A TECHNIQUE FOR STABILIZING SOLUTIONS OF TITANIUM DIOXIDE NANO PARTICLES IN ACRYLATE POLYMERS BY MEANS OF SHORT-PULSED UV LASER IRRADIATION

VERFAHREN ZUR STABILISIERUNG VON LÖSUNGEN AUS TITANDIOXIDNANOPARTIKELN IN ACRYLATPOLYMEREN MITTELS KURZ GEPULSTER UV-LASERBESTRAHLUNG

TECHNIQUE POUR STABILISER DES SOLUTIONS DE NANO PARTICULES DE DIOXYDE DE TITANE DANS DES POLYMÈRES D'ACRYLATE AU MOYEN D'IRRADIATION LASER UV À IMPULSIONS COURTES

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Priority: 29.03.2010 IT TO20100240

Date of publication of application: 06.02.2013 Bulletin 2013/06

Proprietor: Fondazione Istituto Italiano Di Tecnologia
16163 Genova (IT)

Inventors:
- CARZINO, Riccardo I-16010 Serra Ricco' (Genova) (IT)
- PIGNATELLI, Francesca I-16143 Genova (IT)
- SCOTTO, Marco I-16124 Genova (IT)
- TORRE, Bruno I-17044 Stella S. Martino (Savona) (IT)
- CAPUTO, Gianvito I-70042 Mola Di Bari (Bari) (IT)
- COZZOLI, Pantaleo, Davide I-73100 Lecc (IT)
- ATHANASSIOU, Athanassa I-73100 Arnesano (Lecc) (IT)
- CINGOLANI, Roberto I-73100 Arnesano (Lecc) (IT)

Representative: Vanzini, Christian et al
Jacobacci & Partners S.p.A.
Corso Emilia 8
10152 Torino (IT)

References cited:
- GIANVITO CAPUTO ET AL: "Determination of surface properties of various substrates using TiO2 nanorod coatings with tunable characteristics", JOURNAL OF MATERIALS SCIENCE, KLUWER ACADEMIC PUBLISHERS, BO, vol. 43, no. 10, 4 March 2008 (2008-03-04), pages 3474-3480, ISSN: 1573-4803

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR) (Cont. next page)

The present invention refers to a method for preparing a colloid solution of titanium dioxide nanoparticles in a solution of acrylic resin in organic solvent.

As known, solutions of acrylate-based polymers and titanium dioxide nanoparticles are used to produce polymeric films based on acrylate doped with titanium dioxide nanoparticles, through spin coating or evaporation techniques. Films of this type can be used for example in the production of optical devices, in opto-electronics (for example in making waveguides), in the production of rigid and thermoresistant transparent layers, in photovoltaics, in chemical sensors and in the field of biology.

Generally, the production of polymeric films doped with nanoparticles suffers from nanoparticle aggregation, said nanoparticles accumulating on the surface of the film due to the low affinity between polymer and nanoparticles (phase separation). Currently, the techniques used to obtain homogeneous films of plastic material doped with titanium dioxide nanoparticles are chemical in nature (use of copolymers) [1], functionalising the surface of the nanoparticles with different organic capping molecules [2], exploiting the photo-polymerisation of the plastic material starting from the constituent monomers with the addition of chemical additives [3], and in general the transparency is ensured to a large extent by the deposition of thin films (0.1 - 1 μm) and with low concentrations of the polymer (50 mg/ml). Although in the literature there are some examples of studies on this, an effective method capable of allowing a homogeneous dispersion of nanoparticles inside a polymer has not yet been developed.

The purpose of the invention is to provide a method for preparing a colloid solution of titanium dioxide nanoparticles in a solution of acrylic resin in organic solvent, in which the degree of dispersion of the nanoparticles can be simply adjusted as a function of the needs of use of the solution.

In view of this purpose, the object of the invention is a method for producing a colloid so-lution of titanium dioxide nanoparticles in a solution of acrylic resin in organic solvent, having the characteristics defined in the following claims.

