Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

TECHNICAL FIELD

[0001] The present invention relates to the field of coffee machines and beverage vending machines, in particular of the type comprising at least one infusion unit for dispensing coffee. More in particular, the invention relates to improvements to devices for dosing ground coffee in coffee machines or vending machines, or in coffee grinders.

PRIOR ART

[0002] At present there exist automatic or semi-automatic coffee machines for professional or household use, wherein the coffee powder used for making the coffee-based drink is obtained through the grinding of coffee beans contained in a tank of the machine. In automatic drink dispensers too, or the so-called vending machines, designed for dispensing coffee or coffee-based drinks, grinding units are typically used which start from beans contained in one or more containers produce the coffee powder that is then introduced into the infusion unit.

[0003] One of the problems that occur in these machines is that of correctly dosing the amount of coffee powder for each infusion cycle. Frequently, infusion units are such as to allow the dispensing of a single coffee cup at a time. In this case, the amount of coffee is adjusted within a limited range, typically between 6 and 9 grams per each infusion cycle. On the other hand, when the infusion unit is suitable for dispensing one or two coffee cups in a single dispensing cycle, the coffee dose may vary within a much wider range, as it must be double compared to the dose required for dispensing a single coffee cup. This requires the use of a dosing device capable of dispensing a variable coffee dose in a very wide range, from a minimum of about 6 grams to a maximum of about 18 grams.

[0004] In some coffee machines, the amount of coffee to be dosed at each infusion cycle is determined based on the rpm of the coffee grinder motor. These dosing systems are based on the fact that at each grinding revolution, a predetermined amount of coffee powder is produced. Therefore, the amount of ground coffee is about directly proportional to the number of revolutions of the motor. These systems require highly expensive electronic control motors. Also, the proportion between rpm and amount of ground coffee varies according to multiple factors, and in particular the grinder wear. It is therefore necessary to provide for dose adjustment systems since control through the motor rpm only is not sufficiently accurate. These control systems require the detection of at least one parameter, for example the current absorbed by the closing actuator of the infusion unit, and a management algorithm that can change the ratio between rpm and amount of ground coffee based on the detection of said parameter. This makes these systems quite complex and expensive. An example of such a system is disclosed in WO-A-2008/105017.

[0005] There are also systems for dosing ground coffee based on a volume criterion. These devices provide for the coffee grinder to be associated to a dosing chamber, wherein the coffee powder produced by the coffee grinder through the beans grinding is fed by the effect of the centrifuge force generated by the rotation of the coffee grinders. The dosing chamber is partly delimited by a flexible sheet, which becomes deformed, that is, moves by the effect of the build up of coffee powder in the same dosing chamber. This movement or deformation causes the actuation of a micro-switch that interrupts the grinding and controls the opening of a moving wall that typically closes the dosing chamber bottom. From the latter, the ground coffee falls by gravity into a hopper associated to the infusion unit.

[0006] In order to obtain an adjustment of the coffee amount for each dose, the micro-switch may be adjusted into position by a manual adjustment system, so it is actuated by the deformable sheet defining a wall of the dosing chamber at variable values of the volume of coffee powder built up in the dosing chamber. An example of a dosing chamber of this type is described in US-A-4659023. This device is not capable of modifying the amount of coffee powder ground at each cycle within so wide ranges as to allow the dispensing alternately of one or two cups of coffee. Typically, in fact, these known systems allow an adjustment of the amount of coffee within a range comprised between about 7 and about 9 grams, only for the purpose of dispensing a single more or less strong dose of coffee, according to the amount of coffee set, to satisfy the user's taste.

[0007] GB-1495893 describes a dosing device, wherein systems are adopted which allow alternately dispensing a single dose or a double dose of coffee for allowing the production of a single coffee cup or two coffee cups in a single infusion cycle. To this end, the coffee grinding unit is associated to at least two dosing chambers, each of which can be set to open when a preset amount of coffee variable within a relatively limited range is reached. Depending on the number of coffee cups (one or two) that must be dispensed in a single cycle, the dosing device is controlled to discharge the coffee powder from one or both the dosing chambers provided by the device. While this known device allows greater flexibility in terms of setting of the amount of ground coffee it dispenses at each cycle, it exhibits several drawbacks. In particular, since a dual dosing chamber is required, the device is cumbersome and very expensive.

SUMMARY OF THE INVENTION

[0008] According to one aspect, the invention aims at providing a device for dosing ground coffee for an automatic or semi-automatic coffee machine, a vending machine or the like, which should all or partly overcome at
In practice, according to embodiments of the invention, there is provided a device for dosing ground coffee in a coffee machine comprising: a coffee grinder for making coffee powder from coffee beans; a motor for actuating the coffee grinder; a dosing chamber wherein the coffee powder produced by said coffee grinder is discharged, said dosing chamber being at least partly delimited by a first wall, which may be opened on command for discharging the coffee powder from the dosing chamber, and by a second wall, mobile by the effect of a volume variation of the coffee powder in said dosing chamber; an actuator for controlling an opening movement of said first wall; an electronic control device that based on the position of the second wall, causes the stop of the actuating motor of the coffee grinder and the actuation of said actuator for controlling the opening movement of said first wall and the discharge of the coffee powder from the dosing chamber. The second wall is associated to a system for detecting a plurality of dosing positions of said second wall, and which through an electronic control unit, in connection with said detection system and with said actuator, the opening of said first wall is set when the second wall has reached one of the positions of said second wall, selectable among those of said plurality of dosing positions.

