EUROPEAN PATENT SPECIFICATION

ROCK DRILLING MACHINE AND USE THEREOF FOR HINDERING OCCURRENCE AND SPREADING OF CAVITATION BUBBLES

STEINBOHRMASCHINE UND IHRE VERWENDUNG ZUR VERHINDERUNG DES AUFTRETENS UND DER VERBREITUNG VON HOHOLRAMBLASEN

PERFORATEUR MÉCANIQUE ET UTILISATION ASSOCIÉE POUR EMPÊCHER LA SURVENUE ET LA DIFFUSION DE BULLES DE CAVITATION

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Priority: 01.04.2010 SE 1050317

Date of publication of application: 06.02.2013 Bulletin 2013/06

Proprietor: Atlas Copco Rock Drills AB 701 91 Örebro (SE)

Inventor: ÖSTLING, Thomas S-633 58 Eskilstuna (SE)

Representative: Valea AB Box 1098 405 23 Göteborg (SE)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

TECHNICAL FIELD

[0001] The present invention concerns a rock drilling machine and a method to hinder the occurrence and spreading of cavitation bubbles in a rock drilling machine.

BACKGROUND OF THE INVENTION

[0002] Cavitation is the occurrence of cavities (voids) in liquids in the form of bubbles where the liquid has transformed into a gas when the static pressure in the liquid has decreased. Cavitation is a mixture of gas formation, the release of trapped air in the liquid and the expansion of air bubbles contained in the liquid.

[0003] In cases where the cavitation bubbles implode when the static pressure increases, a very thin jet stream with large force can be formed from the bubble which can damage solid surfaces in the vicinity. A blister forms in a low pressure zone and adheres to a solid surface and implodes when the surrounding static pressure increases. The effect is the same as thousands of sharp nails hammering the surface with a large force whereby the material’s ultimate tensile strength can be exceeded, which eventually gives rise to a visible loss of material, often leaving thousands of small craters in the material. This is a known phenomenon in hydraulic rock drilling machines.

[0004] Cavitation occurs for example in the area around the damper piston, i.e. the component that forces the adapter/drilling steel/bore crown against the rock so that joints can be tightened between impacts, when the damper piston moves forwards and thereby quickly increases the volume between the damper piston and the damper chamber or the machine body. This problem is usually combated using a one way valve that fills the volume with oil in order to decrease the occurrence of cavitation bubbles (see US 4,993,504). When the damper piston moves forwards, a substantial pressure decrease occurs which leads to cavitation if the oil cannot be replaced at the same rate as the volume increases. Cavitation bubbles therefore occur since the hydraulic pressure is low and the pressure decrease propagates through all hydraulically connected spaces. Oil starts to flow to the area with the lowest pressure from all possible directions. Cavitation bubbles can thereby spread to and/or also occur in places other than in the original space between the damper piston and the damper chamber (machine body). The low pressure causes the oil from surrounding spaces to flow to the low pressure area to re-establish mean pressure in the damper device. For this reason many drilling machines often have a damper accumulator so that a large volume of oil is readily available to even out the hydraulic pressure, but this is not sufficient to solve the cavitation problem. When the cavitation bubbles finally collapse there is an obvious risk that some of them will be located in the vicinity of sensitive components and will for example damage seals.

[0005] WO 2008/095073 discloses, in a valve-less percussive drill of the hydraulic tyre and incorporating a hammer assembly, that an “intermediate” shoulder between the head portion and cushion portion of a reciprocating piston engages the end face of a distributor or liner, rather than an interior bearing structure for the piston. This end face can be made harder than the interior bearing structure, which may include a surface made of a different material than the piston. Collectively, the result is a percussive drill with the hammer assembly incorporating the piston substantially less susceptible to failure due to galling as the result of contamination in the working fluid.

[0006] EP 0,648,915 describes a rock drilling device for drilling with a drill string comprising a set of tubes and a set of rods arranged centrally in the set of tubes. The rock drilling device comprises means for sensing a liquid pressure in a recoil damper and actuating means for stopping the supply of pressure liquid to a hammer device of the rock drilling device when the pressure in the recoil damper falls below a predetermined value in order to prevent that the drilling tool and/or the machine housing is damaged at a too low damper pressure.

