gel® series is available from Polytech Health & Aesthetics GmbH and which also comprise two different gel fillings. The inferior part is composed of a gel-type filling having higher rigidity whereas the superior part comprises a gel with lower rigidity.

[0011] Diagon/Gel series implants are, for example, described in a publication titled "Diagon\Gel 4Two Series: The evolutionary breast implants", published by Polytech Health & Aesthetics GmbH. These implants show all the features of the preamble of claim 1.

[0012] Whereas the aforementioned developments have provided some improvements, there still exists a need for further improvement of the properties of respective implantable medical prostheses providing the desired combination of soft natural feeling on one hand and necessary structural rigidity to prevent wrinkling and wrinkling while having a natural soft appearance.

[0013] Accordingly, it is an object of the present invention to provide improved implantable medical prostheses, in particular for breast augmentation, reconstruction or correction, showing a reduced tendency or wrinkling while having a natural soft appearance.

[0014] This object is achieved in accordance with the present invention with the implantable medical prosthesis in accordance with claim 1.

[0015] Preferred embodiments of the present invention are set forth in the dependent claims and the detailed description hereafter.

[0016] The invention in its broadest scope relates to an implantable medical prosthesis, in particular a breast implant, comprising an outer shell and at least one first gel-type filling and at least one second gel-type filling, wherein at least one first gel-type filling has a softer consistency than at least one second gel-type filling, wherein

a) said at least one first gel-type filling extends predominantly along the posterior part of the prosthesis, and
b) said at least one second gel-type filling extends predominantly along the superior portion of the anterior surface of the prosthesis without extending along the entirety of such anterior surface of the prosthesis.

[0017] According to the present invention the at least one first gel-type filling and the at least one second gel-type filling have a common contact area by which they are bonded to each other.

[0018] According to a preferred embodiment the point of maximum projection of the prosthesis at the anterior
side is located in the inferior part of the prosthesis in the range of from 10 to 50 % of the entire vertical length of the prosthesis.

According to a further preferred embodiment of the invention, the at least one second gel-type filling extends along the anterior surface of the prosthesis from the superior part thereof downwards along about 50 to 90 % of the vertical length of the prosthesis.

According to a still further embodiment, at least one of the first and second gel-type fillings is bonded to a material forming the outer shell of the prosthesis.

According to another preferred embodiment, the shell volume of the prosthesis is filled by the gel-forming materials to at least 80, preferably to at least 90 and particularly preferably to at least 95 % of its capacity.

According to still another preferred embodiment of the present invention the at least one second gel-type filling having a stiffer consistency than the first gel-type filling extends around at least one edge, even more preferably around the upper and the lower edge of the prosthesis.

It goes without saying that the features of the preferred embodiments described above can be combined in any manner, i.e. the prosthesis can realize one or an arbitrary number of the features described above for the preferred embodiments.

Fig. 1 shows a contour view of an implantable prosthesis in accordance with the present invention.

The prosthesis comprises an anterior part 1, a posterior part 2, an inferior pole 3, and a superior pole 4. It is apparent to the skilled person that the contour shape of the prosthesis can be subject to a broad range of variations and can be adopted to the individual needs of the patient for whom the prosthesis is intended. As becomes apparent from Fig. 1, within the shell of the prosthesis, two different gel-type fillings are present. Gel-type filling 5 has a higher rigidity that gel-type filling 6. Gel-type filling 5 extends predominantly along the superior portion of the anterior part of the prosthesis but does not extend along the entirety of the anterior part. The inferior portion of the anterior part of the prosthesis only contains the gel-type filling material 6 having a lower rigidity than gel-type filling 5. Preferably the gel-type filling 5 of higher rigidity extends along the anterior part for the superior portion thereof downwards along about 30 to about 90, preferably about 45 to about 85 % of the vertical length 7 of the prosthesis. In other words, the ratio of part length 8 to the aggregate sum of part length 8 and part length 9 (which corresponds to the vertical length 7) is preferably about 0.30 to about 0.90.

According to another preferred embodiment of the present invention, the gel-type filling of softer consistency has a rigidity or stiffness similar to the natural breast tissue into which the implant is introduced whereas the more rigid gel-type filling is slightly firmer than the natural breast tissue into which the implant is introduced. This provides an as much as possible natural appearance of the implant.

According to another preferred embodiment the gel-type filling with higher rigidity extends along the anterior part of the prosthesis from the superior portion thereof, in particular from the superior pole towards the inferior portion to the vicinity of the point of maximum projection of the prosthesis which is indicated by reference numeral 10 in Figure 1. This point of maximum projection usually is preferably located at approximately 10 to 50 %, more preferably at approximately 15 to 45 %, of the vertical length of the prosthesis, measured from the inferior pole upwards.