The method according to the invention makes it possible to stabilize and homogenise a solution containing titanium dioxide nanoparticles and acrylic resin to the point of a total dispersion of the particles in the polymeric matrix; from the aforementioned solution it is possible to obtain thin films, and even thick ones, maintaining the properties of transparency of the polymer in the visible range and increasing its absorption in the ultraviolet range. The material that can thus be obtained has optical and physical properties that can be adjusted as a function of the ratio between the weight concentrations of nanoparticles and polymer.

The achievement of such properties does not require any specific chemical treatment of the polymer or of the nanoparticles, this being a factor that allows the production costs of the films to be significantly reduced.

Further characteristics and advantages of the method according to the invention will become clear from the following detailed description, carried out with reference to the attached drawings, provided purely as a non-limiting example, in which:

- figure 1 represents an AFM topography of the surface of a film of PMMA + TiO₂ 5%wt obtained from a corresponding solution not treated according to the invention;
- figure 2 represents an AFM topography of the surface of a film of PMMA + TiO₂ 5%wt obtained in a similar way to what was done for the film in figure 1, but from a solution treated according to the invention;
- figures 3 and 4 represent friction force measurements (obtained from the measurement of the deflection of the lever of an AFM microscope) of the film of figure 1 and of the film of figure 2, respectively;
- figure 5 represents graphs that illustrate the distributions of adhesion for the films of figures 1 and 2;
- figure 6 represents a comparison of the transmittance between a film of just PMMA (broken line), an untreated film of PMMA + TiO₂ 5%wt (thin line), and a film of PMMA + TiO₂ 5%wt treated according to the invention (thick line). The transmittance in the visible range is shown in the insert;
- figure 7 represents a comparison of the total reflectance between a film of just PMMA (broken line), an untreated film of PMMA + TiO₂ 5%wt (thin line), and a film of PMMA + TiO₂ 5%wt treated according to the invention (thick line). The films are the same ones on which the measurements of figure 6 were carried out;
- figure 8 represents a comparison of the reflectance diffused between a film of just PMMA (broken line), an untreated film of PMMA + TiO₂ 5%wt (thin line), and a film of PMMA + TiO₂ 5%wt treated according to the invention (thick line). The films are the same ones on which the measurements of figures 6 and 7 were carried out;
- figure 9 represents an AFM topography of the surface of a film of PMMA + TiO₂ 20%wt obtained from a corresponding solution not treated according to the invention;
- figure 10 represents an AFM topography of the surface of a film of PMMA+TiO₂ 20%wt obtained in a similar way

EP 2 553 002 B1
The pulse duration of the laser impulses is preferably less than 1 ns, even more preferably less than 100 ps.

[0018] The transmittance in the visible range is shown in the insert.

- figure 14 represents a comparison of the total reflectance between a film of just PMMA (broken line), an untreated film of PMMA + TiO₂ 20%wt (thin line), and a film of PMMA + TiO₂ 20%wt treated according to the invention (thick line). The films are the same ones on which the measurements of figure 13 were carried out.

- figure 15 represents a comparison of the diffused reflectance between a film of just PMMA (broken line), an untreated film of PMMA + TiO₂ 20%wt (thin line), and a film of PMMA + TiO₂ 20%wt treated according to the invention (thick line). The films are the same ones on which the measurements of figure 13 and 14 were carried out.

- figure 16 shows a graph that displays the contact angle values with the water (wettability index) for different films at different concentrations of titanium dioxide nanoparticles for different values of energy density times irradiation time;

- figure 17 shows a graph that identifies two different dispersion conditions of the titanium dioxide nanoparticles in the films obtained, as a function of the concentration of the nanoparticles in the starting solutions and as a function of the energy density times irradiation time of the solutions themselves; and

- figures 18 and 19 represent TEM images of thin slices of nanocomposite film, respectively not treated and treated with the technique according to the invention.

[0010] We will now describe a method for preparing a colloid solution of titanium dioxide nanoparticles in a solution of acrylic resin in organic solvent.

