Monomethylvaline compounds conjugated to antibodies
Mit Antikörpern konjugierte Monomethylvalinverbindungen
Composés de monométhylvaline conjugués avec des anticorps

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

Priority: 06.11.2003 US 518534 P
26.03.2004 US 557116 P
04.08.2004 US 598899 P
27.10.2004 US 622455 P

Date of publication of application: 22.08.2012 Bulletin 2012/34

References cited:
WO-A-03/043583
WO-A2-2004/010957
WO-A2-2004/073656

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

1. FIELD OF THE INVENTION

[0001] The present invention is directed to antibody-drug conjugates, to compositions including the same, and to methods for using the same to treat cancer, an autoimmune disease or an infectious disease. Also described herein are methods of using antibody-drug conjugate compounds for in vitro, in situ, and in vivo diagnosis or treatment of mammalian cells, or associated pathological conditions.

2. BACKGROUND OF THE INVENTION

[0002] Improving the delivery of drugs and other agents to target cells, tissues and tumors to achieve maximal efficacy and minimal toxicity has been the focus of considerable research for many years. Though many attempts have been made to develop effective methods for importing biologically active molecules into cells, both in vivo and in vitro, none has proved to be entirely satisfactory. Optimizing the association of the drug with its intracellular target, while minimizing intercellular redistribution of the drug, e.g., to neighboring cells, is often difficult or inefficient.

[0003] Most agents currently administered to a patient parenterally are not targeted, resulting in systemic delivery of the agent to cells and tissues of the body where it is unnecessary, and often undesirable. This may result in adverse drug side effects, and often limits the dose of a drug (e.g., chemotherapeutic (anti-cancer), cytotoxic, enzyme inhibitor agents and antiviral or antimicrobial drugs) that can be administered. By comparison, although oral administration of drugs is considered to be a convenient and economical mode of administration, it shares the same concerns of non-specific toxicity to unaffected cells once the drug has been absorbed into the systemic circulation. Further complications involve problems with oral bioavailability and residence of drug in the gut leading to additional exposure of gut to the drug and hence risk of gut toxicities. Accordingly, a major goal has been to develop methods for specifically targeting agents to cells and tissues. The benefits of such treatment include avoiding the general physiological effects of inappropriate delivery of such agents to other cells and tissues, such as uninfected cells. Intracellular targeting may be achieved by methods, compounds and formulations which allow accumulation or retention of biologically active agents, i.e. active metabolites, inside cells.

[0004] Monoclonal antibody therapy has been established for the targeted treatment of patients with cancer, immunological and angiogenic disorders.

In the art for dolastatin/auristatin derivatives having significantly lower toxicity, yet useful therapeutic efficiency. These
neu receptor family includes four distinct members including epidermal growth factor receptor (EGFR, ErbB1, HER1),
and (vi) other anti-CD30 antibodies (WO 03/043583).

Auristatin E conjugated to monoclonal antibodies are disclosed in Senter et al, Proceedings of the American

Despite in vitro data for compounds of the dolastatin class and its analogs, significant general toxicities at doses
required for achieving a therapeutic effect compromise their efficacy in clinical studies. Accordingly, there is a clear need
in the art for dolastatin/auristatin derivatives having significantly lower toxicity, yet useful therapeutic efficiency. These
and other limitations and problems of the past are addressed by the present invention.

The ErbB family of receptor tyrosine kinases are important mediators of cell growth, differentiation and survival.
The receptor family includes four distinct members including epidermal growth factor receptor (EGFR, ErbB1, HER1),
HER2 (ErbB2 or p185

The anti-ErbB2 antibodies discussed in Hudziak et al. are further characterized in Fendly et al. (1990) Cancer Research

Other anti-ErbB2 antibodies with various properties have been described in Tagliaudue et al. Int. J. Cancer

Homologic screening has resulted in the identification of two other ErbB receptor family members; ErbB3 (U.S.
366:473-475). Both of these receptors display increased expression on at least some breast cancer cell lines.

HERCEPTIN® (Trastuzumab) is a recombinant DNA-derived humanized monoclonal antibody that selectively
binds with high affinity in a cell-based assay (Kd = 5 nM) to the extracellular domain of the human epidermal growth factor receptor2 protein, HER2 (ErbB2) (U.S. Patent No. 5821337; U.S. Patent No. 6054297; U.S. Patent No. 6407213; U.S. Patent No. 6639055; Coussens L, et al. (1985) Science 230:1132-9; Slamon DJ, et al. (1989) Science 244:707-12. Trastuzumab is an IgG1 kappa antibody that contains human framework regions with the complementarity-determining regions of a murine antibody (4D5) that binds to HER2. Trastuzumab binds to the HER2 antigen and thus, inhibits the growth of cancerous cells. Because Trastuzumab is a humanized antibody, it minimizes any HAMA response in patients. The humanized antibody against HER2 is produced by a mammalian cell (Chinese Hamster Ovary, CHO) suspension culture. The HER2 (or c-erbB2) proto-oncogene encodes a transmembrane receptor protein of 185kDa, which is structurally related to the epidermal growth factor receptor. HER2 protein overexpression is observed in 25%-30% of primary breast cancers and can be determined using an immunohistochemistry based assessment of fixed tumor blocks (Press MF, et al. (1993) Cancer Res 53:4960-70. Trastuzumab has been shown, in both in vitro assays and in animals, to inhibit the proliferation of human tumor cells that overexpress HER2 (Hudziak RM, et al. (1989) Mol Cell Biol 9:1165-72; Lewis GD, et al. (1993) Cancer Immunol Immunother; 37:255-63; Baselga J, et al. (1998) Cancer Res. 58:2825-2831). Trastuzumab is a mediator of antibody-dependent cellular cytotoxicity, ADCC (Hotaling TE, et al. (1996) [abstract]. Proc. Annual Meeting Am Assoc Cancer Res; 37:471; Pegram MD, et al. (1997) [abstract]. Proc Am Assoc Cancer Res; 38:602). In vitro, Trastuzumab mediated ADCC has been shown to be preferentially exerted on HER2 overexpressing cancer cells compared with cancer cells that do not overexpress HER2. HERCEPTIN® as a single agent is indicated for the treatment of patients with metastatic breast cancer whose tumors overexpress the HER2 protein and who have received one or more chemotherapy regimens for their metastatic disease. HERCEPTIN® in combination with paclitaxel is indicated for treatment of patients with metastatic breast cancer whose tumors overexpress the HER2 protein and who have not received chemotherapy for their metastatic disease. HERCEPTIN® is clinically active in patients with ErbB2-overexpressing metastatic breast cancers that have received extensive prior anti-cancer therapy (Baselga et al, (1996) J. Clin. Oncol. 14:737-744).

Although HERCEPTIN is a breakthrough in treating patients with ErbB2-overexpressing breast cancers that have received extensive prior anti-cancer therapy (Cobleigh et al., (1999) J. Clin. Oncol. 17: 2639-2648). Therefore, there is a significant clinical need for developing further HER2-directed cancer therapies for those patients with HER2-overexpressing tumors or other diseases associated with HER2 expression that do not respond, or respond poorly, to HERCEPTIN treatment.

The recitation of any reference in this application is not an admission that the reference is prior art to this application.

3. SUMMARY OF THE INVENTION

The present invention provides an antibody-drug conjugate having the formula:

\[
\text{Ab} \times R^{17} \times \text{C(O)}_{\text{Df}}
\]

or a pharmaceutically acceptable salt or solvate thereof, wherein \(R^{17} \) is \(C_{1}-C_{10} \) alkylene-, \(-C_{3}-C_{8} \) carbocyclo-, \(-O-(C_{1}-C_{8} \text{ alkyl})-\), -arylene-, \(-C_{1}-C_{10} \) alkylene-arylene-, -arylene-C_{1}-C_{10} alkylene-, \(-C_{1}-C_{10} \) alkylene-(C_{3}-C_{8} carbocyclo)-, -(C_{2}-C_{8} carbocyclo)-C_{1}-C_{10} alkylene-, \(-C_{3}-C_{8} \) heterocyclo-, -C_{1}-C_{10} alkylene-(C_{3}-C_{8} heterocyclo)-, -(C_{3} C_{8} heterocyclo)-C_{1}-C_{10} alkylene-, -(CH_{2}CH_{2}O)_{r}, -(CH_{2}CH_{2}O)_{r}-CH_{2}-; and \(r \)
is an integer ranging from 1 to 10;
p ranges from 1 to about 20, and

\(D_F \) is a Drug Unit having the formula:

\[
\begin{align*}
&\text{R}^2 \text{ is selected from H and C}_1-\text{C}_8 \text{ alkyl;} \\
&\text{R}^3 \text{ is selected from H, C}_1-\text{C}_8 \text{ carbocycle, aryl, C}_1-\text{C}_8 \text{ alkyl-aryl, C}_1-\text{C}_8 \text{ alkyl-(C}_3-\text{C}_8 \text{ carbocycle),} \\
&\text{C}_3-\text{C}_8 \text{ heterocycle, and C}_1-\text{C}_8 \text{ alkyl-(C}_3-\text{C}_8 \text{ heterocycle);} \\
&\text{R}^4 \text{ is selected from H, C}_1-\text{C}_8 \text{ alkyl, C}_3-\text{C}_8 \text{ carbocycle, aryl, C}_1-\text{C}_8 \text{ alkyl-aryl, C}_1-\text{C}_8 \text{ alkyl-(C}_3-\text{C}_8 \text{ carbocycle),} \\
&\text{C}_3-\text{C}_8 \text{ heterocycle, and C}_1-\text{C}_8 \text{ alkyl-(C}_3-\text{C}_8 \text{ heterocycle);} \\
&\text{R}^5 \text{ is selected from H and methyl;}
\end{align*}
\]

or:

\[
\begin{align*}
&\text{R}^4 \text{ and R}^5 \text{ jointly form a carbocyclic ring and have the formula } -(\text{CR}^a\text{R}^b)_n-, \text{ wherein R}^a \text{ and R}^b \text{ are independently selected from H, C}_1-\text{C}_8 \text{ alkyl, and C}_3-\text{C}_8 \text{ carbocycle, and } n \text{ is selected from 2, 3, 4, 5 and 6;} \\
&\text{R}^6 \text{ is selected from H and C}_1-\text{C}_8 \text{ alkyl;} \\
&\text{R}^7 \text{ is selected from H, C}_1-\text{C}_8 \text{ alkyl, C}_3-\text{C}_8 \text{ carbocycle, aryl, C}_1-\text{C}_8 \text{ alkyl-aryl, C}_1-\text{C}_8 \text{ alkyl-(C}_3-\text{C}_8 \text{ carbocycle),} \\
&\text{C}_3-\text{C}_8 \text{ heterocycle, and C}_1-\text{C}_8 \text{ alkyl-(C}_3-\text{C}_8 \text{ heterocycle);} \\
&\text{each R}^8 \text{ is independently selected from H, OH, C}_1-\text{C}_8 \text{ alkyl, C}_3-\text{C}_8 \text{ carbocycle, and O-(C}_1-\text{C}_8 \text{ alkyl);} \\
&\text{R}^9 \text{ is selected from H and C}_1-\text{C}_8 \text{ alkyl;} \\
&\text{R}^{10} \text{ is selected from aryl and C}_3-\text{C}_8 \text{ heterocycle;} \\
&\text{Z is O, S, NH, or NR}^{12}, \text{ wherein R}^{12} \text{ is C}_1-\text{C}_8 \text{ alkyl;} \\
&\text{R}^{11} \text{ is selected from -H, C}_1-\text{C}_{20} \text{ alkyl, aryl, -C}_3-\text{C}_8 \text{ heterocycle, } -(\text{R}^{13}\text{O})_m\text{R}^{14}, \text{ or } -(\text{R}^{13}\text{O})_m\text{-CH(}\text{R}^{15}\text{)}_2; \\
&m \text{ is an integer ranging from 1 to 1000;} \\
&\text{R}^{13} \text{ is C}_2-\text{C}_8 \text{ alkyl;} \\
&\text{R}^{14} \text{ is H or C}_1-\text{C}_8 \text{ alkyl;} \\
&\text{each occurrence of R}^{15} \text{ is independently H, COOH, -(CH}_2)_n\text{-Ni(}\text{R}^{16}\text{)}_2, -(\text{CH}_2)_n\text{-SO}_3\text{H, or -(CH}_2)_n\text{-SO}_3\text{-C}_1-\text{C}_8 \text{ alkyl;} \\
&\text{each occurrence of R}^{16} \text{ is independently H, C}_1-\text{C}_8 \text{ alkyl, or -(CH}_2)_n\text{-COOH; and} \\
&n \text{ is an integer ranging from 0 to 6.}
\]

[0020] Also provided is a pharmaceutical composition comprising an effective amount of antibody-drug conjugate according to any one of the preceding claims, or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier or vehicle.

[0021] Also provided is a composition for treating cancer comprising an amount of the antibody-drug conjugate according to any one of the preceding claims, or a pharmaceutically acceptable salt or solvate thereof, said amount being effective to treat cancer.

[0022] Also provided is an antibody-drug conjugate compound as defined above for use in the treatment of cancer, wherein said treatment of cancer optionally further comprises treatment with an additional anticancer agent.

[0023]

Figure 1 shows an in vivo, single dose, efficacy assay of cAC10-mcMMAF in subcutaneous Karpas-299 ALCL xenografts.

Figure 2 shows an in vivo, single dose, efficacy assay of cAC10-mcMMAF in subcutaneous L540cy. For this study there were 4 mice in the untreated group and 10 in each of the treatment groups.
Figures 3a and 3b show \textit{in vivo} efficacy of cBR96-mcMMAF in subcutaneous L2987. The filled triangles in Figure 3a and arrows in Figure 3b indicate the days of therapy.

Figures 4a and 4b show \textit{in vitro} activity of cAC10-antibody-drug conjugates against CD30+ cell lines.

Figures 5a and 5b show \textit{in vitro} activity of cBR96-antibody-drug conjugates against Leu+ cell lines.

Figures 6a and 6b show \textit{in vitro} activity of c1F6-antibody-drug conjugates against CD70+ renal cell carcinoma cell lines.

Figure 7 shows an \textit{in vitro}, cell proliferation assay with SK-BR-3 cells treated with antibody drug conjugates (ADC): \textit{-d} - Trastuzumab-MC-vc-PAB-MMAF, 3.8 MMAF/Ab, \textit{-o} - Trastuzumab-MC-MMAF, 4.1 MMAF/Ab, and \textit{-\Delta} - Trastuzumab-MC-MMAF, 4.8 MMAF/Ab, measured in Relative Fluorescence Units (RLU) versus \(\mu g/ml\) concentration of ADC. H = Trastuzumab where H is linked via a cysteine [cys].

Figure 8 shows an \textit{in vitro}, cell proliferation assay with BT-474 cells treated with ADC: \textit{-d} - Trastuzumab-MC-vc-PAB-MMAF, 3.8 MMAF/Ab, \textit{-o} - Trastuzumab-MC-MMAF, 4.1 MMAF/Ab, and \textit{-\Delta} - Trastuzumab-MC-MMAF, 4.8 MMAF/Ab.

Figure 9 shows an \textit{in vitro}, cell proliferation assay with MCF-7 cells treated with ADC: \textit{-d} - Trastuzumab-MC-vc-PAB-MMAF, 3.8 MMAF/Ab, \textit{-o} - Trastuzumab-MC-(N-Me)vc-PAB-MMAF, 3.9 MMAF/Ab, and \textit{-\Delta} - Trastuzumab-MC-MMAF, 4.1 MMAF/Ab.

Figure 10 shows an \textit{in vitro}, cell proliferation assay with MDA-MB-468 cells treated with ADC: \textit{-d} - Trastuzumab-MC-vc-PAB-MMAE, 3.8 MMAE/Ab, \textit{-o} - Trastuzumab-MC-vc-PAB-MMAE, 3.3 MMAE/Ab, and \textit{-\Delta} - Trastuzumab-MC-MMAF, 3.7 MMAF/Ab.

Figure 11 shows a plasma concentration clearance study after administration of H-MC-vc-PAB-MMAF-TEG and H-MC-vc-PAB-MMAF to Sprague-Dawley rats: The administered dose was 2 mg of ADC per kg of rat. Concentrations of total antibody and ADC were measured over time. (H = Trastuzumab).

Figure 12 shows a plasma concentration clearance study after administration of H-MC-vc-MMAE to Cynomolgus monkeys at different doses: 0.5, 1.5, 2.5, and 3.0 mg/kg administered at day 1 and day 21. Concentrations of total antibody and ADC were measured over time. (H = Trastuzumab).

Figure 13 shows the mean tumor volume change over time in athymic nude mice with MMTV-HER2 Fo5 Mammary tumor allografts dosed on Day 0 with: Vehicle, Trastuzumab-MC-vc-PAB-MMAE (1250 \(\mu g/m^2\)) and Trastuzumab-MC-vc-PAB-MMAF (555 \(\mu g/m^2\)). (H = Trastuzumab).

Figure 14 shows the mean tumor volume change over time in athymic nude mice with MMTV-HER2 Fo5 Mammary tumor allografts dosed on Day 0 with 10 mg/kg (660 \(\mu g/m^2\)) of Trastuzumab-MC-MMAE and 1250 \(\mu g/m^2\) Trastuzumab-MC-vc-PAB-MMAE.

Figure 15 shows the mean tumor volume change over time in athymic nude mice with MMTV-HER2 Fo5 Mammary tumor allografts dosed on Day 0 with Vehicle and 650 \(\mu g/m^2\) trastuzumab-MC-MMAF.

Figure 16 shows the mean tumor volume change over time in athymic nude mice with MMTV-HER2 Fo5 Mammary tumor allografts dosed on Day 0 with Vehicle and 650 \(\mu g/m^2\) trastuzumab-MC-MMAF.

Figure 17 shows the Group mean change, with error bars, in animal (rat) body weights (Mean \(\pm\) SD) after administration of Vehicle, trastuzumab-MC-val-cit-MMAF, trastuzumab-MC(Me)-val-cit-PAB-MMAF, trastuzumab-MC-MMAF and trastuzumab-MC-val-cit-PAB-MMAF.

Figure 18 shows the Group mean change in animal (rat) body weights (Mean \(\pm\) SD) after administration of 9.94 mg/kg H-MC-vc-MMAF, 24.90 mg/kg H-MC-vc-MMAF, 10.69 mg/kg H-MC(Me)-vc-PAB-MMAF, 26.78 mg/kg H-MC(Me)-vc-PAB-MMAF, 10.17 mg/kg H-MC-vc-MMAF, 25.50 mg/kg H-MC-vc-PAB-MMAF, 21.85 mg/kg H-MC-vc-PAB-MMAF. H = trastuzumab. The MC linker is attached via a cysteine of trastuzumab for each conjugate.

