Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

[0001] The subject matter described herein relates generally to supersonic compressor systems and, more particularly, to a supersonic compressor rotor for use with a supersonic compressor system.

EP 2 282 062 A discloses a supersonic compressor rotor defining an inner cylindrical cavity, an outer rim and at least one radial flow channel allowing fluid communication between the inner cylindrical cavity and the outer rim.

[0002] At least some known supersonic compressor systems include a drive assembly, a drive shaft, and at least one supersonic compressor rotor for compressing a fluid. The drive assembly is coupled to the supersonic compressor rotor with the drive shaft to rotate the drive shaft and the supersonic compressor rotor.

[0003] Known supersonic compressor rotors include a plurality of strakes coupled to a rotor disk. Each strake is oriented circumferentially about the rotor disk and defines an axial flow channel between adjacent strakes. At least some known supersonic compressor rotors include a supersonic compression ramp that is coupled to the rotor disk. Known supersonic compression ramps are positioned within the axial flow path and are configured to form a compression wave within the flow path.

[0004] During operation of known supersonic compressor systems, the drive assembly rotates the supersonic compressor rotor at a high rotational speed. A fluid is channeled to the supersonic compressor rotor such that the fluid is characterized by a velocity that is supersonic with respect to the supersonic compressor rotor at the flow channel. At least some known supersonic compressor rotors discharge fluid from the flow channel in an axial direction. As fluid is channeled in an axial direction, supersonic compressor system components downstream of the supersonic compressor rotor are required to be designed to receive axial flow. As such, known supersonic compressor systems required additional components to discharge fluid in a radial direction. Known supersonic compressor systems are described in, for example, United States Patents numbers 7,334,990 and 7,293,955 filed March 28, 2005 and March 23, 2005 respectively, and United States Patent Application 2009/0196731 filed January 16, 2009.

BRIEF DESCRIPTION OF THE INVENTION

[0005] The present invention is defined in the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWING

[0006] These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:

Fig. 1 is a schematic view of a supersonic compressor system;
Fig. 2 is an exploded perspective view of a supersonic compressor rotor that may be used with the supersonic compressor system shown in Fig. 1;
Fig. 3 is a sectional view of the supersonic compressor rotor shown in Fig. 2;
Fig. 4 is another sectional view of an example of the supersonic compressor rotor shown in Fig. 2;
Fig. 5 is a sectional view of an example not part of the invention of the supersonic compressor rotor shown in Fig. 4;
Fig. 6 is a sectional view of the embodiment of the invention of the supersonic compressor rotor shown in Fig. 4.

[0007] Unless otherwise indicated, the drawings provided herein are meant to illustrate key inventive features of the invention. These key inventive features are believed to be applicable in a wide variety of systems comprising one or more embodiments of the invention. As such, the drawings are not meant to include all conventional features known by those of ordinary skill in the art to be required for the practice of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0008] In the following specification and the claims, which follow, reference will be made to a number of terms, which shall be defined to have the following meanings.

[0009] The singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise.

[0010] "Optional" or "optionally" means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.

[0011] Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as "about" and "substantially", are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged, such ranges are identified and in-
As used herein, the term “supersonic compressor” refers to a compressor rotor comprising a supersonic compression ramp disposed within a fluid flow channel of the supersonic compressor rotor. Supersonic compressor rotors are said to be “supersonic” because they are designed to rotate about an axis of rotation at high speeds such that a moving fluid, for example a moving gas, encountering the rotating supersonic compressor rotor at a supersonic compression ramp disposed within a flow channel of the rotor, is said to have a relative fluid velocity which is supersonic. The relative fluid velocity can be defined in terms of the vector sum of the rotor velocity at the supersonic compression ramp and the fluid velocity just prior to encountering the supersonic compression ramp. This relative fluid velocity is at times referred to as the “local supersonic inlet velocity”, which in certain embodiments is a combination of an inlet gas velocity and a tangential speed of a supersonic compression ramp disposed within a flow channel of the supersonic compressor rotor. The supersonic compressor rotors are engineered for service at very high tangential speeds, for example tangential speeds in a range of 300 meters/second to 800 meters/second.

Fig. 1 is a schematic view of an exemplary supersonic compressor system 10. In the embodiment, supersonic compressor system 10 includes an intake section 12, a compressor section 14 coupled downstream from intake section 12, a discharge section 16 coupled downstream from compressor section 14, and a drive assembly 18. Compressor section 14 is coupled to drive assembly 18 by a rotor assembly 20 that includes a drive shaft 22. In the embodiment, each of intake section 12, compressor section 14, and discharge section 16 are positioned within a compressor housing 24. More specifically, compressor housing 24 includes a fluid inlet 26, a fluid outlet 28, and an inner surface 30 that defines a cavity 32. Cavity 32 extends between fluid inlet 26 and fluid outlet 28 and is configured to channel a fluid from fluid inlet 26 to fluid outlet 28. Each of intake section 12, compressor section 14, and discharge section 16 are positioned within cavity 32. Alternatively, intake section 12 and/or discharge section 16 may not be positioned within compressor housing 24.

