Dual end glycerol (meth)acrylate-modified silicone and making method

A dual end glycerol (meth)acrylate-modified silicone having formula (I): \(R^1\text{Me}_2\text{SiO}(\text{R}^2\text{SiO})_a\text{SiMe}_2\text{R}^1 \) is novel. \(R^1 \) is a mixture of 70-95 mol% of a group having formula (i) and 30-5 mol% of a group having formula (ii) wherein \(R^3 \) is H or methyl, \(R^2 \) is a monovalent hydrocarbon group which may be halogenated, Me stands for methyl, and \(a \) is an integer of 10-300.

\[
\begin{align*}
\text{OH} & \\
\text{C}_3\text{H}_6\text{OCH}_2\text{CHCH}_2\text{O} & \text{C} & \text{C} & \text{CR}^3 & \text{=CH}_2 \\
\end{align*}
\]

(i)

\[
\begin{align*}
\text{CH}_2\text{OH} & \\
\text{C}_3\text{H}_6\text{OCH}_2\text{CH} & \text{O} & \text{C} & \text{C} & \text{CR}^3 & \text{=CH}_2 \\
\end{align*}
\]

(ii)
This invention relates to novel dual end glycerol (meth)acrylate-modified silicones which may be copolymerized with other hydrophilic monomers to form copolymers suitable as ophthalmic lenses including contact lenses (e.g., hydrophilic contact lenses and silicone hydrogels), intraocular implants, and artificial cornea, and a method for preparing the same.

Polysiloxanes terminated with a polymerizable group (e.g., methacrylate, acrylate or vinylcarbonate group) are known from Patent Document 1 (JP-A H08-501504), for example. Patent Document 1 also describes that the polysiloxanes are copolymerized with hydrophilic monomers to form hydrophilic silicone contact lenses or silicone hydrogels. Although polysiloxanes terminated with a urethane bond are fully compatible with hydrophilic monomers such as N-vinylpyrrolidone, those polysiloxanes terminated solely with a polymerizable group are less compatible with hydrophilic monomers and unsuitable as the starting material for silicone hydrogels.

Patent Document 2 (JP-A 2009-542674) discloses a single end glycerol (meth)acrylate-modified silicone resulting from platinum-catalyzed addition reaction of a silicone pentamer having a SiH group at one end with allyl glycerol (meth)acrylate. However, Patent Document 2 refers to neither dual end glycerol (meth)acrylate-modified silicones nor the removal of excess allyl compounds used in the preparation of modified silicones.

An aim herein is to provide new and useful (meth)acrylate-modified silicones which are highly compatible with hydrophilic monomers, especially for the purposes listed above. Methods for their preparation and use are further aspects herein. They may offer high molecular weight and/or high purity relative to known acrylate-modified silicones.

Addressing the above aims and the compatibility problem of prior art (meth)acrylate-terminated silicones such as the intraocular implant material, the inventor made efforts and developed glycerol (meth)acrylate-modified silicone of high purity, having a hydroxyl group introduced at both ends of the polysiloxane, glycerol (meth)acrylate-modified silicones of high purity in which all or substantially all siloxane terminal groups can participate in copolymerization with other polymerizable monomers, and which can form copolymers with a minimal variability of lens physical properties.

It is noted that common dual end (meth)acrylate-modified silicones do not have a hydroxyl group. The siloxane terminal silicon atom and the (meth)acyloxy group are linked by an alkyl group, typically propyl or butyl.

The inventor has found that a dual end glycerol (meth)acrylate-modified silicone of high purity can be obtained by starting with a dual end hydrogenpolysiloxane, reacting its SiH group with an excess amount of allyl glycerol (meth)acrylate, and washing the reaction mixture with a water-soluble solvent such as methanol or acetone to remove the excess of allyl glycerol (meth)acrylate.

It is noted that the single end modified silicone of Patent Document 2 is a compound consisting of at most 8 Si monomer units whereas the modified silicone of the invention is a silicone consisting of at least 12 monomer units and having functionality at both ends rather than one end.