Figure 19 shows the Group mean change, with error bars, in Sprague Dawley rat body weights (Mean \(\pm\) SD) after administration of trastuzumab (H)-MC-MMAF at doses of 2105, 3158, and 4210 \(\mu g/m^2\). The MC linker is attached via a cysteine of trastuzumab for each conjugate.

4. DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS

4.1 DEFINITIONS AND ABBREVIATIONS

[0024] Unless stated otherwise, the following terms and phrases as used herein are intended to have the following meanings:

When trade names are used herein, applicants intend to independently include the trade name product formulation, the generic drug, and the active pharmaceutical ingredient(s) of the trade name product.

[0025] The term “antibody” herein is used in the broadest sense and specifically covers intact monoclonal antibodies,
polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies) formed from at least two intact antibodies, and antibody fragments, so long as they exhibit the desired biological activity. An antibody is a protein generated by the immune system that is capable of recognizing and binding to a specific antigen. Described in terms of its structure, an antibody typically has a Y-shaped protein consisting of four amino acid chains, two heavy and two light. Each antibody has primarily two regions: a variable region and a constant region. The variable region, located on the ends of the arms of the Y, binds to and interacts with the target antigen. This variable region includes a complementary determining region (CDR) that recognizes and binds to a specific binding site on a particular antigen. The constant region, located on the tail of the Y, is recognized by and interacts with the immune system (Janeway, C., Travers, P., Walport, M., Shlomchik (2001) Immuno Biology, 5th Ed., Garland Publishing, New York). A target antigen generally has numerous binding sites, also called epitopes, recognized by CDR’s on multiple antibodies. Each antibody that specifically binds to a different epitope has a different structure. Thus, one antigen may have more than one corresponding antibody.

The term “antibody” as used herein, also refers to a full-length immunoglobulin molecule or an immunologically active portion of a full-length immunoglobulin molecule, i.e., a molecule that contains an antigen binding site that immunospecifically binds an antigen of a target of interest or part thereof, such targets including but not limited to, cancer cell or cells that produce autoimmune antibodies associated with an autoimmune disease. The immunoglobulin disclosed herein can be of any type (e.g., IgG, IgE, IgM, IgD, and IgA), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of immunoglobulin molecule. The immunoglobulins can be derived from any species. In one aspect, however, the immunoglobulin is of human, murine, or rabbit origin. In another aspect, the antibodies are polyclonal, monoclonal, bispecific, human, humanized or chimeric antibodies, single chain antibodies, Fv, Fab fragments, F(ab’) fragments, F(ab’)2 fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Ig) antibodies, CDR’s, and epitope-binding fragments of any or the above which immunospecifically bind to cancer cell antigens, viral antigens or microbial antigens.

The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations which include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they may be synthesized uncontaminated by other antibodies. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al. (1975) Nature 256:495, or may be made by recombinant DNA methods (see, U.S. Patent No. 4816567). The “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al. (1991) Nature, 352:624-628 and Marks et al. (1991) J. Mol. Biol., 222:581-597, for example.

The monoclonal antibodies herein specifically include “chimeric” antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Patent mp/ 4816567; and Morrison et al. (1984) Proc. Natl. Acad. Sci. USA, 81:6851-6855).

Various methods have been employed to produce monoclonal antibodies (MAbs). Hybridoma technology, which refers to a cloned cell line that produces a single type of antibody, uses the cells of various species, including mice (murine), hamsters, rats, and humans. Another method to prepare MAbs uses genetic engineering including recombinant DNA techniques. Monoclonal antibodies made from these techniques include, among others, chimeric antibodies and humanized antibodies. A chimeric antibody combines DNA encoding regions from more than one type of species. For example, a chimeric antibody may derive the variable region from a mouse and the constant region from a human. A humanized antibody comes predominantly from a human, even though it contains nonhuman portions. Like a chimeric antibody, a humanized antibody may contain a completely human constant region. But unlike a chimeric antibody, the variable region may be partially derived from a human. The nonhuman, synthetic portions of a humanized antibody often come from CDRs in murine antibodies. In any event, these regions are crucial to allow the antibody to recognize and bind to a specific antigen.

As noted, murine antibodies can be used. While useful for diagnostics and short-term therapies, murine antibodies cannot be administered to people long-term without increasing the risk of a deleterious immunogenic response. This response, called Human Anti-Mouse Antibody (HAMA), occurs when a human immune system recognizes the murine antibody as foreign and attacks it. A HAMA response can cause toxic shock or even death.

Chimeric and humanized antibodies reduce the likelihood of a HAMA response by minimizing the nonhuman portions of administered antibodies. Furthermore, chimeric and humanized antibodies have the additional benefit of...
activating secondary human immune responses, such as antibody dependent cellular cytotoxicity.

"Antibody fragments" comprise a portion of an intact antibody, preferably comprising the antigen-binding or variable region thereof. Examples of antibody fragments include Fab, Fab', F(ab')2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragment(s).

An "intact" antibody is one which comprises an antigen-binding variable region as well as a light chain constant domain (CL) and heavy chain constant domains, CH1, CH2 and CH3. The constant domains may be native sequence constant domains (e.g., human native sequence constant domains) or amino acid sequence variant thereof.

The intact antibody may have one or more "effector functions" which refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody. Examples of antibody effector functions include C1q binding; complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g., B cell receptor; BCR), etc.

Depending on the amino acid sequence of the constant domain of their heavy chains, intact antibodies can be assigned to different "classes." There are five major classes of intact antibodies: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into "subclasses" (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2. The heavy-chain constant domains that correspond to the different classes of antibodies are called α, δ, ε, γ, and μ, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.

Antibodies to ErbB receptors are available commercially from a number of sources, including, for example, Santa Cruz Biotechnology, Inc., California, USA.

"Herregulin" (HRG) refers to a polypeptide encoded by the heregulin gene product as disclosed in U.S. Patent No. 5641869 or Marchionni et al., Nature, 362:312-318 (1993). Examples of heregulins include heregulin-α, heregulin-β1, heregulin-β2 and heregulin-β3 (Holmes et al., Science, 256:1205-1210 (1992); and U.S. Patent No. 5641869); neu differentiation factor (NDF) (Peles et al., Cell 69:205-216 (1992)); acetylcholine receptor-inducing activity (ARIA) (Fallon et al. (1993) Cell 72:801-815); glial growth factors (GGFs) (Marchionni et al., Nature, 362:312-318 (1993)); sensory and motor neuron derived factor (SMDF) (Ho et al., J. Biol. Chem., 270:14523-14532 (1995)); γ-heregulin (Schaefer et al., Oncogene, 15:1385-1394 (1997)). The term includes biologically active fragments and/or amino acid sequence variants of a native sequence HRG polypeptide, such as an EGF-like domain fragment thereof (e.g., HRG(11177-244)).

"ErbB hetero-oligomer" is a noncovalently associated oligomer comprising at least two different ErbB receptors. An "ErbB dimer" is a noncovalently associated oligomer that comprises two different ErbB receptors. Such complexes may form when a cell expressing two or more ErbB receptors is exposed to an ErbB ligand. ErbB oligomers, such as ErbB dimers, can be isolated by immunoprecipitation and analyzed by SDS-PAGE as described in Slivkowskii et al., J. Biol. Chem., 269(20):14661-14665 (1994), for example. Examples of such ErbB hetero-oligomers include EGF-R-ErbB2 (also referred to as HER1/HER2), ErbB2-ErbB3 (HER2/HER3) and ErbB3-ErbB4 (HER3/HER4) complexes. Moreover, the ErbB hetero-oligomer may comprise two or more ErbB receptors combined with a different ErbB receptor, such as ErbB3, ErbB4 or EGFR (ErbB 1). Other proteins, such as a cytokine receptor subunit (e.g., gp130) may be included in the hetero-oligomer.

A "native sequence" polypeptide is one which has the same amino acid sequence as a polypeptide, e.g., tumor-associated antigen receptor, derived from nature. Such native sequence polypeptides can be isolated from nature or modified to enhance specific properties such as solubility, half-life, or receptor binding affinity.
can be produced by recombinant or synthetic means. Thus, a native sequence polypeptide can have the amino acid sequence of naturally-occurring human polypeptide, murine polypeptide, or polypeptide from any other mammalian species.

The term "amino acid sequence variant" refers to polypeptides having amino acid sequences that differ to some extent from a native sequence polypeptide. Ordinarily, amino acid sequence variants will possess at least about 70% homology with at least one receptor binding domain of a native ligand, or with at least one ligand binding domain of a native receptor, such as a tumor-associated antigen, and preferably, they will be at least about 80%, more preferably, at least about 90% homologous with such receptor or ligand binding domains. The amino acid sequence variants possess substitutions, deletions, and/or insertions at certain positions within the amino acid sequence of the native amino acid sequence.

"Sequence identity" is defined as the percentage of residues in the amino acid sequence variant that are identical after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Methods and computer programs for the alignment are well known in the art. One such computer program is "Align 2," authored by Genentech, Inc., which was filed with user documentation in the United States Copyright Office, Washington, DC 20559, on December 10, 1991.

"Sequence identity" is defined as the percentage of residues in the amino acid sequence variant that are identical after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Methods and computer programs for the alignment are well known in the art. One such computer program is "Align 2," authored by Genentech, Inc., which was filed with user documentation in the United States Copyright Office, Washington, DC 20559, on December 10, 1991.

The term "Fc receptor" or "FcR" is used to describe a receptor that binds to the Fc region of an antibody. The preferred FcR is a native sequence human FcR. Moreover, a preferred FcR is one which binds an IgG antibody (a hematopoietic cell receptor FcR, or a neonatal receptor FcRn, which is responsible for the transfer of maternal IgGs to the fetus. (Guyer et al., J. Immunol., 117:587 (1976) and Kim et al., J. Immunol., 24:249 (1994)).

"Complement dependent cytotoxicity" or "CDC" refers to the ability of a molecule to lyse a target in the presence of complement. The complement activation pathway is initiated by the binding of the first component of the complement system (C1 q) to a molecule (e.g., an antibody) complexed with a cognate antigen. To assess complement activation, a CDC assay, e.g., as described in Gazzano-Santoro et al., J. Immunol. Methods, 202:163 (1996), may be performed.

The term "variable" refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called hypervariable regions both in the light chain and the heavy chain variable domains. The more highly conserved portions of variable domains are called the framework regions (FRs). The variable domains of native heavy and light chains each comprise four FRs, largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al. (1991) Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in dependent cellular cytotoxicity (ADCC).

"Hypervariable region" when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region generally comprises amino acid residues from a "complementarity determining region" or "CDR" (e.g., residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat et al. supra) and/or those residues from a "hypervariable loop." (e.g., residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the light chain variable domain and...
the antibody. However, even a single variable domain (or half of an Fv comprising only three hypervariable regions)

This region consists of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent association.

It is in this configuration that the three hypervariable regions of each variable domain interact to define an antigen-binding

site on the surface of the VH-VL dimer. Collectively, the six hypervariable regions confer antigen-binding specificity to

the antibody. However, even a single variable domain (or half of an Fv comprising only three hypervariable regions

specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the

heavy chain. Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of

the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation

herein for Fab' in which the cysteine residue(s) of the constant domains bear at least one free thiol group. F(ab')2 antibody

fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical

couplings of antibody fragments are also known.

The "light chains" of antibodies from any vertebrate species can be assigned to one of two clearly distinct types,
called kappa (κ) and lambda (λ), based on the amino acid sequences of their constant domains.

"Single-chain Fv" or "scFv" antibody fragments comprise the VH and VL domains of antibody, wherein these
domains are present in a single polypeptide chain. Preferably, the Fv polypeptide further comprises a polypeptide linker
between the VH and VL domains which enables the scFv to form the desired structure for antigen binding. For a review
of scFv, see Plückthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenberg and Moore eds., Springer-
Verlag, New York, pp. 269-315 (1994).

The term "diabodies" refers to small antibody fragments with two antigen-binding sites, which fragments comprise
a variable heavy domain (VH) connected to a variable light domain (VL) in the same polypeptide chain (VH - VL).
By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced
to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described

"Humanized" forms of non-human (e.g., rodent) antibodies are chimeric antibodies that contain minimal se-
quence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins
(recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a
hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having
the desired specificity, affinity, and capacity. In some instances, framework region (FR) residues of the human immu-

noglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise
residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further
refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and
typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-
human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The
humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically
that of a human immunoglobulin. For further details, see Jones et al. (1986) Nature, 321:522-525; Riechmann et al.

Humanized anti-ErbB2 antibodies include huMAb4D5-1, huMAb4D5-2, huMAb4D5-3, huMAb4D5-4,
huMAb4D5-5, huMAb4D5-6, huMAb4D5-7 and huMAb4D5-8 (HERCEPTIN®) as described in Table 3 of U.S. Patent
No. 5821337; humanized 520C9 (WO 93/21319) and humanized 2C4 antibodies as described herein below.

An "isolated" antibody is one which has been identified and separated and/or recovered from a component of its
natural environment. Contaminant components of its natural environment are materials which would interfere with
diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or
nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of
antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient
to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3)
to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver
stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the

antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least
one purification step.

An antibody "which binds" an antigen of interest is one capable of binding that antigen with sufficient affinity
such that the antibody is useful in targeting a cell expressing the antigen.
An antibody which "induces apoptosis" is one which induces programmed cell death as determined by binding of annexin V, fragmentation of DNA, cell shrinkage, dilation of endoplasmic reticulum, cell fragmentation, and/or formation of membrane vesicles (called apoptotic bodies). The cell is a tumor cell, e.g., a breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, thyroid, pancreatic or bladder cell. Various methods are available for evaluating the cellular events associated with apoptosis. For example, phosphatidyl serine (PS) translocation can be measured by annexin binding; DNA fragmentation can be evaluated through DNA laddering; and nuclear/chromatin condensation along with DNA fragmentation can be evaluated by any increase in hypodiploid cells.

A "disorder" is any condition that would benefit from treatment of the present invention. This includes chronic and acute disorders or diseases including those pathological conditions which predispose the mammal to the disorder in question. Non-limiting examples of disorders to be treated herein include benign and malignant tumors; leukemia and lymphoid malignancies, in particular breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, thyroid, pancreatic, prostate or bladder cancer; neuronal, glial, astrocytal, hypothalamic and other glandular, macrophagal, epithelial, stromal and blastocoelic disorders; and inflammatory, angiogenic and immunologic disorders.

The term "therapeutically effective amount" refers to an amount of a drug effective to treat a disease or disorder in a mammal. In the case of cancer, the therapeutically effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer. To the extent the drug may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic. For cancer therapy, efficacy can, for example, be measured by the time to disease progression (TTP) and/or determining the response rate (RR).

The term "substantial amount" refers to a majority, i.e., >50% of a population, of a collection or a sample. The term "intracellular metabolite" refers to a compound resulting from a metabolic process or reaction inside a cell on an antibody drug conjugate (ADC). The metabolic process or reaction may be an enzymatic process such as proteolytic cleavage of a peptide linker of the ADC, or hydrolysis of a functional group such as a hydrazone, ester, or amide. Intracellular metabolites include, but are not limited to, antibodies and free drug which have undergone intracellular cleavage after entry, diffusion, uptake or transport into a cell.

The terms "intracellularly cleaved" and "intracellular cleavage" refer to a metabolic process or reaction inside a cell on a Drug-Ligand Conjugate, a Drug-Linker-Ligand Conjugate, an antibody drug conjugate (ADC) or the like whereby the covalent attachment, e.g., the linker, between the drug moiety (D) and the antibody (Ab) is broken, resulting in the free drug dissociated from the antibody inside the cell. The cleaved moieties of the Drug-Ligand Conjugate, a Drug-Linker-Ligand Conjugate or ADC are thus intracellular metabolites.

The term "bioavailability" refers to the systemic availability (i.e., blood/plasma levels) of a given amount of drug administered to a patient. Bioavailability is an absolute term that indicates measurement of both the time (rate) and total amount (extent) of drug that reaches the general circulation from an administered dosage form.

The term "cytotoxic activity" refers to a cell-killing, cytostatic or anti-proliferation effect of an antibody drug conjugate compound or an intracellular metabolite of an antibody drug conjugate compound. Cytotoxic activity may be expressed as the IC50 value which is the concentration (molar or mass) per unit volume at which half the cells survive.

The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. A "tumor" comprises one or more cancerous cells. Examples of cancer include, but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid malignancies. More particular examples of such cancers include squamous cell cancer (e.g., epithelial squamous cell cancer), lung cancer including small-cell lung cancer, non-small cell lung cancer ("NSCLC"), adenocarcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, as well as head and neck cancer.

An "ErbB2-expressing cancer" is one which produces sufficient levels of ErbB2 at the surface of cells thereof, such that an anti-ErbB2 antibody can bind thereto and have a therapeutic effect with respect to the cancer.

A cancer "characterized by excessive activation" of an ErbB2 receptor is one in which the extent of ErbB2 receptor activation in cancer cells significantly exceeds the level of activation of that receptor in non-cancerous cells of the same tissue type. Such excessive activation may result from overexpression of the ErbB2 receptor and/or greater than normal levels of an ErbB2 ligand available for activating the ErbB2 receptor in the cancer cells. Such excessive activation may cause and/or be caused by the malignant state of a cancer cell. In some embodiments, the cancer will be subjected to a diagnostic or prognostic assay to determine whether amplification and/or overexpression of an ErbB2 receptor is occurring which results in such excessive activation of the ErbB2 receptor. Alternatively, or additionally, the cancer may be subjected to a diagnostic or prognostic assay to determine whether amplification and/or overexpression an ErbB2 ligand is occurring in the cancer which attributes to excessive activation of the receptor. In a subset of such
cancers, excessive activation of the receptor may result from an autocrine stimulatory pathway.

A cancer which "overexpresses" an ErbB2 receptor is one which has significantly higher levels of an ErbB2 receptor at the cell surface thereof, compared to a noncancerous cell of the same tissue type. Such overexpression may be caused by gene amplification or by increased transcription or translation. ErbB2 receptor overexpression may be determined in a diagnostic or prognostic assay by evaluating increased levels of the ErbB2 protein present on the surface of a cell (e.g., via an immunohistochemistry assay; IHC). Alternatively, or additionally, one may measure levels of ErbB2-encoding nucleic acid in the cell, e.g., via fluorescent in situ hybridization (FISH; see U.S. Patent No. 4933294; WO 91/05264; U.S. Patent No. 5401638; and Sias et al., (1990) J. Immunol. Methods, 132: 73-80). Aside from the above assays, various other in vivo assays are available to the skilled practitioner. For example, one may expose cells within the body of the patient to an antibody which is optionally labeled with a detectable label, e.g., a radioactive isotope, and binding of the antibody to cells in the patient can be evaluated, e.g., by external scanning for radioactivity or by analyzing a biopsy taken from a patient previously exposed to the antibody.

