The present invention concerns compounds and their use to treat cell proliferative diseases such as cancer. Compounds of the present invention display significant potency as inhibitors of Jak2/STAT3 pathways and downstream targets and inhibit the growth and survival of cancerous cell lines.
BACKGROUND OF THE INVENTION

[0001] The present application claims benefit of priority to U.S. Provisional Application Serial Nos. 60/744,105, filed March 31, 2006, the entire contents this application being incorporated by reference herein.

[0002] The U.S. government owns rights in the present invention pursuant to funding from the National Institute of Health through grant number CA101936.

1. Field of the Invention

[0003] The present invention relates generally to the treatment of cell proliferative diseases such as cancer. More particularly, it concerns caffeic acid and related analogs useful for the treatment of cell proliferative diseases such as cancer, methods of synthesis of these compounds, and methods of treatment employing these compounds.

2. Description of Related Art

[0004] The compound AG490 is a kinase inhibitor that inhibits Janus kinase 2/Signal transducer and activator of transcription-3 (Jak2/STAT3) signaling pathway. AG490 belongs to a group of compounds defined by the parent natural product caffeic acid and its natural derivatives like caffeic acid benzyl ester.

[0005] Targeted inhibition of the Jak2/STAT3 pathway with caffeic acid analogs such as AG490 inhibits tumor cell growth and increases sensitivity to apoptotic stimuli; thus, inhibitors of this pathway likely represent potential therapeutics for cancer therapy (Catlett-Falcone et al., 1999; Alas and Bonavida, 2003; Burdelya et al., 2002). AG490 would not be considered a drug-like molecule due to its instability in biological matrices (blood, tissues, etc) and a lack of potency (Kondo, et al, 2007; Burdelya et al., 2002; Meydan et al., 1996; Constantin et al., 1998). Receptor-based or direct activation of Jak2/STAT3 pathway by such stimulators such as EGF, scr, and IL-6 (multiple interleukins and cytokines) promoting survival proliferation and angiogenesis of human tumors (Bharti et al., Verma et al., Kerr et al.), requires inhibitors more potent and more stable than AG490 to have potential as anti-cancer drugs.

[0006] Jak2/STAT3 signaling pathways participate in the progression of a variety of malignancies. STAT3 is constitutively activated in pancreatic carcinoma, glioblastoma multiforme, and squamous cell carcinoma of the head and neck, among others, and its activation has been shown to affect VEGF expression, angiogenesis, tumor growth, and metastasis in vivo. As such, STAT3 may be an excellent target for drug development (Yu and Jove, 2004). No effective inhibitors are currently available.

[0008] AG490, however, has limited activity in animal studies and must be used at high concentrations (~ 50 to 100 μM) to achieve inhibition of Jak2/STAT3 signaling and anti-tumor effects. This low potency of AG490 is insufficient to warrant clinical investigation of this compound for the treatment of cancer (Burdelya et al.. 2002; Meydan et al., 1996; Constantin et al., 1998). Thus a need exists for therapeutics that exhibit strong antiproliferative effects through a similar mechanism at lower therapeutic concentrations.

SUMMARY OF THE INVENTION

[0009] The present invention overcomes limitations in the art by providing compounds that display improved pharmacological profiles (e.g., biostability, bioavailability, enhanced tissue penetration, improved pharmacokinetics, increased potency) when compared with AG490 and other compounds that are structurally related to caffeic acid; these compounds block IL-6 mediated Jak2/STAT3 activation at low micromolar concentrations and suppress related downstream anti-

AG490
poptotic, proangiogenic and proliferation promoting signaling. The present invention involves compounds that have utility as antitumor and/or chemotherapeutic drugs, methods of synthesizing these compounds, and methods of using these compounds to treat patients with cancer.

[0010] Disclosed herein are a new class of compounds that inhibits Jak2 and STAT3 phosphorylation and many of its related downstream targets. It also potently inhibits tumor growth in vitro and in vivo. Unlike AG490, the compounds of the present invention, for example the caffeic acid analogs with cycloalkyl substituents (see below), are highly active against a variety of cancers including pancreatic tumors, such as Colo357-FG, brain tumors, such as U87-MG, D54, U251 and cancer stem cell lines of glioblastoma multiforme, and head and neck tumors, including squamous cell carcinoma cancer cell lines. These compounds inhibit both IL-6, EGF stimulated and constitutive STAT3 activation; suppressed the expression of Bcl-2, Bcl-XL, survivin, and Mcl-1; and induced apoptosis, all at low micromolar concentrations.

[0011] One aspect of the present invention provides compounds according to the structural formulas shown in Table 1.

Table 1: Examples of Different Types of Caffeic Acid Analogs:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(I)
(II)
(III)
(IV)
(V)
(VI)
In certain aspects of the invention, the chemical structures shown in Table 1 may be defined as follows: R₁ is -H or cyano and R₂ is heteroatom-substituted or heteroatom-unsubstituted C₃₋₇-cycloalkyl; X₁ is halo and R₃ is heteroatom-substituted or heteroatom-unsubstituted C₆₋₁₀-aryl, or C₇₋₁₀-aralkyl; X₂ is halo and R₄ is hydroxy or heteroatom-substituted or heteroatom-unsubstituted C₁₋₁₀-acyloxy; X₃ is halo and R₅ is heteroatom-substituted or heteroatom-unsubstituted C₁₋₁₀-alkyl or C₁₋₁₀-alkoxy; X₄ is hydroxy or heteroatom-substituted or heteroatom-unsubstituted C₁₋₁₀-alkyl or C₁₋₁₀-alkoxy; R₆ is heteroatom-substituted or heteroatom-unsubstituted C₁₋₁₀-alkyl, C₁₋₇-cycloalkyl, C₁₋₁₀-acyloxy, C₆₋₁₀-aryl, or C₇₋₁₀-aralkyl; X₅ is heteroatom-substituted or heteroatom-unsubstituted C₁₋₁₀-alkyl or C₁₋₁₀-alkoxy; R₇ is -H or cyano; R₈ is heteroatom-substituted or heteroatom-unsubstituted C₁₋₁₀-alkyl, C₁₋₇-cycloalkyl, C₁₋₁₀-acyloxy, C₆₋₁₀-aryl, or C₇₋₁₀-aralkyl; X₆ is halo or heteroatom-substituted or heteroatom-unsubstituted C₁₋₁₀-alkyl or C₁₋₁₀-alkoxy; R₉ is heteroatom-substituted or heteroatom-unsubstituted C₁₋₁₀-alkyl, C₁₋₇-cycloalkyl, C₁₋₁₀-acyloxy, C₆₋₁₀-aryl, or C₇₋₁₀-aralkyl; R₁₀ is -H or cyano; R₁₁ is heteroatom-substituted or heteroatom-unsubstituted C₁₋₁₀-alkyl, C₁₋₇-cycloalkyl, C₁₋₁₀-acyloxy, C₆₋₁₀-aryl, or C₇₋₁₀-aralkyl; A is -C(O)- or -S(O₂)-; X₇ is halo or heteroatom-substituted or heteroatom-unsubstituted C₁₋₁₀-alkyl or C₁₋₁₀-alkoxy; R₁₂ is heteroatom-substituted or heteroatom-unsubstituted C₁₋₁₀-alkyl, C₁₋₇-cycloalkyl, C₁₋₁₀-acyloxy, C₆₋₁₀-aryl, or C₇₋₁₀-aralkyl; R₁₃ is -H or heteroatom-substituted or heteroatom-unsubstituted C₁₋₁₀-alkyl, C₁₋₇-cycloalkyl, C₁₋₁₀-acyloxy, C₆₋₁₀-aryl, or C₇₋₁₀-aralkyl; R₁₄ is cyclododecyl, imidazoyl, or cyclohexenyl; R₁₅ is -H or heteroatom-substituted or heteroatom-unsubstituted C₁₋₁₀-alkyl, C₁₋₇-cycloalkyl, C₁₋₁₀-acyloxy, C₆₋₁₀-aryl, or C₇₋₁₀-aralkyl; R₁₆ is -H or heteroatom-substituted or heteroatom-unsubstituted C₁₋₁₀-alkyl or C₁₋₁₀-alkoxy.

Other aspects of the invention include pharmaceutically acceptable salts, hydrates, amine-N-oxides, imine-N-oxides, tautomers, and optical isomers of the compounds described above and throughout this application.

In certain embodiments R₂ may cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. In further embodiments R₃ may be phenyl, benzyl, cyclopentyl, cyclohexyl. In yet further embodiments, X₁ or X₂ may be -F, -Cl, -Br or -I. In still further embodiments, R₄ may be hydroxy, acetoxy or 2,2-dimethylpropionyloxy. In still yet further embodiments, X₃ or X₄ may be methoxy, -F, -Cl, -Br or -I. In some embodiments, R₅ or R₆ may be methyl or cyclopropyl. In certain aspects, X₇ may be methoxy or acetoxy.

The compounds shown in Table 2 are specific examples of compounds provided by this invention:
Table 2: Additional Examples of Caffeic Acid Analogs:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(WP1332)</td>
<td>(WP1331)</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>(WP1330)</td>
<td>(WP1329)</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>(WP1246)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>(WP1269)</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>(WP1268)</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>(WP1203)</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>(WP1196)</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>(WP1179)</td>
</tr>
</tbody>
</table>

7
Some of the compounds in Table 2 are shown as single enantiomers or diastereomers. The invention provides for all possible stereoisomers of any of the compounds shown in Table 2 above, as well as those described throughout the application. In some embodiments, the compound provided will be a single enantiomer substantially free from other stereoisomers. In other embodiments, the compound will be a mixture of different stereo isomers, wherein each stereo isomer has the same molecular formula. In certain of these embodiments, the invention provides for a racemic mixture of a given molecular formula.

Another aspect of the invention comprises compounds having the formula:
wherein A is -C(O)- or -SO₂-. In certain embodiments R₁ is cyclododecyl,

In some of these embodiments, X₁, X₂, X₃, and X₄, are each independently hydrogen, halo, alkyl, alkoxy, acetoxyl, alkylacetoxyl, -OH, trihalomethyl, or -NO₂; Y₁ is halo, -OH or -NO₂; and R₂ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, alkylaryl, halo, hydrogen, -OH, -NO₂, thioether, amino, -SH, or -NH₂; R₃ is:

In some of these embodiments, X₅, X₆, X₇, and X₈, are each independently hydrogen, halo, alkyl, alkoxy, acetoxyl, alkylacetoxyl, -OH, trihalomethyl, or -NO₂; and R₅ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, alkylaryl, halo, hydrogen, -OH, -NO₂, thioether, amino, -SH, or -NH₂;
wherein Z_3 may be a divalent alkyl; and wherein $m_1 = 1, 2, 3, \text{ or } 4$; and R_4 may be hydrogen, -CN, substituted amine, -CH$_2$-alkyl, alkyl, or -CH$_2$N$_3$. In some of these embodiments, R_5 and R_6 are each independently:

- monosaccharide, monosaccharide derivative, polysaccharide, polysaccharide derivative, aryl or aralkyl; Z is selected from the group consisting of -NH, -S-, and -O-, and X_5 and X_6 are each independently selected from the group consisting of hydrogen, upper alkyl, lower alkyl, cycloalkyl, cycloarylalkyl, aralkyl, aryl, alkoxyl, hydroxyl, hydroxylalkyl, alkylester, alkylesteralkyl, alkylacetoxyl, or aryloxyl; with the proviso that if $R_4 = -CN$, substituted amine, -CH$_2$S-alkyl, alkyl, or -CH$_2$N$_3$, then R_1 is selected from the group consisting of: cyclododecyl,
In further embodiments, R_3 is:

where X_5 or X_6 is upper alkyl, hydroxyl, aryl, alkoxy, aryloxy; cycloalkyl, cycloarylalkyl, aralkyl, alkylester, alkylesteralkyl, alkylacetoxy, or aryloxy.

In specific embodiments, Z_3 may be -C$_2$H$_4$-. In some examples, X_1, X_2, X_3, and X_4, are each independently -F, -Cl, -Br, -CH$_3$, methoxy or alkylacetoxy. In further embodiments, X_5 or X_6 is independently hydrogen, cyclobutyl, -CH$_3$, -CH$_2$OH, cyclopentyl, -CH$_2$OAc, -CH$_2$OC(O)C(CH$_3$)$_3$, -CH$_2$C$_6$H$_5$, cyclohexyl or aryl.

In other embodiments, R_5 is an aralkyl having the structure:

and an aryl having the structure:
wherein \(m = 0, 1, 2, 3, 4, 5, 6, \) or \(7 \) and where \(X_5 \) and \(X_6 \) are each independently selected from the group consisting of hydrogen and alkyl, and where \(R_7, R_8, R_9, R_{10}, \) and \(R_{11} \) are each independently selected from the group consisting of hydrogen, halo, alkyl, alkoxy, \(-\text{O}H\), trihalomethyl, and \(-\text{NO}_2\).

[0021] A method of treating a cell proliferative disease comprising administering to a subject an amount of a first compound effective to treat the cell proliferative disease, wherein the first compound is caffeic acid, the benzyl ester of caffeic acid, or one of the compounds the present invention, such as a compound according to Table 1 or a compound shown in Table 2.

[0022] Another aspect of the present invention concerns a method of treating a cell proliferative disease comprising administering a therapeutically relevant amount of a first compound of the present invention to a subject. The subject may be a mammal, and the mammal may be a human. The first compound may be comprised in a pharmaceutically acceptable excipient, diluent, or vehicle. The cell proliferative disease may be cancer. The cancer may be melanoma, non-small cell lung, small cell lung, lung, hepatocarcinoma, retinoblastoma, astrocytoma, glioblastoma, leukemia, blood, brain, skin, eye, tongue, gum, neuroblastoma, head, neck, breast, pancreatic, renal, bone, testicular, ovarian, mesothelioma, cervical, gastrointestinal, lymphoma, colon, or bladder.

[0023] The cell proliferative disease may be rheumatoid arthritis, inflammatory bowel disease, osteoarthritis, leiomomas, adenomas, lipomas, hemangiommas, fibromas, vascular occlusion, restenosis, artherosclerosis, a pre-neoplastic lesion, carcinoma \textit{in situ}, oral hairy leuokplakia, or psoriasis and the variant forms of psoriasis including psoriatic arthritis other skin inflammatory conditions such as urticaria, excema, atopic dermatitis, granuloma annular, angiomas, basal cell carcinoma, squamous cell carcinoma, malignant melanoma, seborreheic dermatitis, rosacea other hyperactive autoimmune disorders such as rheumatoid arthritis, chronic active hepatitis, Hashimoto’s thyroiditis, lupus, connective tissue disorders, mixed connective tissue disorders, and neurologic inflammatory diseases such as multiple sclerosis, inflammatory leukoencephalitis.

[0024] In certain embodiments, STAT3 activation is reduced in a cell of the subject. The expression of \(c\text{-}\text{myc} \) may be reduced in a cell of the subject. The first compound may be administered in combination with a therapeutically relevant amount of a second compound. The second compound may be an anti-cancer compound. The first compound may be administered in combination with a surgery, a radiation therapy, or a gene therapy.

[0025] Any embodiment discussed herein with respect to one aspect of the invention applies to other aspects of the invention as well, unless specifically noted.

[0026] The term “about” is used to indicate that a value includes the standard deviation of error for the device or method being employed to determine the value. The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and to “and/or.” When used in conjunction with the word “comprising” or other open language in the claims, the words “a” and “an” denote “one or more,” unless specifically noted. The terms “comprise,” “have” and “include” are open-ended linking verbs. Any forms or tenses of one or more of these verbs, such as “comprises,” “comprising,” “has,” “having,” “includes” and “including,” are also open-ended. For example, any method that “comprises,” “has” or “includes” one or more steps is not limited to possessing only those one or more steps and also covers other unlisted steps. Similarly, any plant that “comprises,” “has” or “includes” one or more traits is not limited to possessing only those one or more traits and covers other unlisted traits.

[0027] The terms “inhibiting,” “reducing,” or “prevention,” or any variation of these terms, when used in the claims and/or the specification includes any measurable decrease or complete inhibition to achieve a desired result.

[0028] The term “effective,” as that term is used in the specification and/or claims, means adequate to accomplish a desired, expected, or intended result.