SUMMARY OF THE INVENTION

[0007] An aim of the present invention is to provide a rock drilling machine that hinders the spreading of already created cavitation bubbles, and filters the pressure decrease so that new cavitation bubbles do not occur in other volumes.

[0008] This aim is achieved by a rock drilling machine that comprises a piston that is arranged to move back and forth in a pressure chamber when the rock drilling machine is in use, a cavitation-sensitive component and an oil channel that is arranged to extend between the pressure chamber and said cavitation-sensitive component. The oil channel comprises a series of restrictions and oil volumes, i.e. spaces where oil can collect, in order to hinder the movement of cavitation bubbles through said oil channel.

[0009] The movement of oil from the spaces hydraulically connected to the pressure chamber is hindered when a pressure decrease occurs in the pressure chamber. The spread and the occurrence of cavitation bubbles is therefore limited to the pressure chamber itself, whose material is resistant to cavitation damage. Such a solution requires no components with moveable parts and it does not for example require the use of a relatively expensive one way valve, which additionally takes up valuable space in the rock drilling machine.

[0010] According to an embodiment of the invention said series of restrictions and oil volumes at least includes two restrictions and one oil volume, or at least three restrictions and two oil volumes, etc. Alternatively, said series of restrictions and oil volumes includes one restriction and two oil volumes, two restrictions and three oil volumes etc.
Said series of restrictions can however include as many restrictions and oil volumes as desired so that the oil channel between the pressure chamber and the cavitation-sensitive component is as long as possible. According to an embodiment of the invention said series of restrictions and oil volumes comprises alternating restrictions and oil volumes so that the pressure decrease that is formed in the pressure chamber is filtered and does not propagate fully to the cavitation-sensitive component, and the flow of oil in the opposite direction is suppressed. The combination of the alternating restrictions and oil volumes in series provides a filter function and a smoother pressure profile adjacent to cavitation-sensitive components in the rock drilling machine.

According to another embodiment of the invention said restrictions are arranged to decrease the cross sectional area of said oil channel by at least 50%, at least 60%, at least 70%, at least 80% or at least 90% or more. It should be noted that the expression "restriction" in this document is intended to include even a gap between adjacent components of the rock drilling machine through which gas oil can for example be sucked into the pressure chamber when a low pressure occurs in the pressure chamber.

According to a further embodiment of the invention at least one restriction is arranged exactly adjacent to the pressure chamber, i.e. where the oil channel meets the pressure chamber.

According to an embodiment of the invention said cavitation-sensitive component of the rock drilling machine is a seal or a bronze guide.

According to another embodiment of the invention said piston is a damper piston, or a piston in the percussion- or breaker part of the rock drilling machine.

According to a further embodiment of the invention the rock drilling machine comprises a plurality of cavitation-sensitive components and/or a plurality of oil channels that are arranged to extend between one or more pressure chambers to one or more cavitation-sensitive components. According to an embodiment of the invention at least one, a plurality, or all of the pressure chambers of the rock drilling machine are substantially isolated from the spaces hydraulically connected to the pressure chamber. Cavitation-sensitive components are consequently isolated from cavitation and are thereby protected from cavitation damage.

According to an embodiment of the invention the total length of said oil channel (measured from the pressure chamber to the cavitation-sensitive component along the oil channel from one end of the oil channel to the other end of the oil channel) is longer than the shortest distance between the pressure chamber and the cavitation-sensitive component (measured from one end of the oil channel to the other end of the oil channel), at least 50% longer, at least 60% longer, at least 70% longer or even longer.

The present invention also concerns a method to hinder the occurrence and spreading of cavitation bubbles of a rock drilling machine. The method comprises the step of arranging an oil channel that is arranged to extend between a piston pressure chamber and a cavitation-sensitive component of the rock drilling machine to comprise a series of restrictions and oil volumes to hinder the movement of cavitation bubbles through said oil channel.