[0011] In such a method, the titanium dioxide nanoparticles are prepared chemically in a per se conventional way, generally in the form of dispersion in a liquid organic dispersant. In such a form, the aforementioned nanoparticles are generally coated with a surfactant, like for example oleic acid. For the purposes of the present invention, by nanoparticles we mean particles having dimensions smaller than 1 μm, and in particular smaller than 100 nm, such as nanobars or nanospheres.

[0012] A solution is also prepared that is made up of an acrylic resin dissolved in a liquid organic solvent with respect to which such a resin is soluble, for example toluene or chloroform. The substance used as solvent for the resin generally coincides with the substance used as dispersant for the titanium dioxide nanoparticles.

[0013] The acrylic resins that can be used in the invention comprise polymers of acrylic or methacrylic acid, polymers of alkyl esters of acrylic acid and of methacrylic acid such as acrylates or methacrylates of methyl, ethyl, butyl or 2-ethylhexyl, both in the form of homopolymers and of copolymers. An essential condition is that the acrylic resin used is transparent to the wavelength of the radiation used for the stabilization treatment according to the invention, which will be described hereafter.

[0014] Thereafter, such nanoparticles and solution are mixed together, so as to obtain a colloid solution of the nanoparticles in the solution of acrylic resin, in which polymer and nanoparticles are mixed in the best possible way, obtaining a substantial homogeneity of dispersion.

[0015] The solution thus obtained is subjected to a stabilization treatment suitable for preventing or at least reducing nanoparticle aggregation, in which the colloid solution is irradiated with pulsed coherent light having a wavelength substantially comprised in the ultraviolet absorption band of the titanium dioxide nanoparticles.

[0016] Preferably, the coherent light used is a laser light having a wavelength equal to or less than 355 nm, a value below which the titanium dioxide of the nanoparticles begins to absorb it. For example, as laser light it is possible to use the third harmonic of a Nd:YAG laser. It is meant for the upper limit of the ultraviolet absorption band of the nanoparticles to depend on confinement effects related to the dimensions of such particles; for example, the limit of 355 nm indicated above refers to particles in the form of bars with a diameter of about 5nm and a length of about 25 (+-5)nm. The lower limit of the ultraviolet wavelength that can be used is on the other hand set by the other materials involved at the moment of the ultraviolet treatment; in particular, such a limit is given by the greater value between the absorption threshold of the solvent used, that of the container of the nanoparticles/solution mixture, and that of the resin used.

[0017] The treatment according to the invention requires a relatively small amount of energy to be able to be carried out. In particular, the inventors have found that by applying radiation with energy density times irradiation time of less than 5000 mJ/cm², it is possible to stabilize solutions containing up to 20% by weight of nanoparticles of TiO₂ (the percentages by weight refer to the total weight of acrylic resin plus titanium dioxide nanoparticles, and thus to the weight of the film that can be obtained from the solution). To give an example, an average of 2.8 mW/cm² power per unit volume is already sufficient to stabilize in 1 hour 3 ml of solution at 5% by weight of TiO₂ contained in a quartz cuvette of 1 cm in length of the optical path.

[0018] The pulse duration of the laser impulses is preferably less than 1 ns, even more preferably less than 100 ps.
As can be understood from the following examples, by varying the dose of radiation with which the nanoparticles/solution mixture is irradiated it is possible to stabilize the nanoparticles so as to counteract their tendency to aggregate; the particles not stabilized by the polymer will tend to accumulate on the surface of the film obtained from the mixture, modifying their wettability as a function of their number. In this way it is possible to adjust the homogeneity of the dispersion of nanoparticles, and consequently the optical and physical properties of the film obtained by the solution.

The dispersion thus obtained is ready to be used in the production of a thin or thick film, for example through conventional techniques such as spin-coating or evaporation, without requiring further treatments to stabilize the dispersion of nanoparticles.

Some experiments have been carried out in which solutions of polymer and nanoparticles were subjected to irradiation with ultraviolet light.

For such experiments, the polymer used was PolyMethylMethacrilate (PMMA), Aldrich (M. W. 120000). PMMA is a plastic material formed from polymers of methyl methacrylate, an ester of methacrylic acid, also known by the trade names Plexiglas®, Perspex®, Lucite®, Vitrolux®, Limacryl® and Resartglass®.