[0029] As used herein, predominantly one enantiomer or substantially free from other optical isomers means that the compound contains at least 95% of one enantiomer, or more preferably at least 98% of one enantiomer, or most preferably at least 99% of one enantiomer.

[0030] Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and any specific examples provided, while indicating specific embodiments of the invention, are given by way of illustration only, since various changes and mod-
 modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0031] The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.

FIG. 1: Inhibition of constitutively activated STAT3 in Colo357-FG cells with WP1066 and WP1193. Western blots of phosphorylated STAT3 at Tyr705 and total STAT3.

FIG. 2: Dose-response curve for WP1193 in the presence of various cell lines. Values are the means ± s.d. (error bars) of triplicate experiments.

FIG. 3: Dose-response curve for WP1145 in the presence of various cell lines.

FIG. 4: Dose-response curve for WP1163 in the presence of the U87 cell line.

FIG. 5: Dose-response curve for WP1164 in the presence of the U87 cell line.

FIG. 6: Dose-response curve for WP1164 in the presence of the Colo357-FG cell line.

FIG. 7: Dose-response curve for WP1166 in the presence of the U87 cell line.

FIG. 8: Dose-response curve for WP1167 in the presence of the U87 cell line.

FIG. 9: Dose-response curve for WP1168 in the presence of the U87 cell line.

FIG. 10: Dose-response curve for WP1169 in the presence of the U87 cell line.

FIG. 11: Dose-response curve for WP1229 in the presence of the U87 and FG cell lines.

FIG. 12: Dose-response curve for WP1229 in the presence of the U87 cell line.

FIG. 13: Dose-response curve for WP1146 in the presence of the U87 cell line. Values are the means ± s.d. (error bars) of triplicate experiments.

FIG. 14: Dose-response curve for WP1267 in the presence of the Colo357-FG cell line. Values are the means ± s.d. (error bars) of triplicate experiments.

FIG. 15: Dose-response curve for WP1267 in the presence of the U87 cell line. Values are the means ± s.d. (error bars) of triplicate experiments.

FIG. 16: Dose-response curve for WP1268 in the presence of the Colo357-FG cell line. Values are the means ± s.d. (error bars) of triplicate experiments.

FIG. 17: Dose-response curve for WP1268 in the presence of the U87 cell line. Values are the means ± s.d. (error bars) of triplicate experiments.

FIG. 18: Dose-response curve for WP1269 in the presence of the U87 cell line. Values are the means ± s.d. (error bars) of triplicate experiments.

FIG. 19: Dose-response curve for WP1269 in the presence of the Colo357-FG cell line. Values are the means ± s.d. (error bars) of triplicate experiments.

FIG. 20: Dose-response curve for WP1282 in the presence of the Colo357-FG cell line.

FIG. 21: Dose-response curve for WP1282 in the presence of the U87 cell line.

FIG. 22: Dose-response curve for WP1283 in the presence of the Colo357-FG cell line.

FIG. 23: Dose-response curve for WP1283 in the presence of the U87 cell line.

FIG. 24: Dose-response curve for WP1284 in the presence of the U87 cell line.

FIG. 25: Dose-response curve for WP1284 in the presence of the Colo357-FG cell line.

FIG. 26: Dose-response curve for WP1285 in the presence of the U87 cell line.

FIG. 27: Dose-response curve for WP1285 in the presence of the Colo357-FG cell line.

FIG. 28: Dose-response curve for WP1286 in the presence of the U87 cell line.

FIG. 29: Dose-response curve for WP1286 in the presence of the Colo357-FG cell line.

FIG. 30: Dose-response curve for WP1293 in the presence of the Colo357-FG cell line.

FIG. 31: Dose-response curve for WP1293 in the presence of the U87 cell line.

FIG. 32: Dose-response curve for WP1302 in the presence of the U87 cell line.

FIG. 33: Dose-response curve for WP1302 in the presence of the Colo357-FG cell line.

FIG. 34: Compound WP1193 more potently than WP1066 inhibits STAT3 phosphorylation. The graph shows survival (% of control) vs. concentration in micromolar units.
I. The Present Invention

[0032] Previous studies have demonstrated that cytokine pathways that activate transcription factors (e.g., NF-κB, STAT3) are unregulated or activated by genetic lesions or autocrine/paracrine mechanisms in multiple tumor types (Hallek et al., 1998; Hideshima et al., 2002). These pathways contribute to the tumorigenicity and progression of cancer. In the present invention, new compounds were synthesized, and in vitro screening revealed that these compounds can block IL-6 mediated STAT3 activation at low concentrations (~1 μM). As compared to AG490, these compounds are significantly more potent (20 to 50-fold) in tumor cells in inhibiting Jak2/STAT3 signaling in IL-6 treated cells. These compounds can also induce apoptosis in wide range of solid and hematological tumor cells at concentrations that parallel their Jak2/STAT3 pathway downregulatory activity. The present invention discloses compounds that inactivate genes and signaling pathways important for tumor cell survival and progression, and these compounds may be used alone or in combination with other agents for the treatment of cancer.

II. Chemical Definitions

[0033] As used herein, the term "amino" means -NH₂; the term "nitro" means -NO₂; the term "halo" designates -F, -Cl, -Br or -I; the term "mercapto" means -SH; the term "cyano" means -CN; the term "silyl" means -SiH₃, and the term "hydroxy" means -OH.

[0034] An "alkane" refers to an acyclic branched or unbranched hydrocarbon, in many cases having the general formula CₙH₂ₙ₊₂. An "alkyl" refers to a univalent group derived from an alkane by removal of a hydrogen atom from any carbon atom thus having the formula -CₙH₂ₙ₊₁ in many cases. Alkyl groups, either straight-chained or branched chained, may be substituted with additional acyclic alkyl, cycloalkyl, or cyclic alkyl groups. The alkyl group may be heteroatom-substituted or heteroatom-unsubstituted, see below. Preferably, the alkyl group has 1 to 12 carbons. More preferably, it is a lower alkyl having 1 to 7 carbons, more preferably 1 to 4 carbons. An upper alkyl has 8 or more carbon atoms. A "divalent alkyl" refers to a divalent group derived from an alkane by removal of two hydrogen atoms from either the same carbon atom (e.g., methylene, ethylenediyl, propylylene) or from different carbon atoms (e.g., -C₂H₄-).

[0035] A "cycloalkane" refers to a saturated monocyclic hydrocarbons with or without side chains.

[0036] A "cycloalkyl" refers to a univalent group derived from cycloalkane by removal of a hydrogen atom from a ring carbon atom.

[0037] The term "heteroatom-substituted," when used to modify a class of organic radicals (e.g. alkyl, aryl, acyl, etc.), means that one, or more than one, hydrogen atom of that radical has been replaced by a heteroatom, or a heteroatom containing group. Examples of heteroatoms and heteroatom containing groups include: hydroxy, cyano, alkoxyl, =O, =S, -NO₂, -N(CH₃)₂, amino, or -SH. Specific heteroatom-substituted organic radicals are defined more fully below.

[0038] The term "heteroatom-unsubstituted," when used to modify a class of organic radicals (e.g. alkyl, aryl, acyl, etc.) means that none of the hydrogen atoms of that radical have been replaced with a heteroatom or a heteroatom containing group. Substitution of a hydrogen atom with a carbon atom, or a group consisting of only carbon and hydrogen atoms, is not sufficient to make a group heteroatom-substituted. For example, the group -C₆H₄C≡CH is an example of a heteroatom-unsubstituted aryl group, while -C₆H₄F is an example of a heteroatom-substituted aryl group. Specific heteroatom-unsubstituted organic radicals are defined more fully below.

[0039] The term "heteroatom-unsubstituted Cₙ-alkyl" refers to an alkyl, further having a total of n carbon atoms, all of which are nonaromatic, 3 or more hydrogen atoms, and no heteroatoms. For example, a heteroatom-unsubstituted C₁₋₁₀-alkyl has 1 to 10 carbon atoms. The groups, -CH₃, cyclopropylmethyl, -CH₂CH₃, -CH₂CH₂CH₃, -CH(CH₃)₂, -CH₂CH₂CH₂CH₃, -CH(CH₃)CH₂CH₃, -CH₂CH₂NH₂CH(CH₃)₂, -CH₂CH₂N(CH₃)CH₂CH₃, -CH₂CH₂CH₂OCH₃, -CH₂CH₂NH₂, -CH₂CH₂N(CH₃)₂, -CH₂CH₂NHCH₂CH₃, -CH₂CH₂N(CH₂CH₃)₂, -CH₂CH₂NHCH₂CH₂CH₃, -CH₂CH₂N(CH₂CH₂CH₃)₂, -CH₂CH₂N(CH₂CH₂OCH₃)₂, -CH₂CH₂NHCH₂CH₂CH₂CH₃, -CH₂CH₂N(CH₂CH₂OCH₂CH₃)₂, and -CH₂CH₂NHCH₂CH₂CH₂CH₂CH₃ are all examples of heteroatom-unsubstituted alkyl groups.

[0040] The term "heteroatom-substituted Cₙ-alkyl" refers to an alkyl, further having a total of n carbon atoms, all of which are nonaromatic, 0, 1, or more than one hydrogen atom, at least one heteroatom, wherein each heteroatom is independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. For example, a heteroatom-substituted C₁₋₁₀-alkyl has 1 to 10 carbon atoms. The following groups are all examples of heteroatom-substituted alkyl groups: trifluoromethyl, -CH₂F, -CH₂Cl, -CH₂Br, -CH₂OH, -CH₂OH₂, -CH₂OCH₂CH₂OH, -CH₂OCH₂CH₂CH₂OH, -CH₂OCH₂CF₃, -CH₂OCOCH₃, -CH₂CNH₂, -CH₂CNH₂CH₃, -CH₂CNH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CNH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃, and -CH₂CNH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃.

[0041] The term "heteroatom-unsubstituted Cₙ-cycloalkyl" refers to a cycloalkyl, further having a total of n carbon atoms, all of which are nonaromatic, 3 or more hydrogen atoms, and no heteroatoms. For example, a heteroatom-unsubstituted C₁₋₁₀-cycloalkyl has 1 to 10 carbon atoms. The groups, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclocosyl, cyclononyl, cyclodecyl, etc. are all examples of heteroatom-unsubstituted cycloalkyl groups.
unsubstituted C₁₋₅-cycloalkyl has 1 to 10 carbon atoms. The groups -CH(CH₂)₂ (cyclopentyl), cyclobutyl, cyclopentyl, and cyclohexyl, are all heteroatoms or unsubstituted cycloalkyl groups.

[0042] The term "heteroatom-substituted Cₙ-cycloalkyl" refers to a cycloalkyl, further having a total of n carbon atoms, all of which are nonaromatic, 0, 1, or more than one hydrogen atom, at least one heteroatom, wherein each heteroatom is independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. For example, a heteroatom-substituted C₇₋₁₀-cycloalkyl has 1 to 10 carbon atoms.

[0043] The term "heteroatom-substituted Cₖ-alkenyl" refers to a radical, having a linear or branched, cyclic or acyclic structure, further having at least one nonaromatic carbon-carbon double bond, but no carbon-carbon triple bonds, a total of n carbon atoms, three or more hydrogen atoms, and no heteroatoms. For example, a heteroatom-substituted C₂₋₁₀-alkenyl has 2 to 10 carbon atoms. Heteroatom-substituted alkenyl groups include: -CH=CH₂, -CH=CHCH₃, -CH₂CH=CH₂, -CH₂CH=CHCH₃, -CH₂CH₂CH=CH₂, -CH₂CH=CH₂CH₃, -CH₂CH₂CH=CH₂CH₃, -CH₂CH₂CH₂CH=CH₂, -CH₂CH₂CH₂CH₂CH=CH₂, -CH₂CH₂CH₂CH₂CH₂CH=CH₂, -CH₂CH₂CH₂CH₂CH₂CH₂CH=CH₂, and -CH=CH-C₆H₅.

[0044] The term "heteroatom-substituted Cₖ-alkynyl" refers to a radical, having a single nonaromatic carbon atom as the point of attachment and at least one nonaromatic carbon-carbon double bond, but no carbon-carbon triple bonds, further having a linear or branched, cyclic or acyclic structure, further having a total of n carbon atoms, 0, 1, or more than one hydrogen atom, and at least one heteroatom, wherein each heteroatom is independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. For example, a heteroatom-substituted C₂₋₁₀-alkynyl has 2 to 10 carbon atoms. The groups, -CH=CHF, -CH=CHCl and -CH=CHBr, are examples of heteroatom-substituted alkenyl groups.

[0045] The term "heteroatom-unsubstituted Cₙ-alkenyl" refers to a radical, having a linear or branched, cyclic or acyclic structure, further having at least one carbon-carbon triple bond, a total of n carbon atoms, at least one hydrogen atom, and no heteroatoms. For example, a heteroatom-unsubstituted C₂₋₁₀-alkenyl has 2 to 10 carbon atoms. The groups, -C=CH₂, -C=CHCH₃, and -C≡C(CH₃)₂ are examples of heteroatom-unsubstituted alkenyl groups.

[0046] The term "heteroatom-substituted Cₙ-alkenyl" refers to a radical, having a single nonaromatic carbon atom as the point of attachment and at least one carbon-carbon triple bond, further having a linear or branched, cyclic or acyclic structure, and having a total of n carbon atoms, 0, 1, or more than one hydrogen atom, and at least one heteroatom, wherein each heteroatom is independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. For example, a heteroatom-substituted C₇₋₁₀-alkenyl has 2 to 10 carbon atoms. The group, -C≡CSi(CH₃)₃, is an example of a heteroatom-substituted alkenyl group.

[0047] The term "heteroatom-unsubstituted Cₙ-aryl" refers to a radical, having a single carbon atom as a point of attachment, wherein the carbon atom is part of an aromatic ring structure containing only carbon atoms, further having a total of n carbon atoms, 5 or more hydrogen atoms, and no heteroatoms. For example, a heteroatom-unsubstituted C₈₋₁₀-aryl has 6 to 10 carbon atoms. Examples of heteroatom-unsubstituted aryl groups include phenyl, methylphenyl, (dimethyl)phenyl, -C₆H₄CH₂CH₃, -C₆H₄CH₂CH₂CH₃, -C₆H₄CH₂CH₂CH₂CH₃, -C₆H₄CH₂CH₂CH₂CH₂CH₃, -C₆H₄CH₂CH₂CH₂CH₃, -C₆H₄CH₂CH₂CH₂CH₂CH₃, -C₆H₄CH₂CH₂CH₂CH₂CH₂CH₃, -C₆H₄CH₂CH₂CH₂CH₂CH₂CH₂CH₃, and -C₆H₄CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃.

[0048] The term "heteroatom-substituted Cₙ-aryl" refers to a radical, refers to a radical, having either a single aromatic carbon atom or a single aromatic heteroatom as the point of attachment, further having a total of n carbon atoms, at least one hydrogen atom, and at least one heteroatom, further wherein each heteroatom is independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. For example, a heteroatom-substituted C₁₋₁₀-aryl has 1 to 10 carbon atoms. The term "heteroatom-substituted aryl" includes heteroaryl and heterocyclic aryl groups. It also includes those groups derived from the compounds: pyrrole, furan, thiophene, imidazole, oxazole, isoxazole, thiazole, isoazolole, triazole, pyrazole, pyridine, pyrazine, pyridazine, pyrimidine, and the like. Further examples of heteroatom-substituted aryl groups include the groups: -C₆H₄F, -C₆H₄Cl, -C₆H₄Br, -C₆H₄I, -C₆H₄OH, -C₆H₄OCH₃, -C₆H₄CH₂CH₃, -C₆H₄OCOCH₃, -C₆H₄OC₆H₅, -C₆H₄NH₂, -C₆H₄NHCH₂CH₃, -C₆H₄NHC₆H₅, -C₆H₄NHCH₂CH₃, -C₆H₄NHC₆H₅, -C₆H₄CH₂Br, -C₆H₄CH₂OH, -C₆H₄CH₂OCOCH₃, -C₆H₄CH₂OC₆H₅, -C₆H₄N(CH₃)₂, -C₆H₄CH₂CH₂Cl, -C₆H₄CH₂CH₂OH, -C₆H₄CH₂CH₂OCOCH₃, -C₆H₄CH₂CH₂NH₂, -C₆H₄CH₂CH₂N(CH₃)₂, -C₆H₄CH₂CH₂NHCH₂CH₃, -C₆H₄CH₂CH₂NHC₆H₅, -C₆H₄CH₂CN, -C₆H₄CH₂OC₆H₅, -C₆H₄CO₂H, -C₆H₄CO₂CH₃, -C₆H₄CONH₂, -C₆H₄CONHCH₃, -C₆H₄CON(CH₃)₂, furanyl, thiényl, pyridyl, pyrrolyl, pyrimidyl, pyrazinyl, and imidazoyl.