The tumors overexpressing HER2 are rated by immunohistochemical scores corresponding to the number of copies of HER2 molecules expressed per cell, and can be determined biochemically: 0 = 0-10,000 copies/cell, 1+ = at least about 200,000 copies/cell, 2+ = at least about 500,000 copies/cell, 3+ = about 1-2 x 10^6 copies/cell. Overexpression of HER2 at the 3+ level, which leads to ligand-independent activation of the tyrosine kinase (Hudziak et al., (1987) Proc. Natl. Acad. Sci. USA, 84:7159-7163), occurs in approximately 30% of breast cancers, and in these patients, relapse-free survival and overall survival are diminished (Slamon et al., (1989) Science, 244:707-712; Slamon et al., (1987) Science, 235:177-182).

Conversely, a cancer which is "not characterized by overexpression of the ErbB2 receptor" is one which, in a diagnostic assay, does not express higher than normal levels of ErbB2 receptor compared to a noncancerous cell of the same tissue type.

The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., ^211^At, ^131^I, ^125^I, ^90^Y, ^182^Re, ^188^Re, ^153^Sm, ^212^Bi, ^32^P, ^60^Co, and radioactive isotopes of Lu), chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including synthetic analogs and derivatives thereof. In one aspect, the term is not intended to include radioactive isotopes.

A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN cyclophosphamide; alkyl sulfonates such as busulfan, imiprosulflan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and urodoepa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenuethenophosphoramide and trimethylolomelamine; TLK 286 (TELCYTA™); acetogenins (especially bullatacin and bullatacin); ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenuethenophosphoramide and trimethylolomelamine; TLK 286 (TELCYTA™); acetogenins (especially bullatacin and bullatacin).

Examples of chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN cyclophosphamide; alkyl sulfonates such as busulfan, imiprosulflan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and urodoepa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenuethenophosphoramide and trimethylolomelamine; TLK 286 (TELCYTA™); acetogenins (especially bullatacin and bullatacin).

A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN cyclophosphamide; alkyl sulfonates such as busulfan, imiprosulflan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and urodoepa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenuethenophosphoramide and trimethylolomelamine; TLK 286 (TELCYTA™); acetogenins (especially bullatacin and bullatacin).

A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN cyclophosphamide; alkyl sulfonates such as busulfan, imiprosulflan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and urodoepa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenuethenophosphoramide and trimethylolomelamine; TLK 286 (TELCYTA™); acetogenins (especially bullatacin and bullatacin).
stanolone propionate, epitiostanol, mepiotestane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replenisher such as folic acid (levcovirin); acetylglut; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, antiamitoblastes such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capcitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TXD); inhibitors of dihydro-5-fluorouracil and its prodrugs such as UFT, S-1 and capecitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TXD); inhibitors of dihydro-

EP 2 489 364 B1

stanolone propionate, epitiostanol, mepiotestane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replenisher such as folic acid (levcovirin); acetylglut; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, antiamitoblastes such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capcitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TXD); inhibitors of dihydro-

EP 2 489 364 B1

stanolone propionate, epitiostanol, mepiotestane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replenisher such as folic acid (levcovirin); acetylglut; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, antiamitoblastes such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capcitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TXD); inhibitors of dihydro-

EP 2 489 364 B1

stanolone propionate, epitiostanol, mepiotestane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replenisher such as folic acid (levcovirin); acetylglut; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, antiamitoblastes such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capcitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TXD); inhibitors of dihydro-

EP 2 489 364 B1

stanolone propionate, epitiostanol, mepiotestane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replenisher such as folic acid (levcovirin); acetylglut; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, antiamitoblastes such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capcitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TXD); inhibitors of dihydro-

EP 2 489 364 B1

stanolone propionate, epitiostanol, mepiotestane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replenisher such as folic acid (levcovirin); acetylglut; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, antiamitoblastes such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capcitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TXD); inhibitors of dihydro-

EP 2 489 364 B1

stanolone propionate, epitiostanol, mepiotestane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replenisher such as folic acid (levcovirin); acetylglut; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, antiamitoblastes such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capcitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TXD); inhibitors of dihydro-

EP 2 489 364 B1

stanolone propionate, epitiostanol, mepiotestane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replenisher such as folic acid (levcovirin); acetylglut; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, antiamitoblastes such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capcitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TXD); inhibitors of dihydro-

EP 2 489 364 B1

stanolone propionate, epitiostanol, mepiotestane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replenisher such as folic acid (levcovirin); acetylglut; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, antiamitoblastes such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capcitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TXD); inhibitors of dihydro-

EP 2 489 364 B1

stanolone propionate, epitiostanol, mepiotestane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replenisher such as folic acid (levcovirin); acetylglut; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, antiamitoblastes such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capcitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TXD); inhibitors of dihydro-

EP 2 489 364 B1

stanolone propionate, epitiostanol, mepiotestane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replenisher such as folic acid (levcovirin); acetylglut; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, antiamitoblastes such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capcitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TXD); inhibitors of dihydro-

EP 2 489 364 B1

stanolone propionate, epitiostanol, mepiotestane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replenisher such as folic acid (levcovirin); acetylglut; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, antiamitoblastes such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capcitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TXD); inhibitors of dihydro-

EP 2 489 364 B1

stanolone propionate, epitiostanol, mepiotestane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replenisher such as folic acid (levcovirin); acetylglut; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, antiamitoblastes such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capcitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TXD); inhibitors of dihydro-
A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is designed to be converted into the more active cytotoxic free drug. Examples of cytotoxic drugs that can be derivatized into a prodrug and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not designate. Thus, the words "transformants" and "transformed cells" include the primary subject cell. As used herein, the expressions "cell," "cell line," and "cell culture" are used interchangeably and all such sites do not exist, the synthetic oligonucleotide adaptors or linkers can be used in accordance with conventional practice. enhancers do not have to be contiguous. Linking can be accomplished by ligation at convenient restriction sites. If such sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to the coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking can be accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers can be used in accordance with conventional practice. As used herein, the expressions "cell," "cell line," and "cell culture" are used interchangeably and all such designations include progeny. Thus, the words "transformants" and "transformed cells" include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not
be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be clear from the context.

[0086] An "autoimmune disease" herein is a disease or disorder arising from and directed against an individual's own tissues or a co-segregate or manifestation thereof or resulting condition therefrom. Examples of autoimmune diseases or disorders include, but are not limited to arthritis (rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, psoriatic arthritis, and ankylosing spondylitis), psoriasis, dermatitis including atopic dermatitis; chronic idiopathic urticaria, including chronic autoimmune urticaria, polymyositis/dermatomyositis, toxic epidermal necrolysis, systemic scleroderma and sclerosis, responses associated with inflammatory bowel disease (IBD) (Crohn's disease, ulcerative colitis), and IBD with co-segregate of pyoderma gangrenosum, erythema nodosum, primary sclerosing cholangitis, and/or episcleritis, respiratory distress syndrome, including adult respiratory distress syndrome (ARDS), meningitis, IgE-mediated diseases such as anaphylaxis and allergic rhinitis, encephalitis such as Rasmussen's encephalitis, uveitis, colitis such as microscopic colitis and collagenous colitis, glomerulonephritis (GN) such as membranous GN, idiopathic membranous GN, membranous proliferative GN (MPGN), including Type I and Type II, and rapidly progressive GN, allergic conditions, eczema, asthma, conditions involving infiltration of T cells and chronic inflammatory responses, atherosclerosis, autoimmune myocarditis, leukocyte adhesion deficiency, systemic lupus erythematosus (SLE) such as cutaneous SLE, lupus (including nephritis, cerebritis, pediatric, non-renal, discoid, alopecia), juvenile onset diabetes, multiple sclerosis (MS) such as spino-optical MS, allergic encephalomyelitis, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, tuberculosis, sarcoidosis, granulomatosis including Wegener's granulomatosis, agranulocytosis, vasculitis (including Large Vessel vasculitis (including Polymyalgia Rheumatica and Giant Cell (Takayasu's) Arteritis), Medium Vessel vasculitis (including Kawasaki's Disease and Polyarteritis Nodosa), CNS vasculitis, and ANCA-associated vasculitis, such as Churg-Strauss vasculitis or syndrome (CSS)), aplastic anemia, Coombs positive anemia, Diamond Blackfan anemia, immune hemolytic anemia including autoimmune hemolytic anemia (AIHA), pernicious anemia, pure red cell aplasia (PRCA), Factor VIII deficiency, hemophilia A, autoimmune neutropenia, pancytopenia, leukopenia, diseases involving leukocyte diapedesis, CNS inflammatory disorders, multiple organ injury syndrome, myasthenia gravis, antigen-antibody complex mediated diseases, anti-glomerular basement membrane disease, anti-phospholipid antibody syndrome, allergic neuritis, Bechet disease, Castleman's syndrome, Goodpasture's Syndrome, Lambert-Eaton Myasthenic Syndrome, Reynaud's syndrome, Sjorgen's syndrome, Stevens-Johnson syndrome, solid organ transplant rejection (including pretreatment for high panel reactive antibody titer, IgA deposit in tissues, and rejection arising from renal transplantation, liver transplantation, intestinal transplantation, cardiac transplantation, etc.), graft versus host disease (GVHD), pemphigoid bullous, pemphigus (including vulgaris, foliaceus, and pemphigus mucus-membrane pemphigoid), autoimmune polyendocrinopathies, Reiter's disease, stiff-man syndrome, immune complex nephritis, IgM polynuropathies or IgM mediated neuropathy, idiopathic thrombotic thrombocytopenic purpura (ITP), thrombotic thrombocytopenic purpura (TTP), thrombocytopenia (as developed by myocardial infarction patients, for example), including autoimmune thrombocytopenia, autoimmune disease of the testis and ovary including autoimmune orchitis and oophoritis, primary hypothyroidism; autoimmune endocrine diseases including autoimmune thyroiditis, chronic thyroiditis (Hashimoto's Thyroiditis), subacute thyroiditis, idiopathic hypothyroidism, Addison's disease, Grave's disease, autoimmune polyglandular syndromes (or polyglandular endocrinopathy syndromes), Type I diabetes also referred to as insulin-dependent diabetes mellitus (IDDM), including pediatric IDDM, and Sheehan's syndrome; autoimmune hepatitis, Lipidophil interstitial pneumonitis (HIV), bronchiolitis obliterans (non-transplant) vs NSIP, Guillain-Barré Syndrome, Berger's Disease (IgA nephropathy), primary biliary cirrhosis, celiac sprue (gluten enteropathy), refractory sprue with co-segregate dermatitis herpetiformis, cryoglobulinemia, amyloptrophic lateral sclerosis (ALS; Lou Gehrig's disease), coronary artery disease, autoimmune inner ear disease (AIED), autoimmune hearing loss, opoclonus myoclonus syndrome (OMS), polychondritis such as refractory polychondritis, pulmonary alveolar proteinosis, amyloidosis, giant cell hepatitis, scleritis, monoclonal gammopathy of uncertain/unknown significance (MGUS), peripheral neuropathy, paraneoplastic syndrome, channelopathies such as epilepsy, migraine, arrhythmia, muscular disorders, deafness, blindness, periodic paralysis, and channelopathies of the CNS; autism, inflammatory myopathy, and focal segmental glomerulonephritis (FSGS).

[0087] "Alkyl" is C₁-C₁₈ hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms. Examples are methyl (Me, -CH₃), ethyl (Et, -CH₂CH₃), 1-propyl (n-Pr, n-propyl, -CH₂CH₂CH₃), 2-propyl (i-Pr, i-propyl, -CH(CH₃)₂), 1-butyl (n-Bu, n-buty l, -CH₂CH₂CH₂CH₃), 2-methyl-1-propyl (i-Bu, i-buty l, -CH(CH₂CH₃)₂), 2-butyl (s-Bu, s-buty l, -CH(CH₂CH₃)₂CH₃), 3-methyl-2-butyl (-CH₂CH(CH₃)CH₃), 3-methyl-1-buty l (-CH(CH₃)₂CH₂CH₃), 2-methyl-3-buty l (-CH(C₂H₅)CH₂CH₃), 3-methyl-2-pentyl (-C(CH₃)₂CH₂CH₂CH₃), 3-methyl-2-pentyl (-C(CH₃)₂CH₂CH₂CH₂CH₃), 4-methyl-2-pentyl (-C(CH₃)₂CH₂CH₂CH₂CH₂CH₃), 3-methyl-3-pentyl (-C(CH₃)₂CH₃), 2-methyl-3-pentyl (-CH(CH₃)₂CH₂CH₂CH₃), 2,3-dimethyl-2-butyl (-C(CH₃)₂CH₂CH₃), 3,3-dimethyl-2-butyl (-CH(CH₃)₂CH₃).
"Alkenylene" refers to a saturated, branched or straight chain or cyclic hydrocarbon radical of 1-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkane. Typical alkenylene radicals include, but are not limited to: 1,2-ethylene (-CH=CH2), 1,3-propylene (-CH2CH=CH2), 1,4-butylen (-CH2CH2CH=CH2), and the like.

"Alkynylene" refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical of 2-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkyne. Typical alkynylene radicals include, but are not limited to: acetylene (-C≡C), propargyl (-CH2C≡C), and 4-pentylnyl (-CH2CH2CH=CH2).

"Alkenyl" is C2-C18 hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e., a carbon-carbon, sp2 double bond. Examples include, but are not limited to: ethylene or vinyl (-CH=CH2), allyl (-CH2CH=CH2), cyclopentenyl (-C5H7), and 5-hexenyl (-CH2CH2CH=CH2).

"Alkynyl" is C2-C18 hydrocarbon containing normal, secondary or cyclic carbon atoms with at least one site of unsaturation, i.e., a carbon-carbon, sp triple bond. Examples include, but are not limited to: acetylenic (-C≡C) and propargyl (-CH2C≡C).

"Alkylene" refers to a saturated, branched or straight chain or cyclic hydrocarbon radical of 1-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkane. Typical alkenyle radicals include, but are not limited to: methylene (-CH2-) 1,2-ethyl (-CH2CH2), 1,3-propyl (-CH2CH2CH2), 1,4-butyl (-CH2CH2CH2CH2), and the like.

"Arylalkyl" refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with an aryl radical. Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2-phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-1-yl, naphthobenzyl, 2-naphthophenylethan-1-yl and the like. The arylalkyl group comprises 6 to 20 carbon atoms, e.g., the alkyl moiety, including alkenyl, alkynyl or arylalkyl groups, of the arylalkyl group is 1 to 6 carbon atoms and the aryl moiety is 5 to 14 carbon atoms.

"Arynyl" refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with an aryl radical. Typical heteroarylalkyl groups include, but are not limited to, 2-benzimidazolylmethyl, 2-furylethyl, and the like. The heteroarylalkyl group comprises 6 to 20 carbon atoms and the aryl moiety is 5 to 14 carbon atoms and 1 to 3 heteroatoms selected from N, O, and S. The heteroaryl moiety of the heteroarylalkyl group may be a monocycle having 3 to 7 ring members (2 to 6 carbon atoms or a bicycle having 7 to 10 ring members (4 to 9 carbon atoms and 1 to 3 heteroatoms selected from N, O, and S), for example: a bicyclo [4, 5, 5, 6, or 6, 6] system.

"Aryl" means a monovalent aromatic hydrocarbon radical of 6-20 carbon atoms derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system. Some aryl groups are represented in the exemplary structures as "Ar". Typical aryl groups include, but are not limited to, radicals derived from benzene, substituted benzene, naphthalene, anthracene, biphenyl, and the like.

"Arylalkyl" refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with an aryl radical. Typical heteroarylalkyl groups include, but are not limited to, 2-benzimidazolylmethyl, 2-furylethyl, and the like. The heteroarylalkyl group comprises 6 to 20 carbon atoms and the heteroaryl moiety is 5 to 14 carbon atoms and 1 to 3 heteroatoms selected from N, O, and S. The heteroaryl moiety of the heteroarylalkyl group may be a monocycle having 3 to 7 ring members (2 to 6 carbon atoms or a bicycle having 7 to 10 ring members (4 to 9 carbon atoms and 1 to 3 heteroatoms selected from N, O, and S), for example: a bicyclo [4, 5, 5, 6, or 6, 6] system.
oliny, azocinoy, triazinoy, 6H-1,2,5-thiadiazinoy, 2H,6H-1,5,2-dithiazinoy, thienyl, thianthrenyl, pyrany, isobenzofurany, chromenyl, xanthenyl, phenoathinyl, 2H-pyrroly, isothiazoloy, isoxazoloy, pyrazinyl, pyridazinyl, indolizinyl, isoidoloy, 3H-indoloy, 1H-indazoloy, purinyl, 4H-quinolinoy, phthalazinyl, naphthyridinyl, quinoxaliny, quinazolinly, cinnolinly, pteridinly, 4aH-carbazoloy, carbaazoloy, β-carboliny, phenantridinly, acridiny, pyrimidinly, phenanthrolinloy, phenaziny, phenothiazinly, furazany, phenoazinloy, isochromany, chromany, imidazolidinloy, imidazoylinloy, pyrazolinloy, piperazinloy, indoliny, isoidoliny, quinucidinloy, morpholinloy, oxazolidinloy, benzotiazoloy, benzisoxazoloy, oxindoloy, benzoxazolinloy, and isatinloy.

0100 By way of example and not limitation, carbon bonded heterocycles are bonded at position 2, 3, 4, 5, or 6 of a pyridine, position 3, 4, 5, or 6 of a pyrazidine, position 2, 4, 5, or 6 of a pyrimidine, position 2, 3, 5, or 6 of a pyrazine, position 2, 3, 4, or 5 of a furan, tetrahydrofuran, thiopheney, thiophene, pyrrole or tetrahydropyrrole, position 2, 4, or 5 of an oxazole, imidazole or thiazole, position 3, 4, or 5 of an isoxazole, pyrazole, or isothiazole, position 2 or 3 of an aziridine, position 2, 3, or 4 of an azetidine, position 2, 3, 4, 4, 6, 6, 7, or 8 of a quinoline or position 1, 3, 4, 5, 6, 7, or 8 of an isoquinoline. Still more typically, carbon bonded heterocycles include 2-pyriddyl, 3-pyriddyl, 4-pyriddyl, 5-pyriddyl, 6-pyriddyl, 3-pyridazinyl, 4-pyridazinyl, 5-pyridazinyl, 6-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 6-pyrimidinyl, 2-pyraziny, 3-pyrazinyl, 5-pyrazinyl, 6-pyrazinyl, 2-thiazolyl, 4-thiazolyl, or 5-thiazolyl.