In one aspect, the invention provides a dual end glycerol (meth)acrylate-modified silicone having the general formula (I):

$$R^1Me_2SiO(R^2_2SiO)_aSiMe_2R^1$$ \[(I)\]

wherein R\(^1\) is a mixture of 70 to 95 mol% of a group having formula (i) and 30 to 5 mol% of a group having formula (ii):
wherein R³ is hydrogen or methyl, R² is each independently a monovalent hydrocarbon group of 1 to 10 carbon atoms which may be halogenated, Me stands for methyl, and a is an integer of 10 to 300.

More generally, the invention provides a dual end glycerol (meth)acrylate-modified silicone having the general formula (II):

\[
R\text{Me}_2\text{SiO}(R_2\text{SiO})_a\text{SiMe}_2R
\]

wherein R is hydrogen or an organic group, at least 95 mol% of R being R¹ as defined above, R² and a are as defined above.

In another aspect, the invention provides a method for preparing a dual end glycerol (meth)acrylate-modified silicone having the general formula (I), comprising the steps of addition reaction using a dual end hydrogen silicone having the general formula (III) and allyl compounds having the general formulae (IV) and (V), and optionally washing the reaction mixture with a water-soluble organic solvent to remove the excess of allyl compounds. In the addition reaction step, preferably a ratio of the allyl compound (IV) to the allyl compound (V) is 70-95 mol% to 30-5 mol%. Preferably the total allyl group amount available from the allyl compounds of formulae (IV) and (V) is in molar excess relative to the SiH group amount available from the hydrogen silicone of formula (III).

\[
H\text{Me}_2\text{SiO}(R_2\text{SiO})_a\text{SiMe}_2\text{H}
\]

Herein R² is each independently a monovalent hydrocarbon group of 1 to 10 carbon atoms which may be halogenated, Me stands for methyl, and a is an integer of 10 to 300.

Herein R³ is hydrogen or methyl.

\[
R^1\text{Me}_2\text{SiO}(R_2\text{SiO})_a\text{SiMe}_2R^1
\]

Herein R¹, R², Me, and a are as defined above.

ADVANTAGEOUS EFFECTS

A dual end glycerol (meth)acrylate-modified silicone of high purity and higher molecular weight can be obtained. The modified silicone containing a mixture of 70 to 95 mol% of group (i) and 30 to 5 mol% of group (ii) has the advantage of improved compatibility with hydrophilic monomers by virtue of the primary hydroxyl moiety in group (ii).

The use of the modified silicones to form copolymers (e.g. to form ophthalmic lenses) by copolymerization with such hydrophilic monomer(s) is a further aspect of our proposals.

BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a diagram showing 1H-NMR spectrum of silicone A.
FIG. 2 is a diagram showing 13C-NMR spectrum of silicone A.
FIG. 3 is a diagram showing 29Si-NMR spectrum of silicone A.

FURTHER EXPLANATIONS: OPTIONS AND PREFERENCES

[0016] One aspect of the invention is a dual end glycerol (meth)acrylate-modified silicone having the general formula (I) which finds use as ophthalmic lenses.

$$R^1 Me_2 SiO(R^2_2 SiO)_a SiMe_2 R^1$$ (I)

Herein R^1 is a mixture of 70 to 95 mol% of a group having formula (i) and 30 to 5 mol% of a group having formula (ii). Preferably a ratio of the group having formula (i) to the group having formula (ii) is 75 to 90 mol% to 25 to 10 mol%, provided that the sum of these groups is 100 mol%.

$$\begin{align*}
&\text{OH} \\
&\text{-C}_3\text{H}_6\text{OCH}_2\text{CHCH}_2\text{-O-} \\
&\text{C-} \quad \text{CR}^3 \text{=CH}_2 \\
\end{align*}$$ (i)

$$\begin{align*}
&\text{CH}_2\text{OH} \\
&\text{-C}_3\text{H}_6\text{OCH}_2\text{CH-} \quad \text{O-} \\
&\text{C-} \quad \text{CR}^3 \text{=CH}_2 \\
\end{align*}$$ (ii)

Herein R^3 is hydrogen or methyl. R^2 is each independently a monovalent hydrocarbon group of 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, typically alkyl or aryl, or a halogenated form of the monovalent hydrocarbon group in which at least one hydrogen is substituted by a halogen atom such as fluorine, chlorine or bromine. Me stands for methyl, and “a” is an integer of 10 to 300, preferably 20 to 150.