[0049] The term "heteroatom-substituted Cₙ-aralkyl" refers to a radical, having a single saturated carbon atom as the point of attachment, further having a total of n carbon atoms, wherein at least 6 of the carbon atoms form an aromatic ring structure containing only carbon atoms, 7 or more hydrogen atoms, and no heteroatoms. For example, a heteroatom-unsubstituted C₂₋₁₀-aralkyl has 7 to 10 carbon atoms. An "aralkyl" includes an alkyl heteroatom-substituted with an aryl group. Examples of heteroatom-unsubstituted aralkyls include phenylmethyl (benzyl) and phenylethyl.

[0050] The term "heteroatom-substituted Cₙ-aralkyl" refers to a radical, having a single saturated carbon atom as the point of attachment, further having a total of n carbon atoms, 0, 1, or more than one hydrogen atom, and at least one heteroatom, wherein at least one of the carbon atoms is incorporated an aromatic ring structures, further wherein each
heteroatom is independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. For example, a heteroatom-substituted C$_2$-C$_{10}$-heteroaralkyl has 2 to 10 carbon atoms.

[0051] The term “heteroatom-unsubstituted C$_n$-acyl” refers to a radical, having a single carbon atom of a carbonyl group as the point of attachment, further having a linear or branched, cyclic or acyclic structure, further having a total of n carbon atoms, 0 or more hydrogen atoms, a total of one oxygen atom, and no additional heteroatoms. For example, a heteroatom-unsubstituted C$_1$-C$_{10}$-acyl has 1 to 10 carbon atoms. The groups, -COH, -COCH$_3$, -COCH$_2$CH$_3$, -COCH$_3$CH$_2$CH$_3$, -COCH$_2$H$_2$CH$_3$, -COCH$_2$H$_2$CH$_2$CH$_3$, -COCH$_2$H$_2$CH$_2$CH$_2$CH$_3$, -COCH$_2$H$_2$CH$_2$CH$_2$CH$_2$CH$_3$, and -COCH$_2$H$_2$CH$_2$CH$_2$CH$_2$CH$_2$CH$_3$, are examples of heteroatom-unsubstituted acyl groups.

[0052] The term “heteroatom-substituted C$_n$-acyl” refers to a radical, having a single carbon atom as the point of attachment, the carbon atom being a part of a carbonyl group, further having a linear or branched, cyclic or acyclic structure, further having a total of n carbon atoms, 0 or more than one hydrogen atom, and at least one additional heteroatom in addition to the oxygen of the carbonyl group, wherein each additional heteroatom is independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. For example, a heteroatom-substituted C$_1$-C$_{10}$-acyl has 1 to 10 carbon atoms. The term heteroatom-substituted acyl includes carbamoyl, thiocarboxylate, and thiocarboxylic acid groups. The groups, -COCH$_2$CF$_3$, -COH, -COCH$_3$, -CO$_2$H, -CO$_2$CH$_3$, -CO$_2$CH$_2$CH$_3$, -CO$_2$CH(CH$_3$)$_2$, -CO$_2$CH(CH$_2$)$_2$, -CONH$_2$, -CONHCH$_3$, -CONHCH$_2$CH$_3$, -CONHCH$_2$CH$_2$CH$_3$, -CONHCH(CH$_3$)$_2$, -CONHCH(CH$_2$)$_2$, -CON(CH$_3$)$_2$, -CON(CH$_2$CH$_3$)$_2$, -CON(CH$_2$CH$_2$CH$_3$)$_2$, and -CONHCH$_3$, are examples heteroatom-substituted acyl groups.

[0053] The term “heteroatom-unsubstituted C$_n$-alkenyloxy” refers to a group, having the structure -OR, in which R is a heteroatom-unsubstituted C$_n$-alkyl, as that term is defined above. Heteroatom-unsubstituted alkenyloxy groups include: -OCH$_3$, -OCH$_2$CH$_3$, -OCH$_2$CH$_2$CH$_3$, -OCH$_2$CH$_2$CH$_2$CH$_3$, and -OCH$_2$CH$_2$CH$_2$CH$_2$CH$_3$. The term “heteroatom-substituted C$_n$-alkenyloxy” refers to a group, having the structure -OR, in which R is a heteroatom-substituted C$_n$-alkynyl, as that term is defined above.

[0054] The term “heteroatom-substituted C$_n$-alkenyloxy” refers to a group, having the structure -OR, in which R is a heteroatom-substituted C$_n$-alkynyl, as that term is defined above. For example, -OCH$_2$CF$_3$ is a heteroatom-substituted alkenyloxy group.

[0055] The term “heteroatom-unsubstituted C$_n$-alkenylamino” refers to a group, having the structure -NHR, in which R is a heteroatom-unsubstituted C$_n$-alkyl, as that term is defined above. For example, a heteroatom-substituted C$_1$-C$_{10}$-alkenylamino has 1 to 10 carbon atoms. The term “heteroatom-unsubstituted C$_n$-alkenylamino” includes groups, -NHCH$_3$, -NHCH$_2$CH$_3$, -NHCH$_2$CH$_2$CH$_3$, -NHCH$_2$CH$_2$CH$_2$CH$_3$, -NHCH$_2$CH$_2$CH$_2$CH$_2$CH$_3$, and -NHCH$_2$CH$_2$CH$_2$CH$_2$CH$_2$CH$_3$. The term “heteroatom-unsubstituted C$_n$-aryloxy” refers to a group, having the structure -OAr, in which Ar is a heteroatom-unsubstituted C$_n$-aryl, as that term is defined above. For example, -OCH$_2$CF$_3$ is a heteroatom-unsubstituted aryloxy group.

[0056] The term “heteroatom-unsubstituted C$_n$-alkenylamino” refers to a group, having the structure -OR, in which R is a heteroatom-substituted C$_n$-alkenyl, as that term is defined above. For example, -OCH$_2$CF$_3$ is a heteroatom-unsubstituted alkenyloxy group.

[0057] The term “heteroatom-unsubstituted C$_n$-alkynylamino” refers to a group, having the structure -NHR, in which R is a heteroatom-substituted C$_n$-alkynyl, as that term is defined above. For example, -OCH$_2$CF$_3$ is a heteroatom-unsubstituted alkynylamino group.

[0058] The term “heteroatom-unsubstituted C$_n$-alkynylamino” refers to a group, having the structure -NHR, in which R is a heteroatom-substituted C$_n$-alkynyl, as that term is defined above. For example, -OCH$_2$CF$_3$ is a heteroatom-unsubstituted alkynylamino group.

[0059] The term “heteroatom-unsubstituted C$_n$-aryloxy” refers to a group, having the structure -OAr, in which Ar is a heteroatom-unsubstituted C$_n$-aryl, as that term is defined above. For example, -OCH$_2$CF$_3$ is a heteroatom-unsubstituted aryloxy group.
of attachment, further having one or two saturated carbon atoms attached to the nitrogen atom, no carbon-carbon double or triple bonds, further having a linear or branched, cyclic or acyclic structure, further having a total of n carbon atoms, all of which are nonaromatic, 0, 1, or more than one hydrogen atom, and at least one additional heteroatom, that is, in addition to the nitrogen atom at the point of attachment, wherein each additional heteroatom is independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. For example, a heteroatom-substituted C1-C10-alkenylamino has 1 to 10 carbon atoms. The term "heteroatom-substituted Cn-alkenylamino" includes groups, having the structure -NHR, in which R is a heteroatom-substituted Cn-alkyl, as that term is defined above.

The term "heteroatom-unsubstituted Cn-alkenylamino" refers to a radical, having a single nitrogen atom as the point of attachment, further having one or two carbon atoms attached to the nitrogen atom, further having a linear or branched, cyclic or acyclic structure, further having a total of n carbon atoms, 0, 1, or more than one hydrogen atom, and at least one additional heteroatom, that is, in addition to the nitrogen atom at the point of attachment, wherein each additional heteroatom is independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. For example, a heteroatom-unsubstituted C2-C10-alkenylamino has 2 to 10 carbon atoms. The term "heteroatom-unsubstituted Cn-alkenylamino" includes groups, having the structure -NHR, in which R is a heteroatom-unsubstituted Cn-alkenyl, as that term is defined above. Examples of heteroatom-unsubstituted Cn-alkenylamino groups also include dialkynylamino and alkyl(alkynyl) amino groups.

The term "heteroatom-substituted Cn-alkenylamino" refers to a radical, having a single nitrogen atom as the point of attachment, further having one or two carbon atoms attached to the nitrogen atom, further having a linear or branched, cyclic or acyclic structure, further having a total of n carbon atoms, 0, 1, or more than one hydrogen atom, and at least one additional heteroatom, that is, in addition to the nitrogen atom at the point of attachment, wherein each additional heteroatom is independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. For example, a heteroatom-substituted C2-C10-alkenylamino has 2 to 10 carbon atoms. The term "heteroatom-substituted Cn-alkenylamino" includes groups, having the structure -NHR, in which R is a heteroatom-substituted Cn-alkenyl, as that term is defined above.

The term "heteroatom-unsubstituted Cn-alkenylamino" refers to a radical, having a single nitrogen atom as the point of attachment, further having one or two carbon atoms attached to the nitrogen atom, further having a linear or branched, cyclic or acyclic structure, containing at least one nonaromatic carbon-carbon double bond, a total of n carbon atoms, 4 or more hydrogen atoms, a total of one nitrogen atom, and no additional heteroatoms. For example, a heteroatom-unsubstituted C2-C10-alkenylamino has 2 to 10 carbon atoms. The term "heteroatom-unsubstituted Cn-alkenylamino" includes groups, having the structure -NHR, which R is a heteroatom-substituted Cn-alkenyl, as that term is defined above. An alkynylamino group includes dialkynylamino and alkyl(alkynyl) amino groups.

The term "heteroatom-substituted Cn-alkenylamino" refers to a radical, having a single nitrogen atom as the point of attachment, further having one or two carbon atoms attached to the nitrogen atom, further having a linear or branched, cyclic or acyclic structure, containing at least one carbon-carbon triple bond, a total of n carbon atoms, at least one hydrogen atom, a total of one nitrogen atom, and no additional heteroatoms. For example, a heteroatom-unsubstituted C2-C10-alkenylamino has 2 to 10 carbon atoms. The term "heteroatom-unsubstituted Cn-alkenylamino" includes groups, having the structure -NHR, in which R is a heteroatom-unsubstituted Cn-alkenyl, as that term is defined above. An alkynylamino group includes dialkynylamino and alkyl(alkynyl) amino groups.

The term "heteroatom-unsubstituted Cn-alkenylamino" refers to a radical, having a single nitrogen atom as the point of attachment, further having one or two carbon atoms attached to the nitrogen atom, further having a linear or branched, cyclic or acyclic structure, containing at least one carbon-carbon triple bond, a total of n carbon atoms, 0, 1, or more than one hydrogen atom, and at least one additional heteroatom, that is, in addition to the nitrogen atom at the point of attachment, wherein each additional heteroatom is independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. For example, a heteroatom-unsubstituted C2-C10-alkenylamino has 2 to 10 carbon atoms. The term "heteroatom-unsubstituted Cn-alkenylamino" includes groups, having the structure -NHR, which R is a heteroatom-unsubstituted Cn-alkenyl, as that term is defined above. An alkynylamino group includes dialkynylamino and alkyl(alkynyl) amino groups.

The term "heteroatom-unsubstituted Cn-alkenylamino" refers to a radical, having a single nitrogen atom as the point of attachment, further having one or two carbon atoms attached to the nitrogen atom, further having a linear or branched, cyclic or acyclic structure, containing at least one carbon-carbon triple bond, a total of n carbon atoms, 0, 1, or more than one hydrogen atom, and at least one additional heteroatom, that is, in addition to the nitrogen atom at the point of attachment, wherein each additional heteroatom is independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. For example, a heteroatom-unsubstituted C2-C10-alkenylamino has 2 to 10 carbon atoms. The term "heteroatom-unsubstituted Cn-alkenylamino" includes groups, having the structure -NHR, in which R is a heteroatom-unsubstituted Cn-alkenyl, as that term is defined above. A heteroatom-unsubstituted alkynylamino group includes diarylamino and alkyl(arylamino) groups.

The term "heteroatom-substituted Cn-arylamino" refers to a radical, having a single nitrogen atom as the point of attachment, further having a total of n carbon atoms, at least one hydrogen atom, at least one additional heteroatoms, that is, in addition to the nitrogen atom at the point of attachment, wherein at least one of the carbon atoms is incorporated into one or more aromatic ring structures, further wherein each additional heteroatom is independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. For example, a heteroatom-substituted C6-C10-arylamino has 6 to 10 carbon atoms. The term "heteroatom-substituted Cn-arylamino" includes groups, having the structure -NHR, in which R is a heteroatom-substituted Cn-aryl, as that term is defined above. A heteroatom-substituted arylamino group includes heteroarylaminogroups.

The term "heteroatom-unsubstituted Cn-arylamino" refers to a radical, having a single nitrogen atom as the point of attachment, further having one or two saturated carbon atoms attached to the nitrogen atom, further having a total of n carbon atoms, wherein at least 6 of the carbon atoms form an aromatic ring structure containing only carbon atoms, 8 or more hydrogen atoms, a total of one nitrogen atom, and no additional heteroatoms. For example, a heteroatom-unsubstituted C7-C10-arylamino has 7 to 10 carbon atoms. The term "heteroatom-unsubstituted Cn-arylamino"
includes groups, having the structure -NHR, in which R is a heteroatom-unsubstituted Cn-aralkyl, as that term is defined above. An aralkylamino group includes diaralkylamino groups.

The term "heteroatom-substituted Cn-aralkylamino" refers to a radical, having a single nitrogen atom as the point of attachment, further having a carbonyl group attached via its carbon atom to the nitrogen atom, further having a linear or branched, cyclic or acyclic structure, further having a total of n carbon atoms, 1 or more hydrogen atoms, a total of one oxygen atom, a total of one nitrogen atom, and no additional heteroatoms. For example, a heteroatom-substituted C9-C10-aralkylamino has 9 to 10 carbon atoms. The term "heteroatom-substituted Cn-aralkylamino" includes groups, having the structure -NHR, in which R is a heteroatom-substituted Cn-aralkyl, as that term is defined above. The term "heteroatom-substituted aralkylamino" includes the term "heteroaralkylamino."

The term "heteroatom-unsubstituted Cn-amido" refers to a radical, having a single nitrogen atom as the point of attachment, further having a carbonyl group attached via its carbon atom to the nitrogen atom, further having a linear or branched, cyclic or acyclic structure, further having a total of n carbon atoms, 1 or more hydrogen atoms, a total of one oxygen atom, a total of one nitrogen atom, and no additional heteroatoms. For example, a heteroatom-unsubstituted C10-amido has 1 to 10 carbon atoms. The term "heteroatom-unsubstituted Cn-amido" includes groups, having the structure -NHR, in which R is a heteroatom-unsubstituted Cn-acyl, as that term is defined above. The term amido includes N-alkyl-amido, N-aryl-amido, N-aralkyl-amido, acylamino, alkylcarbonylamino, arylcarbonylamino, and ureido groups. The group, -NHCOCH3, is an example of a heteroatom-unsubstituted amido group.

The term "heteroatom-substituted Cn-amido" refers to a radical, having a single nitrogen atom as the point of attachment, further having a carbonyl group attached via its carbon atom to the nitrogen atom, further having a linear or branched, cyclic or acyclic structure, further having a total of n carbon atoms, 1 or more hydrogen atoms, a total of one oxygen atom, a total of one nitrogen atom, and no additional heteroatoms. For example, a heteroatom-substituted C7-C10-amido has 7 to 10 carbon atoms. The term "heteroatom-unsubstituted Cn-amido" includes groups, having the structure -NHR, in which R is a heteroatom-unsubstituted Cn-acyl, as that term is defined above. The group, -NHCO2CH3, is an example of a heteroatom-substituted amido group.