A particular protocol was decided upon to be able to study films containing different amounts of TiO₂ and polymer while keeping their thickness constant. In order to obtain this, it is necessary to keep the concentration of the polymer in the solution constant. Firstly, the concentration was decided, defined as C₁, of just the polymer in the organic solvent to obtain the desired thicknesses (in the spin-coating process the thickness of the films depends on the concentration and on the rotation speed of the support). Then a solution of the polymer that is more concentrated than what was decided (C₂) was prepared.

Having expressed the concentration of nanoparticles in the dispersion in mg/ml, the weight of nanoparticles necessary to have the desired ratio between the two components was calculated as:

\[P_{\text{TiO}_2} = \frac{A \cdot B}{1 - A} \]

where:
- A is the percentage value by weight that it is wished to have of nanoparticles with respect to the total weight of polymer plus nanoparticles themselves;
- B is the weight of the polymer in 1 ml of solution at concentration C₂.

At this point it is sufficient to transform the value in weight of the particles into volume of solution, mix solution and dispersion (polymer and TiO₂) and add the extra solvent to reach the desired concentration of the polymer C₁.

Hereafter two examples relating to a percentage content of 5% and 20%, respectively, by weight of the titanium dioxide nanoparticles are given in detail.

Example 1: PMMA+TiO₂ 5%wt

The titanium dioxide nanoparticles were produced through hydrolysis of titanium isopropoxide (TTIP) in oleic acid (OLEA), according to the method described by Cozzoli PD, et al., "Low-temperature synthesis of soluble and processable organic-capped anatase TiO₂ nanorods" [4], incorporated here for reference.

Consequently, the starting data for the preparation of the solution of polymer and nanoparticles were the following:

Solution of nanoparticles: [TiO₂]=0.08M in toluene
Weight measured in 200 μl of solution P₀= 10 mg

In order to have a final concentration of the polymer of 35mg/ml (= film of 200nm) it started out from a solution [PMMA] = 100 mg/ml in toluene.

Therefore to have for example a solution containing in weight 5% TiO₂ and 95% PMMA:
In volume of solution it means

\[V_{\text{TiO}_2} = 200 \mu l \times \frac{0.26}{10} = 105.2 \mu l \]

Therefore, to have the concentrated polymer 35mg/ml starting from a concentrated solution 100mg/ml the total volume of solvent must be:

\[V = \frac{100}{35} = 2.857 ml \]

Therefore, the final solution will be made up of:

1ml of concentrated PMMA 100mg/ml + 105.2\(\mu l \) of solution of TiO\(_2\) + 1.7518ml of solvent.

In this way, by rotating 200\(\mu l \) of solution at 1000 revs/minute for 1 minute on a square slide of side 2.5cm, it is possible to obtain a film of measured thickness 200±10 nm.

Figure 1 represents an AFM topography of the surface of the film of PMMA + TiO\(_2\) 5%wt obtained by the solution without UV treatment after 5 minutes of agitation with Vortex and 2 minutes of sonication at 59kHz to best mix the two components.

Figure 2 represents an AFM topography of the surface of the film of PMMA + TiO\(_2\) 5%wt obtained after an exposure of a solution to 355 nm of wavelength with pulsed laser (60ps) and energy density times irradiation time equal to 360 mJs/cm\(^2\), agitated for 1 minute with Vortex and deposited in an analogous way to what was done for the film in figure 1.

Figures 3 and 4 represent AFM friction force measurements, respectively, of the film of figure 1 and of the film of figure 2. The torsion of the cantilever with functionalised tip with end part OH induced by the friction forces during scanning allows a local measurement of the friction forces to be obtained.