[0017] The modified silicone contains only two (meth)acrylate groups at both ends of the molecule, and is fully compatible with other polymerizable monomers. Because of high reactivity, few (meth)acrylate groups remain unreacted in a polymer resulting from copolymerization of the modified silicone. Thus the polymer has stable physical properties.

[0018] In another embodiment, the dual end glycerol (meth)acrylate-modified silicone having formula (I) is prepared via addition reaction using a dual end hydrogen silicone having the general formula (III) and allyl compounds having the general formulae (IV) and (V). A ratio of the allyl compound of formula (IV) to the allyl compound of formula (V) is 70-95 mol% to 30-5 mol%. A total amount of allyl groups available from the allyl compounds of formulae (IV) and (V) is in molar excess of an amount of SiH groups available from the dual end hydrogen silicone of formula (III).

$$HMe_2 SiO(R^2_2 SiO)_a SiMe_2 H$$ (III)

Herein R^2, Me, and a are as defined above.

$$\begin{align*}
&\text{OH} \\
&\text{CH}_2=\text{CHCH}_2\text{-O-} \\
&\text{CH}_2=\text{CHCH}_2\text{-O-} \quad \text{C-} \quad \text{CR}^3 \text{=CH}_2 \\
\end{align*}$$ (IV)

$$\begin{align*}
&\text{OH} \\
&\text{CH}_2=\text{CHCH}_2\text{-O-} \\
&\text{CH}_2=\text{CHCH}_2\text{-O-} \quad \text{C-} \quad \text{CR}^3 \text{=CH}_2 \\
\end{align*}$$ (V)

Herein R^3 is hydrogen or methyl.

[0019] After the addition reaction, the reaction mixture is preferably washed with a water-soluble organic solvent such as methanol or acetone to remove the excess of allyl compounds.

[0020] The addition reaction may be performed in the presence of an addition reaction catalyst, typically a well-known platinum group metal based catalyst. The platinum group metal based catalyst is preferably used in such amounts to give 0.1 to 100 ppm, more preferably 1 to 10 ppm of platinum group metal based on the weight of the dual end hydrogen.
The reaction temperature is preferably in a range of 0 to 150°C, more preferably 30 to 90°C. At higher temperatures, SiH group is fast consumed. However, the resulting siloxane may lose radical reactivity at its end because not only the addition reaction of allyl group of allyl compounds and SiH group takes place, but the addition reaction of (meth)acrylate group and SiH group can also occur. Additionally, the hydroxyl groups in formulae (IV) and (V) and SiH groups can be dehydrogenated to form impurities.

For the addition reaction, a solvent may or may not be used. Suitable solvents, if used, include alcoholic solvents such as ethanol and isopropanol, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, ester solvents such as ethyl acetate and butyl acetate, aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane and methycyclohexane, and ether solvents such as ethylene glycol dimethyl ether and dioxane.

Of these solvents, alcoholic solvents such as ethanol and isopropanol are less preferred because impurities can be produced via dehydrogenation of hydroxyl and SiH groups. For the purpose of reducing such impurities, the allyl compounds (IV) and (V) are used in molar excess relative to the SiH group. Specifically, the allyl compounds (IV) and (V) are used in a total amount of 1.5 to 2.5 moles per mole of the SiH group. A total amount of less than 1.5 moles is undesirable because more impurities form and the desired product is obtained in lower purity. A total amount of more than 2.5 moles of the allyl compounds (IV) and (V) is uneconomical.