The term "heteroatom-unsubstituted Cn-sulfonamido" refers to a radical, having a single nitrogen atom as the point of attachment, further having a sulfonyle group attached via its sulfur atom to the nitrogen atom, further having a linear or branched, cyclic or acyclic structure, further having a total of n carbon atoms, 1 or more hydrogen atoms, a total of one oxygen atom, a total of one nitrogen atom, and no additional heteroatoms. For example, a heteroatom-unsubstituted C7-C10-sulfonamido has 7 to 10 carbon atoms. The term "heteroatom-unsubstituted Cn-sulfonamido" includes groups, having the structure -NHR, in which R is a heteroatom-unsubstituted Cn-aralkyl, as that term is defined above. The group, -NHS(O)2CH3, is an example of a heteroatom-unsubstituted sulfonamido group.

The term "heteroatom-substituted Cn-sulfonamido" refers to a radical, having a single nitrogen atom as the point of attachment, further having a sulfonyle group attached via its sulfur atom to the nitrogen atom, further having a linear or branched, cyclic or acyclic structure, further having a total of n carbon atoms, 1 or more hydrogen atoms, a total of one oxygen atom, a total of one nitrogen atom, and no additional heteroatoms. For example, a heteroatom-substituted C7-C10-sulfonamido has 7 to 10 carbon atoms. The term sulfonamido includes N-alkyl-sulfonamido, N-aryl-sulfonamido, N-aralkyl-sulfonamido, sulfonamido, alkylsulfonamido, and arylsulfonamido groups. The group, -NHS(O)2CH3, is an example of a heteroatom-substituted sulfonamido group.

The term "heteroatom-unsubstituted Cn-alkylthio" refers to a group, having the structure -SR, in which R is a heteroatom-unsubstituted Cn-alkyl, as that term is defined above. The group, -SC6H5, is an example of a heteroatom-unsubstituted arylthio group.

The term "heteroatom-substituted Cn-alkylthio" refers to a group, having the structure -SR, in which R is a heteroatom-substituted Cn-alkyl, as that term is defined above.

The term "heteroatom-unsubstituted Cn-alkenylthio" refers to a group, having the structure -SR, in which R is a heteroatom-unsubstituted Cn-alkenyl, as that term is defined above.

The term "heteroatom-substituted Cn-alkenylthio" refers to a group, having the structure -SR, in which R is a heteroatom-substituted Cn-alkenyl, as that term is defined above.

The term "heteroatom-unsubstituted Cn-alkynylthio" refers to a group, having the structure -SR, in which R is a heteroatom-unsubstituted Cn-alkynyl, as that term is defined above.

The term "heteroatom-substituted Cn-alkynylthio" refers to a group, having the structure -SR, in which R is a heteroatom-substituted Cn-alkynyl, as that term is defined above.

The term "heteroatom-unsubstituted Cn-arylthio" refers to a group, having the structure -SR, in which R is a heteroatom-unsubstituted Cn-aryl, as that term is defined above.

The term "heteroatom-substituted Cn-arylthio" refers to a group, having the structure -SR, in which R is a heteroatom-substituted Cn-aryl, as that term is defined above.

The term "heteroatom-substituted Cn-aryltio" refers to a group, having the structure -SR, in which R is a heteroatom-unsubstituted Cn-aryl, as that term is defined above.

The term "heteroatom-substituted Cn-aryltio" refers to a group, having the structure -SR, in which R is a heteroatom-unsubstituted Cn-aryl, as that term is defined above.
heteroatom-substituted Cn-aryl, as that term is defined above.

[0087] The term "heteroatom-unsubstituted Cn-aralkylthio" refers to a group, having the structure -SAr, in which Ar is a heteroatom-unsubstituted Cn-aryl, as that term is defined above. The group, -SCH2C6H5, is an example of a heteroatom-unsubstituted aralkyl group.

[0088] The term "heteroatom-substituted Cn-aralkylthio" refers to a group, having the structure -SAr, in which Ar is a heteroatom-substituted Cn-aryl, as that term is defined above.

[0089] The term "heteroatom-unsubstituted Cn-acylthio" refers to a group, having the structure -SAc, in which Ac is a heteroatom-unsubstituted Cn-acyl, as that term is defined above. The group, -SCOCH3, is an example of a heteroatom-unsubstituted acylthio group.

[0090] The term "heteroatom-substituted Cn-acylthio" refers to a group, having the structure -SAc, in which Ac is a heteroatom-substituted Cn-acyl, as that term is defined above.

[0091] The term "heteroatom-unsubstituted Cn-alkylsilyl" refers to a radical, having a single silicon atom as the point of attachment, further having one, two, or three saturated carbon atoms attached to the silicon atom, further having a linear or branched, cyclic or acyclic structure, containing a total of n carbon atoms, all of which are nonaromatic, 5 or more hydrogen atoms, a total of 1 silicon atom, and no additional heteroatoms. For example, a heteroatom-unsubstituted C1-C10-alkylsilyl has 1 to 10 carbon atoms. An alkylsilyl group includes dialkylamino groups. The groups, -Si(CH3)3 and -Si(CH3)2C(CH3)3, are examples of heteroatom-unsubstituted alkylsilyl groups.

[0092] The term "heteroatom-substituted Cn-alkylsilyl" refers to a radical, having a single silicon atom as the point of attachment, further having at least one, two, or three saturated carbon atoms attached to the silicon atom, no carbon-carbon double or triple bonds, further having a linear or branched, cyclic or acyclic structure, further having a total of n carbon atoms, all of which are nonaromatic, 0, 1, or more than one hydrogen atom, and at least one additional heteroatom, that is, in addition to the silicon atom at the point of attachment, wherein each additional heteroatom is independently selected from the group consisting of N, O, F, Cl, Br, I, Si, P, and S. For example, a heteroatom-substituted C1-C10-alkylsilyl has 1 to 10 carbon atoms.

[0093] The term "pharmacologically acceptable salts," as used herein, refers to salts of compounds of this invention that are substantially non-toxic to living organisms. Typical pharmaceutically acceptable salts include those salts prepared by reaction of a compound of this invention with an inorganic or organic acid, or an organic base, depending on the substituents present on the compounds of the invention.

[0094] Examples of inorganic acids which may be used to prepare pharmaceutically acceptable salts include: hydrochloric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, phosphorous acid and the like. Examples of organic acids which may be used to prepare pharmaceutically acceptable salts include: aliphatic mono- and dicarboxylic acids, such as oxalic acid, carbonic acid, citric acid, succinic acid, phenyl-heteroatom-substituted alkanoic acids, aliphatic and aromatic sulfuric acids and the like. Pharmaceutically acceptable salts prepared from inorganic or organic acids thus include hydrochloride, hydrobromide, nitrate, sulfate, pyrosulfate, bisulfate, sulfate, bisulfate, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, hydrofluoride, acetate, propionate, formate, oxalate, citrate, lactate, p-toluensulfonate, methanesulfonate, maleate, and the like. Other suitable salts are known to one of ordinary skill in the art.

[0095] Suitable pharmaceutically acceptable salts may also be formed by reacting the agents of the invention with an organic base such as methylamine, ethylamine, ethanolamine, lysine, ornithine and the like. Other suitable salts are known to one of ordinary skill in the art.

[0096] Pharmaceutically acceptable salts include the salts formed between carboxylate or sulfonate groups found on some of the compounds of this invention and inorganic cations, such as sodium, potassium, ammonium, or calcium, or such organic cations as isopropylammonium, trimethylammonium, tetramethylammonium, and imidazolium.

[0097] It should be recognized that the particular anion or cation forming a part of any salt of this invention is not critical, so long as the salt, as a whole, is pharmacologically acceptable and as long as the anion or cation does not contribute undesired qualities or effects. Further, additional pharmaceutically acceptable salts are known to those skilled in the art, and may be used within the scope of the invention. Additional examples of pharmaceutically acceptable salts and their methods of preparation and use are presented in Pharmaceutical Salts: Properties, Selection and Use-A Handbook (2002), which is incorporated herein by reference.

[0098] As used herein, the term "patient" is intended to include living organisms in which certain conditions as described herein can occur. Examples include humans, monkeys, cows, sheep, goats, dogs, cats, mice, rats, and transgenic species thereof. In a preferred embodiment, the patient is a primate. In an even more preferred embodiment, the primate is a human. Other examples of subjects include experimental animals such as mice, rats, dogs, cats, goats, sheep, pigs, and cows. The experimental animal can be an animal model for a disorder, e.g., a transgenic mouse with an Alzheimer's type neuropathology. A patient can be a human suffering from a neurodegenerative disease, such as Alzheimer's disease, or Parkinson's disease.

[0099] As used herein, the term "IC₅₀" refers to an inhibitory dose which is 50% of the maximum response obtained.

[0100] As used herein, the term "water soluble" means that the compound dissolves in water at least to the extent of
0.010 mole/liter or is classified as soluble according to literature precedence.

[0101] As used herein, "predominantly one enantiomer" means that the compound contains at least 85% of one enantiomer, or more preferably at least 90% of one enantiomer, or even more preferably at least 95% of one enantiomer, or most preferably at least 99% of one enantiomer. Similarly, the phrase "substantially free from other optical isomers" means that the composition contains at most 5% of another enantiomer or diastereomer, more preferably 2% of another enantiomer or diastereomer, and most preferably 1% of another enantiomer or diastereomer.

[0102] As used herein the specification, "a" or "an" may mean one or more. As used herein in the claim(s), when used in conjunction with the word "comprising" or "having," the words "a" or "an" may mean one or more than one. As used herein "another" may mean at least a second or more.

[0103] Other abbreviations used herein are as follows: DMSO, dimethyl sulfoxide; iNOS, inducible nitric oxide synthase; COX-2, cyclooxygenase-2; NGF, nerve growth factor; IBMX, isobutylmethylxanthine; FBS, fetal bovine serum; GPDH, glyceraldehyde-3-phosphate dehydrogenase; H2O, water; HO-1, inducible heme oxygenase.

III. Caffeic acid, its derivatives and their analogs

[0104] The present invention provides caffeic-like compounds for the treatment of cell proliferative diseases such as cancer. The compounds of the present invention are shown above, in the summary of the invention, the claims, as well as the examples below.

IV Cell proliferative diseases

[0105] The term "cell proliferative diseases" refers to disorders resulting from abnormally increased and/or uncontrolled growth of cell(s) in a multicellular organism that results in harm (e.g., discomfort or decreased life expectancy) to the multicellular organism. Cell proliferative diseases can occur in animals or humans. Cancer is an example of a cell proliferative disease, and certain embodiments of the present invention are directed towards the treatment of cancer.

[0106] In certain embodiments, compounds and methods of the present invention may be used to treat a wide variety of cancerous states including, for example, melanoma, non-small cell lung, small cell lung, lung, hepatocarcinoma, retinoblastoma, astrocytoma, glioblastoma, leukemia, blood, brain, skin, eye, tongue, gum, neuroblastoma, head, neck, breast, pancreatic, renal, bone, testicular, ovarian, mesothelioma, cervical, gastrointestinal, lymphoma, colon, and/or bladder. The cancer may comprise a tumor made of cancer cells. These cancerous states may include cells that are cancerous, pre-cancerous, and/or malignant.

[0107] It is also anticipated that compounds of the present invention may also be used to treat cell proliferative diseases other than cancer. Other cell proliferative diseases that may be treated in certain embodiments of the present invention include, for example, rheumatoid arthritis, inflammatory bowel disease, osteoarthritis, leiomymas, adenomas, lipomas, hemangiomas, fibromas, vascular occlusion, restenosis, artherosclerosis, pre-neoplastic lesions (e.g., adenomatous hyperplasia, prostatic intraepithelial neoplasia), carcinoma in situ, oral hairy leukoplakia and/or psoriasis and the variant forms of psoriasis including psoriatic arthritis other skin inflammatory conditions such as urticaria, excema, atopic dermatitis, granuloma annulare, angiomas, basal cell carcinoma, squamous cell carcinoma, malignant melanoma, seborrheic dermatitis, rosacea other hyperactive autoimmune disorders such as rheumatoid arthritis, chronic active hepatitis, Hashimoto’s thyroiditis, lupus, connective tissue disorders, mixed connective tissue disorders, and neurologic inflammatory diseases such as multiple sclerosis, inflammatory leukoencephalitis.

[0108] The compounds of the present invention may function by selectively inhibiting STAT3 phosphorylation as has been described in Iwamaru et al., (2006), which is incorporated herein by reference. In those studies, WP1066, an inhibitor structurally related to AG490 but significantly more potent and active, against human malignant glioma U87-MG and U373-MG cells in vitro and in vivo. IC50 values for WP1066 were shown to be 5.6 μM in U87-MG cells and 3.7 μM in U373-MG cells, which represents 18-fold and eightfold increases in potency, respectively, over that of AG490. WP1066 activated Bax, suppressed the expression of c-myc, Bcl-XL and Mcl-1, and induced apoptosis. Systemic intraperitoneal administration of WP1066 in mice significantly (P<0.001) inhibited the growth of subcutaneous malignant glioma xenografts during the 30-day follow-up period. Immunohistochemical analysis of the excised tumors revealed that phosphorylated STAT3 levels in the WP1066 treatment group remained inhibited at 3 weeks after the final WP1066 injection, whereas tumors from the control group expressed high levels of phosphorylated STAT3. Compounds of the present invention may even be more potent than WP1066. For example, as shown in Fig. 34, compound WP1193 was shown to inhibit STAT3 phosphorylation potently than WP1066 inhibits. Given the structural similarity between the compounds of the present invention and the compounds tested in Iwamaru et al., 2006, the invention contemplates that the compounds of the present invention will be effective to treat a variety of cancer types, including: human malignant gliomas, which...
are the most common malignancies in the brain, and astrocytic tumors of World Health Organization grades II-IV (2002). The invention further contemplates that the compounds of the present invention will be useful to treat those tumors in which the STAT3 is constitutively activated, such as those cancers described in Yu and Jove (2004), which is incorporated herein by reference. These tumors include solid tumors, such as breast cancer, head and neck cancer, melanoma, ovarian cancer, lung cancer, pancreatic cancer and prostate cancer, and blood tumors, such as multiple myeloma, leukemias (e.g. HTLV-I-dependent, acute myelogenous leukemia, large granular lymphocyte leukemia), and lymphomas (e.g. EBV-related/Burkitt’s, mycosis fungoides, cutaneous T-cell lymphoma, non-Hodgkin’s lymphoma and anaplastic large-cell lymphoma). The compounds of the present invention are also expected to be able to penetrate the blood brain barrier, based on their structural similarity to WP1066.

Additionally, compounds of the present invention may be used to treat diseases other than hyperproliferative diseases. For example, certain WP compounds may be useful for the treatment of hypertrophy and ischemia (U.S. Patent 6,433,018) as well as hepatitis B infection (U.S. Patent 6,420,338). Thus compounds of the present invention may also be useful for the treatment of other diseases including hypertrophy, ischemia, and a viral infection (e.g., hepatitis B infection), psoriasis and the variant forms of psoriasis including psoriatic arthritis other skin inflammatory conditions such as urticaria, excema, atopic dermatitis, granuloma annulare, angiomas, basal cell carcinoma, squamous cell carcinoma, malignant melanoma, seborheic dermatitis, rosacea other hyperactive autoimmune disorders such as rheumatoid arthritis, chronic active hepatitis, Hashimoto’s thyroiditis, lupus, connective tissue disorders, mixed connective tissue disorders, and neurologic inflammatory diseases such as multiple sclerosis, inflammatory leukoencephalitis ...

V. Pharmaceutical Compositions

[0110] The anti-tumor compounds of this invention can be administered to kill certain cells involved in a cell proliferative disease, such as tumor cells, by any method that allows contact of the active ingredient with the agent’s site of action in the tumor. They can be administered by any conventional methods available for use in conjunction with pharmaceuticals, either as individual therapeutically active ingredients or in a combination of therapeutically active ingredients. They can be administered alone but are generally administered with a pharmaceutically acceptable carrier selected on the basis of the selected route of administration and standard pharmaceutical practice.