The control unit is programmed to select a quantity of coffee powder and to control opening of said second wall when said second wall reaches a position detected by said detecting system, corresponding to said selected quantity of coffee powder. In this manner the user can input his selection of coffee powder quantity and the control unit will stop the grinder and open the dosing chamber to discharge the selected amount of coffee powder when the second wall reaches the position corresponding to the selected amount of coffee powder. Preferably, the user will not be required to input the amount of coffee expressed in grams, but rather a user-friendly interface will be provided, allowing the user to easily select either the number of cups to be brewed, or the thickness (strength) of the coffee, which depends upon the quantity of coffee per cup, or both the number of cups and the thickness of the beverage.

With a configuration of this type, on the machine wherein the dosing device is provided, it is possible to set an amount of coffee, which shall be measured in volume, variable within a very wide range. In this way, the dosing device allows dosing a single dose of coffee or two doses of coffee. Moreover, it allows setting a variable amount of coffee for each dose, for example an amount variable from about 6 to about 9 grams per each cup of coffee to be dispensed.

The device according to the invention allows therefore to perform a method, including the following steps:

- selecting a quantity of coffee powder;
- grinding coffee beans and collecting coffee powder in a volume-variable dosing chamber;
- detecting the volume of ground coffee collected in the dosing chamber by detecting a movement of at least one movable wall of said dosing chamber;
- stopping grinding and discharging the coffee powder when the volume of coffee powder in said dosing chamber has achieved the selected quantity, said volume corresponding to one of a detectable plurality of positions of said movable wall.

Therefore, with the method and the device of the invention it is possible to set both a variable number (1 or 2) of coffee cups, and the amount of coffee powder for each cup, adjusting it to the user's taste.

For example, thanks to the fact that the wall movable by the effect of the volume variation of coffee powder in the dosing chamber may take on various positions within a very wide range and to the fact that the control system allows the opening of the dosing chamber for at least two or three positions, also substantially different, of the above wall, the user may set the dispensing of a single coffee cup or two coffee cups in a single cycle, since the dosing device can dispense variable coffee doses, for example between six grams and eighteen grams. Coffee doses comprised between 6 and 9 grams are used for dispensing a single coffee cup. The user may set the amount of coffee for the single dose within an adequately wide range. When one wants to dispense two coffee cups in a single cycle, a double coffee dose is required, which for example may vary between 12 and 18 grams, or preferably between 14 and 18 grams, always to satisfy the taste needs of the users who may want two more or less strong coffee cups.

According to a preferred embodiment of the invention, the system for detecting a plurality of dosing positions comprises a position or movement detector, for example an encoder. The encoder may be of the optical type, with an emitter and a receiver. As an alternative, a capacitive or magnetic encoder may be used, or any other system suitable for detecting a movement or a position. If the encoder detects a movement, the encoder signal may be associated to a position of the moving wall by simply providing a step of reset of the movement measurement. The detection may also occur through a mechanical system, with a rotating encoder fitted with a shaft with a pinion that meshes with a toothing constrained to the moving wall of the dosing chamber. Using an encoder it is possible to adjust the coffee dose in a substantially continuous manner in a range comprised between a minimum dose and a maximum dose.

According to a different aspect, the invention relates to an automatic or semi-automatic coffee machine, a vending machine or other machine provided with an infusion unit for making coffee based drinks and comprising a dosing device of the type described above. The dosing device may also be used in combination with a coffee grinder, for example for professional use.
ments of the invention are described hereunder and are indicated in the claims which form an integral part of the present description.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood by following the description and accompanying drawing, which shows a non-limiting practical embodiment of the invention. More specifically, in the drawing:

Figs. 1 to 4 show subsequent steps of the filling of the dosing chamber of a device according to the invention in a first embodiment;
Figs. 5 and 6 show cross sections of two different positions of a device according to the invention in a second embodiment; and
Fig. 7 shows an axonometric view of the device of Figs 5 and 6.

DETAILED DESCRIPTION OF AN EMBODIMENT OF THE INVENTION

With reference to the annexed Figs. 1 to 4, reference numeral 1 indicates the device for dosing ground coffee according to the invention, comprising the coffee grinder 15 and arranged on top of an infusion unit 3. The infusion unit 3 may be of the known type, and for example made as described in US-A-4,681,028; US-A-5,259,296; EP-A-1,574,157; WO-A-2008/074421; WO-A-2009/22364 or in any other suitable manner. The coffee grinder, schematically indicated with reference numeral 5, may be made for example as described in WO-A-2008/59545 or US-A-7,273,005. The documents mentioned above are an integral part of the present description.

The infusion unit as well as the coffee grinder shall not be described in detail herein as it is understood that they may be of any suitable type.