The gel-type filling with higher rigidity may extend over the entire width of the anterior surface or it may be constrained to a certain part thereof, preferably approximately symmetrical around a vertical central axis of the prosthesis.

The lateral width of the section with the more rigid gel-type filling in its extension along the anterior part may be constant or it may vary along such extension. The skilled person will select the optimum design depending on the individual body features of the patient for whom the prosthesis is intended and can thus personalize the prosthesis to a high degree.

Generally, in case of a varying width as outlined above, the width increases with decreasing distance from the anterior part of the prosthesis. However, in principle, any width profile may be chosen depending on the individual patient and thus there are no limitations in this regard.

As for the lateral width, the thickness of the part filled with the gel-type filling of higher rigidity may be chosen in accordance with the individual needs and a constant thickness or a variable thickness, e.g. a tapering profile of thickness may be used. In case of a tapering thickness profile, the thickness usually increases from the superior portion of the anterior part in towards the lower portion. Preferably, the thickness of the more rigid gel-type filling is reduced on the lateral sides of the prosthesis to give the impression of a softer implant.

The gel-type filling of higher rigidity comprises a section bound to the posterior surface of the prosthesis or it may not comprise such portion, i.e. the lower rigidity gel-type filling may cover and be bound to the entire posterior surface of the prosthesis. In other words, the gel-type filling of higher rigidity can extend around the upper edge of the prosthesis. In case there is a part of the higher rigidity gel-type filling being in contact with the shell forming the posterior surface of the prosthesis in accordance with the present invention (i.e. extending around the upper edge), preferably up to 20, more preferably up to 10 and most preferably up to 5 % of the vertical length 7 of said posterior surface shell of the inventive prosthesis are bound to the rigid gel-type filling, preferably starting from the superior pole 4 of the prosthesis, i.e. the point where anterior and posterior surface meet in the upper part of the prosthesis.

The gel-type filling can also extend around the lower edge of the prosthesis (in the sense as described
The term gel-type filling, as used herein, generally refers to any material having a degree of elasticity as commonly known for gels, including but not limited to gels themselves. The skilled person can choose the suitable material form a broad variety of materials commercially available.

The gel-type filling of lower rigidity constitutes the major part of the entire gel filling of the prosthesis in accordance with the present invention, thus providing for a desirable softness in the touch of the inventive prosthesis from the lateral sides.

The outer shell may have a variety of different shapes, e.g. round, conical or anatomical and it may be composed of a variety of different materials altering the surface properties of the shell. Thus, the prosthesis may e.g. have a smooth or a textured surface or any other surface deemed advantageous in the individual case. As the prosthesis is implanted into the human body and interacts with human tissue while in use, it is important to design the material and the surface of the shell in a manner avoiding adverse interactions or reactions between the tissue of the patient and the material of the shell. Furthermore the shell material has to prevent leakage of the gel-type filling materials into the human tissue as this may have adverse effects on the patient. Suitable materials have been described in the literature and are known to the skilled person, so that there is no need to give details here. A variety of respective materials, also having necessary regulatory approvals is available from a number of suppliers.

The shell may be elastic and chemically and mechanically resistant. The shell comprises one or more than one layer of a silicone elastomer. If more than one layer is present, the materials of different layers may be the same or different.

Silicone elastomers usually comprise strongly bonded siloxane chains bound to one another in a three-dimensional matrix. Polysiloxane is the chemical term for macromolecules containing alternating oxygen and silicon atoms in the main chain. The length of the chains in polysiloxanes or silicone elastomers may vary from a small number to hundreds or thousands of units. Chain length influences the properties of the final product and thus can be used to tailor a shell material for an individual purpose.

In order to increase mechanical stability, amorphous silica may be added to the siloxane material.

The shell also may comprise a special barrier layer which safely prevents the permeation of low-molecular weight silicone components (which may be present in the gel-type filling material).

Finally, the outer shell surface may be modified to improve the interaction with the human tissue.

As is well known, the human body reacts on foreign bodies with phagocytosis, i.e. it tries to eliminate or to encapsulate the foreign material. However, for breast implants the encapsulation, which is often combined with a dolorous contracture of the capsule, is highly undesirable. In this regard coating of the silicone based shell with a material reducing or preventing this interaction has proven to be advantageous under certain circumstances. One suitable material, amongst others, for this purpose is e.g. a micro-polyurethane foam.

The polyurethane foam may be e.g. vulcanized on the surface of the materials forming the shell of the prosthesis.