[0111] Aqueous compositions of the present invention will have an effective amount of the compounds to kill or slow the growth of cancer cells. Such compositions will generally be dissolved or dispersed in a pharmaceutically acceptable carrier or aqueous medium.

[0112] The terms “AG compounds” and “WP compounds” refer to specific examples of the present invention.

[0113] The phrases “pharmaceutically or pharmacologically acceptable” refer to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to an animal, or human, as appropriate. As used herein, “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredients, its use in the therapeutic compositions is contemplated. Supplementary active ingredients, such as other anti-cancer agents, can also be incorporated into the compositions.

[0114] In addition to the compounds formulated for parenteral administration, such as intravenous or Intramuscular injection, other pharmaceutically acceptable forms include, e.g., tablets or other solids for oral administration; time release capsules; and any other form currently used, including cremes, lotions, mouthwashes, inhalants, lipid carriers, liposomes and the like.

A. Parenteral Administration

[0115] The active compounds will often be formulated for parenteral administration, e.g., formulated for injection via the intravenous, intramuscular, subcutaneous, or even intraperitoneal routes. The preparation of an aqueous composition that contains an anthracycline of the present invention as an active ingredient will be known to those of skill in the art in light of the present disclosure. Typically, such compositions can be prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for using to prepare solutions or suspensions upon the addition of a liquid prior to injection can also be prepared; and the preparations can also be emulsified.

[0116] Solutions of the active compounds as free base or pharmaceutically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

[0117] In some forms, it will be desirable to formulate the compounds in salt form, generally to improve the solubility and bioavailability and to provide an active drug form more readily assimilated. As used herein, the term "pharmaceutically acceptable salt" refers to compounds which are formed from acidifying a substituted anthracycline solution with suitable
physiologically tolerated acids. Suitable physiologically tolerated acids are organic and inorganic acids, such as hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, citric acid, oxalic acid, malonic acid, salicylic acid, maleic acid, methane sulfonic acid, isothionic acid, lactic acid, glucronic acid, glucuronic acid, amidosulfuric acid, benzoic acid, tartaric acid and pamoic acid. Typically, such salt forms of the active compound will be provided or mixed prior to use.

[0118] The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil or aqueous propylene glycol; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. In all cases the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.

[0119] The active compounds may be formulated into a composition in a neutral or salt form. Pharmaceutically acceptable salts, include the acid addition salts and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like.

[0120] The compounds of the present invention may also be formulated into a composition comprising liposomes or any other lipid carrier. Liposomes include: multivesicular liposomes, multilamellar liposomes, and unilamellar liposomes.

[0121] The carrier can also be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

[0122] Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

[0123] In certain cases, the therapeutic formulations of the invention could also be prepared in forms suitable for topical administration, such as in creams and lotions. These forms may be used for treating skin-associated diseases, such as various sarcomas.

[0124] Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, with even drug release capsules and the like being employable.

[0125] For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, sterile aqueous media which can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage could be dissolved in 1 mL of isotonic NaCl solution and either added to 1000 mL of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, "Remington’s Pharmaceutical Sciences" 15th Edition, pages 1035-1038 and 1570-1580). Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject.

B. Oral Administration

[0126] In certain embodiments, active compounds may be administered orally. This is contemplated for agents which are generally resistant, or have been rendered resistant, to proteolysis by digestive enzymes. Such compounds are contemplated to include all those compounds, or drugs, that are available in tablet form from the manufacturer and derivatives and analogues thereof.

[0127] For oral administration, the active compounds may be administered, for example, with an inert diluent or with an assimilable edible carrier, or they may be enclosed in hard or soft shell gelatin capsule, or compressed into tablets, or incorporated directly with the food of the diet. For oral therapeutic administration, the active compounds may be incorporated with excipients and used in the form of ingestible tablets, buccal tables, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least 0.1% of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of the unit. The amount of active compounds in such therapeutically useful compositions
is such that a suitable dosage will be obtained.

[0128] The tablets, troches, pills, capsules and the like may also contain the following: a binder, as gum tragacanth, acacia, cornstarch, or gelatin; excipients, such as dicalcium phosphate; a disintegrating agent, such as corn starch, potato starch, alginic acid and the like; a lubricant, such as magnesium stearate; and a sweetening agent, such as sucrose, lactose or saccharin may be added or a flavoring agent, such as peppermint, oil of wintergreen, or cherry flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup of elixir may contain the active compounds sucrose as a sweetening agent methyl and propylparabens as preservatives, a dye and flavoring, such as cherry or orange flavor. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compounds may be incorporated into sustained-release preparation and formulations.

[0129] Upon formulation, the compounds will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms, such as those described below in specific examples.

VI. Therapies

[0130] One of the major challenges in oncology today is the effective treatment of a given tumor. Tumors are often resistant to traditional therapies. Thus, a great deal of effort is being directed at finding efficacious treatment of cancer. One way of achieving this is by combining new drugs with the traditional therapies. In the context of the present invention, it is contemplated that therapies using the compounds could be used in combination with surgery, chemotherapy, radiotherapy, and/or a gene therapy.

[0131] "Effective amounts" or a "therapeutically relevant amount" are those amounts of a compound sufficient to produce a therapeutic benefit (e.g., effective to reproducibly inhibit decrease, reduce, inhibit or otherwise abrogate the growth of a cancer cell). An effective amount, in the context of treating a subject, is sufficient to produce a therapeutic benefit. The term "therapeutic benefit" as used herein refers to anything that promotes or enhances the well-being of the subject with respect to the medical treatment of the subject's cell proliferative disease. A list of nonexhaustive examples of this includes extension of the patients life by any period of time; decrease or delay in the neoplastic development of the disease; decrease in hyperproliferation; reduction in tumor growth; delay of metastases; reduction in the proliferation rate of a cancer cell, tumor cell, or any other hyperproliferative cell; induction of apoptosis in any treated cell or in any cell affected by a treated cell; and/or a decrease in pain to the subject that can be attributed to the patient's condition.

[0132] The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

[0133] The invention is summarized by the following items:

1. A compound selected from the group consisting of:

 ![Chemical Structure](image)

 wherein R_1 is -H or cyano and R_2 is heteroatom-substituted or heteroatom-unsubstituted C$_3$-C$_7$-cycloalkyl;
wherein X_1 is halo and R_3 is heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_7$-cycloalkyl, C$_6$-C$_{10}$-aryl, or C$_7$-C$_{10}$-aralkyl;

wherein X_2 is halo and R_4 is hydroxy or heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-acyloxy;

wherein:

- X_3 is halo or heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl or C$_1$-C$_{10}$-alkoxy,
- R_5 is -H or cyano, and
- R_6 is heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl, C$_1$-C$_7$-cycloalkyl, C$_1$-C$_{10}$-acyloxy, C$_6$-C$_{10}$-aryl, or C$_7$-C$_{10}$-aralkyl;

wherein:

- X_4 is halo or heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl or C$_1$-C$_{10}$-alkoxy,
- R_7 is -H or cyano, and
- R_8 is heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl, C$_1$-C$_7$-cycloalkyl, C$_1$-C$_{10}$-acyloxy, C$_6$-C$_{10}$-aryl, or C$_7$-C$_{10}$-aralkyl;
wherein:

X_5 is heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl or C$_1$-C$_{10}$-alkoxy,
R_9 is -H or cyano, and
R_{10} is heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl, C$_1$-C$_{7}$-cycloalkyl, C$_1$-C$_{10}$-acyloxy, C$_6$-C$_{10}$-aryl, or C$_7$-C$_{10}$-aralkyl;

wherein:

A is -C(O)- or -S(O)$_2$-, and
X_6 is halo or heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl or C$_1$-C$_{10}$-alkoxy,
R_{11} is heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl, C$_1$-C$_{7}$-cycloalkyl, C$_1$-C$_{10}$-acyloxy, C$_6$-C$_{10}$-aryl, or C$_7$-C$_{10}$-aralkyl;

wherein:

R_{12} is cyclododecyl, imidazoyl, or cyclohexenyl,
R_{13} is -H or heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl, C$_1$-C$_{7}$-cycloalkyl, C$_1$-C$_{10}$-acyloxy, C$_6$-C$_{10}$-aryl, or C$_7$-C$_{10}$-aralkyl; and

wherein:

X_7 is halo or heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl or C$_1$-C$_{10}$-alkoxy,
R_{14} is
and pharmaceutically acceptable salts, hydrates, amine-N-oxides, imine-N-oxides, tautomers, and optical isomers thereof.

2. The compound of item 1, wherein \(R_2 \) is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

3. The compound of item 1, wherein \(R_3 \) is selected from the group consisting of phenyl, benzyl, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

4. The compound of item 1, wherein \(X_1 \) or \(X_2 \) is selected from the group consisting of \(-F\), \(-Cl\), \(-Br\) and \(-I\).

5. The compound of item 1, wherein \(R_4 \) is selected from a group consisting of hydroxy, acetoxy and 2,2-dimethylpropionyloxy.

6. The compound of item 1, wherein \(X_3 \) or \(X_4 \) is selected from the group consisting of methoxy, \(-F\), \(-Cl\), \(-Br\) and \(-I\).

7. The compound of item 1, wherein \(R_6 \) or \(R_8 \) is selected from the group consisting of methyl and cyclopropyl.

8. The compound of item 1, wherein \(X_5 \) is selected from a group consisting of ethyl and acetoxyethyl.

9. The compound of item 1, wherein \(A \) is \(-S(O_2)-\).

10. The compound of item 1, having the formula:

11. The compound of item 1, having the formula: substantially free from other enantiomers.

12. The compound of item 1, having the formula: substantially free from other enantiomers.

13. The compound of item 1, having the formula: substantially free from other enantiomers.
14. The compound of item 1, having the formula: substantially free from other enantiomers.

15. The compound of item 1, having the formula: substantially free from other enantiomers.

16. The compound of item 1, having the formula: substantially free from other enantiomers.

17. The compound of item 1, having the formula: substantially free from other enantiomers.

18. The compound of item 1, having the formula:
19. The compound of item 1, having the formula:

substantially free from other enantiomers.

20. The compound of item 1, having the formula:

substantially free from other enantiomers.

21. The compound of item 1, having the formula:

substantially free from other enantiomers.

22. The compound of item 1, having the formula:

substantially free from other enantiomers.

23. The compound of item 1, having the formula:
substantially free from other enantiomers.
24. The compound of item 1, having the formula:

substantially free from other enantiomers.
25. The compound of item 1, having the formula:

substantially free from other enantiomers.
26. The compound of item 1, having the formula:

substantially free from other enantiomers.
27. The compound of item 1, having the formula:

substantially free from other enantiomers.
28. The compound of item 1, having the formula:

substantially free from other enantiomer.
29. The compound of item 1, having the formula:
30. The compound of item 1, having the formula:

31. The compound of item 1, having the formula:

32. The compound of item 1, having the formula:

33. The compound of item 1, having the formula:

34. The compound of item 1, having the formula:
35. The compound of item 1, having the formula:

substantially free from other enantiomers.

36. The compound of item 1, having the formula:

substantially free from other enantiomer.

37. The compound of item 1, having the formula:

38. The compound of item 1, having the formula:

substantially free from other enantiomers.

39. The compound of item 1, having the formula:
substantially free from other enantiomers.

40. The compound of item 1, having the formula:

substantially free from other enantiomers.

41. The compound of item 1, having the formula:

substantially free from other enantiomers.

42. The compound of item 1, having the formula:

substantially free from other enantiomers.

43. The compound of item 1, having the formula:

44. The compound of item 1, having the formula:
45. The compound of item 1, having the formula:

46. The compound of item 1, having the formula:

47. A compound comprising the chemical formula:

wherein:

A is selected from the group consisting of -C(O)- and -SO₂⁻;
R₁ is selected from the group consisting of: cyclododecyl,
where:

X₁, X₂, X₃, and X₄, are each independently selected from the group consisting of hydrogen, halo, alkyl, alkoxy, acetoxyl, alkylacetoxyl, -OH, trihalomethyl, and -NO₂;

Y₁ is selected from the group consisting of halo, -OH and -NO₂; and

R₂ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, alkylaryl, halo, hydrogen, -OH, -NO₂, thioether, amino, -SH, and -NH₂;

R₃ is selected from the group consisting of:

wherein Z₃ is a divalent alkyl; and

wherein m₁ = 1, 2, 3, or 4; and

R₄ is selected from the group consisting of: hydrogen, -CN, substituted amine, -CH₂S-alkyl, alkyl, and -CH₂N₃;

wherein:

R₅ and R₆ are each independently selected from the group consisting of:

R₂ and R₆ are each independently selected from the group consisting of:
monosaccharide, monosaccharide derivative, polysaccharide, polysaccharide derivative, aryl and alkylaryl; Z is selected from the group consisting of -NH, -S-, and -O-, and X₅ and X₆ are each independently selected from the group consisting of hydrogen, upper alkyl, lower alkyl, cycloalkyl, cycloaryalkyl, alkylaryl, aryl, alkoxy, hydroxyl, hydroxyalkyl, alkylester, alkylesteralkyl, alkylacetoxy, or aryloxy; with the proviso that if R₄ = -CN, substituted amine, -CH₂S-alkyl, alkyl, or -CH₂N₃, then R₁ is selected from the group consisting of: cyclododecyl,
R\textsubscript{3} is:

where \(\text{X5 or X6} \) is upper alkyl, hydroxyl, aryl, alkoxy, aryloxy, cycloalkyl, cycloarylalkyl, alkylaryl, alkylester, alkylesteralkyl, alkylacetoxy, or aryloxy.

48. The compound of item 47, wherein \(\text{R3} \) is -CN.
49. The compound of item 47, wherein \(\text{R3} \) is hydrogen.
50. The compound of item 47, wherein \(\text{R2} \) is hydrogen.
51. The compound of item 47, wherein \(\text{Z3} \) is -C\textsubscript{2}H\textsubscript{4}-.
52. The compound of item 47, wherein \(\text{R1} \) is selected from the group consisting of:

53. The compound of item 47, wherein \(\text{R3} \) is:

54. The compound of item 47, wherein \(\text{R1} \) is:

55. The compound of item 47, wherein \(\text{R3} \) is:
56. The compound of item 47, wherein R₁ is:

57. The compound of item 56, wherein X₁ is a halo.
58. The compound of item 57, wherein the halo is -Br.
59. The compound of item 57, wherein the halo is -Cl.
60. The compound of item 56, wherein X₁ is alkyl.
61. The compound of item 60, wherein the alkyl is -CH₃.
62. The compound of item 56, wherein X₁ is alkylacetoxyl.
63. The compound of item 47, wherein R₁ is:

64. The compound of item 63, wherein X₁ is halo.
65. The compound of item 64, wherein the halo is -F.
66. The compound of item 64, wherein the halo is -Br.
67. The compound of item 63, wherein X₁ is methoxy.
68. The compound of item 63, wherein X₂ is a halo.
69. The compound of item 68, wherein the halo is -Br.
70. The compound of item 47, wherein R₁ is:
71. The compound of item 70, wherein X₁ is halo.
72. The compound of item 71, wherein the halo is -Br.
73. The compound of item 71, wherein the halo is -F.
74. The compound of item 47, wherein A is -C(=O)-.
75. The compound of item 47, wherein A is -SO₂-.
76. The compound of item 47, wherein Z is -NH₂.
77. The compound of item 47, wherein Z is -O₂-.
78. The compound of item 47, where A is -C(=O)- and Z is -NH₂.
79. The compound of item 47, wherein A is -C(=O)- and Z is -O₂-.
80. The compound of item 47, wherein A is -SO₂- and Z is -NH₂.
81. The compound of item 47, wherein R₃ is selected from the group consisting of:

\[\text{and} \]

82. The compound of item 81, wherein either one of X₅ or X₆ is independently or together selected from a group consisting of: hydrogen, cyclopropyl, cyclobutyl, -CH₃, -CH₂OH, cyclopentyl, -CH₂OAc, -CH₂OC(=O)CH₃, -CH₂C₆H₅, cyclohexyl and aryl.
83. The compound of item 47, wherein R₅ is:

\[\text{and} \]

84. The compound of item 47, wherein R₅ is selected from the group consisting of an alkylaryl having the structure:

\[\text{and} \]

an aryl having the structure:
wherein m=0, 1, 2, 3, 4, 5, 6, or 7 and
where X₅ and X₆ are each independently selected from the group consisting of hydrogen and alkyl, and
where R₇, R₈, R₉, R₁₀, and R₁₁ are each independently selected from the group consisting of hydrogen, halo, alkyl,
alkoxy, -OH, trihalomethyl, and -NO₂.