In the embodiment, fluid inlet 26 is configured to channel a flow of fluid from a fluid source 34 to intake section 12. The fluid may be any fluid such as, for example a liquid, a gas, a gas mixture, and/or a liquid-gas mixture. Intake section 12 is coupled in flow communication with compressor section 14 for channeling fluid from fluid inlet 26 to compressor section 14. Intake section 12 is configured to condition a fluid flow having one or more predetermined parameters, such as a velocity, a mass flow rate, a pressure, a temperature, and/or any suitable flow parameter. In the embodiment, intake section 12 includes an inlet guide vane assembly 36 that is coupled between fluid inlet 26 and compressor section 14 for channeling fluid from fluid inlet 26 to compressor section 14. Inlet guide vane assembly 36 includes one or more inlet guide vanes 38 that are coupled to compressor housing 24 and are stationary with respect to compressor section 14.

Compressor section 14 is coupled between intake section 12 and discharge section 16 for channeling at least a portion of fluid from intake section 12 to discharge section 16. Compressor section 14 includes at least one supersonic compressor rotor 40 that is rotatably coupled to drive shaft 22. Supersonic compressor rotor 40 is configured to increase a pressure of fluid, reduce a volume of fluid, and/or increase a temperature of fluid being channeled to discharge section 16. Discharge section 16 includes an outlet guide vane assembly 42 that is coupled between supersonic compressor rotor 40 and fluid outlet 28 for channeling fluid from supersonic compressor rotor 40 to fluid outlet 28. Fluid outlet 28 is configured to channel fluid from outlet guide vane assembly 42 and/or supersonic compressor rotor 40 to an output system 44 such as, for example, a turbine engine system, a fluid treatment system, and/or a fluid storage system.

During operation, intake section 12 channels fluid from fluid source 34 towards compressor section 14. Compressor section 14 compresses the fluid and discharges the compressed fluid towards discharge section 16. Discharge section 16 channels the compressed fluid from compressor section 14 to output system 44 through fluid outlet 28.

Fig. 2 is an exploded perspective view of supersonic compressor rotor 40. Fig. 3 is a sectional view of supersonic compressor rotor 40. Fig. 4 is another sectional view of a portion of supersonic compressor rotor 40 not part of the invention. In the embodiment supersonic compressor rotor 40 includes a plurality of vanes 46 that are coupled to a rotor disk 48. Rotor disk 48 includes an annular disk body 50 that defines an inner cylindrical cavity 52 extending generally axially through disk body 50 along a centerline axis 54. Disk body 50 includes a radially inner surface 56, a radially outer surface 58, and an endwall 60. Radially inner surface 56 defines inner cylindrical cavity 52. Inner cylindrical cavity 52 has a substantially cylindrical shape and is oriented about centerline axis 54. Inner cylindrical cavity 52 is sized to receive drive shaft 22 (shown in Fig. 1) therethrough. Endwall 60 extends radially outwardly from inner cylindrical cavity 52 and between radially inner surface 56 and radially outer surface 58. Endwall 60 includes a width 62 defined in a radial direction 64 that is oriented perpendicular to centerline axis 54.

[0013] The exemplary systems and methods described herein overcome disadvantages of known supersonic compressor assemblies by providing a supersonic compressor rotor that facilitates channeling a fluid through a generally radial flow path. In addition, providing a supersonic compressor rotor with a radial flow channel enables a supersonic compressor system to be designed with a radial flow discharge.

[0014] Fig. 1 is a schematic view of an exemplary supersonic compressor system 10. In the embodiment, supersonic compressor system 10 includes an intake section 12, a compressor section 14 coupled downstream from intake section 12, a discharge section 16 coupled downstream from compressor section 14, and a drive assembly 18. Compressor section 14 is coupled to drive assembly 18 by a rotor assembly 20 that includes a drive shaft 22. In the embodiment, each of intake section 12, compressor section 14, and discharge section 16 are positioned within a compressor housing 24. More specifically, compressor housing 24 includes a fluid inlet 26, a fluid outlet 28, and an inner surface 30 that defines a cavity 32. Cavity 32 extends between fluid inlet 26 and fluid outlet 28 and is configured to channel a fluid from fluid inlet 26 to fluid outlet 28. Each of intake section 12, compressor section 14, and discharge section 16 are positioned within cavity 32. Alternatively, intake section 12 and/or discharge section 16 may not be positioned within compressor housing 24.

[0015] In the embodiment, fluid inlet 26 is configured to channel a flow of fluid from a fluid source 34 to intake section 12. The fluid may be any fluid such as, for example a liquid, a gas, a gas mixture, and/or a liquid-gas mixture. Intake section 12 is coupled in flow communication with compressor section 14 for channeling fluid from fluid inlet 26 to compressor section 14. Intake section 12 is configured to condition a fluid flow having one or more predetermined parameters, such as a velocity, a mass flow rate, a pressure, a temperature, and/or any suitable flow parameter. In the embodiment, intake section 12 includes an inlet guide vane assembly 36 that is coupled between fluid inlet 26 and compressor section 14 for channeling fluid from fluid inlet 26 to compressor section 14. Inlet guide vane assembly 36 includes one or more inlet guide vanes 38 that are coupled to compressor housing 24 and are stationary with respect to compressor section 14.