Once the solvent is distilled off by heating in vacuum, the residual liquid is combined with a several fold volume of a water-soluble solvent for washing. The combined liquid is allowed to stand whereupon it separates into two layers. The upper layer consists of the water-soluble solvent and the allyl compounds. The lower layer consists of the desired polymer and a fraction of the water-soluble solvent. If desired, a water-soluble solvent is further added to the lower layer so that a minor amount of residual allyl compounds may be removed from the lower layer via two-layer separation. The desired polymer is recovered by distilling off the solvent from the lower layer in vacuum.

Suitable water-soluble solvents include methanol and acetone. The amount of water-soluble solvent used for washing at a time is preferably half to two-fold volume relative to the silicone compound.

The resulting silicone compound has the general formula (II):

\[
RMe_2SiO(R^2_2SiO)_{a}SiMe_2R \quad \text{(II)}
\]

wherein R is hydrogen or an organic group, at least 95 mol%, preferably at least 97 mol% of R is R^1 as defined above, R^2 and a are as defined above. The resulting silicone compound is a dual end glycerol (meth)acrylate-modified silicone of formula (I) having a high purity of at least 95%, preferably at least 97%. The balance consists of impurities as mentioned above.

EXAMPLE

Examples are given below by way of illustration and not by way of limitation. Me stands for methyl.

Example 1

Compounds (III-A), (IV-A), and (V-A) of the following formulae were used.

\[
HMe_2SiO(Me_2SiO)_{46}SiMe_2H \quad \text{(III-A)}
\]

\[
\begin{align*}
\text{CH}_2=\text{CHCH}_2\text{}-\text{O}-\text{CH}_2\text{CHCH}_2\text{}-\text{O}-\text{C}&&\text{CH}_2
\end{align*}
\]

\[
\begin{align*}
\text{CH}_2\text{}=\text{CHCH}_2\text{}-\text{O}-\text{CH}_2\text{CHCH}_2\text{}-\text{O}-\text{C}&&\text{CH}_2
\end{align*}
\]

\[
\begin{align*}
\text{CH}_2\text{}=\text{CHCH}_2\text{}-\text{O}-\text{CH}_2\text{CHCH}_2\text{}-\text{O}-\text{C}&&\text{CH}_2
\end{align*}
\]

Example 2

A 2-L flask equipped with a Dimroth condenser and thermometer was charged with 353.8 g (0.1 mol) of dual end hydrogen silicone of formula (III-A), 80.0 g (0.4 mol) of allyl compounds having formulae (IV-A) and (V-A), 530 g of ethylene glycol dimethyl ether as solvent, 1.0 g of a 0.5 wt% toluene solution of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane.
complex of neutralized chloroplatinic acid, and 0.9 g of bis-t-butylhydroxytoluene as polymerization inhibitor. Reaction
was allowed to run at 50 to 60°C for 6 hours. At the end of reaction, SiH groups had been fully consumed.

[0031] Next, the solvent, ethylene glycol dimethyl ether was distilled off by heating in vacuum. The stripping residue
was combined with 430 g of methanol, which was stirred for 10 minutes at room temperature. This was allowed to stand
for 30 minutes, after which the lower layer was taken out, with the upper layer discarded. The lower layer was combined
with 430 g of methanol, which was stirred for 10 minutes and allowed to stand for 30 minutes. By vacuum stripping of
the lower layer, silicone A was recovered as colorless clear fluid.