The gel-type filling materials are preferably selected from silicone gels, which are also formed - similar to silicone elastomers - by three-dimensional bonding of polysiloxane chains.

Respective products are known to the skilled man and commercially available, so that there is no need for further details to be given here.

The molecular weight of the polysiloxane (or the chain length) and the degree of bonding or cross-linking of the chains determines the properties of the product and in particular the rigidity of the silicone product. Thus by choosing an appropriate chain length and degree of cross-linking the skilled person can adjust the desired rigidity of the gel-type filling materials over a wide range in accordance with his needs.

Generally rigidity increases with increasing chain length and increasing degree of cross-linking.

According to the present invention the at least one first gel-type filling and the at least one second gel-type filling have a common contact area by which they are bonded to each other. Bonding may be preferably through covalent chemical bonding or weaker coordinate chemical bonding, to give two possible examples.

One of the gel-type filling materials or all gel-type filling materials may be bonded, preferably covalently bonded, to the shell material.

The gel-type filling materials preferably fill at least 80, more preferably at least 90 and moist preferably at least 95 % of the shell volume. Thereby, resistance is provided when the prosthesis is depressed in the anterior to posterior movement.

Implantable medical prostheses in accordance with the present invention are most preferably used as breast implants in breast augmentation, reconstruction or correction. Due to the specific arrangement of gel-type fillings of different rigidity as described before, the prostheses in accordance with the present invention provide a particularly good mimicking of the human breast which is desirable. On one hand, the predominant allocation of material of higher mimicking in the superior portion of the anterior part of the prosthesis provides rigidity to the shell and thus prevents wrinkling of the shell on the anterior surface. By reducing the thickness of the material of high rigidity on the lateral sides in accordance with a preferred embodiment of the invention the implant has a softer touch and provides a desirable softer feeling. On the oth-
er hand, allocating the softer gel-type filling in the inferior part of the prosthesis and in the vicinity of the inferior pole allows the push-down of the breast when in a vertical position, thus inducing a slight appearance of ptosis which provides a more natural overall appearance of the prosthesis.

[0052] Thus, the prostheses in accordance with the present invention provide a combination of advantageous properties not heretofore achieved to the same extent with the known breast implants described in the prior art.

Claims

1. Breast implant comprising an outer shell and at least one first gel-type filling (6) and at least one second gel-type filling (5), wherein at least one first gel-type filling (6) has a softer consistency than at least one second gel-type filling (5), characterized in that

a) said at least one first gel-type filling (6) extends predominantly along the posterior part (2) of the prosthesis and is allocated in the inferior part of the prosthesis in the vicinity of the inferior pole (3), and

b) said at least one second gel-type filling (5) extends predominantly along the superior portion of the anterior surface (1) of the prosthesis without extending along the entirety of such anterior surface (1) of the prosthesis,

wherein at least one of said first (6) and second gel-type filling (5) is bonded to a material forming the outer shell of the prosthesis, wherein said at least one second gel-type filling (5) extends around the upper edge of the prosthesis, wherein the first gel-type filling (6) and the second gel-type filling (5) have a common contact area by which they are bonded to each other, wherein said second gel-type filling (5) comprises a section which is bound to the posterior surface (2) of the prosthesis, and wherein the first gel-type filling (6) constitutes the major part of the entire gel filling of the prosthesis.

2. Breast implant according to claim 1, wherein the point of maximum projection (10) of the prosthesis at the anterior side (1) is located in the inferior part of the prosthesis in the range of from 10 to 50 % of the entire vertical length (7) of the prosthesis.

3. Breast implant in accordance with at least one of the preceding claims wherein the second gel-type filling (5) extends along the anterior surface (1) of the prosthesis from the superior part thereof downwards along about 30 to 90 % of the vertical length (7) of the prosthesis.

4. Breast implant in accordance with at least one of the preceding claims wherein the shell volume of the prosthesis is filled by the gel forming materials to at least 80, preferably to at least 90 and particularly preferably to at least 95% of its volume capacity.