[0016] Compressor section 14 is coupled between intake section 12 and discharge section 16 for channeling at least a portion of fluid from intake section 12 to discharge section 16. Compressor section 14 includes at least one supersonic compressor rotor 40 that is rotatably coupled to drive shaft 22. Supersonic compressor rotor 40 is configured to increase a pressure of fluid, reduce a volume of fluid, and/or increase a temperature of fluid being channeled to discharge section 16. Discharge section 16 includes an outlet guide vane assembly 42 that is coupled between supersonic compressor rotor 40 and fluid outlet 28 for channeling fluid from supersonic compressor rotor 40 to fluid outlet 28. Fluid outlet 28 is configured to channel fluid from outlet guide vane assembly 42 and/or supersonic compressor rotor 40 to an output system 44 such as, for example, a turbine engine system, a fluid treatment system, and/or a fluid storage system.

[0017] During operation, intake section 12 channels fluid from fluid source 34 towards compressor section 14. Compressor section 14 compresses the fluid and discharges the compressed fluid towards discharge section 16. Discharge section 16 channels the compressed fluid from compressor section 14 to output system 44 through fluid outlet 28.

[0018] Fig. 2 is an exploded perspective view of supersonic compressor rotor 40. Fig. 3 is a sectional view of supersonic compressor rotor 40. Fig. 4 is another sectional view of a portion of supersonic compressor rotor 40 not part of the invention. In the embodiment supersonic compressor rotor 40 includes a plurality of vanes 46 that are coupled to a rotor disk 48. Rotor disk 48 includes an annular disk body 50 that defines an inner cylindrical cavity 52 extending generally axially through disk body 50 along a centerline axis 54. Disk body 50 includes a radially inner surface 56, a radially outer surface 58, and an endwall 60. Radially inner surface 56 defines inner cylindrical cavity 52. Inner cylindrical cavity 52 has a substantially cylindrical shape and is oriented about centerline axis 54. Inner cylindrical cavity 52 is sized to receive drive shaft 22 (shown in Fig. 1) therethrough. Endwall 60 extends radially outwardly from inner cylindrical cavity 52 and between radially inner surface 56 and radially outer surface 58. Endwall 60 includes a width 62 defined in a radial direction 64 that is oriented perpendicular to centerline axis 54.
In the embodiment, each vane 46 is coupled to endwall 60 and extends outwardly from endwall 60 in an axial direction 66 that is generally parallel to centerline axis 54. Each vane 46 includes an inlet edge 68, an outlet edge 70, and a sidewall 72 that extends between inlet edge 68 and outlet edge 70. Inlet edge 68 is positioned adjacent radially inner surface 56. Outlet edge 70 is positioned adjacent radially outer surface 58. In the embodiment, adjacent vanes 46 form a pair 74 of vanes 46. Each pair 74 is oriented to define a flow channel 76, an inlet opening 78, and an outlet opening 80 between adjacent vanes 46. Flow channel 76 extends between inlet opening 78 and outlet opening 80 and defines a flow path 82 (shown in Fig. 3) from inlet opening 78 to outlet opening 80. Flow path 82 is oriented generally parallel to sidewall 72. In the embodiment, flow path 82 includes a radial vector component and a tangential vector component. Flow channel 76 is sized, shaped, and oriented to channel fluid along flow path 82 from inlet opening 78 to outlet opening 80 in radial direction 64 such that fluid is characterized by having a tangential flow vector, represented by arrow 83, and a radial flow vector, represented by arrow 85 through flow path 82. Inlet opening 78 is defined between adjacent inlet edges 68 of adjacent vanes 46. Outlet opening 80 is defined between adjacent outlet edges 70 of adjacent vanes 46. Sidewall 72 extends radially between inlet edge 68 and outlet edge 70 such that vane 46 extends between radially inner surface 56 and radially outer surface 58. Sidewall 72 includes an outer surface 84 and an opposite inner surface 86. Sidewall 72 extends between outer surface 84 and inner surface 86 to define an axial height 88 of flow channel 76 from outer surface 84 to inner surface 86.

Each sidewall 72 includes a first side, i.e. a pressure side 90 and an opposing second side, i.e. a suction side 92. Each pressure side 90 and suction side 92 extends between inlet edge 68 and outlet edge 70. Each vane 46 is spaced circumferentially about inner cylindrical cavity 52 such that flow channel 76 is oriented generally radially between inlet opening 78 and outlet opening 80. Each inlet opening 78 extends between a pressure side 90 and an adjacent suction side 92 of vane 46 at inlet edge 68. Each outlet opening 80 extends between pressure side 90 and an adjacent suction side 92 at outlet edge 70 such that flow path 82 is defined radially outwardly from radially inner surface 56 to radially outer surface 58 in radial direction 64. Alternatively, adjacent vanes 46 may be oriented such that inlet opening 78 is defined at radially outer surface 58 and outlet opening 80 is defined at radially inner surface 56 such that flow path 82 is defined radially inwardly from radially outer surface 58 to radially inner surface 56.

In the embodiment, flow channel 76 includes a width 94 that is defined between pressure side 90 and adjacent suction side 92, and is perpendicular to flow path 82. Inlet opening 78 has a first circumferential width 96 that is larger than a second circumferential width 98 of outlet opening 80. Alternatively, first circumferential width 96 of inlet opening 78 may be less than, or equal to, second circumferential width 98 of outlet opening 80.