Physical properties of silicone A

Viscosity (25°C): 120.6 mm²/s
Refractive index (25°C): 1.4105

[0032] FIGS. 1, 2 and 3 are diagrams showing ¹H-NMR, ¹³C-NMR and ²⁹Si-NMR spectra of silicone A, respectively.
From these data, silicone A was identified to have the following structure.

\[R^1 Me_2 SiO(Me_2 SiO)_{8.2} SiMe_2 R^1 \]

\[R^1 \] is a mixture of groups having formulae (iii) and (iv):

\[
\begin{align*}
| & \text{OH} & \text{O} & \text{CH}_3 \\
\text{C}_3 \text{H}_6 \text{OCH}_2 \text{CHCH}_2 - & \text{O} - & \text{C} - & \text{C} = & \text{CH}_2 \\
& \text{CH}_2 \text{OH} & \text{O} & \text{CH}_3 \\
\text{C}_3 \text{H}_6 \text{OCH}_2 \text{CH} - & \text{O} - & \text{C} - & \text{C} = & \text{CH}_2
\end{align*}
\]

in a molar ratio corresponding to the molar ratio (86.5:13.5) of the starting compounds.

[0033] It was found by ²⁹Si-NMR that silicone terminus SiMe₂OR⁴ accounted for 2.5 wt% of silicone terminus SiMe₂R¹. No
addition reaction product of methacrylate group and SiH group was detected by the NMR spectroscopy. From these
data, the dual end-modified silicone A was found to have a purity of more than 95%.

[0034] It is noted that R⁴ is a mixture of

\[
\begin{align*}
| & \text{O} & \text{CH}_3 \\
\text{CH}(\text{CH}_2 - & \text{O} - & \text{C} - & \text{C} = & \text{CH}_2)(\text{CH}_2 - & \text{O} - & \text{CH}_2 & \text{CH} = & \text{CH}_2) \\
- & \text{CH}_2 \text{CH}(\text{CH}_2 \text{OCH}_2 \text{CH} = & \text{CH}_2)(\text{O} - & \text{C} - & \text{C} = & \text{CH}_2)
\end{align*}
\]

and H.

Claims

1. Glycerol (meth)acrylate-modified silicone having the general formula (II):

\[R \text{Me}_2 \text{SiO}(R_2^2 \text{SiO})_a \text{SiMe}_2 R \quad \text{(II)} \]

wherein R is hydrogen or organic group, each R² independently is a monovalent hydrocarbon group of 1 to 10
carbon atoms which may be halogenated, Me stands for methyl and “a” is an integer of from 10 to 300,
wherein at least 95 mol% of R are groups R\(^1\), 70 to 95 mol% of R\(^1\) being groups of formula (i) and 30 to 5 mol% of R\(^1\) being groups of formula (ii):

\[
\overset{\text{OH}}{\overset{\text{O}}{\text{C}_2\text{H}_5\text{OCH}_2\text{CHCH}_2\text{O}} - \overset{\text{C}}{\text{CR}^3=\text{CH}_2}} (i)
\]

\[
\overset{\text{CH}_2\text{OH}}{\overset{\text{O}}{\text{C}_2\text{H}_5\text{OCH}_2\text{CH}} - \overset{\text{C}}{\text{CR}^3=\text{CH}_2}} (ii)
\]

wherein R\(^3\) is hydrogen or methyl.

2. Glycerol (meth)acrylate-modified silicone of claim 1 in which at least 97 mol% of R are groups R\(^1\).

3. Glycerol (meth)acrylate-modified silicone of claim 1 having the general formula (I):

\[
\overset{\text{R}^1\text{Me}_2\text{SiO(R}_2\text{SiO})_a\text{SiMe}_2\text{R}^1}{\text{R}^1\text{Me}_2\text{SiO(R}_2\text{SiO})_a\text{SiMe}_2\text{R}^1} (I)
\]

wherein groups R\(^1\) are as defined in claim 1.