On top of the coffee grinder 5 there is arranged a hopper 7 wherein the coffee beans coming from an overlying container (not shown) are fed. The coffee grinder 5 comprises an electrical motor 9 with a motor shaft 9A fitted with a pinion meshing with a toothed wheel 11 keyed on a control shaft 13 of the coffee grinder 5. A circular or disk-shaped grinder 15 is keyed on shaft 13 and cooperates with a fixed, i.e. non-rotating, counter grinder 17, for example carried by a structure 18. The reciprocal distance between grinder 15 and counter grinder 17 may be adjusted in a per se known manner through a screw system, not described in greater detail. In brief, and as is known to those skilled in the art, the counter grinder 17 may be moved close or away to/from grinder 15 through a movement of rotation about the common axis of grinder and counter grinder, coinciding with axis A-A of shaft 13. This movement causes approaching or distancing of the counter grinder 17 relative to grinder 15 thanks to a threading 17A integral with the counter grinder 17 and engaging with a corresponding threading on the fixed structure 18. Shaft 13 is torsionally coupled with a screw 19 that picks up the coffee beans from hopper 7 and feeds them towards the grinding space contained between grinder 15 and counter grinder 17.

The grinding volume defined between grinder 15 and counter grinder 17 is in communication with a dosing chamber 21. The dosing chamber 21 is closed by a top wall 23 and by a bottom wall 25 as well as by side walls 27 substantially parallel to the plane of the figures. At the opposite end relative to the coffee grinder, the dosing chamber 21 is closed by a wall 31 movable due to the effect of the variation of the volume of coffee powder that builds up in the dosing chamber 21, as better described hereinafter. In addition to bottom wall 25, the bottom zone of the dosing chamber 21 is also closed by a wall 33 that may be controlled to open, through the opening of which the coffee powder ground by coffee grinder 5 and built up in the dosing chamber 21 is discharged by gravity from the dosing chamber 21 to the underlying infusion unit 3.

The opening wall 33 is hinged at 35 to the fixed structure of the device and may oscillate about pin 35 by the effect of the control obtained through an electromagnet 37. The moving anchor 37A of electromagnet 37 is hinged at 39 to the opening wall 33 so the retraction of anchor 37A into electromagnet 37 causes the opening wall 33 to pivot in the opening direction as better described hereinafter. The opening wall 33 is stressed into the closed position through an elastic member 39, for example a tension spring fixed at an end to the opening wall 33 and at the opposite end to a fixed point of the dosing device 1.

Wall 31 moving by the effect of the variation in the volume of coffee powder in the dosing chamber 21 is integral with a member shaped as a partition or diaphragm 31A that allows detecting the position or movement of wall 31. According to the embodiment shown in the drawing, partition or diaphragm 31A is provided with a series of windows 31B aligned with each other along a circumference arc having the centre on the axis of a rotation pin 41 whereeto the moving wall 31 is hinged to pivot under the thrust of the coffee powder that builds up in the dosing chamber 21. The moving wall 31 is stressed by a pulling member, for example a tension spring 43, into a position of maximum approach to the coffee grinder 5, a position shown in Fig. 1. The tension spring 43 is to this end constrained at an end to partition or diaphragm 31A and at the opposite end, to a fixed point of the structure of the dosing device 1. Windows 31B are separate from one another by respective solid zones of diaphragm 31A. When diaphragm 31A pivots about the axis of pin 41 integrally with wall 31 by the effect of the coffee powder that builds up in the dosing chamber 21, windows 31B move between the emitter and the receiver of an optical sensor globally indicated with reference numeral 45 in the drawing. The emitter emits a light beam that is detected by the receiver and modulated by the effect of the
passage between receiver and emitter of windows 31B separated by the solid portions of diaphragm 31A. In this way, through the receiver-emitter system 45 it is possible to detect the angular movements of wall 31 under the thrust of the coffee powder that builds up in the dosing chamber 21.

[0025] The device described herein operates as follows.

[0026] In Fig. 1, the device is shown in the initial condition before starting a grinding cycle of the coffee beans contained in hopper 7 coming from an overlying tank or container, not shown. In this position, the moving wall 31 is in the position of maximum approach to grinder 15 and to the counter grinder 17 and the dosing chamber 21 has the minimum volume.

[0027] Fig. 2 shows a completion step of the filling of dosing chamber 21 with a coffee dose, for example required for the infusion of two relatively weak coffee cups, typically 15-16 grams of coffee. The coffee powder ground by coffee grinder 5 is pushed inside the dosing chamber 21 and against wall 31 by the effect of the centrifugal force due to the rotation of grinder 15. As increasing amounts of coffee powder build up gradually, this thrust causes the clockwise movement (in the drawing) of wall 31 with rotation about the axis of pin 41. This rotation movement is detected by the encoder formed by a partition or diaphragm 31A with windows 31B and by the optical sensor or detector 45 comprising the optical emitter-receiver pair.