All four of the aforementioned figures refer to a square scanning area of 1 \(\mu\)m. The measured roughness for the surface of figure 1 (non-irradiated solution) is 0.842nm whereas for the area of figure 2 (irradiated solution) it is 0.323nm, i.e. less than half. From the topography measurements apparently the surfaces seem similar for exposure of the nanoparticles to air. From the friction force figures 3, 4 (there is greater friction with the oleic acid with which the nanoparticles are coated) it can, on the other hand, be seen that the film obtained after irradiation of the solution has an adhesion of 3 orders of magnitude lower, from 41.72 nN for figure 3 to 92.83 pN for figure 4, due just to the presence of the polymer at the interface with air (figure 5).

For transmittance and reflectance measurements thicker films were made. In order to have films of 1.5 \(\mu\)m thickness work was carried out with solutions the final concentration of the polymer of which was 111.11 mg/ml, starting from a concentration 250mg/ml. The solution containing 5% in weight of nanoparticles therefore consists of:

1 ml [PMMA]=250 mg/ml + 263.16 \(\mu\)l of solution of TiO\(_2\) + 986.84 \(\mu\)l of toluene

In particular, figure 6 shows a comparison of the transmittance between a film of just PMMA (broken line), an untreated film of PMMA + TiO\(_2\) 5%wt (thin line), and a film of PMMA + TiO\(_2\) 5%wt obtained after exposure of the solution to 355nm of wavelength with pulsed laser (60ps) and energy density times irradiation time equal to 360mJs/cm\(^2\) (thick line). The transmittance in the visible range is shown in the insert. All of the films of figure 6 have a thickness equal to 1.50 ± 0.05 \(\mu\)m.

Figure 7 shows a comparison of the total reflectance between the film of just PMMA (broken line), the untreated film of PMMA + TiO\(_2\) 5%wt (thin line), and the film of PMMA + TiO\(_2\) 5%wt obtained after exposure of the solution to 355nm of wavelength with pulsed laser (60ps) and energy density times irradiation time equal to 360mJs/cm\(^2\) (thick line). The films are the same ones on which the measurements of figure 6 were carried out.

Figure 8 shows a comparison of the diffused reflectance between the film of just PMMA (broken line), the untreated film of PMMA + TiO\(_2\) 5%wt (thin line), and the film of PMMA + TiO\(_2\) 5%wt obtained after exposure of the
solution to 355nm of wavelength with pulsed laser (60ps) and energy density times irradiation time equal to 360mJs/cm² (thick line). The films are the same ones on which the measurements of figures 6 and 7 were carried out.

As can be seen from figure 6, whereas the film obtained from the irradiation of the solution has the same transparency as the film of just polymer in the visible range, the film obtained without treatment of the solution has a non-negligible absorption. With regard to the total and diffused reflectance, figures 7 and 8, it is clear how the films deposited without UV treatment of the solution suffer from the formation of aggregated structures on the surface of the film itself, whereas the film obtained after having irradiated the solution in the visible range has the same reflectance as the film made up of just the polymer and a substantial reduction, due to the absorption by the titanium dioxide nanoparticles, in the ultraviolet range. This special characteristic opens up the possibility of making and applying polymeric films doped with nanoparticles in the field of optics for anti-reflection materials and/or filters for ultraviolet light.

Example 2: PMMA+TiO₂ 20%wt

The titanium dioxide nanoparticles were produced in the way indicated with reference to example 1.

Consequently, the starting data for the preparation of the solution of polymer and nanoparticles were the following:

Solution of nanoparticles: [TiO₂]=0.08M in toluene
Weight measured in 200μl of solution P₀ = 10 mg

In order to have a final concentration of the polymer of 35mg/ml (corresponding to a film of 200nm) it started out from a solution [PMMA]=100mg/ml in toluene.

Therefore, to have for example a solution containing in weight 20% TiO₂ and 80% PMMA:

\[P_{\text{TiO}_2} = \frac{0.2 \cdot 100}{1 - 0.2} = 25 \text{mg} \]

In volume of solution this means

\[V_{\text{TiO}_2} = 200\mu l \cdot \frac{25}{10} = 0.5 ml \]

Therefore, to have the concentrated polymer 35mg/ml starting from a concentrated solution 100mg/ml the total volume of solvent must be:

\[V = \frac{100}{35} = 2.857 ml \]

Therefore, the final solution will be made up of:
1ml of concentrated PMMA 100mg/ml + 0.5ml of solution of TiO₂ + 1.357ml of solvent.