In an example not part of the invention at least one supersonic compression ramp 100 is coupled to endwall 60 and extends outwardly from endwall 60 in axial direction 66. Supersonic compression ramp 100 is positioned between inlet opening 78 and outlet opening 80 and extends at least partially into flow channel 76 from endwall 60. Supersonic compression ramp 100 is sized, shaped, and oriented to enable one or more compression waves 102 to form within flow channel 76.

A shroud assembly 104 is coupled to outer surface 84 of each vane 46 such that flow channel 76 is defined between shroud assembly 104 and endwall 60. Shroud assembly 104 includes an inner edge 106, an outer edge 108, and a shroud plate 110 that extends radially between inner edge 106 and outer edge 108. Inner edge 106 defines a substantially cylindrical opening 112. Shroud assembly 104 is oriented coaxially with respect to rotor disk 48, such that inner cylindrical cavity 52 is concentric with opening 112. Shroud assembly 104 is coupled to each vane 46 such that inlet edge 68 of vane 46 is positioned adjacent inner edge 106 of shroud assembly 104, and outlet edge 70 of vane 46 is positioned adjacent outer edge 108 of shroud assembly 104. Each vane 46 extends axially between an inner surface 114 of shroud plate 110 and endwall 60.

During operation of supersonic compressor rotor 40 not part of the invention, intake section 12 (shown in Fig. 1) channels a fluid 116 towards inlet opening 78 of flow channel 76. Fluid 116 has a first velocity, i.e. an approach velocity, just prior to entering inlet opening 78. Supersonic compressor rotor 40 is rotated about centerline axis 54 at a second velocity, i.e. a rotational velocity, represented by arrow 118, such that fluid 116 entering flow channel 76 includes a third velocity, i.e. an inlet velocity at inlet opening 78 that is supersonic relative to vanes 46. As fluid 116 is channeled through flow channel 76 at a supersonic velocity, supersonic compression ramp 100 causes compression waves 102 to form within flow channel 76 to facilitate compressing fluid 116, such that fluid 116 includes an increased pressure and temperature, and/or includes a reduced volume at outlet opening 80.

In this example supersonic compression ramp 100 is coupled to endwall 60 to define flow channel 76 having a cross-sectional area 120 that varies along flow path 82. Cross-sectional area 120 of flow channel 76 is defined perpendicularly to flow path 82 and is equal to width 94 of flow channel 76 multiplied by axial height 88 of flow channel 76. Flow channel 76 includes a first area, i.e. an inlet cross-sectional area 122 at inlet opening 78, a second area, i.e. an outlet cross-sectional area 124 at outlet opening 80, and a third area, i.e. a minimum cross-sectional area 126 that is defined between inlet opening 78 and outlet opening 80. This example supersonic compression ramp 100 defines a throat region 128 of flow channel 76. Throat region 128 includes minimum
cross-sectional area 126 of flow channel 76. Minimum cross-sectional area 126 is less than inlet cross-sectional area 122 and outlet cross-sectional area 124. In another example not part of the invention, minimum cross-sectional area 126 is equal to outlet cross-sectional area 124, wherein each of outlet cross-sectional area 124 and minimum cross-sectional area 126 is less than inlet cross-sectional area 122.

[0026] In this example, supersonic compression ramp 100 includes a compression surface 130 and a diverging surface 132. Compression surface 130 includes a first edge, i.e. a leading edge 134 and a second edge, i.e. a trailing edge 136. Leading edge 134 is positioned closer to inlet opening 78 than trailing edge 136. Compression surface 130 extends between leading edge 134 and trailing edge 136 and is oriented at an oblique angle α_1 from endwall 60 and into flow channel 76. In this example, compression surface 130 extends outwardly from endwall 60 and into flow channel 76 such that angle α_1 is defined between about 2° and about 10° as measured between endwall 60 and compression surface 130. Alternatively, compression surface 130 may be oriented with respect to endwall 60 such that angle α_1 may be any suitable angle sufficient to enable supersonic compression ramp 100 to function as described herein. In this example, compression surface 130 includes a substantially planar surface 138 that extends between leading edge 134 and trailing edge 136. In another example not part of the invention, compression surface 130 includes an arcuate surface 140 (shown in phantom lines) that extends between leading edge 134 and trailing edge 136.

[0027] In this example, compression surface 130 converges towards shroud plate 110 such that a compression region 142 is defined between leading edge 134 and trailing edge 136. Compression region 142 includes a cross-sectional area 144 of flow channel 76 that is reduced along flow path 82 from leading edge 134 to trailing edge 136. Trailing edge 136 of compression surface 130 defines throat region 128. Diverging surface 132 is coupled to compression surface 130 and extends downstream from compression surface 130 towards outlet opening 80. Diverging surface 132 includes a first end 146 and a second end 148 that is closer to outlet opening 80 than first end 146. First end 146 of diverging surface 132 is coupled to trailing edge 136 of compression surface 130. Diverging surface 132 extends between first end 146 and second end 148 and is oriented at an oblique angle α_2 with respect to endwall 60. Diverging surface 132 defines a diverging region 150 that includes a diverging cross-sectional area 152 that increases from trailing edge 136 of compression surface 130 to outlet opening 80. Diverging region 150 extends from throat region 128 to outlet opening 80.