[0028] When the amount of coffee set by the user has built up in the dosing chamber 21, the rotation of motor 9 of the coffee grinder unit 5 must be stopped and the bottom opening wall 33 must be opened to discharge the coffee dose in the underlying infusion unit 3. The coffee amount is set by the user through an interface schematically indicated with I in Fig. 1, connected to an electronic control unit, for example to the microprocessor, indicated with reference numeral 50. The latter is in turn connected to encoder 31A, 31B, 45 and to electromagnet 37. A certain dose of coffee (for a single coffee cup or for a double coffee cup) set by the user corresponds to a predetermined angular position of the moving wall 31, detectable by encoder 31A, 31B, 45. Between the angular position of the moving wall and the amount of coffee powder there is a substantially constant, known and preset bi-univocal relationship, stored for example as a table within a permanent memory associated to the control unit 50. When the user selects the amount of coffee to dispense a single weak, medium or strong coffee cup or two weak, medium or strong coffee cups, the control unit 50 determines the angular position that the moving wall of the dosing chamber 21 must reach so that the desired amount of coffee powders builds up therein.

[0029] Once such position has been reached, as determined through encoder 31A, 31B, 45, the control unit 50 controls the stop of motor 9 and the excitation of electromagnet 37 that makes the opening wall 33 oscillate in open position, as shown in Fig. 3. This causes the fall by gravity (arrow FC) of the ground coffee from the dosing chamber 21 into the underlying infusion unit 3.

[0030] Using a position or movement encoder, it is possible to set a predetermined dose within a minimum and maximum range, with a very small pitch, equal to the encoder resolution degree, so that in practice it is possible to obtain a virtually continuous variation of the coffee amount in the above range.

[0031] In this step, in order to facilitate the drop of coffee that has built up against the inner surface of the moving wall 31, the latter may be held into open position for example by a second electromagnet, not shown. As an alternative, the positions of pins 41, 39 and of walls 31 and 33 may be selected so that the return movement, by the effect of the return spring 43, of the moving wall 31, does not hinder the drop of the coffee powder from the dosing chamber 21, but rather it may help to push the coffee downwards, discharging it from the bottom opening of the dosing chamber 21.

[0032] When the coffee powder has been completely discharged towards the underlying infusion unit 3, the dosing device 1 can return to the initial position (Fig. 4) to start receiving the coffee powder ground at a subsequent grinding cycle.

[0033] In the configuration described so far, the encoder allows reading the angular position, or the angular movement of wall 31, in a substantially continuous manner. The dimension and the inter-distance or pitch between windows 31B are such as to allow an adequate resolution in the reading of the angular position. However, in simpler although less advantageous embodiments, it is also possible to replace this continuous reading with a series of targets, that is, of positions transducers or sensors distributed along the trajectory whereon wall 31 or a member stiffly constrained thereto moves, for determining the achievement of a preset position selected among a plurality of user-selectable positions. For example, it is possible to provide for only two detectable positions, corresponding to a single coffee dose and to a double coffee dose, or two pairs or two triples of positions: in the case of two pairs of positions, the first pair may correspond to a single weak or weak dose and the second pair to a double strong or weak dose. In the case of two triples of positions, the three positions of the first triple may correspond to a single weak, medium or strong coffee dose and the three positions of the second triple may correspond to a double weak, medium or strong coffee dose. In other embodiments, it is possible to provide two sensors suitable for detecting a position corresponding to a single dose and to a double dose, respectively. Each sensor may in turn be adjustable into position for allowing the dispensing of a single, more or less charged dose, that is, more or less abundant of powder, or a double, more or less charged, dose of coffee.

[0034] In the above, explicit reference was made to the application of the dosing device of the present invention in a coffee machine for household or professional purpose or in a vending machine. However, it should be
understood that the device may also be used in combination with a simple coffee grinding machine, for dispensing the predetermined coffee dose for example in a filter of a professional machine or of a manual-type household machine. Also in this case, the advantage obtained is to be able to dispense variable coffee doses.

[0035] Figs. 5 to 7 show a different embodiment of invention. Same or corresponding parts, elements or devices are indicated with the same reference numbers. More specifically, Fig. 5 shows a cross section of the device when the dosing chamber is empty and the bottom thereof is closed, Fig. 6 shows the device during the phase of discharging the coffee powder from the dosing chamber.

[0036] The coffee grinder 5 substantially corresponds to grinder 5 described in connection with Figs. 1 to 4. The dosing device includes a dosing chamber again shown at 21. The dosing chamber 21 is closed by a top wall 23 and by a bottom wall 25 as well as by side walls 27 substantially parallel to the plane of the figures. At the opposite end relative to the coffee grinder, the dosing chamber 21 is closed by a wall 31 movable due to the effect of the variation of the volume of coffee powder that collects in the dosing chamber 21, as described above. The bottom area of the dosing chamber 21 is also closed by a movable wall 33 that may be controlled to open in order to discharge the ground coffee from the dosing chamber 21 to an infusion device arranged under the dosing device 1 and not shown.

[0037] The opening wall 33 is hinged to the fixed structure of the device and is pivoted by means of an electromagnet 37. The moving anchor 37A of the electromagnet 37 is hinged at 39 to the opening wall 33 so the retraction of anchor 37A into electromagnet 37 causes the opening wall 33 to pivot in the opening direction as described above. The opening wall 33 can be stressed into the closed position (Fig 5) by an elastic member, not shown, for example a spring arranged around the pivoting axis of the wall 33.