In this way, by rotating 200μl of solution at 1000 revs/minute for 1 minute on a square slide of side 2.5cm, it is possible to obtain a film of measured thickness 200±10 nm.

In order to better highlight the differences at the topographic level in this case the example was kept, with an energy density times irradiation time of 720mJs/cm², in the region of adjustable dispersion.

Figures 9 to 12 show AFM measurements of films obtained from the same solution.

Figure 9 shows an AFM topography of the surface of the film of PMMA + TiO₂ 20%wt obtained from the solution without UV treatment after 5 minutes of agitation with Vortex and 2 minutes of sonication at 59kHz to best mix the two components.

Figure 10 shows an AFM topography of the surface of the film of PMMA+TiO₂ 20%wt obtained after exposure of the solution to 355nm of wavelength with pulsed laser (60ps) and energy density times irradiation time equal to
of the nanoparticles, factors that would have a negative impact on the production costs, and being able to have
optical properties (refraction index, reflectance, absorption of ultraviolet rays) and physical properties (wettability, glass
transition temperature Tg, hardness) that are adjustable as a function of the ratio between the concentrations in weight
of nanoparticles and polymer.

The method according to the invention therefore makes it possible to stabilize and homogenise a solution
containing titanium dioxide nanoparticles and acrylate-based polymers with (optionally) total dispersion of the particles
in the polymeric matrix, from which it is possible to obtain thin or thick films, keeping the properties of transparency of
the polymer in the visible range and increasing its absorption in the ultraviolet range. The material thus produced has
720 mJ/cm², agitated for 1 minute with Vortex and deposited in an analogous way to what was done for the film in figure 9.

Figures 11 and 12 show an AFM friction force measurement, respectively, of the film of figure 9 and of the film
of figure 10. The torsion of the cantilever with functionalized tip with end part OH induced by the friction forces during
scanning allows a local measurement of the friction forces to be obtained.

In the untreated film of figure 18 it is possible to clearly see the agglomeration and segregation at the surface,
whereas in the treated film of figure 19 it is possible to see a uniform dispersion.

For the transmittance and reflectance measurements, similarly to the previous example films of 1.5µm were
deposited. The solution containing 20% in weight of nanoparticles therefore consists of:

\[1 \text{ ml \[PMMA\]}=250 \text{ mg/ml} + 1.250 \text{ ml of solution of TiO}_2 \]

The graph of figure 16 shows the contact angle values with water (wettability index) for different films at different
concentrations of titanium dioxide nanoparticles for different values of energy density times irradiation time. Two effects
can be clearly seen that are due to the exposure to UV:

- adjustable dispersion, at the decrease in the contact angle values with water with respect to the increase in energy
density times irradiation time;
- total dispersion, a condition that occurs when the contact angle value with water stays constant with respect to the
increase in energy density time irradiation time (plateau areas of the curves).

The graph of figure 17 identifies two regimes of energy density times irradiation time separated by a curve
formed from the experimental data possessed. Below the curve there is a dispersion regime that can be adjusted as
wished of the particles in the films, whereas for values above the curve there is a total dispersion regime. From the graph
it is therefore clear that, for the same concentration of the particles in the solution, it is possible to adjust their dispersion
according to requirements, and at the limit even obtain total dispersion, by simply setting the dose of radiation to administer
to the solution.

In the untreated film of figure 18 it is possible to clearly see the agglomeration and segregation at the surface,
whereas in the treated film of figure 19 it is possible to see a uniform dispersion.

The inserts of figures 18 and 19 show the images of the corresponding dried solutions. The method according to the invention therefore makes it possible to stabilize and homogenise a solution containing titanium dioxide nanoparticles and acrylate-based polymers with (optionally) total dispersion of the particles in the polymeric matrix, from which it is possible to obtain thin or thick films, keeping the properties of transparency of the polymer in the visible range and increasing its absorption in the ultraviolet range. The material thus produced has optical properties (refraction index, reflectance, absorption of ultraviolet rays) and physical properties (wettability, glass transition temperature Tg, hardness) that are adjustable as a function of the ratio between the concentrations in weight of nanoparticles and polymer.