[0028] During operation of supersonic compressor rotor 40 not part of the invention, fluid 116 is channeled from inner cylindrical cavity 52 into inlet opening 78 at a velocity that is supersonic with respect to rotor disk 48. Fluid 116 entering flow channel 76 from inner cylindrical cavity 52 is channeled through compression region 142 and contacts supersonic compression ramp 100. Supersonic compression ramp 100 is sized, shaped, and oriented to cause a system 154 of compression waves 102 to be formed within channel 76. System 154 includes a first oblique shockwave 156 that is formed as fluid 116 is channeled across supersonic compression ramp 100 and through compression region 142. Compression surface 130 causes first oblique shockwave 156 to be formed at leading edge 134 of compression surface 130. First oblique shockwave 156 extends across flow path 82 from leading edge 134 to shroud plate 110, and is oriented at an oblique angle with respect to flow path 82. First oblique shockwave 156 contacts shroud plate 110 and forms a second oblique shockwave 158 that is reflected from shroud plate 110 towards trailing edge 136 of compression surface 130 at an oblique angle with respect to flow path 82. Supersonic compression ramp 100 is configured to cause each first oblique shockwave 156 and second oblique shockwave 158 to form within compression region 142. As fluid is channeled through throat region 128 towards outlet opening 80, a normal shockwave 160 is formed within diverging region 150. Normal shockwave 160 is oriented perpendicular to flow path 82 and extends across flow path 82.

[0029] As fluid 116 passes through compression region 142, a velocity of fluid 116 is reduced as fluid 116 passes through each first oblique shockwave 156 and second oblique shockwave 158. In addition, a pressure of fluid 116 is increased, and a volume of fluid 116 is reduced. As fluid 116 passes through throat region 128, a velocity of fluid 116 is increased downstream of throat region 128 to normal shockwave 160. As fluid passes through normal shockwave 160, a velocity of fluid 116 is decreased to a subsonic velocity relative to vanes 46.

[0030] Fig. 5 is a sectional view of an alternative example of supersonic compressor rotor 40 not part of the invention that includes an alternative supersonic compression ramp 200. In this example, supersonic compression ramp 200 is configured to prevent normal shockwave 160 (shown in Fig. 4) from being formed in flow channel 76. Supersonic compression ramp 200 includes a compression surface 130 that is positioned within flow channel 76 such that throat region 128 is defined adjacent outlet opening 80. Moreover, trailing edge 136 of compression surface 130 is positioned adjacent outlet opening 80 such that supersonic compression ramp 200 does not include diverging surface 132. During operation, as fluid 116 is channeled through flow channel 76, supersonic compression ramp 200 conditions fluid 116 being channeled through throat region 128 to include a velocity at outlet opening 80 that is supersonic with respect to rotor disk 48.

[0031] Fig. 6 is a sectional view of an embodiment of supersonic compressor rotor 40 part of the invention. In the alternative embodiment, supersonic compressor rotor 40 includes a first supersonic compression ramp 202 and a second supersonic compression ramp 204. First
In this embodiment, during operation, as fluid diverging surface 208 and second diverging surface 212 face 210. Diverging region 150 is defined between first compression surface 206 and second compression surface 210. Each of first compression surface 206 and second compression surface 210 includes a leading edge 134 and a trailing edge 136. Throat region 128 is defined between each trailing edge 136. Compression region 142 is defined between first compression surface 206 and second compression surface 210. Diverging region 150 is defined between first diverging surface 208 and second diverging surface 212.

Claims

1. A supersonic compressor rotor comprising: a rotor disk (48) comprising a substantially cylindrical endwall (60), a radially inner surface (56), and a radially outer surface (58), said cylindrical endwall extending between said radially inner surface and said radially outer surface; a plurality of vanes (46) coupled to said cylindrical endwall, said vanes extending outwardly from said cylindrical endwall, adjacent vanes forming a pair (74) and are spaced a circumferential distance apart such that a flow channel is defined between each said pair of circumferentially-adjacent vanes, said flow channel extending generally radially between an inlet opening (78) and an outlet opening (80) characterized in that: a first supersonic compression ramp (100) coupled to said endwall, said first supersonic compression ramp positioned within said flow channel to facilitate forming at least one compression wave (102) within said flow channel; a shroud assembly (104) coupled to said vanes (46), said vanes extending between an inner surface (114) of said shroud assembly and said endwall (60); and a second supersonic compression ramp (204) coupled to said inner surface (114), said second compression ramp extending from said inner surface towards said endwall; wherein said second supersonic compression ramp (204) is positioned with respect to said first supersonic compression ramp (200) such that said throat region (128) of said flow channel is defined between said first supersonic compression ramp and said second supersonic compression ramp.

2. A supersonic compressor rotor in accordance with Claim 1, wherein said first supersonic compression
ramp (100) comprises a compression surface (130) extending outwardly from said endwall (60) at an oblique angle and into said flow channel (76), said compression surface including a leading edge (134) and a trailing edge (136), said trailing edge positioned nearer said outlet opening (80) than said leading edge, said trailing edge defining a throat region of said flow channel, said throat region (128) having a minimum cross-sectional area (120,122,124,126) of said flow channel.

3. A supersonic compressor rotor in accordance with Claim 1 or Claim 2, wherein said compression surface (130) is substantially planar.