0101 By way of example and not limitation, nitrogen bonded heterocycles are bonded at position 1 of an aziridine, azetidine, pyrrole, pyrolidinyl, 2-pyrrolinyl, 3-pyrrolino, imidazolyl, imidazolidinyl, 2-imidazolinyl, pyrazolyl, pyrazolinyl, 2-pyrazolinyl, 3-pyrazolinyl, piperidinyl, piperazine, indolyl, indolone, 1H-indazolyl, position 2 of a isoindolyl, or isoindolinyl, position 4 of a morpholine, and position 9 of a carbazole, or β-carboline. Still more typically, nitrogen bonded heterocycles include 1-aziridyl, 1-azetidyl, 1-pyrrol, 1-imidazolyl, 1-pyrazolyl, and 1-piperidinyl.

0102 "Carbocycle" means a saturated or unsaturated ring having 3 to 7 carbon atoms as a monocycle or 7 to 12 carbon atoms as a bicycyle. Monocyclic carbocycles have 3 to 6 ring atoms, while still more typically 5 or 6 ring atoms. Bicyclic carbocycles have 7 to 12 ring atoms, e.g., arranged as a bicycyle [4,5], [5,5], [5,6], or [6,6] system, or 9 or 10 ring atoms arranged as a bicycyle [5,6], or [6,6] system. Examples of monocyclic carbocycles include cyclopoly, cyclobutyl, cyclopentyl, 1-cyclopent-1-enyl, 1-cyclopent-2-enyl, 1-cyclopent-3-enyl, cyclohexyl, 1-cyclohex-1-enyl, 1-cyclohex-2-enyl, 1-cyclohex-3-enyl, cyclohexyl, 2-cyclohex-1-enyl, 2-cyclohex-2-enyl, 2-cyclohex-3-enyl, cycloheptyl, 1-cyclohept-2-enyl, 1-cyclohept-3-enyl, cyclooctyl, 1-cyclooct-1-enyl, 1-cyclooct-2-enyl, 1-cyclooct-3-enyl, cyclooctyl, and cyclooctyl.

0103 "Linker", "Linker Unit", or "link" means a chemical moiety comprising a covalent bond or a chain of atoms that covalently attaches an antibody to a drug moiety. In various embodiments, a linker is specified as LU. Linkers include a divalent radical such as an alkylidynyl, an aroylidy, a heteroarylidy, moieties such as: -(CR2)nO(CR2)n-, repeating units of alkoyx (e.g., polyethoxy, PEG, polyethylenoexy) and alkylamino (e.g., polyethylenoaminio, Jaffemine™); and diacid ester and amides including succinate, succinimide, diglycolate, malonate, and caproamide.

0104 The term "chiral" refers to molecules which have the property of non-superimposability of the mirror image partner, while the term "achiral" refers to molecules which are superimposable on their mirror image partner.

0105 The term "stereoisomers" refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space.

0106 "Diastereomer" refers to a stereoisomer with two or more centers of chirality whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g., melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography.

0107 "Enantiomers" refer to two stereoisomers of a compound which are non-superimposable mirror images of one another.

0108 Stereochemical definitions and conventions used herein generally follow S. P. Parker, Ed., McGraw-Hill Dictionary of Chemical Terms (1984) McGraw-Hill Book Company, New York; and Eliel, E. and Wilen, S., Stereochemistry of Organic Compounds (1994) John Wiley & Sons, Inc., New York. Many organic compounds exist in optically active forms, i.e., they have the ability to rotate the plane of plane-polarized light. In describing an optically active compound, the prefixes D and L, or (+) meaning that the compound is levorotatory. A compound prefixed with (+) or d is dextrorotatory. For a given compound, the prefixes D and L, or (+) meaning that the compound is levorotatory. A compound prefixed with (+) or d is dextrorotatory. For a given compound,
The term "C₁-C₈ alkyl," as used herein refers to a straight chain or branched, saturated or unsaturated hydrocarbon having from 1 to 8 carbon atoms. Representative "C₁-C₈ alkyl" groups include, but are not limited to, -methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl, -n-hexyl, -n-heptyl, -n-octyl, -n-nonyl and -n-decyl; while branched C₁-C₈ alkyls include, but are not limited to, -isopropyl, -sec-butyl, -isobutyl, -tert-butyl, -isoamy1, -2-methylbutyl, -unsubstituted C₁-C₈ alkyls include, but are not limited to, -vinyl, -allyl, -1-butenyl, -2-butenyl, -isobutyl, -1-pentenyl, -2-pentenyl, -1-pentyl, -2-pentyl, -3-methyl-1-butyl, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 2,2-dimethylbutyl, 2,2-dimethy1pentyl, 2,3-dimethylpentyl, 3,3-dimethylpentyl, 2,3,4-trimethylpentyl, 2,2-dimethylhexyl, 2,4-dimethylhexyl, 2,5-dimethylhexyl, 3,5-dimethylhexyl, 2,4-dimethylheptyl, 2,3,4-trimethylheptyl, -n-heptyl, isoheptyl, n-octyl, and isooctyl. A C₁-C₈ alkyl group can be unsubstituted or substituted with one or more groups including, but not limited to, -C₁-C₈ alkyl, -O-(C₁-C₈ alkyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH₂, -C(O)N(HR'), -C(O)N(R')₂, -NHC(O)R', -SO₃R', -S(O)₂R', -S(O)R', -OH, -halogen, -N₃, -NH₂, -NH(R'), -N(R')₂ and -CN; wherein each R' is independently selected from H, -C₁-C₈ alkyl and aryl.

A "C₃-C₈ carbocycle" is a 3-, 4-, 5-, 6-, 7- or 8-membered saturated or unsaturated non-aromatic carbocyclic ring. Representative C₃-C₈ carbocycles include, but are not limited to, -cyclopropyl, -cyclobutyl, -cyclopentyl, -cyclohexyl, -1,3-cyclohexadienyl, -cycloheptyl, -1,3-cycloheptadienyl, -1,3,5-cycloheptatrienyl, -cyclooctyl, and -cyclooctadienyl. A C₃-C₈ carbocycle group can be unsubstituted or substituted with one or more groups including, but not limited to, -C₁-C₈ alkyl, -O-(C₁-C₈ alkyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH₂, -C(O)NHR', -C(O)N(R')₂, -NHC(O)R', -SO₃R', -S(O)₂R', -S(O)R', -OH, -halogen, -N₃, -NH₂, -NH(R'), -N(R')₂ and -CN; wherein each R' is independently selected from H, -C₁-C₈ alkyl and aryl.

A "C₃-C₈ heterocycle" refers to an aromatic or non-aromatic C₃-C₈ carbocycle in which one to four of the ring hydrogen atoms is replaced with a bond. A C₃-C₈ heterocyclo can be unsubstituted or substituted with one or more groups including, but not limited to, -C₁-C₈ alkyl, -O-(C₁-C₈ alkyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH₂, -C(O)NHR', -C(O)N(R')₂, -NHC(O)R', -SO₃R', -S(O)₂R', -S(O)R', -OH, -halogen, -N₃, -NH₂, -NH(R'), -N(R')₂ and -CN; wherein each R' is independently selected from H, -C₁-C₈ alkyl and aryl.

A "C₃-C₈ heterocycle*" refers to a C₃-C₈ carbocycle group defined above wherein one of the carbocycle groups' hydrogen atoms is replaced with a bond.

A "C₃-C₁₀ alkylene" is a straight chain, saturated hydrocarbon group of the formula -(CH₂)₁₀-. Examples of a C₃-C₁₀ alkylene include methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene and decalene.

An "arylene" is an aryl group which has two covalent bonds and can be in the ortho, meta, or para configurations as shown in the following structures:

in which the phenyl group can be unsubstituted or substituted with up to four groups including, but not limited to, -C₁-C₈ alkyl, -O-(C₁-C₈ alkyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH₂, -C(O)NHR', -C(O)N(R')₂, -NHC(O)R', -SO₃R', -S(O)₂R', -S(O)R', -OH, -halogen, -N₃, -NH₂, -NH(R'), -N(R')₂ and -CN; wherein each R' is independently selected from H, -C₁-C₈ alkyl and aryl.

A "C₃-C₈ heterocycle*" refers to an aromatic or non-aromatic C₃-C₈ carbocycle in which one to four of the ring carbon atoms are independently replaced with a heteroatom from the group consisting of O, S and N. Representative examples of a C₃-C₈ heterocycle include, but are not limited to, benzo[b]furan, benzo[b]thiophene, indolyl, benzopyrazolyl, coumarinyl, isoquinolinyl, pyrrolyl, thiophenyl, furanyl, thiazolyl, imidazolyl, pyrazolyl, triazolyl, quinolinyl, pyridinyl, pyridyl, pyrazinyl, pyridazinyl, isothiazolyl and tetrazolyl. A C₃-C₈ heterocycle can be unsubstituted or substituted with up to seven groups including, but not limited to, -C₁-C₈ alkyl, -O-(C₁-C₈ alkyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH₂, -C(O)NHR', -C(O)N(R')₂, -NHC(O)R', -SO₃R', -S(O)₂R', -S(O)R', -OH, -halogen, -N₃, -NH₂, -NH(R'), -N(R')₂ and -CN; wherein each R' is independently selected from H, -C₁-C₈ alkyl and aryl.

An "Exemplary Compound" is a Drug Compound or a Drug-Linker Compound.

An "Exemplary Conjugate" is a Drug-Ligand Conjugate having a cleavable Drug unit from the Drug-Ligand Conjugate or a Drug-Linker-Ligand Conjugate.

An "Exemplary Conjugate" is a Drug-Ligand Conjugate having a cleavable Drug unit from the Drug-Ligand Conjugate or a Drug-Linker-Ligand Conjugate.
In some embodiments, the Exemplary Compounds and Exemplary Conjugates are in isolated or purified form. As used herein, "isolated" means separated from other components of (a) a natural source, such as a plant or animal cell or cell culture, or (b) a synthetic organic chemical reaction mixture. As used herein, "purified" means that when isolated, the isolate contains at least 95%, and in another aspect at least 98%, of Exemplary Compound or Exemplary Conjugate by weight of the isolate.

Examples of a "hydroxyl protecting group" include, but are not limited to, methoxymethyl ether, 2-methoxyethoxymethyl ether, tetrahydropyranyl ether, benzyl ether, p-methoxybenzyl ether, trimethylsilyl ether, triethylsilyl ether, triisopropyl silyl ether, t-butyldimethyl silyl ether, triphenylmethyl silyl ether, acetate ester, substituted acetate esters, pivalate, benzoate, methanesulfonate and p-toluene sulfonate.

"Leaving group" refers to a functional group that can be substituted by another functional group. Such leaving groups are well known in the art, and examples include, but are not limited to, a halide (e.g., chloride, bromide, iodide), methanesulfonate (mesyl), p-toluene sulfonate (tosyl), trifluoromethylsulfonyl (triflate), and trifluoromethanesulfonate.

The phrase "pharmaceutically acceptable salt," as used herein, refers to pharmaceutically acceptable organic or inorganic salts of an Exemplary Compound or Exemplary Conjugate. The Exemplary Compounds and Exemplary Conjugates contain at least one amino group, and accordingly acid addition salts can be formed with this amino group. Exemplary salts include, but are not limited to, toluenesulfonate, malonate, succinate, glutarate, glucuronate, and saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, and pamoate (i.e., 1,1'-methylene-bis-[2-hydroxy-3-naphthoate]) salts. A pharmaceutically acceptable salt may involve the inclusion of another molecule such as an acid ion, a succinate ion or another counterion. The counterion may be any organic or inorganic moiety that stabilizes the charge on the parent compound. Furthermore, a pharmaceutically acceptable salt may have more than one charged atom in its structure. Instances where multiple charged atoms are part of the pharmaceutically acceptable salt can have multiple counterions. Hence, a pharmaceutically acceptable salt can have one or more charged atoms and/or one or more counterions.

"Pharmaceutically acceptable solvate" or "solvate" refer to an association of one or more solvent molecules and a compound of the invention, e.g., an Exemplary Compound or Exemplary Conjugate. Examples of solvents that form pharmaceutically acceptable solvates include, but are not limited to, water, isopropanol, ethanol, methanol, DMSO, ethyl acetate, acetic acid, and ethanolamine.

The following abbreviations are used herein and have the indicated definitions: AE is auristatin E, Boc is N-(t-butoxycarbonyl), cit is citrulline, dap is dolapride, DCC is 1,3-dicyclohexylcarbodiimide, DCM is dichloromethane, DEA is diethylamine, DEAD is diethylazodicarboxylate, DEPC is diethylphosphorylcyanidate, DIAD is diisopropylazodicarboxylate, DIAE is N,N-diisopropylethylamine, dil is dolaisoleuine, DMAP is 4-dimethylaminopyridine, DMF is N,Ndimethylformamide, DMSO is dimethylsulfoxide, doe is dolaphenine, dov is dolaisoleuine, DMAP is 4-dimethylaminopyridine, DME is ethyl ethoxyethane, acetonitrile, methanol, DMSO, ethyl acetate, acetic acid, and ethanolamine.

The terms "treat" or "treatment," unless otherwise indicated by context, refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder, such as the development or spread of cancer. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. "Treatment" can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the condition or
disorder is to be prevented.

[0128] In the context of cancer, the term "treating" includes any or all of: preventing growth of tumor cells, cancer cells, or of a tumor; preventing replication of tumor cells or cancer cells, lessening of overall tumor burden or decreasing the number of cancerous cells, and ameliorating one or more symptoms associated with the disease.

[0129] In the context of an autoimmune disease, the term "treating" includes any or all of: preventing replication of cells associated with an autoimmune disease state including, but not limited to, cells that produce an autoimmune antibody, lessening the autoimmune-antibody burden and ameliorating one or more symptoms of an autoimmune disease.

[0130] In the context of an infectious disease, the term "treating" includes any or all of: preventing the growth, multiplication or replication of the pathogen that causes the infectious disease and ameliorating one or more symptoms of an infectious disease.

[0131] The following cytotoxic drug abbreviations are used herein and have the indicated definitions: MMAE is mono-methyl auristatin E (MW 718); MMAF is N-methylvaline-valine-dolaisoleune-dolaproine-phenylalanine (MW 731.5); MMAF-DMAEA is MMAF with DMAEA (dimethylaminoethylamine) in an amide linkage to the C-terminal phenylalanine (MW 801.5); MMAF-TEG is MMAF with tetraethylene glycol esterified to the phenylalanine; MMAF-NtBu is N-t-butyl, attached as an amide to C-terminus of MMAF; AEVB is auristatin E valeryl benzylhydrazone, acid labile linker through the C-terminus of AE (MW 732); and AFP is Monoamide of p-phenylene diamine with C-terminal Phenylalanine of Auristatin F (MW 732).

4.2 COMPOUNDS

4.2.1 THE COMPOUNDS OF FORMULA (Ia)

[0132] Described herein are Drug-Linker-Ligand Conjugates having Formula Ia:

\[L-(A_a-W_w-Y_y-D)_p \]

or a pharmaceutically acceptable salt or solvate thereof wherein,

- \(L \) is a Ligand unit;
- \(-A_a-W_w-Y_y-\) is a Linker unit (LU), wherein the Linker unit includes:
 - \(-A-\) is a Stretcher unit,
 - \(a \) is 0 or 1,
 - each \(-W-\) is independently an Amino Acid unit,
 - \(w \) is an integer ranging from 0 to 12,
- \(-Y-\) is a Spacer unit, and
- \(y \) is 0, 1 or 2;
- \(p \) ranges from 1 to about 20; and
- \(-D\) is a Drug unit having the Formulas \(D_E \) and \(D_F \):
wherein, independently at each location:

R² is selected from H and C₁⁻C₈ alkyl;
R³ is selected from H, C₁⁻C₈ alkyl, C₃⁻C₈ carbocycle, aryl, C₁⁻C₈ alkyl-aryl, C₁⁻C₈ alkyl-(C₃⁻C₈ carbocycle), C₃⁻C₈ heterocycle and C₁⁻C₈ alkyl-(C₃⁻C₈ heterocycle);
R⁴ is selected from H, C₁⁻C₈ alkyl, C₃⁻C₈ carbocycle, aryl, C₁⁻C₈ alkyl-aryl, C₁⁻C₈ alkyl-(C₃⁻C₈ carbocycle), C₃⁻C₈ heterocycle and C₁⁻C₈ alkyl-(C₃⁻C₈ heterocycle);
R⁵ is selected from H and methyl;
or R⁴ and R⁵ jointly form a carbocyclic ring and have the formula -(CRᵃRᵇ)ₙ- wherein Ra and Rb are independently selected from H, C₁⁻C₈ alkyl and C₃⁻C₈ carbocycle and n is selected from 2, 3, 4, 5 and 6;
R⁶ is selected from H and C₁⁻C₈ alkyl;
R⁷ is selected from H, C₁⁻C₈ alkyl, C₃⁻C₈ carbocycle, aryl, C₁⁻C₈ alkyl-aryl, C₁⁻C₈ alkyl-(C₃⁻C₈ carbocycle), C₃⁻C₈ heterocycle and C₁⁻C₈ alkyl-(C₃⁻C₈ heterocycle);
each R⁸ is independently selected from H, OH, C₁⁻C₈ alkyl, C₃⁻C₈ carbocycle and O-(C₁⁻C₈ alkyl);
R⁹ is selected from H and C₁⁻C₈ alkyl;
R¹₀ is selected from aryl or C₃⁻C₈ heterocycle;
Z is O, S, NH, or NR¹₂, wherein R¹₂ is C₁⁻C₈ alkyl;
R¹¹ is selected from H, C₁⁻C₂₀ alkyl, aryl, C₃⁻C₈ heterocycle, -(R¹³O)ₘ⁻R¹⁴⁺, or -(R¹³O)ₘ⁻CH(R¹⁵)₂⁺;
m is an integer ranging from 1-1000;
R¹₂ is C₂⁻C₈ alkyl;
R¹₄ is H or C₁⁻C₈ alkyl;
each occurrence of R¹⁵ is independently H, COOH, -(CH₂)ₙ⁻N(R¹₆)₂⁺, -(CH₂)ₙ⁻SO₃⁻H, or -(CH₂)ₙ⁻SO₃⁻C₁⁻C₈ alkyl;
each occurrence of R¹⁶ is independently H, C₁⁻C₈ alkyl, or -(CH₂)ₙ⁻COOH;
R¹₈ is selected from -C(R⁸)₂⁻C(R⁸)₂⁻arylam, -C(R⁸)₂⁻C(R⁸)₂⁻C(R⁸)₂⁻(C₃⁻C₈ heterocycle), and -C(R⁸)₂⁻C(R⁸)₂⁻(C₃⁻C₈ carbocycle); and
n is an integer ranging from 0 to 6.