[0038] The moving wall 31 is stressed by a pulling member, for example a tension spring 43, into a position of maximum approach to the coffee grinder 5, as shown in Fig. 5. The tension spring 43 is to this end constrained at an end to partition or diaphragm 31A and at the opposite end, to a fixed point of the structure of the dosing device 1.

[0039] In the embodiment of Figs. 5 to 7 the optical encoder of Figs 1-4 is replaced by a magnetic rotary encoder including a rotary magnet arrangement and a sensor. In the embodiment shown the magnetic arrangement is housed in an expansion 41A of the rotation pin 41, see in particular Fig. 7. The expansion 41A faces an electronic card 101 supported by a frame 103 and supports a magnetic sensor 105 substantially coaxial to the rotation pin 41 and the expansion 41A thereof. The rotation of the moving wall 31 is thus magnetically detected. The arrangement of the magnetic encoder results in an extremely compact and reliable device.

[0040] It is understood that the drawing shows just one example, provided merely as a practical demonstration of the invention, which can vary in its forms and arrangements, without however departing from the scope of the concept underlying the invention. Any reference numbers in the appended claims are provided to facilitate reading of the claims with reference to the description and to the drawing, and do not limit the scope of protection represented by the claims.

Claims

1. A device for dosing ground coffee comprising:

 - a coffee grinder (5) for producing coffee powder from coffee beans;
 - an actuating motor (9) of the coffee grinder;
 - a dosing chamber (21) wherein the coffee powder produced by said coffee grinder (5) is discharged, said dosing chamber (21) being at least partly delimited by a first wall (33), which may be controlled to open for discharging the coffee powder from the dosing chamber (21), and by a second wall (31), moving by the effect of a variation in the volume of the coffee powder in said dosing chamber;
 - an actuator (37) for controlling an opening movement of said first wall (33);
 - an electronic control unit (50) which, based on the position of the second wall (31), causes the stop of the actuation motor of the coffee grinder and the activation of said actuator (37) for controlling the opening movement of said first wall (33) and the discharge of the coffee powder from the dosing chamber (21);

 characterised in that said second wall (31) is associated to a detection system (31A, 31B, 45; 41, 41A, 105) configured and arranged to detect a plurality of dosing positions of said second wall (31), and in that through the electronic control unit (50), in connection with said detection system (31A, 31B, 45; 41, 41A, 105) and with said actuator (37), said first wall (33) is set to open when the second wall (31) has reached a selected position among said plurality of dosing positions detectable by said detection system (31A, 31B, 45; 41, 41A, 105).

2. Device according to claim 1, characterised in that said control unit (50) is programmed to select a quantity of coffee powder based on a user selection through a user interface (I) and to control opening of said second wall (31) when said second wall (31) reaches said selected position detected by said detection system (31A, 31B, 45; 41, 41A, 105), said selected position corresponding to said selected quantity of coffee powder.
3. Device according to claim 1 or 2, characterised in that said detection system (31A, 31B, 45; 41, 41A, 105) for detecting a plurality of dosing positions comprises a position or movement detector.

4. Device according to claim 3, characterised in that said position detector is a position or movement encoder.

5. Device according to claim 3 or 4, characterised in that said detector is an angular encoder and in that the second wall (31) is integral with a rotor that is constrained by an elastic return member (43); and in that a temporary stopping element is provided, which keeps the second wall (31) blocked in an open position during the discharge of the coffee powder from said dosing chamber.

6. Device according to claim 4 or 5, characterised in that said encoder comprises an optical detection system (45) with an optical emitter and an optical receiver; in that said second wall (31) is integral with an intercepting diaphragm (31A) provided with a plurality of windows (31B) adjacent to one another and reciprocally spaced by solid zones of said intercepting diaphragm (31A), which is positioned for moving between said optical emitter and said optical receiver; and in that the movement of said second wall (31) causes the modulation of an optical signal by the effect of the passage of said windows (31B) and of said solid zones of the intercepting diaphragm (31A) between said optical emitter and said optical receiver.

7. Device according to claim 4 or 5, characterised in that said encoder comprises a magnetic rotary encoder (41A, 105).

8. Device according to claim 7, characterised in that said magnetic rotary encoder includes a rotary magnet arrangement (41A) rotating integrally with said second wall (31) and arranged on a pivoting axis (41) of said second wall (31).

9. Device according to one or more of claims 4 to 8, characterised in that a dose of coffee selectable in a substantially continuous manner in a predetermined range can be set through said electronic control unit (50).

10. Device according to one or more of the previous claims, characterised in that said second wall (31) is elastically stressed with a thrust opposite that exerted by the coffee powder volume that collects within said dosing chamber (21).

11. Device according to claims 5 and 10, characterised in that: said second wall (31) is elastically stressed by an elastic return member (43); and in that said second wall (31) and said rotation axis (41) are positioned so that the rotation movement of said second wall (41) caused by said elastic return member (43) pushes the coffee powder to exit the dosing chamber (21).

12. Device according to claims 5 and 10, characterised in that: said second wall (31) is elastically stressed by an elastic return member (45); and in that a temporary stopping element is provided, which keeps the second wall (31) blocked in an open position during the discharge of the coffee powder from said dosing chamber.