4. A supersonic compressor rotor in accordance with Claim 1 or claim 2, wherein said compression surface (130) is substantially arcuate.

5. A supersonic compressor rotor in accordance with Claim 1 to 3, wherein said compression surface (130) is oriented at an angle between about 2 degrees and about 10 degrees with respect to said endwall (60).

6. A supersonic compressor rotor in accordance with Claim 2 to 5, wherein said trailing edge of said compression ramp (100) is positioned adjacent said outlet opening (80) of said flow channel (76).

7. A supersonic compressor rotor in accordance with Claim 2 to 6, wherein said compression ramp (100) comprises a diverging surface (208) coupled to said trailing edge (136) of said compression surface (130), said diverging surface extending inwardly from said trailing edge towards said endwall (60) at an oblique angle.

8. A supersonic compressor system (10) comprising:

9. A method of assembling a supersonic compressor rotor, said method comprising:

9. A method of assembling a supersonic compressor rotor, said method comprising:

10. A method in accordance with Claim 9, further comprising coupling a compression surface to the endwall, the compression surface extending outwardly from the endwall at an oblique angle and into the flow channel, the compression surface including a leading edge and a trailing edge positioned closer to the outlet opening than the leading edge, the trailing edge defining a throat region of the flow channel.

11. A method in accordance with Claim 9 or Claim 10, further comprising positioning the trailing edge of the compression surface adjacent the outlet opening of the flow channel.

12. A method in accordance with any of Claims 9 to 11, further comprising coupling a diverging surface to the trailing edge of the compression surface, the diverging surface extending inwardly from the trailing edge towards the endwall at an oblique angle, the diverging surface extending from the compression surface towards the outlet opening.

Patentansprüche

1. Überschallverdichterrotor, umfassend:

 eine Rotorscheibe (48), die eine im Wesentlichen zylindrische Endwand (60), eine radial innere Oberfläche (56) und eine radial äußere Oberfläche (58) umfasst, wobei die zylindrische Endwand zwischen der radial inneren Oberfläche und der radial äußeren Oberfläche verläuft;
mehrere Schaufeln (46), die an die zylindrische Endwand gekuppelt sind, wobei die Schaufeln von der zylindrischen Endwand nach außen verlaufen, wobei benachbarte Schaufeln ein Paar (74) ausbilden und derart in einem umfänglichen Abstand zueinander so angebracht sind, dass ein Strömungskanal zwischen jedem Paar von umfänglich benachbarten Schaufeln definiert ist, wobei der Strömungskanal im Allgemeinen radial zwischen einer Einlassöffnung (78) und einer Auslassöffnung (80) verläuft. gekennzeichnet durch:

eine erste Überschallverdichtungsrampe (100), die an die Endwand gekuppelt ist, wobei die erste Überschallverdichtungsrampe innerhalb des Strömungskanals angeordnet ist, um das Ausbilden von zumindest einer Verdichtungswelle (102) innerhalb des Strömungskanals zu ermöglichen;
eine Schirmblechbaugruppe (104), die an die Schaufeln gekuppelt ist, wobei die Schaufeln (46) zwischen einer Innenfläche (114) der Schirmblechbaugruppe und der Endwand (60) verlaufen;
eine zweite Überschallverdichtungsrampe (204) die an die Innenfläche (114) gekuppelt ist, wobei die zweite Überschallverdichtungsrampe von der Innenfläche zur Endwand hin verläuft;
wobei die zweite Überschallverdichtungsrampe (204) derart bezüglich der ersten Überschallverdichtungsrampe (200) angeordnet ist, dass der Verengungsbereich (128) des Strömungskanals zwischen der ersten Überschallverdichtungsrampe und der zweiten Überschallverdichtungsrampe definiert ist.

2. Überschallverdichterroter nach Anspruch 1, wobei die erste Überschallverdichtungsrampe (100) eine Verdichtungsfläche (130) umfasst, die von der Endwand (60) in einem stumpfen Winkel nach außen und in den Strömungskanal (76) verläuft, wobei die Verdichtungsfläche eine Vorderkante (134) und eine Hinterkante (136) enthält, wobei die Hinterkante näher an der Auslassöffnung (80) als die Vorderkante angeordnet ist, wobei die Hinterkante einen Verengungsbereich des Strömungskanals definiert, wobei der Verengungsbereich (128) einen minimalen Querschnittsbereich (120, 122, 124, 126) des Strömungskanals aufweist.

3. Überschallverdichterroter nach einem der Ansprüche 1 oder 2, wobei die Verdichtungsfläche (130) im Wesentlichen plan ist.

4. Überschallverdichterroter nach einem der Ansprüche 1 oder 2, wobei die Verdichtungsfläche (130) im Wesentlichen bogenförmig ist.

5. Überschallverdichterroter nach einem der Ansprüche 1 bis 3, wobei die Verdichtungsfläche (130) in einem Winkel zwischen ungefähr 2 Grad und ungefähr 10 Grad bezüglich der Endwand (60) ausgerichtet ist.

6. Überschallverdichterroter nach einem der Ansprüche 2 bis 5, wobei die Hinterkante der Verdichtungsrampe (100) der Auslassöffnung (80) des Strömungskanals (76) benachbart angeordnet ist.