85. The compound of item 47, where R₅ is selected from the group consisting of:

86. A method of treating a cell proliferative disease comprising administering to a subject an amount of a first
compound effective to treat the cell proliferative disease, wherein the first compound is caffeic acid, the benzyl ester
of caffeic acid, or a compound of claims 1 or 47.

87. The method of item 86, wherein the subject is a mammal.

88. The method of item 87, wherein the mammal is a human.

89. The method of item 86, wherein the first compound is comprised in a pharmaceutically acceptable excipient,
diluent, or vehicle.

90. The method of item 86, wherein the cell proliferative disease is cancer.

91. The method of item 90, wherein the cancer is melanoma, non-small cell lung, small cell lung, lung, hepatocar-
cinoma, retinoblastoma, astrocytoma, glioblastoma, leukemia, blood, brain, skin, eye, tongue, gum, neuroblastoma,
head, neck, breast, pancreatic, renal, bone, testicular, ovarian, mesothelioma, cervical, gastrointestinal, lymphoma,
colon, or bladder.

92. The method of item 86, wherein the cell proliferative disease is rheumatoid arthritis, inflammatory bowel disease,
osteoarthritis, leiomyomas, adenomas, lipomas, hemangiomas, fibromas, vascular occlusion, restenosis, arth-
sclerosis, a pre-neoplastic lesion, carcinoma in situ, oral hairy leukoplakia, or psoriasis.

93. The method of item 86, wherein STAT3 activation is reduced in a cell of the subject.

94. The method of item 86, wherein c-myc expression is reduced in a cell of the subject.

95. The method of item 86, wherein the first compound is administered in combination with a therapeutically relevant
amount of a second compound.

96. The method of item 95, wherein the second compound is an anti-cancer compound.

97. The method of item 86, wherein the first compound is administered in combination with a surgery, a radiation
therapy, or a gene therapy.

EXAMPLE 1

General Method for Synthesis of Compounds

[0134] The following scheme shows a method for preparation of a specific caffeic acid analog. By using analogs of
the starting materials indicated, a person of skill in the art may use this method to make other caffeic acid analogs.

39
Preparation of 2-methyl-1-oxido-6-substituted pyridines.

[0135] Hydrogen peroxide (1 ml of 35%, w/v, 10 mmol) was added to a solution of the pyridine compound (10 mmol) in glacial acetic acid (6 ml), and the mixture was heated at 70-80°C with stirring for 3 hr. Additional aliquot of 35% (w/v) H₂O₂ was added and the reaction was allowed to proceed for 9 hr at 70-80°C. The volume of the reaction mixture was reduced in vacuum, water (2 ml) was added, the mixture was concentrated in vacuum, and the residue was made alkaline using dry Na₂CO₃. Chloroform (5 ml) was added, this mixture was allowed to stand at 25°C for 5 min., and the insoluble Na₂CO₃ and NaOAc were removed by filtration. Drying the filtrate (sodium sulfate) and removal of the solvent in vacuum gave the target product. Yield depend on substituent in position 2 55% to 85%. Products without further purification were used in the next step.

General method for the preparation of 2-(acetoxymethyl)-6-substitued pyridines.

[0136] A solution of the 2-methyl-1-oxido-3-substituted pyridine (6 mmol) in acetic anhydride (4.32g, 42 mmol, 4 ml) was refluxed for 1 hr. Ethanol (3 ml) was added to the reaction mixture, and the reaction was allowed to proceed at reflux for 10 min. The reaction mixture was cooled in an ice-water bath poured onto water (10 ml), and neutralized with 10% aqueous NaHCO₃. Extraction with ether (2x25 ml), washing the extract with brine solution (10 ml), drying the organic fraction (sodium sulfate), and removal of the solvent in vacuum gave a residue. Purification of the residue by silica gel column chromatography using hexanes/ethyl acetate (70/30, v/v) as eluent afforded the respective product as an oil, which was subsequently used for the preparation of 2-hydroxymethyl-6-substituted-pyridines.

General method for the preparation of 2-hydroxymethyl-6-substituted-pyridines.

[0137] A mixture of a 2-(acetoxymethyl)-6-substitutedpyridine (5 mmol), IN NaOH (6 ml) and MeOH (12 ml) was stirred at 25°C for 1.5 hr. The reaction mixture was poured onto water (30 ml) Extraction with ethyl acetate (2 x 50 ml), washing the EtOAc extract with brine (10 ml), drying the ethyl acetate fraction (Na₂SO₄), and removal of the solvent in vacuum gave the residue. Purification of the residue by silica gel column chromatography using hexanes/ethyl acetate (60/40, v/v) as eluent afforded the respective product as an oil, which was subsequently used for the preparation of 6- substituted-2-pyridinecarboxyaldehydes.

General method for the preparation of 6-substituted-2-pyridinecarboxyaldehydes.

[0138] A solution of anhydrous H₃PO₄ in DMSO (1.5 ml of 1.0M) was added to a solution of the 6-substituted-2-(hydroxymethyl)-pyridine (3 mmol) and N,N-dicyclohexylcarbodiimide (1.86g, 9 mmol) in DMSO (7 ml), and the reaction
was allowed to proceed with stirring at 25°C for 1.5 hr. The precipitated dicyclohexylurea was filtered, the filtered solid was washed with ether (15 ml), and the water wash was extracted with ether (2 x 30 ml). The combined organic solutions were washed with brine (10 ml), the organic fraction was dried (sodium sulfate), and the solvent was removed in vacuum. The residue obtained was purified by silica gel column chromatography using ether/hexanes (40/60, v/v), as eluent to afford the respective product.

Preparation of the ligand: (S)-2-amino-3-methyl-1,1-diphenylbutan-1-ol

A solution of phenylmagnesium bromide (3.0 M, 600 mL, 1.7 mol) in diethyl ether was stirred at 0°C and diluted with THF (300 mL), followed by portionwise addition of L-valine methyl ester hydrochloride (50g, 0.298 mol) while keeping the temperature below 10°C. After stirring for 3 hr at rt, the reaction mixture was poured slowly into ice-cold ammonium chloride solution. Diethyl ether (500 mL) and ethyl acetate (500 mL) were added to the mixture. After separation of the phases, the aqueous phase was re-extracted with tert-butylmethyl ether (1L). The combined organic phases were stirred at 0°C and acidified slowly with 35% hydrochloric acid (about 40 mL) and water. The hydrochloride precipitate thus formed was filtered off and rinsed with tert-butylmethyl ether. The mixture was then taken up in dichloromethane (1L) and water (1L) and basified at 0°C with 35% sodium hydroxide (about 50 mL). After separation of the phases the aqueous phase was re-extracted with dichloromethane (1L). The combined organic phases were washed with water and then with brine, dried over sodium sulfate and concentrated. After crystallization from iso-propyl ether (S)-2-amino-3-methyl-1,1-diphenylbutan-1-ol was obtained (61 g, 87%).

Synthesis of enantiomeric amines.

A solution of (S)-2-amino-3-methyl-1,1-diphenylbutan-1-ol (47 mmol, 12g) in THF (80 mL) was stirred at temperature below 30°C followed by slow addition of borane-tetrahydrofuran solution (1M, 95 mL). The temperature was allowed to rise to room temperature over 2 h. The reaction mixture was then stirred at 0°C and the solution of pure anti-cyclopropyl(phenyl)methanemethyl oxide (19 mmol, 5g), in THF (10 mL) was added. After stirring the mixture for 20 h at room temperature, the reaction mixture was cooled to 0°C and treated with hydrochloric acid (2N, 100 mL). The mixture was stirred for 16 h then basified at 0°C by addition of 35% sodium hydroxide (100 mL) followed by extraction with ethyl acetate. Extract was washed with water and brine, dried over sodium sulfate and evaporated to dryness. Amine was purified by LC (BIOTAGE SP1 Purification system), using chloroform : methanol (gradient up to 25% of methanol) to give 2.1g of (S)-cyclopropyl(phenyl)methanamine, yield 72%.

Preparation of ethyl cyanoacetate.

The mixture of cyanoacetic acid (1 mmol), ethyl alcohol (1 ml) and p-toluenesulfonic acid (0.1 mmol) were refluxed with toluene (20 ml) for 12 hr. The reaction mixture was washed with sat. sodium bicarbonate, then with water until neutral. Organic solution was dried over sodium sulfate. The drying agent and solvents were removed, and crude ester was distilled under reduced pressure 97-98°C/21.3 hPa (16 mmHg). Yield 72%.

Preparation of N-(Phenylalkyl)cinnamides (General Procedure)

The mixture of (S)-cyclopropyl(phenyl)methanamine (4.1.2g, 28 mmol) and ethyl cyanoacetate (9.4 g, 84 mmol) in toluene (10 mL) was prepared and stirred under reflux for 4 hr. Progress of the reaction was monitored by TLC method. After reaction was completed the solvent was evaporated to dryness. Product was purified using LC (Biotage SP1, purification system) to give 4.08g (68%) of N-((S)-cyclopropyl(phenyl)methyl)-2-isocyanoacetamide as an intermediate.

A mixture of N-((S)-cyclopropyl(phenyl)methyl)-2-isocyanoacetamide (1 mmol), 6- substituted-2-pyridinecarboxaldehyde (1mmol), and piperidine (catalytic, 1 drop) in acetonitrile (50 ml) was prepared and refluxed for 24 hr. Solvent was evaporated to dryness and product was purified using LC (Biotage SP1, purification system) to give WP1140 (WP1193) as a white powder (50%).

Synthesis of WP1204

[0144]
Synthesis of N-((S)-1-phenylethyl)acrylamide

[0145] S-(α)-Methylbenzylamine (6 mL) was dissolved in dry dichloromethane (10 mL), cooled down to 0°C and then the acryl chloride (4 mL) was added dropwise. The reaction mixture was stirred at room temperature for 15 min, then solvent was evaporated to dryness. Crude product was purified by column chromatography using hexanes, hexanes:ethyl acetate 9:1 to give with a good yield a pure N-((S)-1-phenylethyl)acrylamide.

Synthesis of (E)-3-(6-bromopyridin-2-yl)-N-((S)-1-phenylethyl)acrylamide

[0146] To the solution of triphenylphosphine (0.496 mmol) in DMF (10 mL), a palladium acetate (0.245 mmol) was added at room temperature under argon atmosphere. The mixture was stirred for 5 min then 2,6-dibromopyridine (12.7 mmol) followed by N-((S))-1-phenylethyl)acrylamide (14.0 mmol) and triethylamine (35.9 mmol) were added and the reaction mixture was stirred at 140°C for 7 hr. The majority of the solvent was removed under diminished pressure. Diluted HCl was added and the product was extracted with ethyl acetate. Organic layers were combined, washed with brine, dried over sodium sulfate. Drying agent and solvent was removed and product was purified by column chromatography using hexanes and hexanes:ethyl acetate 2:1 as eluents, to give pure product with a good yield.

EXAMPLE 2

NMR Chemical Shifts of Selected Compounds

[0147] The following compounds were prepared according to the procedure indicated above.

WP1082

(2E)-N-benzyl-2-cyano-3-(cyclohex-3-enyl)acrylamide

[0148] ¹H NMR (CDCl₃, δ) ppm 7.78 (d, 1H, J = 10.5 Hz, H-3), 7.40 - 7.32 (m, 5H, Haromat. from benzyl), 6.54 (bs, 1H, NH), 5.79 (m, 1H, H-3'), 5.71 (dddd, 1H, J = 11.8 Hz, J = 6.4 Hz, J = 4.3 Hz, J = 2.0 Hz, H-4'), 3.01 - 2.93 (m, 1H, H-1'), 4.57 (d, 2H, J = 5.7 Hz, CH₂ from benzyl), 2.23 - 2.14 (m, 3H, 2', 2', 6'), 2.05 - 2.00 (m, 1H, 6'), 1.86 - 1.83 (m, 1H, 6'), 1.66 - 1.60 (m, 2H, 5', 5')

WP1193

(E)-3-(6-bromopyridin-2-yl)-2-cyano-N-((S)-cyclopropyl(phenyl)methyl)acrylamide

[0149] ¹H NMR (CDCl₃, δ) ppm: 8.22 (s, 1H, H-3), 7.68 (dd, 1H, J = 8.9 Hz, J = 6.3 Hz, H-4'), 7.60 (d, 1H, J = 6.3 Hz, H-5'), 7.59 (d, 1H, J = 8.5 Hz, H-3'), 7.43 - 7.28 (m, 5H, phenyl), 7.02 (d, 1H, J = 7.5 Hz, NH), 4.53 (dd, 1H, J = J = 8.5 Hz, H-1'), 1.37 - 1.23 (m, 1H, H-2'), 0.74 - 0.64 (m, 2H, CH₂-cyclopropyl), 0.55 - 0.42 (m, 2H, CH₂-cyclopropyl)
WP1145

(E)-3-(6-bromopyridin-2-yl)-2-cyano-N-((S)-1,2-diphenylethyl)acrylamide

0150 1H NMR (CDCl$_3$, δ) ppm: 8.13 (s, 1H, H-3), 7.66 (dd, 1H, $J = 7.9$ Hz, $J = 7.3$ Hz, H-4$'$), 7.56 (dd, 1H, $J = 7.9$ Hz, $J = 1$ Hz, H-3$'$), 7.39 - 7.11 (m, 10H, phenyl), 6.93 (d, 1H, $J = 7.3$ Hz, NH), 5.38 (dd, 1H, $J = 7.7$ Hz, $J = 14.4$ Hz, H-1$''$), 3.25 (dd, 1H, $J = 14.3$ Hz, $J = 6.4$ Hz, H-2$''$), 3.17 (dd, 1H, $J = 14.3$ Hz, $J = 6.4$ Hz, H-2$'$)

WP1159

(E)-3-(6-bromopyridin-2-yl)-2-cyano-N-(2-phenoxyethyl)acrylamide

0151 1H NMR (CDCl$_3$, δ) ppm: 8.22 (s, 1H, H-3), 7.67 (dd, 1H, $J = 7.9$ Hz, $J = 7.3$ Hz, H-4$'$), 7.58 (dd, 1H, $J = 7.9$ Hz, $J = 1$ Hz, H-3$'$), 7.32 - 7.27 (m, 5H, phenyl), 7.00 - 6.91 (m, 2H, phenyl), 4.14 (t, 2H, $J = 5.1$ Hz, H-2$''$), 3.85 (dd, 2H, $J = 10.7$ Hz, $J = 5.1$ Hz, H-1$''$)

WP1163

(E)-3-(6-bromopyridin-2-yl)-2-cyano-N-((R)-cyclopropyl(phenyl)methyl)acrylamide

0152 1H NMR (CDCl$_3$, δ) ppm: 8.19 (s, 1H, H-3), 7.66 (dd, 1H, $J = 9.0$ Hz, $J = 6.4$ Hz, H-4$'$), 7.57 (d, 1H, $J = 9.0$ Hz, H-3$'$), 7.41 - 7.26 (m, 5H, phenyl), 7.01 (d, 1H, $J = 7.5$ Hz, NH), 4.50 (dd, 1H, $J = 8.3$ Hz, H-1$''$), 1.35 - 1.23 (m, 1H, H-2$''$), 0.72 - 0.62 (m, 2H, CH$_2$-cyclopropyl), 0.54 - 0.40 (m, 2H, CH$_2$-cyclopropyl)

WP1164

(E)-3-(6-bromopyridin-2-yl)-2-cyano-N-((S)-cyclobutyl(phenyl)methyl)acrylamide

0153 1H NMR (CDCl$_3$, δ) ppm: 8.18 (s, 1H, H-3), 7.65 (dd, 1H, $J = 7.5$ Hz, H-4$'$), 7.57 (d, 1H, $J = 7.5$ Hz, H-3$'$), 7.36 - 7.24 (m, 5H, phenyl), 6.74 (d, 1H, $J = 8.0$ Hz, NH), 5.05 (dd, 1H, $J = 9.0$ Hz, H-1$''$), 2.78 (dd, 1H, $J = 9.0$ Hz, H-2$''$), 2.16 - 1.75 (m, 6H, CH$_2$ from cyclobutyl)

WP1166

(E)-3-(6-bromopyridin-2-yl)-2-cyano-N-((S)-cyclohexyl (phenyl) methyl) acrylamide

0154 1H NMR (CDCl$_3$, δ) ppm: 8.19 (s, 1H, H-3), 7.68 (dd, 1H, $J = 8.0$ Hz, $J = 7.3$ Hz, H-4$'$), 7.59 (dd, 1H, $J = 8.0$ Hz, $J = 1$ Hz, H-5$'$), 7.58 (dd, 1H, $J = 7.3$ Hz, H-3$'$), 7.40 - 7.29 (m, 5H, phenyl), 6.90 (d, 1H, $J = 9.2$ Hz, NH), 4.87 (dd, 1H, $J = 8.5$ Hz, H-1$''$), 1.93 - 0.9 (m, 10H, H-cyclohexyl).