13. Device according to one or more of the previous claims, characterised in that said actuator (37) comprises an electromagnet with a moving anchor (37A) and in that said first wall (33) is constrained to said moving anchor (37A) for oscillating about a rotation pin (35) under the control of the electromagnet.

14. A coffee machine comprising: a coffee bean container; an infusion unit and a dosing device (1) according to one or more of the previous claims.

15. A beverage vending machine comprising: a coffee bean container; an infusion unit and a dosing device (1) according to one or more of claims 1 to 13, associated to said infusion unit.

16. A coffee grinder comprising a coffee bean container, a ground coffee dispenser and a dosing device (1) according to one or more of claims 1 to 13 associated to said ground coffee dispenser.

Patentansprüche

1. Vorrichtung zum Dosieren von Kaffeepulver, wobei diese Vorrichtung Folgendes umfasst:
 - ein Kaffeemahlwerk (5) zum Erzeugen von Kaffeepulver aus Kaffeebohnen;
 - einen Antriebsmotor (9) des Kaffeemahlwerks;
 - eine Dosierkammer (21), in die das in dem Kaffeemahlwerk (5) erzeugte Kaffeepulver eingegeben wird, wobei die genannte Dosierkammer (21) wenigstens teilweise durch eine erste Wand (33) begrenzt wird, die in die offene Lage gesteuert werden kann, und zwar zum Freigeben des Kaffeepulvers aus der Dosierkammer (21), und durch eine zweite Wand (31), die sich durch den Effekt einer Änderung im Volumen des Kaffeepulvers in der genannten Dosierkammer verlagert;
 - ein Stellglied (37) zum Steuern einer Öffnungsbewegung der genannten ersten Wand (33);
 - eine elektronische Steuereinheit (50), die auf
Basis der Lage der zweiten Wand (31) dafür sorgt, dass der Antriebsmotor des Kaffeezubereitungs-
werks anhält und das genannte Stellglied (37) zur Steuerung der Öffnungsbewegung der ge-
nannten ersten Wand (33) aktiviert wird und dass das Kaffeepulver aus der Dosierkammer
(21) abgeführt wird;

dadurch gekennzeichnet, dass die genannte zwei-
te Wand (31) mit einem Detektionssystem (31A,
31B, 45; 41, 41A, 105) assoziiert ist, wobei dieses System ausgebildet und dazu vorgesehen ist, eine
Anzahl Dosierungs-
lagen erreicht hat, was durch das genannte Detek-
tionsystem (31A, 31B, 45;
41, 41A, 105) detektiert wird, und dass mit Hilfe der elektronischen Steuereinheit (50) in Kombination mit
dem genannten Detektionssystem (31A, 31B, 45;
41, 41A, 105) und dem genannten Stellglied (37) die genannte erste Wand (33) in die geöffnete Lage ge-
bracht wird, wenn die zweite Wand (31) eine selek-
tierte Lage aus der genannten Anzahl Dosierungs-
lagen erreicht hat, was durch das genannte Detek-
tionssystem (31A, 31B, 45;
41, 41A, 105) detektiert werden kann.

2. Vorrichtung nach Anspruch 1, dadurch gekenn-
zeichnet, dass die genannte Steuereinheit (50) der-
art programmiert ist, dass sie auf Basis einer Wahl des Benutzers über eine Benutzeroberflächenstelle (1) ei-
ne Kaffeepulvermenge selektiert und die Öffnung der genannten zweiten Wand (31) steuert, wenn die genannte zweite Wand (31) die mit Hilfe des genannten
Detektionssystems (31A, 31B, 45; 41, 41A, 105) detektierte, selektierte Lage erreicht hat, wobei die genannte selektierte Lage der genannten selektierten
kaffeepulvermenge entspricht.

3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekenn-
zeichnet, dass das genannte Detektionssystem (31A, 31B, 45; 41, 41A, 105) zum Detektieren
einer Anzahl Dosierungs-
lagen eines Lagen-
or Bewegungsdetektor aufweist.

4. Vorrichtung nach Anspruch 3, dadurch gekenn-
zeichnet, dass der genannten Lagendetektor ein Lagen-
or Bewegungsdetektor ist.

5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekenn-
zeichnet, dass der genannte Detektor ein Wink-
elcodierer ist und dass die zweite Wand (31) schwenkbar auf einer Drehachse (41) angeordnet
ist, wobei die Zunahme des Kaffeepulvervolumens
in der genannten Dosierkammer (21) eine Drehung
der genannten zweiten Wand (31) herbeiführt.

6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekenn-
zeichnet, dass der genannte Codierer ein opti-
tisches Detektionssystem (45) mit einem optischen Sender und einem optischen Empfänger aufweist;
dadurch gekennzeichnet, dass die genannte zweite Wand (31) mit einer Ab-
fangmembrane (31A) einen mit einer Anzahl Fenster (31B) versehenen Teil bildet, wobei diese Fenster nebeneinander liegen und wechselseitig durch dicht-
e Zonen der genannten Abfangmembrane vonein-
der ander getrennt sind, wobei diese Membrane zur Ver-
lagerung zwischen dem genannten optischen Sen-
der und dem genannten optischen Empfänger posi-
tioniert ist; und dass die Bewegung der genannten
zweiten Wand (31) die Modulation eines optischen
Signals durch den Effekt des Vorbeigehens der
genannten Fenster (31B) und der genannten dichten
Zonen der Abfangmembrane (31A) zwischen dem
genannten optischen Sender und dem genannten
optischen Empfänger herbeiführt.