7. Überschallverdichterroter nach einem der Ansprüche 2 bis 6, wobei die Verdichtungsrampe (100) eine divergierende Oberfläche (208) umfasst, die an die Hinterkante (136) der Verdichtungsfläche (130) gekuppelt ist, wobei die divergierende Oberfläche in einem stumpfen Winkel von der Hinterkante nach innen zur Endwand (60) hin verläuft.

8. Überschallverdichtersystem (10), umfassend:
ein Gehäuse (24), das eine Innenfläche (114) umfasst, welche einen Hohlraum (32) definiert, der zwischen einem Fluideinlass und einem Fluidauslass verläuft;
eine Rotorwelle, die innerhalb des Gehäuses angeordnet ist, wobei die Rotorwelle drehbar an eine Antriebsbaugruppe (18) gekuppelt ist;
eden Überschallverdichterroter nach einem der vorhergehenden Ansprüche, der an die Rotorwelle gekuppelt ist, wobei der Überschallverdichterroter zum Kanalisieren von Fluid vom Fluideinlass zum Fluidauslass zwischen dem Fluideinlass und dem Fluidauslass angeordnet ist.

9. Verfahren zum Montieren eines Überschallverdichterroters, das Verfahren umfassend:

Vorsehen einer Rotorscheibe, die eine Endwand, eine radial innere Oberfläche und eine radial äußere Oberfläche enthält, wobei die Endwand zwischen der radial inneren Oberfläche und der radial äußeren Oberfläche verläuft; Ankuppeln von mehreren Schaufeln, wobei benachbarte Schaufeln ein Paar ausbilden und derart in einem umfänglichen Abstand zueinander so angebracht sind, dass ein Strömungskanal zwischen jedem Paar von umfänglich benachbarten Schaufeln definiert ist, wobei der Strömungskanal im Allgemeinen radial zwischen einer Einlassöffnung und einer Auslassöffnung verläuft;

Ankuppeln einer ersten Überschallverdichtungsrampe an die Endwand, wobei die erste
Überschallverdichtungsrampen zum Ermöglichen konfigurieren, dass sich zumindest eine Verdichtungswelle innerhalb des Strömungskanals ausbildet;
Ankuppeln einer Schirmblechbaugruppe an die Schaufeln, wobei die Schaufeln zwischen einer Innenfläche der Schirmblechbaugruppe und der Endwand verlaufen;
Ankuppeln einer zweiten Überschallverdichtungsrampen an die Innenfläche, wobei die zweite Überschallverdichtungsrampen von der Innenfläche zur Endwand hin verläuft, wobei die zweite Überschallverdichtungsrampen derart bezüglich der ersten Überschallverdichtungsrampen angeordnet wird, dass der Verengungsbereich zwischen der ersten Überschallverdichtungsrampen und der zweiten Überschallverdichtungsrampen definiert ist.

10. Verfahren nach Anspruch 9, ferner umfassend das Ankuppeln einer Verdichtungsfläche an die Endwand, wobei die Verdichtungsfläche von der Endwand in einem stumpfen Winkel nach außen und in den Strömungskanal verläuft, wobei die Verdichtungsfläche eine Vorderkante und eine Hinterkante enthält, die näher an der Auslassöffnung als die Vorderkante angeordnet ist, wobei die Hinterkante einen Verengungsbereich des Strömungskanals definiert.

12. Verfahren nach einem der Ansprüche 9 bis 11, ferner umfassend das Ankuppeln einer divergierenden Oberfläche an die Hinterkante der Verdichtungsfläche, wobei die divergierende Oberfläche in einem stumpfen Winkel von der Hinterkante nach innen zur Endwand hin verläuft, wobei die divergierende Oberfläche von der Verdichtungsfläche zur Auslassöffnung hin verläuft.

Revendications

1. Rotor de compresseur supersonique comprenant :
 un disque de rotor (48) comprenant une paroi d’extrémité sensiblement cylindrique (60), une surface radialement interne (56) et une surface radialement externe (58), ladite paroi d’extrémité cylindrique s’étendant entre ladite surface radialement interne et ladite surface radialement externe ;
 une pluralité d’aubes (46) couplées à ladite paroi d’extrémité cylindrique, lesdites aubes s’étendant vers l’extérieur de ladite paroi d’extrémité cylindrique, des aubes adjacentes formant une paire (74) et étant espacées d’une distance circonférentielle de sorte qu’un canal d’écoulement soit défini entre chaque dite paire d’aubes adjacentes au plan circonférentiel, ledit canal d’écoulement s’étendant de manière générale radialement entre une ouverture d’entrée (78) et une ouverture de sortie (80) ; caractérisé par :
 une première rampe de compression supersonique (100) couplée à ladite paroi d’extrémité, ladite première rampe de compression supersonique étant positionnée dans ledit canal d’écoulement pour faciliter la formation d’au moins une onde de compression (102) au sein dudit canal d’écoulement ;
 un ensemble de protection (104) couplé auxdites aubes (46), lesdites aubes s’étendant entre une surface interne (114) dudit ensemble de protection et ladite paroi d’extrémité (60) ;
 une seconde rampe de compression supersonique (204) couplée à ladite surface interne (114), ladite seconde rampe de compression s’étendant de ladite surface interne vers ladite paroi d’extrémité ;
 dans lequel ladite seconde rampe de compression supersonique (204) est positionnée par rapport à ladite première rampe de compression supersonique (200) de sorte que ladite région d’étranglement (128) dudit canal d’écoulement soit définie entre ladite première rampe de compression supersonique et ladite seconde rampe de compression supersonique.