The advantage of the invention described above is the total absence of chemical modifications of the polymer and of the nanoparticles, factors that would have a negative impact on the production costs, and being able to have
EP 2 553 002 B1

thick films whilst keeping the properties of transparency of the polymer intact. Films manufactured in this way can vary their properties such as wettability of the surface, both with the same weight ratio of the constituent materials (varying the UV exposure time, and thus the dose irradiated) and varying the weight ratio itself. It is also possible to vary their refraction index by varying the weight ratio of the components in the total dispersion condition, keeping the characteristic transparency of the polymer.

[0072] Of course, without affecting the principle of the invention, the embodiments and the manufacturing details can be widely varied with respect to what has been described as a non-limiting example, without departing from the scope of the invention as defined by the following claims.

Bibliographical references

[0073]

Claims

1. A method for preparing a colloid solution of titanium dioxide nanoparticles in a solution of acrylic resin in organic solvent, comprising mixing titanium dioxide nanoparticles with a solution of acrylic resin in organic solvent so as to obtain said colloid solution; characterized in that said colloid solution is submitted to a stabilization treatment for preventing or reducing nanoparticle aggregation, said treatment comprising irradiating the colloid solution with a pulsed coherent light having a wavelength substantially comprised in the ultraviolet absorption band of the titanium dioxide nanoparticles.

2. A method according to claim 1, wherein said nanoparticles are provided in dispersed form in an organic solvent.

3. A method according to claim 1 or 2, wherein said coherent light is a laser light.

4. A method according to any of the preceding claims, wherein said wavelength is equal to or less than 355 nm.

5. A method according to any of the preceding claims, wherein said coherent light is irradiated with pulses having a pulse duration less than 1 ns.

6. A method according to claim 5, wherein said coherent light is irradiated with pulses having a pulse duration less than 100 ps.

7. A method according to any of the preceding claims, wherein said acrylic resin is chosen from the group consisting of homopolymers or copolymers of acrylic and/or methacrylic acid, and homopolymers or copolymers of alkyl esters of the acrylic and/or methacrylic acid, said acrylic resin being chosen in such a way as to be transparent to the wavelength of the irradiated coherent light.

8. A method according to any of the preceding claims, wherein said coherent light is irradiated onto the colloid solution in such a way that the energy density times irradiation time absorbed by the colloid solution is less than 5000 mJ/cm².
9. A method for producing an acrylic resin film doped with titanium dioxide nanoparticles, comprising the preparation of a colloid solution of titanium dioxide nanoparticles in a solution of acrylic resin in organic solvent, characterized in that the said preparation comprises a method according to any of the preceding claims.

10. A method according to claim 9, wherein the weight concentration of titanium dioxide in the acrylic resin of the film is less than 25%, in particular equal to or less than 20%.

Patentansprüche

2. Verfahren nach Anspruch 1, wobei die Nanoteilchen in dispergierter Form in einem organischen Lösungsmittel bereitgestellt werden.

3. Verfahren nach Anspruch 1 oder 2, wobei das kohärente Licht ein Laserlicht ist.

4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Wellenlänge gleich zu oder weniger als 355 nm ist.

5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das kohärente Licht mit Pulsen mit einer Pulsdauer von weniger als 1 ns eingestrahlt wird.

6. Verfahren nach Anspruch 5, wobei das kohärente Licht mit Pulsen mit einer Pulsdauer von weniger als 100 ps eingestrahlt wird.

7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das akrylische Harz ausgewählt ist, aus der Gruppe, die aus Homopolymeren oder Copolymeren von Akryl- und/oder Methakryl-Säure, und Homopolymeren oder Copolymeren von Alkylestern der Akryl- und/oder Methakryl-Säure besteht, wobei das akrylische Harz so ausgewählt ist, dass es transparent für die Wellenlänge des eingestrahlten kohärenten Lichts ist.