WP1167

(E)-3-(6-bromopyridin-2-yl)-2-cyano-N-((1S,2R-2,3-dihydro-2-hydroxy-1H-inden-1-yl)acrylamide

0155 1H NMR (DMSO-d$_6$, δ) ppm: 8.25 (s, 1H, H-3), 8.24 (d, 1H, $J = 8.2$ Hz, NH), 7.96 (dd, 1H, $J = 7.6$ Hz, H-4$'$), 7.89 (dd, 1H, $J = 7.6$ Hz, $J = 1.0$ Hz, H-5$'$), 7.82 (dd, 1H, $J = 7.6$ Hz, $J = 1.1$ Hz, H-3$'$), 7.27 - 7.21 (m, 4H, H aromat from inden), 5.39 (d, 1H, $J = 4.5$ Hz, OH), 5.34 (dd, 1H, $J = 8.5$ Hz, $J = 5.2$ Hz, H-1$''$), 4.53 (dd, 1H, $J = 8.2$ Hz, $J = 4.7$ Hz, J = 1.3 Hz, H-2$''$), 3.13 (dd, 1H, $J = 16.4$ Hz, $J = 5.3$ Hz, H-3$'$), 2.87 (d, 1H, $J = 16.4$ Hz, H-3$''$)

WP1168

(E)-3-(6-bromopyridin-2-yl)-2-cyano-N-((1R,2S)-2,3-dihydro-2-hydroxy-1H-inden-1-yl)acrylamide

0156 1H NMR (DMSO-d$_6$, δ) ppm: 8.25 (s, 1H, H-3), 8.24 (d, 1H, $J = 8.2$ Hz, NH), 7.96 (dd, 1H, $J = 7.6$ Hz, H-4$'$), 7.90 (dd, 1H, $J = 7.6$ Hz, $J = 1.0$ Hz, H-5$'$), 7.82 (dd, 1H, $J = 7.6$ Hz, $J = 1.0$ Hz, H-3$'$), 7.29 - 7.21 (m, 4H, H aromat from inden), 5.39 (d, 1H, $J = 4.5$ Hz, OH), 5.33 (dd, 1H, $J = 8.4$ Hz, $J = 5.2$ Hz, H-1$''$), 4.54 (dd, 1H, $J = 4.7$ Hz, $J = 1.8$ Hz, H-2$''$), 3.13 (dd, 1H, $J = 16.4$ Hz, $J = 5.2$ Hz, H-3$'$), 2.87 (dd, 1H, $J = 16.4$ Hz, $J = 1.3$ Hz, H-3$''$)

43
(E)-N-benzhydryl-3-(6-bromopyridin-2-yl)-2-cyanoacrylamide

1H NMR (CDCl₃, δ) ppm: 8.24 (s, 1H, H-3), 7.67 (dd, 1H, J = 7.6 Hz, H-4'), 7.60 (d, 1H, J = 7.6 Hz, H-5'), 7.59 (d, 1H, J = 7.6 Hz, H-3'), 7.40-7.27 (m, 10H, phenyl), 7.16 (d, 1H, J = 7.5 Hz, NH), 6.37 (d, 1H, J = 8.0 Hz, H-1")

(E)-2-cyano-3-(6-methylpyridin-2-yl)-N-((S)-1-phenylethyl)acrylamide

1H NMR (CDCl₃, δ) ppm: 8.29 (s, 1H, H-3), 7.70 (dd, 1H, J = 7.7 Hz, H-4'), 7.44 - 7.26 (m, 7H, H-3', H-5' and phenyl), 6.81 (d, 1H, J = 7.2 Hz, NH), 5.16 (dt, 1H, J = 14.2 Hz, J = 7.1 Hz, H-1"), 2.66 (s, 3H, Me from methylpyridin), 1.63 (d, 3H, J = 6.9 Hz, Me)

(E)-2-cyano-3-(6-methylpyridin-2-yl)-N-((R)-1-phenylethyl)acrylamide

1H NMR (CDCl₃, δ) ppm: 8.29 (s, 1H, H-3), 7.70 (dd, 1H, J = 7.8 Hz, H-4'), 7.44 - 7.26 (m, 7H, H-3', H-5' and phenyl), 6.81 (d, 1H, J = 7.2 Hz, NH), 5.16 (dt, 1H, J = 14.2 Hz, J = 7.1 Hz, H-1"), 2.66 (s, 3H, Me from methylpyridin), 1.63 (d, 3H, J = 7.1 Hz, Me)

(E)-2-cyano-3-(1H-imidazol-2-yl)-N-((S)-1-phenylethyl)acrylamide

1H NMR (CDCl₃, δ) ppm: 11.25 (bs, 1H, NH), 8.39 (s, 1H, H-3), 7.44 - 7.26 (m, 7H, H-2', H-3' and phenyl), 7.00 (bs, 1H, NH), 6.76 (d, 1H, J = 6.6 Hz, NHCO), 5.20 (dt, 1H, J = 14.0 Hz, J = 7.1 Hz, H-1"), 1.63 (d, 3H, J = 7.1 Hz, Me)

(E)-2-cyano-3-cyclododecyl-N-((S)-1-phenylethyl)acrylamide

1H NMR (CDCl₃, δ) ppm: 7.33 - 7.20 (m, 6H, H-3 and phenyl), 6.33 (d, 1H, J = 7.0 Hz, NH), 5.16 (dt, 1H, J = 14.4 Hz, J = 7.0 Hz, H-1"), 2.76 (ddd, 2H, J = 7.0 Hz, J = 3.5 Hz, H-2' or H-12'), 2.54 (dd, 2H, J = 7.6 Hz, H-2' or H-12'), 1.69 - 1.37 (m, 22H, Me and cyclododecyl).

(E)-3-(6-chloropyridin-2-yl)-2-cyano-N-((R)-cyclopropyl(phenyl)methyl)acrylamide

1H NMR (CDCl₃, δ) ppm: 8.25 (s, 1H, H-3), 7.79 (dd, 1H, J = 7.9 Hz, H-4'), 7.57 (d, 1H, J = 7.9 Hz, H-5'), 7.45 (d, 1H, J = 7.9 Hz, H-3'), 7.43 - 7.31 (m, 5H, phenyl), 7.0 (d, 1H, J = 7.5 Hz, NH), 4.54 (dd, 1H, J = 8.5 Hz, H-1"), 1.37 - 1.26 (m, 1H, H-2"), 0.75 - 0.65 (m, 2H, CH₂-cyclopropyl), 0.58 - 0.44 (m, 2H, CH₂-cyclopropyl)

(6-((E)-2-((S)-cyclopropyl(phenyl)methylcarbamoyl)-2-cyanovinyl)pyridin-2-yl)methyl acetate

1H NMR (CDCl₃, δ) ppm: 8.28 (s, 1H, H-3), 7.83 (dd, 1H, J = 7.8 Hz, H-4'), 7.52 (d, 1H, J = 7.8 Hz, H-5'), 7.45 (d, 1H, J = 7.8 Hz, H-3'), 7.43 - 7.29 (m, 5H, phenyl), 7.02 (d, 1H, J = 7.7 Hz, NH), 5.34 (s, 2H, CH₂Ac), 4.53 (dd, 1H, J = 8.4 Hz, H-1"), 2.22 (s, 3H, Ac), 1.37 - 1.26 (m, 1H, H-2"), 0.71 - 0.67 (m, 2H, CH₂-cyclopropyl), 0.53 - 0.45 (m, 2H, CH₂-cyclopropyl)
(E)-3-(6-bromopyridin-2-yl)-2-cyano-N-((R)-cyclobutyl(phenyl)methyl)acrylamide

[0164] 1H NMR (CDCl$_3$, δ) ppm: 8.24 (s, 1H, H-3), 7.68 (dd, 1H, J = 8.0 Hz, J = 7.1 Hz, H-4'), 7.59 (dd, 1H, J = 8.4 Hz, J = 1.0 Hz, H-5'), 7.58 (d, 1H, J = 7.5 Hz, J = 1.0 Hz, H-3'), 7.38 - 7.26 (m, 5H, phenyl), 6.75 (d, 1H, J = 8.5 Hz, NH), 5.08 (dd, 1H, J = 9.8 Hz, H-1"), 2.85 - 2.76 (m, 1H, H-2"), 2.16 - 1.78 (m, 6H, CH$_2$ from cyclobutyl)

(E)-3-(6-bromopyridin-2-yl)-2-cyano-N-((S)-1-hydroxy-3-phenylpropan-2-yl)acrylamide

[0165] 1H NMR (CDCl$_3$, δ) ppm: 8.22 (s, 1H, H-3), 7.71 (dd, 1H, J = 7.65 Hz, H-4'), 7.66 (d, 1H, J = 7.65 Hz, H-5'), 7.63 (d, 1H, J = 7.65 Hz, H-3'), 7.44 - 7.28 (m, 5H, phenyl), 6.85 (d, 1H, J = 7.1 Hz, NH), 4.4 - 4.37 (m, 1H, H-1"), 3.83 - 3.75 (dd, 1H, J = 1.1 Hz, J = 3.6 Hz, CH$_2$Ph), 3.08 (dd, 1H, J = 11 Hz, J = 4.9 Hz, CH$_2$Ph), 2.16 (bs, 1H, OH)

(E)-3-(6-bromopyridin-2-yl)-2-cyano-N-((R)-2-hydroxy-1-phenylethyl)acrylamide

[0166] 1H NMR (CDCl$_3$, δ) ppm: 8.26 (s, 1H, H-3), 7.71 (dd, 1H, J = 7.65 Hz, H-4'), 7.66 (d, 1H, J = 7.65 Hz, H-5'), 7.64 (d, 1H, J = 7.65 Hz, H-3'), 7.45 - 7.38 (m, 5H, phenyl), 7.27 (bs, 1H, NH), 5.29 - 5.26 (m, 1H, H-1"), 4.05 - 4.04 (m, 2H, CH$_2$OH), 2.06 (bs, 1H, OH)

(E)-2-cyano-3-(2-fluoropyridin-3-yl)-N-((S)-1-phenylethyl)acrylamide

[0167] 1H NMR (CDCl$_3$, δ) ppm: 8.61 (ddd, 1H, J = 9.4 Hz, J = 7.8 Hz, J = 1.5 Hz, H-6'), 8.51 (s, 1H, H-3), 8.31 (m, 1H, H-4'), 7.42 - 7.26 (m, 6H, H-5' and phenyl), 6.54 (d, 1H, J = 7.2 Hz, NH), 5.25 (dt, 1H, J = 14.1 Hz, J = 6.8 Hz, H-1"), 1.62 (d, 3H, J = 6.9 Hz, Me)

(E)-2-cyano-N-((S)-cyclopropyl(phenyl)methyl)-3-(2-fluoropyridin-3-yl)acrylamide

[0168] 1H NMR (CDCl$_3$, δ) ppm: 8.63 (ddd, 1H, J = 9.4 Hz, J = 7.9 Hz, J = 1.5 Hz, H-6'), 8.51 (s, 1H, H-3), 8.37 (m, 1H, H-4'), 7.41 - 7.27 (m, 6H, H-5' and phenyl), 6.77 (d, 1H, J = 7.1 Hz, NH), 4.51 (dd, 1H, J = 8.3 Hz, H-1"), 1.35 - 1.23 (m, 1H, H-2"), 0.73 - 0.41 (m, 4H, CH$_2$, from cyclopropyl)

(E)-2-cyano-3-(3-fluoropyridin-4-yl)-N-((S)-1-phenylethyl)acrylamide

[0169] 1H NMR (CDCl$_3$, δ) ppm: 8.65 (d, 1H, J = 1.5 Hz, H-2"), 8.59 (d, 1H, J = 5.1 Hz, H-6"), 8.52 (d, 1H, J = 0.6 Hz, H-3), 7.95 (dd, 1H, J = 5.4 Hz, H-5'), 7.42 - 7.29 (m, 5H, phenyl), 6.59 (d, 1H, J = 6.6 Hz, NH), 5.25 (dd, 1H, J = 7.2 Hz, H-1"), 1.62 (d, 3H, J = 6.9 Hz, Me)

(E)-3-(6-bromopyridin-2-yl)-2-cyano-N-((R)-cyclopentyl(phenyl)methyl)acrylamide

[0170] 1H NMR (CDCl$_3$, δ) ppm: 8.16 (s, 1H, H-3), 7.65 (dd, 1H, J = 8.0 Hz, H-4'), 7.58 (d, 1H, J = 7.9 Hz, H-5'), 7.55 (d, 1H, J = 8.00 Hz, H-3'), 7.36 - 7.28 (m, 5H, phenyl), 6.09 (d, 1H, J = 8.0 Hz, NH), 4.86 (dt, 1H, J = 9.5 Hz, H-1"), 2.37 (ddd, 1H, J = 10.2 Hz, J = 5.1 Hz, H-2"), 1.92 - 1.18 (m, 8H, CH$_2$ from cyclopentyl)
(E)-3-(3-bromopyridin-4-yl)-2-cyano-N-((S)-1-phenylethyl)acrylamide

\[0171\] 1H NMR (CDCl$_3$, δ) ppm: 8.87 (s, 1H, H-2'), 8.67 (d, 1H, J = 5.1 Hz, H-6'), 8.53 (s, 1H, H-3), 7.79 (dd, 1H, J = J = 5.1 Hz, H-5'), 7.41-7.29 (m, 5H, phenyl), 6.61 (d, 1H, J = 7.2 Hz, NH), 5.25 (dt, 1H, J = 14.2 Hz, J = 7.2 Hz, H-1''), 1.62 (d, 3H, J = 6.9 Hz, Me)

(E)-3-(5-bromopyridin-3-yl)-2-cyano-N-((S)-1-phenylethyl)acrylamide

\[0172\] 1H NMR (CDCl$_3$, δ) ppm: 8.86 (d, 1H, J = 2.1 Hz, H-6'), 8.79 (d, 1H, J = 2.1 Hz, H-2'), 8.46 (dd, 1H, J = J = 2.1 Hz, H-4'), 7.42 - 7.29 (m, 5H, phenyl), 6.55 (d, 1H, J = 8.1 Hz, NH), 5.25 (dt, 1H, J = 14.1 Hz, J = 6.9 Hz, H-1''), 1.62 (d, 3H, J = 6.9 Hz, Me)

(E)-3-(2-bromopyridin-3-yl)-2-cyano-N-((S)-1-phenylethyl)acrylamide

\[0173\] 1H NMR (CDCl$_3$, δ) ppm: 8.59 (d, 1H, J = 3.0 Hz, H-3), 8.47 (dd, 1H, J = 4.8 Hz, J = 1.8 Hz, H-6'), 8.28 (ddd, 1H, J = 7.5 Hz, J = 1.8 Hz, J = 0.6 Hz, H-4'), 7.41 (ddd, 1H, J = 8.1 Hz, J = 4.8 Hz, J = 0.6 Hz, H-5'), 7.39-7.29 (m, 5H, phenyl), 6.55 (d, 1H, J = 7.5 Hz, NH), 5.25 (dt, 1H, J = 14.1 Hz, J = 7.2 Hz, H-1''), 1.62 (d, 3H, J = 7.2 Hz, Me)