[0133] Also described herein are Drug Compounds having the Formula Ib:

or pharmaceutically acceptable salts or solvates thereof, wherein:

R² is selected from hydrogen and -C₁⁻C₈ alkyl;
R³ is selected from hydrogen, -C₁⁻C₈ alkyl, -C₃⁻C₈ carbocycle, aryl, -C₁⁻C₈ alkyl-aryl, -C₁⁻C₈ alkyl-(C₃⁻C₈ carbocycle), -C₃⁻C₈ heterocycle and -C₁⁻C₈ alkyl-(C₃⁻C₈ heterocycle);
R⁴ is selected from hydrogen, -C₁⁻C₈ alkyl, -C₃⁻C₈ carbocycle, aryl, -C₁⁻C₈ alkyl-aryl, -C₁⁻C₈ alkyl-(C₃⁻C₈ carbocycle), -C₃⁻C₈ heterocycle and -C₁⁻C₈ alkyl-(C₃⁻C₈ heterocycle) wherein R⁵ is selected from -H and -methyl; or R⁴ and R⁵ jointly, have the formula -(CRᵃRᵇ)ₙ- wherein Ra and Rb are independently selected from -H and -methyl, or R⁴ and R⁵ are independently selected from -H, -C₁⁻C₈ alkyl and -C₃⁻C₈ carbocycle and n is selected from 2, 3, 4, 5 and 6, and form a ring with the carbon atom to which they are attached;
R⁶ is selected from H and -C₁⁻C₈ alkyl;
R⁷ is selected from H, -C₁⁻C₈ alkyl, -C₃⁻C₈ carbocycle, aryl, -C₁⁻C₈ alkyl-aryl, -C₁⁻C₈ alkyl-(C₃⁻C₈ carbocycle), -C₃⁻C₈ heterocycle and -C₁⁻C₈ alkyl-(C₃⁻C₈ heterocycle);
each R⁸ is independently selected from H, -OH, -C₁⁻C₈ alkyl, -C₃⁻C₈ carbocycle and O-(C₁⁻C₈ alkyl);
R⁹ is selected from H and -C₁⁻C₈ alkyl;
R¹₀ is selected from aryl group or -C₃⁻C₈ heterocycle;
Z is -O-, -S-, -NH-, or -NR¹₂-, wherein R¹₂ is C₁⁻C₈ alkyl;
R¹¹ is selected from H, C₁⁻C₂₀ alkyl, aryl, -C₃⁻C₈ heterocycle, -(R¹³O)ₘ⁻R¹⁴⁺, or -(R¹³O)ₘ⁻CH(R¹⁵)₂⁺;
m is an integer ranging from 1-1000;
R\(^{13}\) is -C\(_{2}-C_{8}\) alkyl;
R\(^{14}\) is H or -C\(_{1}-C_{8}\) alkyl;
each occurrence of R\(^{15}\) is independently H, -COOH, -(CH\(_{2}\))\(_{n}\)-N(R\(^{16}\))\(_{2}\), -(CH\(_{2}\))\(_{n}\)-SO\(_{3}\)H, or -(CH\(_{2}\))\(_{n}\)-SO\(_{3}\)-C\(_{1}-C_{8}\) alkyl;
each occurrence of R\(^{16}\) is independently H, -C\(_{1}-C_{8}\) alkyl, or -(CH\(_{2}\))\(_{n}\)-COOH; and
n is an integer ranging from 0 to 6.

[0134] Also described herein are Drug-Linker-Ligand Conjugates having the Formula Ia':

Ab-(A\(_{a}\)-W\(_{w}\)-Y\(_{y}\)-D)\(_{p}\) Formula Ia'

or pharmaceutically acceptable salts or solvates thereof.

wherein:

Ab is an antibody,
A is a Stretcher unit,
a is 0 or 1,
each W is independently an Amino Acid unit,
w is an integer ranging from 0 to 12,
Y is a Spacer unit, and
y is 0, 1 or 2,
p ranges from 1 to about 20, and
D is a Drug moiety selected from Formulas D\(_{E}\) and D\(_{F}\):

wherein, independently at each location:

R\(^{2}\) is selected from H and C\(_{1}-C_{8}\) alkyl;
R\(^{3}\) is selected from H, C\(_{1}-C_{8}\) alkyl, C\(_{3}-C_{8}\) carbocycle, aryl, C\(_{1}-C_{8}\) alkyl-aryl, C\(_{1}-C_{8}\) alkyl-(C\(_{3}-C_{8}\) carbocycle),
C\(_{3}-C_{8}\) heterocycle and C\(_{1}-C_{8}\) alkyl-(C\(_{3}-C_{8}\) heterocycle);
R\(^{4}\) is selected from H, C\(_{1}-C_{8}\) alkyl, C\(_{3}-C_{8}\) carbocycle, aryl, C\(_{1}-C_{8}\) alkyl-aryl, C\(_{1}-C_{8}\) alkyl-(C\(_{3}-C_{8}\) carbocycle),
C\(_{3}-C_{8}\) heterocycle and C\(_{1}-C_{8}\) alkyl-(C\(_{3}-C_{8}\) heterocycle);
R\(^{5}\) is selected from H and methyl;
or R\(^{4}\) and R\(^{5}\) jointly form a carbocyclic ring and have the formula -(CR\(^{a}\)R\(^{b}\))\(_{n}\) wherein R\(^{a}\) and R\(^{b}\) are independently selected from H, C\(_{1}-C_{8}\) alkyl and C\(_{3}-C_{8}\) carbocycle and n is selected from 2, 3, 4, 5 and 6;
R\(^{6}\) is selected from H and C\(_{1}-C_{8}\) alkyl;
R\(^{7}\) is selected from H, C\(_{1}-C_{8}\) alkyl, C\(_{3}-C_{8}\) carbocycle, aryl, C\(_{1}-C_{8}\) alkyl-aryl, C\(_{1}-C_{8}\) alkyl-(C\(_{3}-C_{8}\) carbocycle),
C\(_{3}-C_{8}\) heterocycle and C\(_{1}-C_{8}\) alkyl-(C\(_{3}-C_{8}\) heterocycle);
each R\(^{8}\) is independently selected from H, OH, C\(_{1}-C_{8}\) alkyl, C\(_{3}-C_{8}\) carbocycle and O-(C\(_{1}-C_{8}\) alkyl);
R\(^{9}\) is selected from H and C\(_{1}-C_{8}\) alkyl;
R\(^{10}\) is selected from aryl or C\(_{3}-C_{8}\) heterocycle;
Z is O, S, NH, or NR\(^{12}\), wherein R\(^{12}\) is C\(_{1}-C_{8}\) alkyl;
R\(^{11}\) is selected from H, C\(_{1}-C_{20}\) alkyl, aryl, C\(_{3}-C_{8}\) heterocycle, -(R\(^{13}\)O)\(_{m}\)-R\(^{14}\), or -(R\(^{15}\)O)\(_{m}\)-CH(R\(^{15}\))\(_{2}\);
m is an integer ranging from 1-1000; R13 is C2-C8 alkyl; R14 is H or C1-C8 alkyl; each occurrence of R15 is independently H, COOH, -(CH2)n-N(R16)2, -(CH2)n-SO3H, or -(CH2)n-SO3-C1-C8 alkyl; each occurrence of R16 is independently H, COOH, or -(CH2)n-COOH; R18 is selected from -C(R8)2-C(R8)2-aryl, -C(R8)2-C(R8)2-(C3-C8 heterocycle), and -C(R8)2-C(R8)2-(C3-C8 carbocycle); and n is an integer ranging from 0 to 6.

Ab is any antibody covalently attached to one or more drug units. Ab includes an antibody which binds to CD30, CD40, CD70, Lewis Y antigen. In another embodiment, Ab does not include an antibody which binds to an ErbB receptor or to one or more of receptors (1)-(35):

(1) BMPR1B (bone morphogenetic protein receptor-type IB, Genbank accession no. NM_001203);
(2) E16 (LAT1, SLC7A5, Genbank accession no. NM_003486);
(3) STEAP1 (six transmembrane epithelial antigen of prostate, Genbank accession no. NM_012449);
(4) 0772P (CA125, MUC16, Genbank accession no. AF361486);
(5) MPF (MPF, MSLN, SMR, megakaryocyte potentiating factor, mesothelin, Genbank accession no. NM_005823);
(6) Napi3b (NAPI-3B, NPTIIb, SLC34A2, solute carrier family 34 (sodium phosphate), member 2, type II sodium-dependent phosphate transporter 3b, Genbank accession no. NM_006424);
(7) Sema 5b (FLJ10372, KIAA1445, Mm.42015, SEMAS5, SEMAG, Semaphorin 5b Hlog, sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5B, Genbank accession no. AB040878);
(8) PSCA hlg (2700050C12Rik, C530008016Rik, RIKEN cDNA 2700050C12, RIKEN cDNA 2700050C12 gene, Genbank accession no. AY358628);
(9) ETBR (Endothelin type B receptor, Genbank accession no. AY275463);
(10) MSG783 (RNF124, hypothetical protein FLJ20315, Genbank accession no. NM_017763);
(11) STEAP2 (HGNC_8639, IPCA-1, PCANAP 1, STAMP 1, STEAP2, STMP, prostate cancer associated gene 1, prostate cancer associated protein 1, six transmembrane epithelial antigen of prostate 1, six transmembrane prostate protein 2, Genbank accession no. AF455138);
(12) TrpM4 (BR22450, FLJ20041, TRPM4, TRPM4B, transient receptor potential cation channel, subfamily M, member 4, Genbank accession no. NM_017636);
(13) CRIPITO (CR, CR1, CRGF, CRIPITO, TDGFI, teratocarcinoma-derived growth factor, Genbank accession no. NP_003203 or NM_003212);
(14) CD21 (CR2 (Complement receptor 2) or C3DR (C3d/Epstein Barr virus receptor) or Hs.73792, Genbank accession no. M26004);
(15) CD79b (IgB (immunoglobulin-associated beta), B29, Genbank accession no. NM_000626);
(16) FcRH2 (IFGP4, IRTA4, SPAP1A, SH2 domain containing phosphatase anchor protein 1 a), SPAP1B, SPAP1C, Genbank accession no. NP_003203 or NM_003212);
(17) HER2 (Genbank accession no. M11730);
(18) NCA (Genbank accession no. M18728);
(19) MDP (Genbank accession no. BC017023);
(20) IL20Rα (Genbank accession no. AF184971);
(21) Brevcican (Genbank accession no. AF229053);
(22) Ephb2R (Genbank accession no. NM_004442);
(23) ASLG659 (Genbank accession no. AX092328);
(24) PSCA (Genbank accession no. AJ297436);
(25) GEDA (Genbank accession no. AY260763);
(26) BAFF-R (Genbank accession no. NP_443177.1);
(27) CD22 (Genbank accession no. NP_001762.1);
(28) CD79a (CD79A, CD79α, immunoglobulin-associated alpha, a B cell-specific protein that covalently interacts with Ig beta (CD79B) and forms a complex on the surface with Ig M molecules, transduces a signal involved in B-cell differentiation, Genbank accession No. NP_001774.1);
(29) CXCR5 (Burkitt’s lymphoma receptor 1, a G protein-coupled receptor that is activated by the CXCL13 chemokine, functions in lymphocyte migration and humoral defense, plays a role in HIV-2 infection and perhaps development of AIDS, lymphoma, myeloma, and leukemia, Genbank accession No. NP_001707.1);
(30) HLA-DOB (Beta subunit of MHC class II molecule (Ia antigen) that binds peptides and presents them to CD4+ T-lymphocytes).
T lymphocytes, Genbank accession No. NP_002111.1);
(31) P2X5 (Purinergic receptor P2X ligand-gated ion channel 5, an ion channel gated by extracellular ATP, may be
involved in synaptic transmission and neurogenesis, deficiency may contribute to the pathophysiology of idiopathic
detrusor instability, Genbank accession No. NP_002552.2);
(32) CD72 (B-cell differentiation antigen CD72, Lyb-2, Genbank accession No. NP_001773.1);
(33) LY64 (Lymphocyte antigen 64 (RP105), type I membrane protein of the leucine rich repeat (LRR) family,
regulates B-cell activation and apoptosis, loss of function is associated with increased disease activity in patients
with systemic lupus erythematosis, Genbank accession No. NP_005573.1);
(34) FCRH1 (Fc receptor-like protein 1, a putative receptor for the immunoglobulin Fc domain that contains C2 type
Ig-like and ITAM domains, may have a role in B-lymphocyte differentiation, Genbank accession No. NP_443170.1);
and/or
(35) IRTA2 (Immunoglobulin superfamily receptor translocation associated 2, a putative immunoreceptor with possible
roles in B cell development and lymphomagenesis; deregulation of the gene by translocation occurs in some
B cell malignancies, Genbank accession No. NP_112571.1).

In one embodiment -Ww- is -Val-Cit-. R 3, R4 and R7 may independently be isopropyl or sec-butyl and R 5 is -H. In an
exemplary embodiment, R 3 and R4 are each isopropyl, R 5 is -H, and R 7 is sec-butyl. In yet another embodiment, R 2
and R 6 are each methyl, and R 5 is -H.

[0136] In still another example, each occurrence of R 8 is -OCH 3.

[0137] In an example, R 3 and R 4 are each isopropyl, R 2 and R 6 are each methyl, R 5 is -H, R 7 is sec-butyl, each
occurrence of R 8 is -OCH 3, and R 9 is -H.

[0138] In one example, Z is -O- or -NH-.

[0139] In one example, R 10 is aryl

[0140] In a particular example, R 10 is -phenyl.

[0141] In a particular example, when Z is -O-, R 11 is - H, methyl or t-butyl.

[0142] In an example, when Z is -NH, R 11 is -CH(R 15) 2, wherein R 15 is -(CH 2)n-N(R 16) 2, and R 16 is -C 1-C 8 alkyl or
-(CH 2)n-COOH.

[0143] In another example, when Z is -NH, R 11 is -CH(R 15) 2, wherein R 15 is -(CH 2)n-SO 3H.

[0144] Ab may be cAC10, cBR96, cS2C6, c1F6, c2F2, hAC10, hBR96, hS2C6, h1F6, and h2F2.

[0145] Exemplary conjugates of Formula Ia have the following structures:
wherein L is an antibody, Val is valine, and Cit is citrulline.

[0146] The drug loading is represented by p, the average number of drug molecules per antibody in a molecule (e.g., of Formula Ia, Ia' and Ic). Drug loading may range from 1 to 20 drugs (D) per Ligand (e.g., Ab or mAb). Compositions of Formula Ia and Formula Ia' include collections of antibodies conjugated with a range of drugs, from 1 to 20. The average number of drugs per antibody in preparation of conjugation reactions may be characterized by conventional means such as mass spectroscopy, ELISA assay, and HPLC. The quantitative distribution of Ligand-Drug-Conjugates in terms of p may also be determined. In some instances, separation, purification, and characterization of homogeneous Ligand-Drug-conjugates where p is a certain value from Ligand-Drug-Conjugates with other drug loadings may be achieved by means such as reverse phase HPLC or electrophoresis.

4.2.2 THE DRUG COMPOUNDS OF FORMULA (Ib)

[0147] Also described herein are Drug Compounds having the Formula (Ib):

wherein:

- \(R_2 \) is selected from hydrogen and -C\(_1\)-C\(_8\) alkyl;
- \(R_3 \) is selected from -hydrogen, -C\(_1\)-C\(_8\) alkyl, -C\(_3\)-C\(_8\) carbocycle, aryl, -C\(_1\)-C\(_8\) alkyl-aryl, -C\(_1\)-C\(_8\) alkyl-(C\(_3\)-C\(_8\) carbocycle), -C\(_2\)-C\(_8\) heterocycle and -C\(_1\)-C\(_8\) alkyl-(C\(_2\)-C\(_8\) heterocycle);
- \(R_4 \) is selected from -hydrogen, -C\(_1\)-C\(_8\) alkyl, -C\(_3\)-C\(_8\) carbocycle, -aryl, -C\(_1\)-C\(_8\) alkyl-aryl, -C\(_1\)-C\(_8\) alkyl-(C\(_3\)-C\(_8\) carbocycle), -C\(_2\)-C\(_8\) heterocycle and -C\(_1\)-C\(_8\) alkyl-(C\(_2\)-C\(_8\) heterocycle) wherein \(R_5 \) is selected from -H and -methyl; or \(R_4 \) and \(R_5 \) jointly, have the formula -(CR\(_a\)R\(_b\))\(_n\) wherein \(R_4 \) and \(R_5 \) are independently selected from -H, -C\(_1\)-C\(_8\) alkyl and -C\(_3\)-C\(_8\) carbocycle and \(n \) is selected from 2, 3, 4, 5 and 6, and form a ring with the carbon atom to which they are attached;
- \(R_6 \) is selected from -H and -C\(_1\)-C\(_8\) alkyl;
- \(R_7 \) is selected from -H, -C\(_1\)-C\(_8\) alkyl, -C\(_3\)-C\(_8\) carbocycle, aryl, -C\(_1\)-C\(_8\) alkyl-aryl, -C\(_1\)-C\(_8\) alkyl-(C\(_3\)-C\(_8\) carbocycle), -C\(_2\)-C\(_8\) heterocycle and -C\(_1\)-C\(_8\) alkyl-(C\(_2\)-C\(_8\) heterocycle); each \(R_8 \) is independently selected from -H, -OH, -C\(_1\)-C\(_8\) alkyl, -C\(_3\)-C\(_8\) carbocycle and -O-(C\(_1\)-C\(_8\) alkyl);
- \(R_9 \) is selected from -H and -C\(_1\)-C\(_8\) alkyl;
- \(R_{10} \) is selected from aryl group or -C\(_3\)-C\(_8\) heterocycle;
- \(Z \) is -O-, -S-, -NH-, or -NR\(_{12}\)- wherein \(R_{12} \) is C\(_1\)-C\(_8\) alkyl;
- \(R_{11} \) is selected from -H, -C\(_1\)-C\(_8\) alkyl, -C\(_3\)-C\(_8\) heterocycle, -(R\(_{13}\)O)m-R\(_{14}\), or -(R\(_{13}\)O)m-CH(R\(_{15}\))\(_2\); \(m \) is an integer ranging from 1-1000;
- \(R_{13} \) is -C\(_2\)-C\(_8\) alkyl;
- \(R_{14} \) is -H or -C\(_1\)-C\(_8\) alkyl;
- each occurrence of \(R_{15}\) is independently +H, -COOH, -(CH\(_2\))\(_n\)N(R\(_{16}\))\(_2\), -(CH\(_2\))\(_n\)SO\(_2\)H, or -(CH\(_2\))\(_n\)SO\(_3\)-C\(_1\)-C\(_8\) alkyl; each occurrence of \(R_{16}\) is independently +H, -C\(_1\)-C\(_8\) alkyl, or -(CH\(_2\))\(_n\)COOH; and
- \(n \) is an integer ranging from 0 to 6.
In one example, R3, R4 and R7 are independently isopropyl or sec-butyl and R5 is -H. In one example, R3 and R4 are each isopropyl, R5 is -H, and R7 is sec-butyl.