According to an embodiment of the invention said series of restrictions and oil volumes comprises at least two restrictions and one oil volume or at least three restrictions and two oil volumes.

According to another embodiment of the invention said series of restrictions and oil volumes comprises alternating restrictions and oil volumes, or consists of alternating restrictions and oil volumes.

According to a further embodiment of the invention said restrictions are arranged to decrease said oil channel's cross sectional area by at least 50%, at least 60%, at least 70%, at least 80% or at least 90% or more.

According to an embodiment of the invention at least one restriction is arranged exactly adjacent to the pressure chamber.

According to another embodiment of the invention said cavitation-sensitive component of the rock drilling machine is a seal or a bronze guide.

According to a further embodiment of the invention said piston is a damper piston or a piston in the percussion or breaker part of the rock drilling machine.

In the following, the present invention will be described in more detail with reference to the accompanying schematic drawing, in which:

Figure 1 shows part of a rock drilling machine according to an embodiment of the present invention.

It should be noted that the drawing has not necessarily been drawn to scale and that the dimensions of certain elements may have been exaggerated for the sake of clarity.

The present invention also concerns a method to hinder the occurrence and spreading of cavitation bubbles of a rock drilling machine. The method comprises the step of arranging an oil channel that is arranged to extend between a piston pressure chamber and a cavitation-sensitive component of the rock drilling machine to comprise a series of restrictions and oil volumes to hinder the movement of cavitation bubbles through said oil channel.
between the front part of the pressure chamber 12a and the oil volume 20i.

[0029] As can be seen in figure 1 there is a plurality of interconnected oil channels through which oil can flow from oil volumes 20 in the rock drilling machine between the seal 14 and the pressure chamber 12a, 12b. These oil channels comprise a series of alternating restrictions 18 and oil volumes 20 which hinder the spreading of cavitation bubbles between the seal 14 and the pressure chamber 12a, 12b when a low pressure occurs in the pressure chamber. The spreading and the occurrence of cavitation bubbles is therefore limited to the pressure chamber 12a, 12b itself, whose material is resistant to cavitation damage. In the illustrated embodiment the pressure chamber 12a, 12b is substantially isolated from all of the spaces 20 hydraulically connected to the pressure chamber. Cavitation-sensitive components, such as the seal 14, are consequently isolated from cavitation and are thereby protected from cavitation damage.

[0030] It is favourable if the oil channel that includes a series of restrictions 18, 18i and oil volumes 20, 20i has a long extension, i.e. that its total length (measured from the pressure chamber 12 to the seal 14 along the oil channel) is longer than the shortest distance between the pressure chamber 12 and the seal 14 (measured from one end of the oil channel to the other end of the oil channel), at least 50% longer, at least 60% longer, at least 70% longer or even longer. A long extension can be achieved for example by the placement of oil volumes 20, 20i and restrictions 18, 18i. A long oil channel gives a long signal time for the pressure decrease and the cavitation bubbles/pressure decrease is/are forced to pass through a larger amount (volume) of oil between the pressure chamber 12 and the seal 14.

[0031] According to an embodiment of the invention a restriction 18, i.e. a dedicated constriction or obstruction, is arranged to decrease an oil channel's cross sectional area by at least 50%, at least 60%, at least 70%, at least 80% or at least 90% or more. It should be noted that the expression "restriction" is intended to also include a gap 18m between adjacent components of the rock drilling machine.

[0032] The illustrated embodiment shows a damper piston 16. The present invention can however be used on another piston of the rock drilling machine, for example a piston in the percussion or breaker part of the rock drilling machine such as a percussion piston or a breaker piston.

[0033] The present invention also concerns a method to hinder the occurrence and spreading of cavitation bubbles of a rock drilling machine. The method comprises the step of arranging an oil channel that is arranged to extend between a piston pressure chamber and a cavitation-sensitive component of the rock drilling machine to comprise a series of restrictions that decrease an oil channel's cross sectional area by at least 50%, at least 60%, at least 70%, at least 80% or at least 90% or more, and oil volumes to hinder the movement of cavitation bubbles through said oil channel. According to an embodiment of the invention said oil channel is arranged to comprise a series of alternating restrictions and oil volumes.