(E)-3-(6-bromopyridin-3-yl)-2-cyano-N-((S)-1-phenylethyl)acrylamide

\[0174\] \[0175\] 1H NMR (CDCl$_3$, δ) ppm: 8.66 (d, 1H, J = 2.1 Hz, H-2'), 8.27 (s, 1H, H-3), 8.23 (dd, 1H, J = 8.4 Hz, J = 2.4 Hz, H-4'), 7.63 (d, 1H, J = 7.8 Hz, H-5'), 7.35-7.26 (m, 5H, phenyl), 6.56 (d, 1H, J = 6.9 Hz, NH), 5.24 (dt, 1H, J = 14.1 Hz, J = 7.2 Hz, H-1''), 1.61 (d, 3H, J = 7.2 Hz, Me)

(R)-2-((E)-3-(6-bromopyridin-2-yl)-2-cyanoacrylamido)-2-phenylethyl acetate

\[0176\] 1H NMR (CDCl$_3$, δ) ppm: 8.19 (s, 1H, H-3), 7.67 (dd, 1H, J = 7.5 Hz, H-4'), 7.59 (dd, 1H, J = 7.5 Hz, J = 1.2 Hz, H-5'), 7.58 (dd, 1H, J = 7.5 Hz, J = 1.2 Hz, H-3'), 7.41 - 7.21 (m, 5H, phenyl), 7.22 (d, 1H, J = 7.8 Hz, NH), 5.40 (dt, 1H, J = 11.4 Hz, J = 6.0 Hz, H-1''), 4.43 (d, 2H, J = 6.3 Hz, CH$_2$OAc), 2.08 (s, 3H, OAc)

(R)-2-((E)-3-(6-bromopyridin-2-yl)-2-cyanoacrylamido)-2-phenylethyl pivalate

\[0177\] 1H NMR (CDCl$_3$, δ) ppm: 8.19 (s, 1H, H-3), 7.67 (dd, 1H, J = 8.7 Hz, J = 6.3 Hz, H-4'), 7.59 (d, 1H, J = 6.3 Hz, H-5'), 7.58 (d, 1H, J = 8.7 Hz, H-3'), 7.38 - 7.30 (m, 5H, phenyl), 7.26 (d, 1H, J = 6.5 Hz, NH), 5.43 (dt, 1H, J = 11.4 Hz, J = 5.4Hz, H-1''), 4.43 (d, 2H, J = 5.4 Hz, CH$_2$O), 2.08 (s, 9H, CH$_3$)

Synthesis of WP1201 ((S)-N-((E)-2-(6-bromopyridin-2-yl)vinylsulfonyl)-1-phenylethanamine)

\[0178\]
2-Chloroethanesulfonyl chloride (5.7 mmol, 930 mg) was dissolved in dichloromethane (10 mL). Obtained solution was cooled down to -78°C. Triethylamine (TEA), (5.7 mmol, 0.8 mL) was added, and the reaction mixture was stirred at -78°C for 30 min, then for 45 min at 0°C. The reaction mixture was cooled to -78°C and the mixture of (S)-methylbenzylamine (5.7 mmol, 690 mg) and TEA (5.7 mmol, 0.8 mL) in dichloromethane (10 mL) was added. Stirring at -78°C was continued for additional 20 min, then cooling bath was removed and the reaction mixture was stirred for 20 min at rt. Solvents were evaporated to dryness, and crude product was purified by LC chromatography (ISCO LC purification system) using hexanes:ethyl acetate gradient up to 50% ethyl acetate as eluent, to give 0.78 g of sulfonamide (A) (yield 65%).

Triphenylphosphine (1.1 mmol, 28 mg) was dissolved in DMF (3 mL). Palladium (II) acetate (0.53 mmol, 113.5 mg) was added and the mixture was stirred under Ar for 5 min. Sulfonamide (A) (2.8 mmol, 600 mg), 2.6-dibromopyridine (2.8 mmol, 640 mg), TEA (1 mL) and DMF (3 mL) were added and the mixture was heated under reflux for 2.5 hr. The reaction mixture was cooled down, then diluted with water (50 mL). Obtained mixture was extracted with ethyl acetate (3 x 50 mL). Combined extracts were dried over sodium sulfate. Product was purified by LC (BIOTAGE LC purification system) using hexanes:ethyl acetate gradient up to 50% ethyl acetate as eluent, to give 460 mg of WP1201 (yield 45%).

1HNMR (CDCl3, δ ppm): 7.55 (dd, 1H, J = 8.0 Hz, J = 7.4 Hz, H-4'), 7.46 (dd, 1H, J = 8.0 Hz, J = 0.9 Hz, H-5'), 7.33 - 7.20 (m, 5H, phenyl), 7.17 (dd, 1H, J = 7.4 Hz, J = 0.9 Hz, H-3'), 7.17 (d, 1H, J = 14.9 Hz, H-3), 7.09 (d, 1H, J = 14.9 Hz, H-2), 4.80 (d, 1H, J = 13.8 Hz, J = 6.9 Hz, H-1'), 1.59 (d, 3H, J = 6.9 Hz, Me)

EXAMPLE 3

General Assay Methods

Cell Cultures

Glioblastoma U87 and pancreatic cancer cell lines, AsPc-1, Panc-1, Colo357-FG and Colo357-L3.6 were maintained in DMEM with 10% fetal bovine serum (FBS), 100 mg/ml streptomycin, and 100 IU/ml penicillin in 5% CO2 at 37°C.

Tumor cell lines, were maintained in DMEM with 10% fetal bovine serum (FBS), 100 microg/ml streptomycin, and 100 IU/ml penicillin in 5% CO2 at 37°C.

AsPc-1: A human pancreatic tumor cell line established from the ascites of a patient with histopathologically confirmed adenocarcinoma of the head of the pancreas. See Chen et al. (1982).

Panc-1: An epithelioid cell line started from a human pancreatic carcinoma of ductal cell origin. See Lieber et al. (1975).

Colo357 was derived from a metastasis of a pancreatic adenocarcinoma. See Morgan et al. (1980).

Colo357-FG and Colo357-L3: Colo357-FG, a fast-growing variant produced regional lymph node metastasis in 58% of nude mice after subcutaneous implantation and growth. It also produced hepatic metastasis in 64% and pulmonary metastasis in 43% of nude mice after intrasplenic implantation of tumor cells. See Vezeridis et al. (1990).

Colo357-L3.5 established by sequential passages of a human pancreatic cancer cell line through the nude mouse liver. See Vezeridis et al. (1992).

WM793 human melanoma tumor cell lines were used from different stages of progression and their biological and molecular analyses. See Satyamoorthy et al. (1997).
Cytotoxicity Assay

For the cytotoxicity assays, 1,500 tumor cells were plated into 96-well flat-bottom tissue culture plates in complete medium. After 20 hours fresh media containing different concentrations of WP1066 was added. Cell number was counted after 72 hours by using MTS assay (Promega CellTiter AQ Non-Radioactive Cell Proliferation Assay kit, Madison, WI, USA) by measuring absorbance at 490 nm with a 96-well plate reader. Data are presented as relative inhibition of proliferation plus SD of eight measurements. The number of cells in the presence of DMSO was taken as 100%.

Apoptosis assay

6 x10^5 cultured pancreatic cancer cells were plated on 100-mm dishes for 24h before treatment. Following treatment with different times and concentrations of WP1066 or DMSO (solvent) cells were stained with Annexin V-FITC. Fluorescence was quantified on a Becton Dickinson (San Jose, CA) FACScan for at least 10,000 events.

Western blot analysis

Cultured pancreatic cancer cells treated with different times and concentrations of WP compounds or DMSO (solvent) were lysed in lysis buffer and equal amounts of protein extracts were fractionated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred to Hybond-P membranes. Membranes were immunoblotted using phospho-specific STAT3, total STAT3, Bcl-xL, survivin, PARP, caspase-8 and GADPH antibodies. The primary antibodies were visualized with goat anti-rabbit or goat anti-mouse peroxidase-conjugated antibodies using an enhanced chemiluminescence (ECF) system and a Molecular Dynamics Storm PhosphorImager.

All of the compositions disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

REFERENCES

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

- U.S. Patent 6,433,018
- U.S. Patent 6,420,338
- U.S. Patent 6,426,366
- Chen et al., In Vitro, 18(1):24-34, 1982.
- Iwamurul et al., Oncogene, 1-10, 2006.
World Health Organization grades II-IV, Kleihues et al. (Eds.), 2002.

Claims

1. A compound selected from the group consisting of:

 \[
 \begin{align*}
 &\text{(I),} \\
 \text{wherein } R_1 \text{ is -H or cyano and } R_2 \text{ is heteroatom-substituted or heteroatom-unsubstituted } C_3-C_7\text{-cycloalkyl;} \\
 &\text{(II),} \\
 \text{wherein } X_1 \text{ is halo and } R_3 \text{ is heteroatom-substituted or heteroatom-unsubstituted } C_3-C_7\text{-cycloalkyl, } C_6-C_{10}\text{-aryl, or } C_7-C_{10}\text{-aralkyl;} \\
 &\text{(III),} \\
 \text{wherein } X_2 \text{ is halo and } R_4 \text{ is heteroatom-substituted or heteroatom-unsubstituted } C_1-C_{10}\text{-acyloxy;} \\
 &\text{(IV),}
 \end{align*}
 \]
wherein:

- X_3 is halo or heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl or C$_1$-C$_{10}$-alkoxy,
- R_6 is -H or cyano, and
- R_6 is heteroatom-substituted or heteroatom-unsubstituted C$_3$-C$_7$-cycloalkyl, C$_6$-C$_{10}$-aryl, or C$_7$-C$_{10}$-aralkyl;

- X_4 is halo or heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl or C$_1$-C$_{10}$-alkoxy,
- R_6 is -H or cyano, and
- R_6 is heteroatom-substituted or heteroatom-unsubstituted C$_3$-C$_7$-cycloalkyl, C$_6$-C$_{10}$-aryl, or C$_7$-C$_{10}$-aralkyl;

- X_5 is heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl,
- R_9 is -H or cyano, and
- R_9 is heteroatom-substituted or heteroatom-unsubstituted C$_3$-C$_7$-cycloalkyl, C$_6$-C$_{10}$-aryl, or C$_7$-C$_{10}$-aralkyl;

- X_6 is halo or heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl, C$_3$-C$_7$-cycloalkyl, C$_1$-C$_{10}$-acyloxy, C$_6$-C$_{10}$-aryl, or C$_7$-C$_{10}$-aralkyl;

- A is -S(O$_2$)-, and
- X_6 is halo or heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl or C$_1$-C$_{10}$-alkoxy,
- R_{11} is heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl, C$_3$-C$_7$-cycloalkyl, C$_1$-C$_{10}$-acyloxy, C$_6$-C$_{10}$-aryl, or C$_7$-C$_{10}$-aralkyl;
wherein:

- R_{12} is cyclododecyl, imidazoyl, or cyclohexenyl,
- R_{13} is -H or heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl, C$_3$-C$_7$-cycloalkyl, C$_1$-C$_{10}$-acyloxy, C$_6$-C$_{10}$-aryl, or C$_7$-C$_{10}$-aralkyl; and

wherein:

- X_7 is halo or heteroatom-substituted or heteroatom-unsubstituted C$_1$-C$_{10}$-alkyl or C$_1$-C$_{10}$-alkoxy,
- R_{14} is

and pharmaceutically acceptable salts, hydrates, amine-N-oxides, imine-N-oxides, tautomers, and optical isomers thereof.

2. The compound of claim 1, wherein R_2 is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

3. The compound of claim 1, wherein R_3 is selected from the group consisting of phenyl, benzyl, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

4. The compound of claim 1, wherein X_1 or X_2 is selected from the group consisting of -F, -Cl, -Br and -I.

5. The compound of claim 1, wherein X_3 or X_4 is selected from the group consisting of methoxy, -F, -C$_1$, -Br and -I.

6. The compound of claim 1, wherein R_6 or R_8 is selected from the group consisting of methyl and cyclopropyl.

7. The compound of claim 1, wherein X_5 is selected from a group consisting of methyl and acetoxyethyl.

8. The compound of claim 1, having one of the following formulae:
9. A compound comprising the chemical formula:

wherein:

A is selected from the group consisting of -C(O)- and -SO₂⁻;
R₁ is selected from the group consisting of: cyclododecyl.
where:

\(X_1, X_2, X_3, \) and \(X_4 \), are each independently selected from the group consisting of hydrogen, halo, alkyl, alkoxy, acetoxyl, alkylacetoxyl, -OH, trihalomethyl, and -NO\(_2\);

\(Y_1 \) is selected from the group consisting of halo, -OH and -NO\(_2\); and

\(R_2 \) is selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, alkylaryl, halo, hydrogen, -OH, -NO\(_2\), thioether, amino, -SH, and -NH\(_2\);

\(R_3 \) is selected from the group consisting of:
wherein Z_3 is a divalent alkyl; and
wherein $m_1=1, 2, 3,$ or $4;$ and
R_4 is selected from the group consisting of: hydrogen, -CN, substituted amine, -CH$_2$S-alkyl, alkyl, and -CH$_2$N$_3$; wherein:

R_5 and R_6 are each independently selected from the group consisting of:

monosaccharide, monosaccharide derivative, polysaccharide, polysaccharide derivative, aryl and alkylaryl; Z is selected from the group consisting of-NH, -S-, and -O-, and
X_5 and X_6 are each independently selected from the group consisting of hydrogen, C$_{8-}$alkyl, C$_1$-C$_7$-alkyl, cycloalkyl, cycloarylalkyl, alkylaryl, aryl, alkoxy, hydroxy, hydroxylalkyl, alkylester, alkylesteralkyl, alkyleteroxyl, or aryloxyl;

with the proviso that if $R_4 = \text{-CN, substituted amine, -CH}_2\text{S-alkyl, alkyl, or -CH}_2\text{N}_3$, then R_1 is selected from the group consisting of: cyclooctyl,
and

and

R₃ is:

where X₅ or X₆ is aryl, alkoxy, aryloxy; cycloalkyl, cycloarylalkyl, alkylaryl, alkylester, alkylesteralkyl, or alkylacetoxyl.

10. The compound of claim 9, wherein R₄ is -CN.

11. The compound of claim 9, wherein R₄ is hydrogen.

12. The compound of claim 9, wherein R₂ is hydrogen.

13. The compound of claim 9, wherein Z₃ is -C₂H₄-.

14. A first compound for use in treating a cell proliferative disease, wherein the first compound is caffeic acid, the benzyl ester of caffeic acid, or a compound of claims 1 or 9.
15. The compound of claim 9, having one of the following formulae:
Inhibition of Constitutively Activated STAT3 in Colo357-FG Cells with WP1066 and WP1193

Day 1

<table>
<thead>
<tr>
<th></th>
<th>5μM</th>
<th>10μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1193</td>
<td>1066</td>
</tr>
<tr>
<td>pSTAT3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pSTA3/STAT3 Ratio</td>
<td>0.47</td>
<td>0.18</td>
</tr>
</tbody>
</table>

FIG. 1
Colo357-FG WP Compounds Dose Response

![Graph showing survival (%) against concentration (μM) for Colo357-FG WP compounds. The graph indicates a steep decrease in survival as concentration increases.]

FIG. 20
Colo357-FG WP Compounds Dose Response

Survival (% of control)

Concentration (μM)

FIG. 22
U87 WP Compounds Dose Response

Survival (% of control)

Concentration (µM)

FIG. 26
Colo357-FG WP Compounds Dose Response

Survival (% of control) vs Concentration (μM)

FIG. 27
U87 WP Compounds Dose Response

Survival (% of control)

Concentration (μM)

FIG. 32
FIG. 33

Colo357-FG WP Compounds Dose Response

Survival (% of control)

Concentration (µM)

WP1302
WP1193 more potently than WP1066 inhibits growth of human melanoma tumor cells (WM793 cell line)

FIG. 34
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 7441056 P [0001]
- CA 101936 [0002]
- US 6426366 B [0007] [0194]
- US 20030013748 A [0007]
- US 6433018 B [0109] [0194]
- US 6420338 B [0109] [0194]

Non-patent literature cited in the description

- Remington’s Pharmaceutical Sciences. 1035-10381570-1580 [0125] [0194]
- IWAMARU et al. Oncogene, 2006, 1-10 [0194]
- World Health Organization grades II-IV. 2002 [0194]