In another example, R2 and R6 are each methyl, and R9 is -H.

In still another example, each occurrence of R8 is -OCH3. In one example, R3 and R4 are each isopropyl, R2 and R6 are each methyl, R5 is -H, R7 is sec-butyl, each occurrence of R8 is -OCH3, and R9 is -H.

In one example, Z is -O- or -NH-.

In one example, R10 is aryl

In one example, R10 is -phenyl. In one example, when Z is -O-, R11 is -H, methyl or t-butyl.

In one example, when Z is -NH, R11 is -CH(R15)2, wherein R15 is -(CH2)n-N(R16)2, and R16 is -C1-C8 alkyl or -(CH2)n-COOH.

In another example, when Z is -NH, R11 is -CH(R15)2, wherein R15 is -(CH2)n-SO3H.

Illustrative Compounds of Formula (Ib), each of which may be used as drug moieties (D) in ADC, include compounds having the following structures:
and

and
and pharmaceutically acceptable salts or solvates thereof.

THE COMPOUNDS OF FORMULA (Ic)

[0157] Also described herein are antibody-drug conjugate compounds (ADC) having Formula Ic:

\[\text{Ab-}(A_{n-W_{p-Y_{p-D_p}}}) \]

comprising an antibody covalently attached to one or more drug units (moieties). The antibody-drug conjugate compounds include pharmaceutically acceptable salts or solvates thereof.

[0158] Formula Ic compounds are defined wherein:

Ab is an antibody which binds to one or more tumor-associated antigen receptors (1)-(35):

1. BMPR1B (bone morphogenetic protein receptor-type IB, Genbank accession no. NM_001203);
2. E16 (LAT1, SLC7A5, Genbank accession no. NM_003486);
3. STEAP1 (six transmembrane epithelial antigen of prostate, Genbank accession no. NM_012449);
4. 0772P (CA125, MUC16, Genbank accession no. AF361486);
5. MPF (MPF, MSLN, SMR, megakaryocyte potentiating factor, mesothelin, Genbank accession no. NM_005823);
6. Napi3b (NAP1-3B, NPTIIb, SLC34A2, solute carrier family 34 (sodium phosphate), member 2, type II sodium-dependent phosphate transporter 3b, Genbank accession no. NM_006424);
7. Sema 5b (FLJ10372, KIAA1445, Mm.42015, SEMAS5B, SEMAG, Semaphorin 5b Hlog, sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5B, Genbank accession no. AB040878);
8. PSCA hlg (27000050C12Rik, C530008016Rik, RIKEN cDNA 2700050C12, RIKEN cDNA 2700050C12 gene, Genbank accession no. AY358628);
9. ETBR (Endothelin type B receptor, Genbank accession no. AY275463);
10. MGS783 (RNF124, hypothetical protein FLJ20315, Genbank accession no. NM_017763);
11. STEAP2 (HGNC_8639, IPCA-1, PCANAP1, STAMP1, STEAP2, STMP, prostate cancer associated gene 1, prostate cancer associated protein 1, six transmembrane epithelial antigen of prostate 2, six transmembrane prostate protein, Genbank accession no. AF455138);
12. TrpM4 (BR22450, FLJ20041, TRPM4, TRPM4B, transient receptor potential cation channel, subfamily M, member 4, Genbank accession no. NM_017636);
13. CRIPTO (CR, CR1, CRGF, CRIPTO, TDGF1, teratocarcinoma-derived growth factor, Genbank accession no. NP_003203 or NM_003212);
14. CD21 (CR2 (Complement receptor 2) or C3DR (C3d/Epstein Barr virus receptor) or Hs.73792 Genbank accession no. M26004);
15. CD79b (CD79B, CD79b, IgB (immunoglobulin-associated beta), B29, Genbank accession no. NM_000626);
16. FcRH2 (IFGP4, IRTA4, SPAP1A (SH2 domain containing phosphatase anchor protein 1a), SPAP1B, SPAP1C, Genbank accession no. NM_030764);
17. HER2 (Genbank accession no. M11730);
18. NCA (Genbank accession no. M18728);
19. MDP (Genbank accession no. BC017023);
(20) IL20Rα (Genbank accession no. AF184971);
(21) Brevican (Genbank accession no. AF229053);
(22) Ephb2R (Genbank accession no. NM_004442);
(23) ASLG659 (Genbank accession no. AX092328);
(24) PSCA (Genbank accession no. AJ297436);
(25) GEDA (Genbank accession no. AY260763);
(26) BAFF-R (B cell-activating factor receptor, BLyS receptor 3, BR3, NP_443177.1);
(27) CD22 (B-cell receptor CD22-B isoform, NP-001762.1);
(28) CD79α (CD79A, CD79α, immunoglobulin-associated alpha, a B cell-specific protein that covalently interacts
with Ig beta (CD79B) and forms a complex on the surface with Ig M molecules, transduces a signal involved in
B-cell differentiation, Genbank accession No. NP_001774.1);
(29) CXCR5 (Burkitt’s lymphoma receptor 1, a G protein-coupled receptor that is activated by the CXCL13
chemokine, functions in lymphocyte migration and humoral defense, plays a role in HIV-2 infection and perhaps
development of AIDS, lymphoma, myeloma, and leukemia, Genbank accession No. NP_001707.1);
(30) HLA-DOB (Beta subunit of MHC class II molecule (la antigen) that binds peptides and presents them to
CD4+ T lymphocytes, Genbank accession No. NP_002111.1);
(31) P2X5 (Purinergic receptor P2X ligand-gated ion channel 5, an ion channel gated by extracellular ATP, may
be involved in synaptic transmission and neurogenesis, deficiency may contribute to the pathophysiology of
idiopathic detrusor instability, Genbank accession No. NP_002552.2);
(32) CD72 (B-cell differentiation antigen CD72, Lyb-2, Genbank accession No. NP_001773.1);
(33) LY64 (Lymphocyte antigen 64 (RP105), type I membrane protein of the leucine rich repeat (LRR) family,
regulates B-cell activation and apoptosis, loss of function is associated with increased disease activity in patients
with systemic lupus erythematosis, Genbank accession No. NP_005573.1);
(34) FCRH1 (Fc receptor-like protein 1, a putative receptor for the immunoglobulin Fc domain that contains C2
type Ig-like and ITAM domains, may have a role in B-lymphocyte differentiation, Genbank accession No.
NP_443170.1); and
(35) IRTA2 (Immunoglobulin superfamily receptor translocation associated 2, a putative immunoreceptor with
possible roles in B cell development and lymphomagenesis; deregulation of the gene by translocation occurs
in some B cell malignancies, Genbank accession No. NP_112571.1).

A is a Stretcher unit, a is 0 or 1,
each W is independently an Amino Acid unit,
w is an integer ranging from 0 to 12,
Y is a Spacer unit, and
y is 0, 1 or 2,
p ranges from 1 to about 8, and
D is a Drug moiety selected from Formulas DE and DF:

![Chemical structure of DE](image1)

![Chemical structure of DF](image2)

wherein the wavy line of DE and DF indicates the covalent attachment site to A, W, or Y, and independently at each
location:
R² is selected from H and C₁-C₈ alkyl;
R³ is selected from H, C₁-C₈ alkyl, C₃-C₈ carbocycle, aryl, C₁-C₈ alkylaryl, C₁-C₈ alkyl-(C₃-C₈ carbocycle), C₃-C₈ heterocycle and C₁-C₈ alkyl-(C₃-C₈ heterocycle);
R⁴ is selected from H, C₁-C₈ alkyl, C₃-C₈ carbocycle, aryl, C₁-C₈ alkylaryl, C₁-C₈ alkyl-(C₃-C₈ carbocycle), C₃-C₈ heterocycle and C₁-C₈ alkyl-(C₃-C₈ heterocycle);
R⁵ is selected from H and methyl;
or R⁴ and R⁵ jointly form a carbocyclic ring and have the formula -(CRᵃRᵇ)ₙ-, wherein Rᵃ and Rᵇ are independently selected from H, C₁-C₈ alkyl and C₃-C₈ carbocycle and n is selected from 2, 3, 4, 5 and 6;
R⁶ is selected from H and C₁-C₈ alkyl;
R⁷ is selected from H, C₁-C₈ alkyl, C₃-C₈ carbocycle, aryl, C₁-C₈ alkylaryl, C₁-C₈ alkyl-(C₃-C₈ carbocycle), C₃-C₈ heterocycle and C₁-C₈ alkyl-(C₃-C₈ heterocycle);
each R⁸ is independently selected from H, OH, C₁-C₈ alkyl, C₃-C₈ carbocycle and O-(C₁-C₈ alkyl);
R⁹ is selected from H and C₁-C₈ alkyl;
R¹⁰ is selected from aryl or C₃-C₈ heterocycle;
R¹¹ is selected from H, C₁-C₂₀ alkyl, aryl, C₃-C₈ heterocycle, -(R¹³O)ₘ-R¹⁴, or -(R¹³O)ₘ-CH(R¹⁵)₂;
m is an integer ranging from 1-1000;
R¹₃ is C₂-C₈ alkyl;
R¹₄ is H or C₁-C₈ alkyl;
each occurrence of R¹₅ is independently H, COOH, -(CH₂)ₙ-N(R¹₆)₂, -(CH₂)ₙ-SO₃H, or -(CH₂)ₙ-SO₃-C₁-C₈ alkyl;
each occurrence of R¹⁶ is independently H, C₁-C₈ alkyl, or -(CH₂)ₙ-COOH;
R¹₈ is selected from -C(R₈)₂-C(R₈)₂-aryl, -C(R₈)₂-C(R₈)₂-(C₃-C₈ heterocycle), and -C(R₈)₂-C(R₈)₂-(C₃-C₈ carbocycle); and
n is an integer ranging from 0 to 6.

[0159] In one example, -Ww- is -Val-Cit-.
[0160] In another example, R³, R⁴ and R⁷ are independently isopropyl or sec-butyl and R⁵ is -H. In one example, R³ and R⁴ are each isopropyl, R⁵ is -H, and R⁷ is sec-butyl.
In yet another example, R² and R⁶ are each methyl, and R⁹ is -H.
[0161] In still another example, each occurrence of R⁸ is -OCH₃. In one example, R³ and R⁴ are each isopropyl, R² and R⁶ are each methyl, R⁵ is -H, R⁷ is sec-butyl, each occurrence of R⁸ is -OCH₃, and R⁹ is -H.
[0162] In one example, Z is -O- or -NH-.
[0163] In one example, R¹⁰ is aryl.
[0164] In one example, R¹⁰ is -phenyl.
[0165] In one example, when Z is -O-, R¹¹ is -H, methyl or t-butyl.
[0166] In one example, when Z is -NH, R¹¹ is -(CH₁⁵)₂, wherein R¹⁵ is -(CH₂)ₙ-N(R¹₆)₂, and R¹₆ is -(CH₂)ₙ-C₁-C₈ alkyl or -(CH₂)ₙ-COOH.
[0167] In another example, when Z is -NH, R¹¹ is -(CH₁⁵)₂, wherein R¹⁵ is -(CH₂)ₙ-SO₃H.
[0168] Exemplary conjugates of Formula Ic ADC have the following structures:
wherein Ab is an antibody which binds to one or more tumor-associated antigen receptors (1)-(35); Val is valine; and Cit is citrulline.

The drug loading is represented by p, the average number of drugs per antibody in a molecule of Formula 1. Drug loading may range from 1 to 20 drugs (D) per antibody (Ab or mAb). Compositions of ADC of Formula I include collections of antibodies conjugated with a range of drugs, from 1 to 20. The average number of drugs per antibody in preparations of ADC from conjugation reactions may be characterized by conventional means such as UV/visible spectroscopy, mass spectrometry, ELISA assay, and HPLC. The quantitative distribution of ADC in terms of p may also be determined. In some instances, separation, purification, and characterization of homogeneous ADC where p is a certain value from ADC with other drug loadings may be achieved by means such as reverse phase HPLC or electrophoresis.

For some antibody drug conjugates, p may be limited by the number of attachment sites on the antibody. For example, where the attachment is a cysteine thiol, as in the exemplary embodiments above, an antibody may have only one or several cysteine thiol groups, or may have only one or several sufficiently reactive thiol groups through which a linker may be attached.

Typically, fewer than the theoretical maximum of drug moieties are conjugated to an antibody during a conjugation reaction. An antibody may contain, for example, many lysine residues that do not react with the drug-linker intermediate or linker reagent. Only the most reactive lysine groups may react with an amine-reactive linker reagent. Generally, antibodies do not contain many, if any, free and reactive cysteine thiol groups which may be linked to a drug moiety. Most cysteine thiol residues in the antibodies of the compounds of the invention exist as disulfide bridges and must be reduced with a reducing agent such as dithiothreitol (DTT). Additionally, the antibody must be subjected to denaturing conditions to reveal reactive nucleophilic groups such as lysine or cysteine. The loading (drug/antibody ratio) of an ADC may be controlled in several different manners, including: (i) limiting the molar excess of drug-linker intermediate or linker reagent relative to antibody, (ii) limiting the conjugation reaction time or temperature, and (iii) partial or limiting reductive conditions for cysteine thiol modification.

It is to be understood that where more than one nucleophilic group reacts with a drug-linker intermediate, or linker reagent followed by drug moiety reagent, then the resulting product is a mixture of ADC compounds with a distribution of one or more drug moieties attached to an antibody. The average number of drugs per antibody may be calculated from the mixture by dual ELISA antibody assay, specific for antibody and specific for the drug. Individual ADC molecules may be identified in the mixture by mass spectroscopy, and separated by HPLC, e.g., hydrophobic interaction chromatography ("Effect of drug loading on the pharmacology, pharmacokinetics, and toxicity of an anti-CD30 antibody-drug conjugate", Hamblett, K.J., et al, Abstract No. 624, American Association for Cancer Research; 2004 Annual Meeting, March 27-31, 2004, Proceedings of the AACR, Volume 45, March 2004; "Controlling the Location of Drug Attachment in Antibody-Drug Conjugates", Alley, S.C., et al, Abstract No. 627, American Association for Cancer Research; 2004 Annual Meeting, March 27-31, 2004, Proceedings of the AACR, Volume 45, March 2004). Thus, a homogeneous ADC with a single loading value may be isolated from the conjugation mixture by electrophoresis or chromatography.

4.3 THE LINKER UNIT

A "Linker unit" (LU) is a bifunctional compound which can be used to link a Drug unit and an Ligand unit to form
Drug-Linker-Ligand Conjugates, or which are useful in the formation of immunoconjugates directed against tumor associated antigens. Such immunoconjugates allow the selective delivery of toxic drugs to tumor cells. In some examples, the Linker unit of the Drug-Linker Compound and Drug-Linker-Ligand Conjugate has the formula:

\[-A^a_W^w_Y^y-\]

wherein:

- \(A\) is a Stretcher unit;
- \(a\) is 0 or 1;
- each \(-W\) is independently an Amino Acid unit;
- \(w\) is independently an integer ranging from 0 to 12;
- \(-Y\) is a Spacer unit; and
- \(y\) is 0, 1 or 2.

In the Drug-Linker-Ligand Conjugate, the Linker is capable of linking the Drug moiety and the Ligand unit.

4.3.1 THE STRETCHER UNIT

The Stretcher unit (-\(A\)-), when present, is capable of linking a Ligand unit to an amino acid unit (-\(W\)). In this regard a Ligand (L) has a functional group that can form a bond with a functional group of a Stretcher. Useful functional groups that can be present on a ligand, either naturally or via chemical manipulation include, but are not limited to, sulfhydryl (-SH), amino, hydroxyl, carboxy, the anomeric hydroxyl group of a carbohydrate, and carboxyl. The Ligand functional groups may be sulfhydryl and amino. Sulfhydryl groups can be generated by reduction of an intramolecular disulfide bond of a Ligand. Alternatively, sulfhydryl groups can be generated by reaction of an amino group of a lysine moiety of a Ligand using 2-iminothiolane (Traut’s reagent) or another sulfhydryl generating reagent.

The Stretcher unit may forms a bond with a sulfur atom of the Ligand unit. The sulfur atom can be derived from a sulfhydryl group of a Ligand. Representative Stretcher units of this embodiment are depicted within the square brackets of Formulas \(\text{IIIa}\) and \(\text{IIIb}\), wherein \(L\), \(-W\), \(-Y\), \(-D\), \(w\) and \(y\) are as defined above, and \(R^{17}\) is selected from \(-C_1-C_{10}\) alkylene-, \(-C_3-C_8\) carbocyclo-, \(-O-(C_1-C_8\) alkyl)-, -arylene-, \(-C_1-C_{10}\) alkylene-arylene-, \(-C_1-C_{10}\) alkylene-(\(C_3-C_8\) carbocyclo)-, \(-C_2-C_9\) carbocyclo)-(\(C_1-C_{10}\) alkylene-,-\(-C_3-C_8\) heterocyclo)-, \(-C_3-C_{10}\) alkylene-(\(C_3-C_8\) heterocyclo)-(\(C_1-C_{10}\) alkylene-, \(-\text{CH}_2\text{CH}_2\text{O})\text{r-}\), and \(-\text{CH}_2\text{CH}_2\text{O})\text{r-CH}_2\); and \(r\) is an integer ranging from 1-10. It is to be understood from all the exemplary conjugates of Formula Ia, such as \(\text{III-VI}\), that even where not denoted expressly, from 1 to 20 drug moieties are linked to a Ligand (\(p = 1-20\)).

An illustrative Stretcher unit is that of Formula \(\text{IIIa}\) wherein \(R^{17}\) is \(-\text{(CH}_2\text{)}_5\):
Another illustrative Stretcher unit is that of Formula IIIa wherein \(R^{17} = -(CH_2CH_2O)_rCH_2^- \); and \(r = 2 \):

Still another illustrative Stretcher unit is that of Formula IIIb wherein \(R^{17} = -(CH_2)_3^- \):

In another example, the Stretcher unit is linked to the Ligand unit via a disulfide bond between a sulfur atom of the Ligand unit and a sulfur atom of the Stretcher unit. A representative Stretcher unit is depicted within the square brackets of Formula IV, wherein \(R^{17}, L^-, -W^-, -Y^-, -D, w \) and \(y \) are as defined above.