Claims

1. Rock drilling machine (10) comprising a piston that is arranged to move back and forth in a pressure chamber (12a, 12b) when the rock drilling machine (10) is in use, a cavitation-sensitive component (14), and an oil channel that is arranged to extend between the pressure chamber (12a, 12b) and said cavitation-sensitive component (14), characterized in that said oil channel comprises a series of restrictions (18) and oil volumes (20), to hinder the spreading of cavitation bubbles through said oil channel, wherein movement of oil from said oil volumes (20), which are hydraulically connected to said pressure chamber (12a, 12b), is hindered when a pressure decrease occurs in said pressure chamber (12a, 12b).

2. Rock drilling machine (10) according to claim 1, characterized in that said series of restrictions (18) and oil volumes (20) includes at least two restrictions (18) and one oil volume (20), or at least three restrictions (18) and two oil volumes (20).

3. Rock drilling machine (10) according to claim 1 or 2, characterized in that said series of restrictions (18) and oil volumes (20) comprises alternating restrictions (18) and oil volumes (20).

4. Rock drilling machine (10) according to any of the preceding claims, characterized in that said restrictions (18) are arranged to decrease said oil channel's cross sectional area by at least 50%.

5. Rock drilling machine (10) according to any of the preceding claims, characterized in that said at least one restriction (18) is arranged where the oil channel meets the pressure chamber (12a).

6. Rock drilling machine (10) according to any of the preceding claims, characterized in that said cavitation-sensitive component of the rock drilling machine (10) is a seal (14) or a guide, such as a bronze guide.

7. Rock drilling machine (10) according to any of the preceding claims, characterized in that said piston is a damper piston or a piston in the percussion or breaker part of the rock drilling machine (10).

8. Rock drilling machine (10) according to any of the preceding claims, characterized in that the total length of said oil channel measured from the pres-
sure chamber (12a, 12b) to the cavitation-sensitive component (14) along the oil channel is longer than the shortest distance between the pressure chamber (12a, 12b) and the cavitation-sensitive component (14) measured from one end of the oil channel to the other end of the oil channel, at least 50% longer, at least 60% longer, at least 70% longer or even longer.

9. Use of a rock drilling machine (10) according to any of claims 1-8 to hinder the occurrence and spreading of cavitation bubbles of a rock drilling machine (10).

Patentansprüche

1. Gesteinsbohrmaschine (10) umfassend einen Kolben, der eingerichtet ist, sich in einer Druckkammer (12a, 12b) zurück und vor zu bewegen, wenn die Gesteinsbohrmaschine (10) in Verwendung ist, eine kavitationssensitive Komponente (14), und einen Ölkanal, der eingerichtet ist, sich zwischen der Druckkammer (12a, 12b) und der kavitationssensitiven Komponente (14) zu erstrecken, dadurch gekennzeichnet, dass der Ölkanal eine Reihe von Begrenzungen (18) umfasst und Ölvolumen (20), um die Ausbreitung von Kavitationsblasen durch den Ölkanal zu hindern, wobei Bewegung von Öl aus diesen Ölvolumen (20), die hydraulisch mit der Druckkammer (12a, 12b) verbunden sind, gehindert wird, wenn ein Druckabfall in der Druckkammer (12a, 12b) auftritt.

2. Gesteinsbohrmaschine (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Reihe von Begrenzungen (18) und Ölvolumen (20) mindestens zwei Begrenzungen (18) und ein Ölvolumen (20) oder mindestens drei Begrenzungen (18) und zwei Ölvolumen (20) umfasst.

3. Gesteinsbohrmaschine (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Reihe von Begrenzungen (18) und Ölvolumen (20) alternierende Begrenzungen (18) und Ölvolumen (20) umfasst.

4. Gesteinsbohrmaschine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Begrenzungen (18) eingerichtet sind, die Querschnittsfläche des Ölkanals um mindestens 50% zu reduzieren.

5. Gesteinsbohrmaschine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine Begrenzung (18) dort angeordnet ist, wo der Ölkanal auf die Druckkammer (12a) trifft.