8. Verfahren nach einem der vorhergehenden Ansprüche, wobei das kohärente Licht in so einer Art und Weise auf die Kolloidlösung eingestrahlt wird, dass die Energiedichte mal Bestrahlungszeit, die durch die Kolloidlösung absorbiert wird, weniger als 5000 mJ/cm² ist.

10. Verfahren nach Anspruch 9, wobei die Gewichtskonzentration von Titandioxid in dem akrylischen Harz des Films weniger als 25% ist, insbesondere gleich zu oder weniger als 20%.

Revendications

1. Procédé de préparation d’une solution colloïdale de nanoparticules de dioxyde de titane dans une solution de résine polyacrylique dans un solvant organique, lequel procédé comporte :

 - le fait de mélanger des nanoparticules de dioxyde de titane avec une solution de résine polyacrylique dans un solvant organique, de manière à obtenir ladite solution colloïdale ;
ledit procédé étant caractérisé en ce qu'on fait subir à ladite solution colloïdale un traitement de stabilisation, conçu pour empêcher ou réduire l’agrégation des nanoparticules, lequel traitement comporte :

- le fait d’irradier la solution colloïdale avec une lumière cohérente émise par impulsions, dont la longueur d’onde se situe pratiquement dans la bande d’absorption dans l’ultraviolet des nanoparticules de dioxyde de titane.

2. Procédé conforme à la revendication 1, dans lequel on prend lesdites nanoparticules en l’état de dispersion dans un solvant organique.

3. Procédé conforme à la revendication 1 ou 2, dans lequel ladite lumière cohérente est la lumière d’un laser.

4. Procédé conforme à l’une des revendications précédentes, dans lequel ladite longueur d’onde est inférieure ou égale à 355 nm.

5. Procédé conforme à l’une des revendications précédentes, dans lequel ladite lumière cohérente est émise par impulsions dont la durée est inférieure à 1 nanoseconde.

6. Procédé conforme à la revendication 5, dans lequel ladite lumière cohérente est émise par impulsions dont la durée est inférieure à 100 picosecondes.

7. Procédé conforme à l’une des revendications précédentes, pour lequel ladite résine polyacrylique est choisie dans l’ensemble formé par les homopolymères ou copolymères de l’acide acrylique et/ou de l’acide méthacrylique et les homopolymères ou copolymères des esters alkyliques d’acide acrylique et/ou d’acide méthacrylique, étant entendu que ladite résine polyacrylique est choisie de telle sorte qu’elle soit transparente à une lumière dont la longueur d’onde est celle de la lumière cohérente utilisée pour l’irradiation.

8. Procédé conforme à l’une des revendications précédentes, dans lequel ladite lumière cohérente est envoyée sur la solution colloïdale, pour l’irradier, de telle sorte que le produit de la durée d’irradiation par la densité d’énergie absorbée par la solution colloïdale soit inférieur à 5000 mJ.s/cm².

9. Procédé de production d’un film de résine polyacrylique dopé avec des nanoparticules de dioxyde de titane, qui comporte le fait de préparer une solution colloïdale de nanoparticules de dioxyde de titane dans une solution de résine polyacrylique dans un solvant organique, caractérisé en ce que cette étape de préparation comporte un procédé conforme à l’une des revendications précédentes.

10. Procédé conforme à la revendication 9, dans lequel la concentration, en poids, de dioxyde de titane dans la résine polyacrylique du film est inférieure à 25 %, et en particulier, inférieure ou égale à 20 %.
Distributions of adhesion

Mean = 41.72 Nn
Std = 12.37 nN

Mean = 92.83 pN
Std = 9.98 pN

Comparison of the two distributions

FIG. 5

PMMA+TiO₂ 5%wt Film transmittance

FIG. 6
FIG. 7

FIG. 8
FIG. 13

FIG. 14
FIG. 15

FIG. 16
$A = aC^b$

$a = 6.11 \pm 0.5$

$b = 2.11 \pm 0.2$

FIG. 17

FIG. 18

FIG. 19
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description