I Representative Stretcher units are depicted within the square brackets of Formulas Va and Vb, wherein \(-R^{17}, L^-, -W^-, -Y^-, -D, w \) and \(y \) are as defined above;
The reactive group of the Stretcher may contain a reactive site that is reactive to a modified carbohydrate’s (-CHO) group that can be present on a Ligand. For example, a carbohydrate can be mildly oxidized using a reagent such as sodium periodate and the resulting (-CHO) unit of the oxidized carbohydrate can be condensed with a Stretcher that contains a functionality such as a hydrazide, an oxime, a primary or secondary amine, a hydrazine, a thiosemicarbazone, a hydrazine carboxylate, and an arylhydrazide such as those described by Kaneko, T. et al. (1991) Bioconjugate Chem 2:133-41. Representative Stretcher units are depicted within the square brackets of Formulas VIa, VIb, and VIc, wherein -R17-, L-, -W-, -Y-, -D, w, and y are as defined above.

[0182] The Amino Acid unit (-W-) when present, links the Stretcher unit to the Spacer unit if the Spacer unit is present, links the Stretcher unit to the Drug moiety if the Spacer unit is absent, and links the Ligand unit to the Drug unit if the Stretcher unit and Spacer unit are absent.

[0183] Ww- is a dipeptide, tripeptide, tetrapeptide, pentapeptide, hexapeptide, heptapeptide, octapeptide, nonapeptide, decapeptide, undecapeptide or dodecapeptide unit. Each -W- unit independently has the formula denoted below in the square brackets, and w is an integer ranging from 0 to 12:

wherein R19 is hydrogen, methyl, isopropyl, isobutyl, sec-butyl, benzyl, p-hydroxybenzyl, -CH2OH, -CH(OH)CH3, -CH2CH2OH, -CH2CONH2, -CH2COOH, -CH2CH2CONH2, -CH2CH2COOH, -(CH2)3NH2, -2-pyridylmethyl, 3-pyridylmethyl, 4-pyridylmethyl, phenyl, cyclohexyl.
The Amino Acid unit can be enzymatically cleaved by one or more enzymes, including a tumor-associated protease, to liberate the Drug unit (-D), which in one embodiment is protonated \textit{in vivo} upon release to provide a Drug (D). Illustrative \textit{Ww} units are represented by formulas (VII)-(IX):

\[
\begin{align*}
\text{wherein } R^{20} \text{ and } R^{21} \text{ are as follows:} \\

\begin{array}{c|c}
R^{20} & R^{21} \\
\hline
\text{benzyl} & (\text{CH}_2)_3\text{NH}_2; \\
\text{methyl} & (\text{CH}_2)_3\text{NH}_2; \\
\text{isopropyl} & (\text{CH}_2)_3\text{NH}_2; \\
\text{isopropyl} & (\text{CH}_2)_3\text{NCONH}_2; \\
\text{benzyl} & (\text{CH}_2)_3\text{NCONH}_2; \\
\text{isobutyl} & (\text{CH}_2)_3\text{NCONH}_2; \\
\text{sec-butyl} & (\text{CH}_2)_3\text{NCONH}_2; \\
\text{benzyl methyl} & (\text{CH}_2)_3\text{NCONH}_2; \\
\text{benzyl} & (\text{CH}_2)_3\text{NHC(NH)=NH}_2; \\
\text{methyl} & (\text{CH}_2)_3\text{NHC(NH)=NH}_2; \\
\end{array}
\]
wherein R_{20}, R_{21} and R_{22} are as follows:

<table>
<thead>
<tr>
<th>R_{20}</th>
<th>R_{21}</th>
<th>R_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzyl</td>
<td>benzyl</td>
<td>$(\text{CH}_2)_4\text{NH}_2$</td>
</tr>
<tr>
<td>isopropyl</td>
<td>benzyl</td>
<td>$(\text{CH}_2)_4\text{NH}_2$ and NHCONH_2</td>
</tr>
<tr>
<td>H</td>
<td>benzyl</td>
<td>$(\text{CH}_2)_4\text{NH}_2$</td>
</tr>
</tbody>
</table>

wherein R_{20}, R_{21}, R_{22} and R_{23} are as follows:

<table>
<thead>
<tr>
<th>R_{20}</th>
<th>R_{21}</th>
<th>R_{22}</th>
<th>R_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyl</td>
<td>benzyl</td>
<td>isobutyl</td>
<td>H and isobutyl</td>
</tr>
</tbody>
</table>

[0185] Exemplary Amino Acid units include, but are not limited to, units of formula (VII) where: R_{20} is benzyl and R_{21} is $-\text{(CH}_2)_4\text{NH}_2$; R_{20} is isopropyl and R_{21} is $-\text{(CH}_2)_4\text{NH}_2$; R_{20} is isopropyl and R_{21} is $-\text{(CH}_2)_3\text{NHCONH}_2$. Another exemplary Amino Acid unit is a unit of formula (VIII) wherein R_{20} is benzyl, R_{21} is benzyl, and R_{22} is $-\text{(CH}_2)_4\text{NH}_2$.

[0186] Useful $-W_w-$ units can be designed and optimized in their selectivity for enzymatic cleavage by a particular enzymes, for example, a tumor-associated protease. In one example, a $-W_w-$ unit is that whose cleavage is catalyzed by cathepsin B, C and D, or a plasmin protease. In one example, $-W_w-$ is a dipeptide, tripeptide, tetrapeptide or pentapeptide.

[0187] When $R_{19}, R_{20}, R_{21}, R_{22}$ or R_{23} is other than hydrogen, the carbon atom to which $R_{19}, R_{20}, R_{21}, R_{22}$ or R_{23} is attached is chiral.

[0188] Each carbon atom to which $R_{19}, R_{20}, R_{21}, R_{22}$ or R_{23} is attached is independently in the (S) or (R) configuration.

[0189] In one example of the Amino Acid unit, the Amino Acid unit is valine-citrulline. In another aspect, the Amino Acid unit is phenylalanine-lysine (i.e. fk). In yet another example of the Amino Acid unit, the Amino Acid unit is N-methylvaline-citrulline. In yet another aspect, the Amino Acid unit is 5-aminovaleric acid, homo phenylalanine lysine, tetraisoquinolinecarboxylate lysine, cyclohexylalanine lysine, isonepecotic acid lysine, beta-alanine lysine, glycine serine valine glutamine and isonepecotic acid.

In certain cases, the Amino Acid unit can comprise natural amino acids. In other cases, the Amino Acid unit can comprise non-natural amino acids.

4.3.3 THE SPACER UNIT

[0190] The Spacer unit ($-Y-$), when present, links an Amino Acid unit to the Drug moiety when an Amino Acid unit is present. Alternately, the Spacer unit links the Stretcher unit to the Drug moiety when the Amino Acid unit is absent. The Spacer unit also links the Drug moiety to the Ligand unit when both the Amino Acid unit and Stretcher unit are absent.

[0191] Spacer units are of two general types: self-immolative and non self-immolative. A non self-immolative Spacer unit is one in which part or all of the Spacer unit remains bound to the Drug moiety after cleavage, particularly enzymatic, of an Amino Acid unit from the Drug-Linker-Ligand Conjugate or the Drug-Linker Compound. Examples of a non self-immolative Spacer unit include, but are not limited to a (glycine-glycine) Spacer unit and a glycine Spacer unit (both
depicted in Scheme 1) (infra). When an Exemplary Compound containing a glycine-glycine Spacer unit or a glycine Spacer unit undergoes enzymatic cleavage via a tumor-cell associated-protease, a cancer-cell-associated protease or a lymphocyte-associated protease, a glycine-glycine-Drug moiety or a glycine-Drug moiety is cleaved from L-Aa-Ww-.

In one example, an independent hydrolysis reaction takes place within the target cell, cleaving the glycine-Drug moiety bond and liberating the Drug.

[0192] In another example, -Yy- is a p-aminobenzyl alcohol (PAB) unit (see Schemes 2 and 3) whose phenylene portion is substituted with Qm wherein Q is -C1-C8 alkyl, -O-(C1-C8 alkyl), -halogen, -nitro or -cyano; and m is an integer ranging from 0-4.

Scheme 1

\[
\text{Ab[Aa-Ww-Gly-D]} \xrightarrow{\text{enzymatic cleavage}} \text{Gly-D} \xrightarrow{\text{hydrolysis}} \text{Drug}
\]

\[
\text{Ab[Aa-Ww-Gly-Gly-D]} \xrightarrow{\text{enzymatic cleavage}} \text{Gly-Gly-D} \xrightarrow{\text{hydrolysis}} \text{Drug}
\]

[0193] In one example, a non self-immolative Spacer unit (-Y-) is -Gly-Gly-.
In another example, a non self-immolative the Spacer unit (-Y-) is -Gly-.

[0194] In one example, a Drug-Linker Compound or a Drug-Linker Ligand Conjugate is provided in which the Spacer unit is absent (y=0), or a pharmaceutically acceptable salt or solvate thereof.

[0195] Alternatively, an Exemplary Compound containing a self-immolative Spacer unit can release -D without the need for a separate hydrolysis step. In this embodiment, -Y- is a PAB group that is linked to -Ww- via the amino nitrogen atom of the PAB group, and connected directly to -D via a carbonate, carbamate or ether group. Without being bound by any particular theory or mechanism, Scheme 2 depicts a possible mechanism of Drug release of a PAB group which is attached directly to -D via a carbamate or carbonate group espoused by Toki et al. (2002) J Org. Chem. 67:1866-1872.
wherein Q is -C₁₋C₈ alkyl, -O-(C₁₋C₈ alkyl), -halogen, -nitro or -cyano; m is an integer ranging from 0-4; and p ranges from 1 to about 20.

[0196] Without being bound by any particular theory or mechanism, Scheme 3 depicts a possible mechanism of Drug release of a PAB group which is attached directly to -D via an ether or amine linkage.
wherein Q is -C₁-C₈ alkyl, -O-(C₁-C₈ alkyl), -halogen, - nitro or -cyano; m is an integer ranging from 0-4; and p ranges from 1 to about 20.

[0197] Other examples of self-immolative spacers include, but are not limited to, aromatic compounds that are electronically similar to the PAB group such as 2-aminoimidazol-5-methanol derivatives (Hay et al. (1999) Bioorg. Med. Chem. Lett. 9:2237) and ortho or para-aminobenzylacetals. Spacers can be used that undergo cyclization upon amide bond hydrolysis, such as substituted and unsubstituted 4-aminobutyric acid amides (Rodrigues et al., Chemistry Biology, 1995, 2, 223), appropriately substituted bicyclo[2.2.1] and bicyclo[2.2.2] ring systems (Storm, et al., J. Amer. Chem. Soc., 1972,94,5815) and 2-aminophenylpropionic acid amides (Amsberry, et al., J. Org. Chem., 1990, 55, 5867). Elimination of amine-containing drugs that are substituted at the α-position of glycine (Kingsbury, et al., J. Med. Chem., 1984, 27, 1447) are also examples of self-immolative spacer useful in Exemplary Compounds.

[0198] In one example, the Spacer unit is a branched bis(hydroxymethyl)styrene (BHMS) unit as depicted in Scheme 4, which can be used to incorporate and release multiple drugs.
wherein Q is -C₁₋₈ alkyl, -O-(C₁₋₈ alkyl), -halogen, -nitro or -cyano; m is an integer ranging from 0-4; n is 0 or 1; and p ranges ranging from 1 to about 20.

[0199] In one example, the -D moieties are the same. In yet another embodiment, the -D moieties are different. In one example, Spacer units (-Yₓ₋₋) are represented by Formulas (X)-(XII):

![Formula X]

wherein Q is -C₁₋₈ alkyl, -O-(C₁₋₈ alkyl), -halogen, -nitro or -cyano; and m is an integer ranging from 0-4;

![Formula XI]

and

![Formula XII]

[0200] Examples of the Formula la' and lc antibody-drug conjugate compounds include:

![Example Structure 1]

and,

![Example Structure 2]

wherein w and y are each 0,
4.4 THE DRUG UNIT (MOIETY)

[0201] The drug moiety (D) of the antibody drug conjugates (ADC) are of the dolastatin/auristatin type (U.S. Patent Nos. 5635483; 5780588) which have been shown to interfere with microtubule dynamics, GTP hydrolysis, and nuclear and cellular division (Woyke et al. (2001) Antimicrob. Agents and Chemother. 45(12):3580-3584) and have anticancer (U.S. Patent No. 5663149) and antifungal activity (Pettit et al. (1998) Antimicrob. Agents Chemother. 42:2961-2965)

[0202] D is a Drug unit (moiety) having a nitrogen atom that can form a bond with the Spacer unit when y=1 or 2, with the C-terminal carboxyl group of an Amino Acid unit when y=0, with the carboxyl group of a Stretcher unit when w and y =0, and with the carboxyl group of a Drug unit when a, w, and y =0. It is to be understood that the terms "drug unit" and "drug moiety" are synonymous and used interchangeably herein.
In one example, -D is either formula \(\text{DE} \) or \(\text{DF} \):

![Chemical structures]

wherein, independently at each location:

- \(R^2 \) is selected from \(\text{H and C}_1\text{-C}_8 \) alkyl;
- \(R^3 \) is selected from \(\text{H, C}_1\text{-C}_8 \) alkyl, \(\text{C}_3\text{-C}_8 \) carbocycle, aryl, \(\text{C}_1\text{-C}_8 \) alkylaryl, \(\text{C}_3\text{-C}_8 \) heterocycle and \(\text{C}_1\text{-C}_8 \) alkyl-(\(\text{C}_3\text{-C}_8 \) heterocycle);
- \(R^4 \) is selected from \(\text{H, C}_1\text{-C}_8 \) alkyl, \(\text{C}_3\text{-C}_8 \) carbocycle, aryl, \(\text{C}_1\text{-C}_8 \) alkylaryl, \(\text{C}_3\text{-C}_8 \) heterocycle and \(\text{C}_1\text{-C}_8 \) alkyl-(\(\text{C}_3\text{-C}_8 \) heterocycle);
- \(R^5 \) is selected from \(\text{H and methyl} \);
- or \(R^4 \) and \(R^5 \) jointly form a carbocyclic ring and have the formula -(\(\text{CR}^a\text{R}^b \))^n-, wherein \(\text{R}^a \) and \(\text{R}^b \) are independently selected from \(\text{H, C}_1\text{-C}_8 \) alkyl and \(\text{C}_3\text{-C}_8 \) heterocycle and \(n \) is selected from 2, 3, 4, 5 and 6;
- \(R^6 \) is selected from \(\text{H and C}_1\text{-C}_8 \) alkyl;
- \(R^7 \) is selected from \(\text{H, C}_1\text{-C}_8 \) alkyl, \(\text{C}_3\text{-C}_8 \) carbocycle, aryl, \(\text{C}_1\text{-C}_8 \) alkylaryl, \(\text{C}_3\text{-C}_8 \) heterocycle and \(\text{C}_1\text{-C}_8 \) alkyl-(\(\text{C}_3\text{-C}_8 \) heterocycle);
- each \(R^8 \) is independently selected from \(\text{H, OH, C}_1\text{-C}_8 \) alkyl, \(\text{C}_3\text{-C}_8 \) carbocycle and \(\text{O-(C}_1\text{-C}_8 \) alkyl);
- \(R^9 \) is selected from \(\text{H and C}_1\text{-C}_8 \) alkyl;
- \(R^{10} \) is selected from \(\text{aryl or C}_2\text{-C}_8 \) heterocycle;
- \(Z \) is \(\text{O, S, NH, or N}_R^\text{R}^\text{12} \), wherein \(\text{R}^12 \) is \(\text{C}_1\text{-C}_8 \) alkyl;
- \(R^{11} \) is selected from \(\text{H, C}_1\text{-C}_2\text{H} \) alkyl, \(\text{aryl, C}_3\text{-C}_8 \) heterocycle, -(\(\text{R}^{13}\text{O} \))_\text{m}-\(\text{R}^{14} \), or -(\(\text{R}^{13}\text{O} \))_\text{m}-\(\text{CH(R}^{15}\text{)}\text{)}_\text{2};
- \(m \) is an integer ranging from 1-1000;
- \(R^{13} \) is \(\text{C}_3\text{-C}_8 \) alkyl;
- \(R^{14} \) is \(\text{H or C}_1\text{-C}_8 \) alkyl;
- each occurrence of \(R^{15} \) is independently \(\text{H, COOH, -(C}_2\text{H} \text{) n-N(R}^{16}\text{)}\text{2}, -(\text{C}_2\text{H} \text{) n-SO}_3\text{H, or -(C}_2\text{H} \text{) n-SO}_3\text{-C}_1\text{-C}_8 \) alkyl; each occurrence of \(R^{16} \) is independently \(\text{H, C}_1\text{-C}_8 \) alkyl, or -(\(\text{C}_2\text{H} \text{) n-COOH;}
- \(R^{18} \) is selected from -(\(\text{C(R}^8\text{)_2-C(R}^8\text{)}\text{2-aryl, -(C(R}^8\text{)_2-C(R}^8\text{)}\text{2-(C}_3\text{-C}_8 \) heterocycle, and -(\(\text{C(R}^8\text{)_2-C(R}^8\text{)}\text{2-(C}_3\text{-C}_8 \) carbocycle); and
- \(n \) is an integer ranging from 0 to 6.

In one example, \(R^3, R^4 \) and \(R^7 \) are independently isopropyl or sec-butyl and \(R^5 \) is -\(\text{H}. \) In example, \(R^3 \) and \(R^4 \) are each isopropyl, \(R^5 \) is -\(\text{H} \), and \(R^7 \) is sec-butyl.

In another example, \(R^2 \) and \(R^6 \) are each methyl, and \(R^9 \) is -\(\text{H}. \)

In still another example, each occurrence of \(R^8 \) is -\(\text{OCH3}. \) In one example, \(R^3 \) and \(R^4 \) are each isopropyl, \(R^2 \) and \(R^8 \) are each methyl, \(R^9 \) is -\(\text{H}. \) and \(R^5 \) is -\(\text{H}. \)

In one example, \(Z \) is -\(\text{O} \) or -\(\text{NH}. \)

In one example, \(R^{10} \) is ary1

In one example, \(R^{10} \) is -\(\text{phenyl}. \)

In one example, when \(Z \) is -\(\text{O}, \) \(R^{11} \) is -\(\text{H}, \) methyl or t-butyl.