7. Vorrichtung nach Anspruch 4 oder 5, dadurch gekenn-
zeichnet, dass der genannte Codierer einen magnetischen Drehimpulsgeber (41A, 105) auf-
weist.

8. Vorrichtung nach Anspruch 7, dadurch gekenn-
zeichnet, dass der genannte magnetische Drehimpul-
sgeber eine Drehmagnetanordnung (41A) auf-
weist, die mit der genannten zweiten Wand (31) in-
tegral sich dreht und auf einer Schwenkachse (41)
der zweiten Wand (31) vorgesehen ist.

9. Vorrichtung nach einem oder mehreren der Ansprü-
che 4 bis 8, dadurch gekennzeichnet, dass eine Dosis Kaffee, die auf eine im Wesentlichen kontinu-
erliche art und Weise in einem vorbestimmten Be-
reich selektiert wird, mit Hilfe der genannten elektronischen Steuereinheit (50) eingestellt werden kann.

10. Vorrichtung nach einem oder mehreren der vorste-
henden Ansprüche, dadurch gekennzeichnet, dass die genannte zweite Wand (31) elastisch ge-
spannt wird, und zwar mit einer Kraft, die derjenigen
Kraft entgegengesetzt ist, die das in der genannten
Dosierkammer (21) gesammelte Kaffeevolumen
ausübt.

11. Vorrichtung nach Anspruch 5 und 10, dadurch gekenn-
zeichnet, dass: die genannte zweite Wand (31) durch ein elastisches Rückkehrelement elas-
ist gespannt wird; und dass die genannte zweite
Wand (31) und die genannte Drehachse (41) derart
positioniert werden, dass die Drehbewegung der ge-
nannten zweiten Wand (31), herbeigeführt durch das
elastische Rückkehrelement (43) das Kaffeepulver
derart drückt, dass dieses die Dosierkammer (21)
verlässt.

12. Vorrichtung nach Anspruch 5 und 10, dadurch gekenn-
zeichnet, dass: die genannte zweite Wand (31) durch ein elastisches Rückkehrelement (45) ge-
spannt wird; und dass ein zeitbedingtes Stoppele-
13. Vorrichtung nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das genannte Stellglied (37) einen Elektromagneten mit einem beweglichen Anker (37A) aufweist und dass die genannte erste Wand (33) an den genannten beweglichen Anker (37A) gebunden ist, und zwar zum Schwingen um einen Drehstift (35), und zwar unter Ansteuerung des Elektromagneten.

15. Getränkeautomat, der Folgendes umfasst: einen Kaffeebohnenbehälter, eine Aufgusseinheit und eine Dosiervorrichtung (1) nach einem oder mehreren der Ansprüche 1 bis 13, assoziiert mit der genannten Aufgusseinheit.

Revendications

1. Dispositif qui est destiné à doser du café moulu, comprenant:

- un moulin à café (5) pour produire de la poudre de café à partir de grains de café ;
- un moteur d’actionnement (9) du moulin à café ;
- une chambre de dosage (21) dans laquelle la poudre de café qui est produite par ledit moulin à café (5) est déchargée, ladite chambre de dosage (21) étant au moins en partie délimitée par une première paroi (33) qui peut être commandée de manière à s’ouvrir pour décharger la poudre de café à partir de la chambre de dosage (21) et par une seconde paroi (31) qui se déplace par l’effet d’une variation du volume de la poudre de café dans ladite chambre de dosage ;
- un actionneur (37) pour commander un mouvement d’ouverture de ladite première paroi (33) ;
- une unité de commande électronique (50) qui provoque, sur la base de la position de la seconde paroi (31), l’arrêt du moteur d’actionnement du moulin à café et l’activation dudit actionneur (37) pour commander le mouvement d’ouverture de ladite première paroi (33) et la décharge de la poudre de café à partir de la chambre de dosage (21) ;

caractérisé en ce que ladite seconde paroi (31) est associée à un système de détection (31A, 31B, 45 ; 41, 41A, 105) qui est configuré et est agencé de manière à détecter une pluralité de positions de dosage de ladite seconde paroi (31), et en ce que, par le biais de l’unité de commande électronique (50), en rapport avec ledit système de détection (31A, 31B, 45 ; 41, 41A, 105) et en rapport avec ledit actionneur (37), ladite première paroi (33) est réglée de manière à s’ouvrir lorsque la seconde paroi (31) a atteint une position sélectionnée parmi ladite pluralité de positions de dosage qui sont détectables par ledit système de détection (31A, 31B, 45 ; 41, 41A, 105).