2. Rotor de compression supersonique selon la revendication 1, dans lequel ladite première rampe de compression supersonique (100) comprend une surface de compression (130) s’étendant vers l’extérieur de ladite paroi d’extrémité (60) sous un angle oblique et dans ledit canal d’écoulement (76), ladite surface de compression comprenant un bord d’attaque (134) et un bord de fuite (136), ledit bord de fuite étant positionné plus près de ladite ouverture de sortie (80) que ledit bord d’attaque, ledit bord de fuite définissant une région d’étranglement dudit canal d’écoulement, ladite région d’étranglement (128) ayant une surface en coupe transversale minimale (120, 122, 124, 126) dudit canal d’écoulement.

3. Rotor de compresseur supersonique selon la revendication 1 ou la revendication 2, dans lequel ladite surface de compression (130) est sensiblement plane.

4. Rotor de compresseur supersonique selon la revendication 1 ou la revendication 2, dans lequel ladite surface de compression (130) est sensiblement arquée.
5. Rotor de compresseur supersonique selon les revendications 1 à 3, dans lequel ladite surface de compression (130) est orientée selon un angle compris entre environ 2 degrés et environ 10 degrés par rapport à ladite paroi d’extrémité (60).

6. Rotor de compresseur supersonique selon les revendications 2 à 5, dans lequel ledit bord de fuite de ladite rampe de compression (100) est positionné adjacent à ladite ouverture de sortie (80) dudit canal d’écoulement (76).

7. Rotor de compresseur supersonique selon les revendications 2 à 6, dans lequel ladite rampe de compression (100) comprend une surface divergente (208) couplée audit bord de fuite (136) de ladite surface de compression (130), ladite surface divergente s’étendant vers l’intérieur dudit bord de fuite vers ladite paroi d’extrémité (60) selon un angle oblique.

8. Système de compresseur supersonique (10) comprenant :
 un boîtier (24) comprenant une surface interne (114) définissant une cavité (32) s’étendant entre une entrée de fluide et une sortie de fluide ;
 un arbre de rotor positionné dans ledit boîtier, ledit arbre de rotor étant couplé à rotation à un ensemble d’entraînement (18) ; et
 un rotor de compresseur supersonique selon l’une quelconque des revendications précédentes couplé audit arbre de rotor, ledit rotor de compresseur supersonique étant positionné entre ladite entrée de fluide et ladite sortie de fluide pour canaliser le fluide de ladite entrée de fluide à ladite sortie de fluide.

9. Procédé d’assemblage d’un rotor de compresseur supersonique, ledit procédé comprenant les étapes consistant à :
 fournir un disque de rotor qui comprend une paroi d’extrémité, une paroi radialement interne et une paroi radialement externe, la paroi d’extrémité s’étendant entre la surface radialement interne et la surface radialement externe ;
 coupler une pluralité d’aubes à la paroi d’extrémité, des aubes adjacentes formant une paire et étant espacées d’une distance circonférentielle de sorte qu’un canal d’écoulement soit défini entre chaque paire d’aubes adjacentes au plan circonférentiel, le canal d’écoulement s’étendant de manière générale radialement entre une ouverture d’entrée et une ouverture de sortie ;
 coupler une première rampe de compression supersonique à la paroi d’extrémité, la première rampe de compression supersonique étant con-
figurée pour permettre au moins à une onde de compression de se former au sein du canal d’écoulement ;
 coupler un ensemble de protection aux aubes, les aubes s’étendant entre une surface interne de l’ensemble de protection et la paroi d’extrémité ;
 coupler une seconde rampe de compression supersonique à la surface interne, la seconde rampe de compression supersonique s’étendant de la surface interne vers la paroi d’extrémité, la seconde rampe de compression supersonique étant positionnée par rapport à la première rampe de compression supersonique de sorte que la région d’étranglement soit définie entre la première rampe de compression supersonique et la seconde rampe de compression supersonique.

10. Procédé selon la revendication 9, comprenant en outre le couplage d’une surface de compression à la paroi d’extrémité, la surface de compression s’étendant vers l’extérieur de la paroi d’extrémité sous un angle oblique et dans le canal d’écoulement, la surface de compression comprenant un bord d’attaque et un bord de fuite positionné plus près de l’ouverture de sortie que le bord d’attaque, le bord de fuite définissant une région d’étranglement dudit canal d’écoulement.

11. Procédé selon la revendication 9 ou la revendication 10, comprenant en outre le positionnement du bord de fuite de la surface de compression adjacent à l’ouverture de sortie du canal d’écoulement.

12. Procédé selon l’une quelconque des revendications 9 à 11, comprenant en outre le couplage d’une surface divergente au bord de fuite de la surface de compression, la surface divergente s’étendant vers l’intérieur du bord de fuite en direction de la paroi d’extrémité sous un angle oblique, la surface divergente s’étendant de la surface de compression vers l’ouverture de sortie.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 2282062 A [0001]
- US 7334990 B [0004]
- US 7293955 B [0004]
- US 20090196731 A [0004]