4. A method for preparing a dual end glycerol (meth)acrylate-modified silicone of any one of claims 1 to 3 comprising the step of addition reaction using a dual end hydrogen silicone having the general formula (III) and allyl compounds having the general formulae (IV) and (V), a ratio of the allyl compound of formula (IV) to the allyl compound of formula (V) being 70-95 mol% to 30-5 mol%, a total allyl group amount available from the allyl compounds of formulae (IV) and (V) being in molar excess of an SiH group amount available from the hydrogen silicone of formula (III),

\[
\overset{\text{HMe}_2\text{SiO(R}_2\text{SiO})_a\text{SiMe}_2\text{H}}{\text{HMe}_2\text{SiO(R}_2\text{SiO})_a\text{SiMe}_2\text{H}} (III)
\]

wherein R\(^2\) is each independently a monovalent hydrocarbon group of 1 to 10 carbon atoms which may be halo- genated, Me stands for methyl, and a is an integer of 10 to 300,

\[
\overset{\text{OH}}{\overset{\text{O}}{\text{CH}_2=\text{CHCH}_2\text{O}} - \overset{\text{C}}{\text{CR}^3=\text{CH}_2}} (IV)
\]

\[
\overset{\text{CH}_2\text{OH}}{\overset{\text{O}}{\text{CH}_2=\text{CHCH}_2\text{O}} - \overset{\text{C}}{\text{CR}^3=\text{CH}_2}} (V)
\]

wherein R\(^3\) is hydrogen or methyl.

5. A method of claim 4 comprising the step of washing the reaction mixture with a water-soluble organic solvent to remove excess allyl compounds.
FIG. 1

1H-NMR SPECTRUM OF SILICONE A
FIG. 2

13C-NMR SPECTRUM OF SILICONE A
FIG.3

29Si-NMR SPECTRUM OF SILICONE A
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2009/149985 A1 (EVONIK ROEHM GMBH [DE]; BREINER CHRISTINE [DE]; OMEIS MARIANNE [DE]) 17 December 2009 (2009-12-17) * claims; examples *</td>
<td>1-5</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

Place of search: Munich
Date of completion of the search: 6 November 2012
Examiner: Kolitz, Roderich

CATEGORY OF CITED DOCUMENTS

- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **O**: non-written disclosure
- **P**: intermediate document

&: member of the same patent family, corresponding document
ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 12 17 1217

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

06-11-2012

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2008004383 A1</td>
<td>03-01-2008</td>
<td>AR 061754 A1</td>
<td>17-09-2008</td>
</tr>
<tr>
<td>EP 2049922 A2</td>
<td></td>
<td></td>
<td>22-04-2009</td>
</tr>
<tr>
<td>JP 2009542674 A</td>
<td></td>
<td></td>
<td>03-12-2009</td>
</tr>
<tr>
<td>TW 200811208 A</td>
<td></td>
<td></td>
<td>01-03-2008</td>
</tr>
<tr>
<td>US 2008004383 A1</td>
<td></td>
<td></td>
<td>03-01-2008</td>
</tr>
<tr>
<td>WO 2008147374 A2</td>
<td></td>
<td></td>
<td>04-12-2008</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>WO 2009149985 A1</td>
<td>17-12-2009</td>
<td>CN 102027391 A</td>
<td>20-04-2011</td>
</tr>
<tr>
<td>DE 102008002375 A1</td>
<td></td>
<td></td>
<td>17-12-2009</td>
</tr>
<tr>
<td>EP 2286283 A1</td>
<td></td>
<td></td>
<td>23-02-2011</td>
</tr>
<tr>
<td>JP 2011522934 A</td>
<td></td>
<td></td>
<td>04-08-2011</td>
</tr>
<tr>
<td>KR 20110028435 A</td>
<td></td>
<td></td>
<td>18-03-2011</td>
</tr>
<tr>
<td>TW 201006853 A</td>
<td></td>
<td></td>
<td>16-02-2010</td>
</tr>
<tr>
<td>US 2011046332 A1</td>
<td></td>
<td></td>
<td>24-02-2011</td>
</tr>
<tr>
<td>WO 2009149985 A1</td>
<td></td>
<td></td>
<td>17-12-2009</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP H08501504 A [0002] [0004]
- WO 9403324 A [0004]
- US P5260000 A [0004]
- WO 2008147374 A [0004]
- US 20080004383 A [0004]