Patentansprüche

1. Brustimplantat, umfassend eine äußere Hülle und mindestens eine erste gelartige Füllung (6) und mindestens eine zweite gelartige Füllung (5), wobei mindestens eine erste gelartigen Füllung (6) eine weichere Konsistenz aufweist als wenigstens eine zweite gelartige Füllung (5), dadurch gekennzeichnet, dass

a) besagte mindestens eine erste gelartige Füllung (6) sich hauptsächlich entlang des hinteren Teils (2) der Prothese erstreckt und im unteren Teil der Prothese in der Nähe des unteren Pols (3) verortet ist und

b) besagte mindestens eine zweite gelartige Füllung (5) sich hauptsächlich entlang des oberen Abschnitts der vorderen Oberfläche (1) der Prothese erstreckt, ohne sich entlang der Gesamtheit dieser vorderen Oberfläche (1) der Prothese zu erstrecken,

wobei mindestens eine der besagten ersten (6) und zweiten (5) gelartigen Füllungen an ein Material gebunden ist, das die äußere Hülle der Prothese ausbildet, wobei sich die mindestens eine zweite gelartige Füllung (5) um den oberen Rand der Prothese herum erstreckt, wobei die erste gelartige Füllung (6) und die zweite gelartige Füllung (5) einen gemeinsamen Kontaktbereich aufweisen, durch den sie aneinander gebunden sind, wobei besagte zweite gelartige Füllung (5) einen Abschnitt umfasst, der an die hintere Oberfläche (2) der Prothese gebunden ist, und wobei die erste gelartige Füllung (6) den Hauptteil der gesamten gelartigen Füllung der Prothese ausmacht.

2. Brustimplantat nach Anspruch 1, wobei sich der Punkt des maximalen Vorsprungs (10) der Prothese an der Vorderseite (1) im unteren Teil der Prothese im Bereich von 10 bis 50 % der gesamten vertikalen Länge (7) der Prothese befindet.

3. Brustimplantat nach wenigstens einem der vorange-
henden Ansprüche, wobei sich die zweite gelartige Füllung (5) entlang der vorderen Oberfläche (1) der Prothese vom oberen Teil derselben nach unten über ca. 30 bis 90 % der vertikalen Länge (7) der Prothese erstreckt.

4. Brustimplantat nach wenigstens einem der vorangehenden Ansprüche, wobei das Hüllevolumen der Prothese durch die gelbildenden Materialien zu wenigstens 80, vorzugsweise zu wenigstens 90 und besonders bevorzugt zu wenigstens 95 % seines Volumenfassungsvermögens gefüllt ist.

Revendications

1. Implant mammaire, comprenant une enveloppe extérieure et au moins un premier remplissage du type gel (6) et au moins un deuxième remplissage du type gel (5), dans lequel le premier remplissage du type gel (6) au moins au nombre de un a une consistance plus molle que le deuxième remplissage du type gel (5) au moins au nombre de un, **caractérisé en ce que**

 a) ledit premier remplissage du type gel (6) au moins au nombre de un s’étend de façon prédominante le long de la partie postérieure (2) de la prothèse et est réparti dans la partie inférieure de la prothèse au voisinage du pôle inférieur (3), et

 b) ledit deuxième remplissage du type gel (5) au moins au nombre de un s’étend de façon prédominante le long de la partie supérieure de la surface antérieure (1) de la prothèse sans s’étendre le long de la totalité d’une telle surface antérieure (1) de la prothèse,

 dans lequel au moins un remplissage parmi le ledit premier remplissage du type gel (6) et ledit deuxième remplissage du type gel (5) est lié à un matériau formant l’enveloppe extérieure de la prothèse, dans lequel ledit deuxième remplissage du type gel (5) au moins au nombre de un s’étend autour du bord supérieur de la prothèse,

 dans lequel ledit premier remplissage du type gel (6) et le deuxième remplissage du type gel (5) ont une zone de contact commune par laquelle ils sont liés l’un à l’autre,

 dans lequel ledit deuxième remplissage du type gel (5) comprend un segment qui est lié à la partie postérieure (2) de la prothèse, et

 dans lequel le premier remplissage du type gel (6) constitue la majeure partie de la totalité du remplissage par gel de la prothèse.

2. Implant mammaire selon la revendication 1, dans lequel le point de saillie maximale (10) de la prothèse au niveau du côté antérieur (1) est situé dans la partie inférieure de la prothèse dans la plage de 10 à 50 % de la longueur verticale (7) de la prothèse.

3. Implant mammaire selon au moins une des revendications précédentes, dans lequel le deuxième remplissage du type gel (5) s’étend le long de la surface antérieure (1) de la prothèse à partir de sa partie supérieure vers le bas le long d’environ 30 à 90 % de la longueur verticale (7) de la prothèse.

4. Implant mammaire selon au moins une des revendications précédentes, dans lequel le volume d’enveloppe de la prothèse est rempli par les matériaux formant le gel jusqu’à au moins 80, de préférence jusqu’à au moins 90 et de façon particulièrement préférée jusqu’à au moins 95 % de sa capacité volumique.
Figure 1

1

2

3

4

5

6

7

8

9
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 804910 A [0005] [0006]
- US 3681787 A [0008]