6. Gesteinsbohrmaschine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die kavitationssensitive Komponente der Gesteinsbohrmaschine (10) eine Dichtung (14) oder eine Führung, wie zum Beispiel eine Bronzelführung, ist.

7. Gesteinsbohrmaschine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kolben ein Dämpferkolben oder ein Kolben im Schlagteil oder Hammerteil der Gesteinsbohrmaschine (10) ist.

8. Gesteinsbohrmaschine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gesamte Länge des Ölkanals gemessen von der Druckkammer (12a, 12b) zu der kavitationsensitiven Komponente (14) entlang des Ölkanals länger ist, als die kürzeste Distanz zwischen der Druckkammer (12a, 12b) und der kavitationssensitiven Komponente (14) gemessen von einem Ende des Ölkanals zu dem anderen Ende des Ölkanals, mindestens 50% länger, mindestens 60% länger, mindestens 70% länger oder noch länger.

Revendications

1. Perforateur mécanique (10) comprenant un piston qui est agencé pour se déplacer dans les deux sens dans une chambre de pression (12a, 12b) quand le perforateur mécanique (10) est en fonctionnement, un composant sensible à la cavitation (14), et un canal d’huile qui est agencé pour s’étendre entre la chambre de pression (12a, 12b) et un composant sensible à la cavitation (14), caractérisé en ce que le canal d’huile comprend une série de restrictions (18) et des volumes d’huile (20), pour bloquer la diffusion de bulles de cavitation à travers le canal d’huile, dans lequel un mouvement d’huile à partir desdits volumes d’huile (20), qui sont connectés de manière hydraulique à ladite chambre de pression (12a, 12b), est bloqué quand une diminution de pression se produit dans ladite chambre de pression (12a, 12b).

2. Perforateur mécanique (10) selon la revendication 1, caractérisé en ce que ladite série de restrictions (18) et des volumes d’huile (20) inclut au moins deux restrictions (18) et un volume d’huile (20), ou au moins trois restrictions (18) et deux volumes d’huile (20).

3. Perforateur mécanique (10) selon la revendication...
1 ou 2, *caractérisé en ce que* ladite série de restrictions (18) et de volumes d'huile (20) comprend des restrictions (18) et des volumes d'huile (20) en alternance.

4. **Perforateur mécanique (10) selon l’une quelconque des revendications précédentes, caractérisé en ce que** lesdites restrictions (18) sont agencées pour diminuer la surface en coupe transversale dudit canal d'huile d’au moins 50 %.

5. **Perforateur mécanique (10) selon l’une quelconque des revendications précédentes, caractérisé en ce que** ladite au moins une restriction (18) est agencée là où le canal d'huile rencontre la chambre de pression (12a).

6. **Perforateur mécanique (10) selon l’une quelconque des revendications précédentes, caractérisé en ce que** ledit composant sensible à la cavitation du perforateur mécanique (10) est un joint (14) ou un guide, comme un guide de bronze.

7. **Perforateur mécanique (10) selon l’une quelconque des revendications précédentes, caractérisé en ce que** ledit piston est un piston d’amortisseur ou un piston dans la partie percussion ou de forage du perforateur mécanique (10).

8. **Perforateur mécanique (10) selon l’une quelconque des revendications précédentes, caractérisé en ce que** la longueur totale dudit canal d’huile mesurée depuis la chambre de pression (12a, 12b) jusqu’au composant sensible à la cavitation (14) le long du canal d’huile est plus longue que la distance la plus courte entre la chambre de pression (12a, 12b) et le composant sensible à la cavitation (14) mesurée à partir d’une extrémité du canal d’huile jusqu’à l’autre extrémité du canal d’huile, au moins 50 % plus longue, au moins 60 % plus longue, au moins 70 % plus longue ou même encore plus.

9. **Utilisation d’un perforateur mécanique (10) selon l’une quelconque des revendications 1 - 8 pour bloquer la survenance et la diffusion de bulles de cavitaton d’un perforateur mécanique (10).**
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4993504 A [0004]
- WO 2008091073 A [0005]
- EP 0648915 A [0006]