2. Dispositif selon la revendication 1, caractérisé en ce que ladite unité de commande (50) est programmée de manière à sélectionner une quantité de poudre de café sur la base d’une sélection de l’utilisateur par le biais d’une interface utilisateur (1) et à commander l’ouverture de ladite seconde paroi (31) lorsque ladite seconde paroi (31) atteint ladite position sélectionnée qui est détectée par ledit système de détection (31A, 31B, 45 ; 41, 41A, 105), ladite position sélectionnée correspondant à ladite quantité sélectionnée de poudre de café.

3. Dispositif selon la revendication 1 ou selon la revendication 2, caractérisé en ce que ledit système de détection (31A, 31B, 45 ; 41, 41A, 105) pour détecter une pluralité de positions de dosage comprend un détecteur de position ou de mouvement.

4. Dispositif selon la revendication 3, caractérisé en ce que ledit détecteur de position est un codeur de position ou de mouvement.

5. Dispositif selon la revendication 3 ou selon la revendication 4, caractérisé en ce que ledit détecteur est un codeur angulaire et en ce que la seconde paroi (31) est montée de façon pivotante sur un axe de rotation (41), l’augmentation du volume de la poudre de café dans ladite chambre de dosage (21) provoquant la rotation de ladite seconde paroi (31).

6. Dispositif selon la revendication 4 ou selon la revendication 5, caractérisé en ce que ledit codeur comprend un système de détection optique (45) avec un émetteur optique et un récepteur optique, en ce que ladite seconde paroi (31) fait corps avec un diaphragme d’interception (31A) qui est pourvu d’une pluralité de fenêtres (31B) les unes étant adjacentes aux autres et étant réciproquement espacées par des zones solides dudit diaphragme d’interception (31A) qui est positionné pour se déplacer entre ledit émet-
teur optique et ledit récepteur optique, et en ce que le mouvement de ladite seconde paroi (31) provoque la modulation d’un signal optique par l’effet du passage desdites fenêtres (31B) et desdites zones solides du diaphragme d’interception (31A) entre ledit émetteur optique et ledit récepteur optique.

7. Dispositif selon la revendication 4 ou selon la revendication 5, caractérisé en ce que ledit codeur comprend un codeur rotatif magnétique (41A, 105).

8. Dispositif selon la revendication 7, caractérisé en ce que ledit codeur rotatif magnétique comprend un montage à aimant rotatif (41A) qui tourne d’une manière faisant corps avec ladite seconde paroi (31) et qui est agencé sur un axe pivotant (41) de ladite seconde paroi (31).

9. Dispositif selon une ou selon plusieurs des revendications précédentes 4 à 8, caractérisé en ce qu’une dose de café qui est sélectionnable d’une manière sensiblement continue dans une plage prédéterminée peut être réglée par le biais de ladite unité de commande électronique (50).

10. Dispositif selon une ou selon plusieurs des revendications précédentes 1 à 9, caractérisé en ce que ladite seconde paroi (31) est élastiquement sollicitée avec une poussée étant opposée à celle qui est exercée par le volume de poudre de café qui se réunit à l’intérieur de ladite chambre de dosage (21).

11. Dispositif selon les revendications précédentes 5 et 10, caractérisé en ce que ladite seconde paroi (31) est élastiquement sollicitée par un organe de retour élastique (43), et en ce que ladite seconde paroi (31) et ledit axe de rotation (41) sont positionnés de telle façon que le mouvement de rotation de ladite seconde paroi (41) qui est provoqué par ledit organe de retour élastique (43) pousse la poudre de café de manière à sortir de la chambre de dosage (21).

12. Dispositif selon les revendications précédentes 5 et 10, caractérisé en ce que ladite seconde paroi (31) est élastiquement sollicitée par un organe de retour élastique (45) et en ce qu’il est prévu un élément d’arrêt temporaire qui maintient la seconde paroi (31) en état bloqué dans une position ouverte lors de la décharge de la poudre de café à partir de ladite chambre de dosage.

13. Dispositif selon une ou selon plusieurs des revendications précédentes 1 à 12, caractérisé en ce que ledit actionneur (37) comprend un électro-aimant avec un ancrage mobile (37A) et en ce que ladite première paroi (33) est contrainte audit ancrage mobile (37A) pour oscillier autour d’une broche de rotation (35) sous la commande de l’électro-aimant.

14. Machine à café comprenant un récipient à grains de café, une unité d’infusion et un dispositif de dosage (1) selon une ou selon plusieurs des revendications précédentes 1 à 13.

15. Machine de distribution automatique de boisson comprenant un récipient à grains de café, une unité d’infusion et un dispositif de dosage (1) selon une ou selon plusieurs des revendications précédentes 1 à 13, qui est connexe à ladite unité d’infusion.

16. Moulin à café comprenant un récipient à grains de café, un distributeur de café moulu et un dispositif de dosage (1) selon une ou selon plusieurs des revendications précédentes 1 à 13, qui est connexe audit distributeur de café moulu.
FIG. 3
FIG. 7
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2008105017 A [0004]
- US 4659023 A [0006]
- GB 1495893 A [0007]
- US 4681028 A [0019]
- US 5259296 A [0019]
- EP 1574157 A [0019]
- WO 2008074421 A [0019]
- WO 200922364 A [0019]
- WO 200859545 A [0019]
- US 7273005 A [0019]