In one example, when \(Z \) is -\(\text{NH}, \) \(R^{11} \) is -\(\text{CH(R}^{15}\text{)}\text{2}, \) wherein \(R^{15} \) is -(\(\text{C}_2\text{H} \text{) n-N(R}^{16}\text{)}\text{2}, \) and \(R^{16} \) is -\(\text{C}_1\text{-C}_8 \) alkyl or -(\(\text{C}_2\text{H} \text{) n-COOH.}

In one example, when \(Z \) is -\(\text{NH}, \) \(R^{11} \) is -\(\text{CH(R}^{15}\text{)}\text{2}, \) wherein \(R^{15} \) is -(\(\text{C}_2\text{H} \text{) n-SO}_3\text{H.} \)
Illustrative Drug units (-D) include the drug units having the following structures:
and

50

and

55
and pharmaceutically acceptable salts or solvates thereof.

[0213] Hydrophilic groups, such as but not limited to triethylene glycol esters (TEG), as shown above, can be attached to the Drug Unit at R1. Without being bound by theory, the hydrophilic groups assist in the internalization and non-agglomeration of the Drug Unit.

4.5 THE LIGAND UNIT

[0214] The Ligand unit (L-) includes within its scope any unit of a Ligand (L) that binds or reactively associates or complexes with a receptor, antigen or other receptive moiety associated with a given target-cell population. A Ligand is a molecule that binds to, complexes with, or reacts with a moiety of a cell population sought to be therapeutically or otherwise biologically modified. In one example, the Ligand unit acts to deliver the Drug unit to the particular target cell population with which the Ligand unit reacts. Such Ligands include, but are not limited to, large molecular weight proteins such as, for example, full-length antibodies, antibody fragments, smaller molecular weight proteins, polypeptide or peptides, lectins, glycoproteins, non-peptides, vitamins, nutrient-transport molecules (such as, but not limited to, transferrin), or any other cell binding molecule or substance.

[0215] A Ligand unit can form a bond to a Stretcher unit, an Amino Acid unit, a Spacer Unit, or a Drug Unit. A Ligand unit can form a bond to a Linker unit via a heteroatom of the Ligand. Heteroatoms that may be present on a Ligand unit include sulfur (in one embodiment, from a sulfhydryl group of a Ligand), oxygen (in one embodiment, from a carboxyl, carboxyl or hydroxyl group of a Ligand) and nitrogen (in one embodiment, from a primary or secondary amino group of a Ligand). These heteroatoms can be present on the Ligand in the Ligand’s natural state, for example a naturally-occurring antibody, or can be introduced into the Ligand via chemical modification.

[0216] In one example, a Ligand has a sulfhydryl group and the Ligand bonds to the Linker unit via the sulfhydryl group’s sulfur atom.

[0217] In yet another example, the Ligand has one or more lysine residues that can be chemically modified to introduce one or more sulfhydryl groups. The Ligand unit bonds to the Linker unit via the sulfhydryl group’s sulfur atom. The reagents that can be used to modify lysines include, but are not limited to, N-succinimidyl S-acetylthioacetate (SATA) and 2-Iminothiolane hydrochloride (Traut’s Reagent).

[0218] In another example, the Ligand can have one or more carbohydrate groups that can be chemically modified to have one or more sulfhydryl groups. The Ligand unit bonds to the Linker unit, such as the Stretcher Unit, via the sulfhydryl group’s sulfur atom.

[0219] In yet another example, the Ligand can have one or more carbohydrate groups that can be oxidized to provide an aldehyde (-CHO) group (see, e.g., Laguzza, et al., J. Med. Chem. 1989, 32(3), 548-55). The corresponding aldehyde can form a bond with a Reactive Site on a Stretcher. Reactive sites on a Stretcher that can react with a carbonyl group on a Ligand include, but are not limited to, hydrazine and hydroxylamine. Other protocols for the modification of proteins for the attachment or association of Drug Units are described in Coligan et al., Current Protocols in Protein Science, vol. 2, John Wiley & Sons (2002).

[0220] Useful non-immunoreactive protein, polypeptide, or peptide Ligands include, but are not limited to, transferzin, epidermal growth factors ("EGF"), bombesin, gastrin, gastrin-releasing peptide, platelet-derived growth factor. IL-2, IL-6, transforming growth factors ("TGF"), such as TGF-α and TGF-β, vaccinia growth factor ("VGF"), insulin and insulin-like growth factors I and II, lectins and apoprotein from low density lipoprotein.

[0221] Useful polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of immunized animals. Various procedures well known in the art may be used for the production of polyclonal antibodies to an antigen-of-interest. For example, for the production of polyclonal antibodies, various host animals can be immunized by injection with an antigen of interest or derivative thereof, including but not limited to rabbits, mice, rats, and guinea pigs. Various adjuvants may be used to increase the immunological response, depending on the host species, and including but not limited to Freund’s (complete and incomplete) adjuvant, mineral gels such as aluminum hydroxide, surface active substances such as lysoselthtin, pluroninc polyols, polyamions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and cornebacterium parvum. Such adjuvants are also well known in the art.

[0222] Useful monoclonal antibodies are homogeneous populations of antibodies to a particular antigenic determinant (e.g., a cancer cell antigen, a viral antigen, a microbial antigen, a protein, a peptide, a carbohydrate, a chemical, nucleic acid, or fragments thereof). A monoclonal antibody (mAb) to an antigen-of-interest can be prepared by using any technique known in the art which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique originally described by Köhler and Milstein (1975, Nature 256,495-497), the human B cell hybridoma technique (Kozbor et al., 1983, Immunology Today 4: 72), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, and IgD and any subclass thereof. The hybridoma producing the mAbs of use in this invention may be cultivated in vitro or in vivo.
Useful monoclonal antibodies include, but are not limited to, human monoclonal antibodies, humanized monoclonal antibodies, antibody fragments, or chimeric human-mouse (or other species) monoclonal antibodies. Human monoclonal antibodies may be made by any of numerous techniques known in the art (e.g., Teng et al., 1983, Proc. Natl. Acad. Sci. USA. 80, 7308-7312; Kozbor et al., 1983, Immunology Today 4, 72-79; and Olsson et al., 1982, Meth. Enzymol. 92, 3-16).

The antibody can also be a bispecific antibody. Methods for making bispecific antibodies are known in the art. Traditional production of full-length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Milstein et al., 1983, Nature 305:537-539). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Similar procedures are disclosed in International Publication No. WO 93/08829, and in Traunecker et al., EMBO J. 10:3655-3659 (1991).

According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH1,2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain binding, present in at least one of the fusions. Nucleic acids with sequences encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance.

In an example of this approach, the bispecific antibodies have a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. This asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation (International Publication No. WO 94/04690).

Bifunctional antibodies are also described, in European Patent Publication No. EPA 0 105 360. As disclosed in this reference, hybrid or bifunctional antibodies can be derived either biologically, i.e., by cell fusion techniques, or chemically, especially with cross-linking agents or disulfide-forming reagents, and may comprise whole antibodies or fragments thereof. Methods for obtaining such hybrid antibodies are disclosed for example, in International Publication WO 83/03679, and European Patent Publication No. EPA 0 217 577.

The antibody can be a functionally active fragment, derivative or analog of an antibody that immunospecifically binds to cancer cell antigens, viral antigens, or microbial antigens or other antibodies bound to tumor cells or matrix. In this regard, "functionally active" means that the fragment, derivative or analog is able to elicit anti-anti-idiotype antibodies that recognize the same antigen that the antibody from which the fragment, derivative or analog is derived recognized. Specifically, in an exemplary embodiment the antigenicity of the idiotype of the immunoglobulin molecule can be enhanced by deletion of framework and CDR sequences that are C-terminal to the CDR sequence that specifically recognizes the antigen. To determine which CDR sequences bind the antigen, synthetic peptides containing the CDR sequences can be used in binding assays with the antigen by any binding assay method known in the art (e.g., the BIA core assay) (See, for e.g., Kabat et al., 1991, Sequences of Proteins of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, Md; Kabat E et al., 1980, J. of Immunology 125(3):961-969).

Other useful antibodies include fragments of antibodies such as, but not limited to, F(ab')2 fragments, which contain the variable region, the light chain constant region and the CH1 domain of the heavy chain can be produced by peptic digestion of the antibody molecule, and Fab fragments, which can be generated by reducing the disulfide bridges of the F(ab')2 fragments. Other useful antibodies are heavy chain and light chain dimers of antibodies, or any minimal fragment thereof such as Fvs or single chain antibodies (SCAs) (e.g., as described in U.S. Patent No. 4946778; Bird, 1988, Science 242:423-42; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Ward et al., 1989, Nature 334:544-54), or any other molecule with the same specificity as the antibody.

Additionally, recombinant antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are useful antibodies. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine monoclonal and human immunoglobulin constant regions. (See, e.g.,
Cabilly et al., U.S. Patent No. 4816567; and Boss et al., U.S. Patent No. 4,816397). Humanized antibodies are antibody molecules from non-human species having one or more complementarity determining regions from the non-human species and a framework region from a human immunoglobulin molecule. (See, e.g., Queen, U.S. Patent No. 5,585,089).

[0232] Completely human antibodies are particularly desirable and can be produced using transgenic mice that are incapable of expressing endogenous immunoglobulin heavy and light chains genes, but which can express human heavy and light chain genes. The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention. Monoclonal antibodies directed against the antigen can be obtained using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA, IgM and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar (1995, Int. Rev. Immunol. 13:65-93). For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies. See, e.g., U.S. Patent Nos. 5625126; 5633425; 5569825; 5661016; 5545806. Other human antibodies can be obtained commercially from, for example, Abgenix, Inc. (Freemont, CA) and Genpharm (San Jose, CA).

[0234] In other examples, the antibody is a fusion protein of an antibody, or a functionally active fragment thereof, for example in which the antibody is fused via a covalent bond (e.g., a peptide bond), at either the N-terminus or the C-terminus to amino acid sequence of another protein (or portion thereof, preferably at least 10, 20 or 50 amino acid portion of the protein) that is not the antibody. Preferably, the antibody or fragment thereof is covalently linked to the other protein at the N-terminus of the constant domain.

[0235] Antibodies include analogs and derivatives that are either modified, i.e., by the covalent attachment of any type of molecule as long as such covalent attachment permits the antibody to retain its antigen binding immunospecificity. For example, but not by way of limitation, the derivatives and analogs of the antibodies include those that have been further modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular antibody unit or other protein, etc. Any of numerous chemical modifications can be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis in the presence of tunicamycin, etc. Additionally, the analog or derivative can contain one or more unnatural amino acids.

[0236] The antibodies include antibodies having modifications (e.g., substitutions, deletions or additions) in amino acid residues that interact with Fc receptors. In particular, antibodies include antibodies having modifications in amino acid residues identified as involved in the interaction between the anti-Fc domain and the FcRn receptor (see, e.g., International Publication No. WO 97/34631). Antibodies immunospecific for a cancer cell antigen can be obtained commercially, for example, from Genentech (San Francisco, CA) or produced by any method known to one of skill in the art such as, e.g., chemical synthesis or recombinant expression techniques. The nucleotide sequence encoding antibodies immunospecific for a cancer cell antigen can be obtained, e.g., from the GenBank database or a database like it, the literature publications, or by routine cloning and sequencing.

[0237] In a specific example, known antibodies for the treatment or prevention of cancer can be used. Antibodies immunospecific for a cancer cell antigen can be obtained commercially or produced by any method known to one of skill in the art such as, e.g., recombinant expression techniques. The nucleotide sequence encoding antibodies immunospecific for a cancer cell antigen can be obtained, e.g., from the GenBank database or a database like it, the literature publications, or by routine cloning and sequencing. Examples of antibodies available for the treatment of cancer include, but are not limited to, humanized anti-HER2 monoclonal antibody, HERCEPTIN® (trastuzumab; Genentech) for the treatment of patients with metastatic breast cancer; RITUXAN® (rituximab; Genentech) which is a chimeric anti-CD20
monoclonal antibody for the treatment of patients with non-Hodgkin’s lymphoma; OvaRex (AltaRex Corporation, MA) which is a murine antibody for the treatment of ovarian cancer; Panorex (Glaxo Wellcome, NC) which is a murine IgG2a antibody for the treatment of colorectal cancer; Cetuximab Erbitux (Imclone Systems Inc., NY) which is an anti-EGFR IgG chimeric antibody for the treatment of epidermal growth factor positive cancers, such as head and neck cancer; Vitaxin (MedImmune, Inc., MD) which is a humanized antibody for the treatment of sarcoma; Campath I/H (Leukosite, MA) which is a humanized IgG antibody for the treatment of chronic lymphocytic leukemia (CLL); Smart M195 (Protein Design Labs, Inc., CA) which is a humanized anti-CD33 IgG antibody for the treatment of acute myeloid leukemia (AML); LymphoCide (Immunomedics, Inc., NJ) which is a humanized anti-CD22 IgG antibody for the treatment of non-Hodgkin’s lymphoma; Smart ID10 (Protein Design Labs, Inc., CA) which is a humanized anti-HLA-DR antibody for the treatment of non-Hodgkin’s lymphoma; Oncolym (Techniclone, Inc., CA) which is a radiolabeled murine anti-HLA-DR/DR0 antibody for the treatment of non-Hodgkin’s lymphoma; Allomune (BioTransplant, CA) which is a humanized anti-CD2 mAb for the treatment of Hodgkin’s Disease or non-Hodgkin’s lymphoma; Avastin (Genentech, Inc., CA) which is an anti-VEGF humanized antibody for the treatment of lung and colorectal cancers; Epratuzumab (Immunomedics, Inc., NJ and Amgen, CA) which is an anti-CD22 antibody for the treatment of non-Hodgkin’s lymphoma; and CEACide (Immunomedics, NJ) which is a humanized anti-CEA antibody for the treatment of colorectal cancer.

[0240] In certain cases, useful antibodies can bind to both a receptor or a receptor complex expressed on an activated lymphocyte. The receptor or receptor complex can comprise an immunoglobulin gene superfamily member, a TNF receptor superfamily member, an integrin, a cytokine receptor, a chemokine receptor, a major histocompatibility protein, a lectin, or a complement control protein. Non-limiting examples of suitable immunoglobulin superfamily members are...
Antibodies which comprise Ab in Formula

Identifying transmembrane or otherwise tumor-associated polypeptides that are specifically expressed on the surface of non-cancerous cells. The identification of such tumor-associated cell surface antigen polypeptides leads to the ability to specifically target cancer cells for destruction via antibody-based therapies. In attempts to discover effective cellular targets for cancer diagnosis and therapy, researchers have sought to identify transmembrane or otherwise tumor-associated polypeptides that are specifically expressed on the surface of one or more particular type(s) of cancer cell as compared to on one or more normal non-cancerous cell(s). Often, such tumor-associated polypeptides are more abundantly expressed on the surface of the cancer cells as compared to on the surface of the non-cancerous cells. The identification of such tumor-associated cell surface antigen polypeptides has given rise to the ability to specifically target cancer cells for destruction via antibody-based therapies.

In a specific example, useful Ligands are those that are useful for the treatment or prevention of viral or microbial infection in accordance with the methods disclosed herein. Examples of antibodies available useful for the treatment of viral infection or microbial infection include, but are not limited to, SYNAGIS (MedImmune, Inc., MD) which is a humanized anti-respiratory syncytial virus (RSV) monoclonal antibody useful for the treatment of patients with RSV infection; PRO542 (Progenics) which is a CD4 fusion antibody useful for the treatment of HIV infection; OSTAVIR (Protein Design Labs, Inc., CA) which is a human antibody useful for the treatment of hepatitis B virus; PROTOVIR (Protein Design Labs, Inc., CA) which is a humanized IgG antibody useful for the treatment of cytomegalovirus (CMV); and anti-LPS antibodies.
which are well known in the art. Examples of TAA include (1)-(35), but are not limited to TAA (1)-(35) listed below. For
convenience, information relating to these antigens, all of which are known in the art, is listed below and includes names,
alternative names, Genbank accession numbers and primary reference(s). Tumor-associated antigens targeted by
antibodies include all amino acid sequence variants and isoforms possessing at least about 70%, 80%, 85%, 90%, or
95% sequence identity relative to the sequences identified in the corresponding sequences listed (SEQ ID NOS: 1-35)
or the sequences identified in the cited references. In some examples, TAA having amino acid sequence variants exhibit
substantially the same biological properties or characteristics as a TAA having the sequence found in the corresponding
sequences listed (SEQ ID NOS: 1-35). For example, a TAA having a variant sequence generally is able to bind specifically
to an antibody that binds specifically to the TAA with the corresponding sequence listed. The sequences and disclosure
specifically recited herein are expressly incorporated by reference.

[0248] TUMOR-ASSOCIATED ANTIGENS (1)-(35):

(1) BMPR1B (bone morphogenetic protein receptor-type IB, Genbank accession no. NM_001203, ten Dijke, P., et
WO2003042661 (Claim 2); US2003134790-A1 (Page 38-39); WO2002102235 (Claim 13; Page 296);
WO2003055443 (Page 91-92); WO200299112 (Example 2; Page 528-530); WO2003029421 (Claim 6);
WO2003024392 (Claim 2; Fig 112); WO200298358 (Claim 1; Page 183); WO200254940 (Page 100-101);
WO200259377 (Page 349-350); WO200230268 (Claim 27; Page 376); WO200148204 (Example; Fig 4) NP_001194
bone morphogenetic protein receptor, type IB /pid=NP_001194.1 - Cross-references: MIM:603248; NP_001194.1;
NM_001203_1 502 aa

MLLRSGKLNVTGGKQEDSTAPTFRPKLRCXCHCPSVNNICSTDGYCFTMIEED
DSGLFVVTSGCLGEGSDFQRCDTPHPHRSSIECCTERNCKLHPTLPPLKNRFV
GPIHHRALLISVTVCSSLLVILIIFCFYFRKYQETFYSIGEDEIYIPPESLRLDL
EQSQSSGSGGLPLLQKTIKQIOMVKIQGKRYGVMKWRGKEVKVAVKVFTEEAS
WFRETEITYQVLMRHENILGFAADKGTGTSWTLILYITDHYMSGLYDYLDKSTLDAK
MLKAYSSVSGLCHHLTIEFSTQGKPAIAHRDLKSNILVKKNGTCIADLGLAVKFISD
TNEVIDIPTRVGTKRYMPPEVLDEGLRNRRNFQSYIMADYMYSGLILWEVARCVSGIV
EEYQLPYHDLVPSDPYEDMRERIVCIIKLRRPSFPRNRWS3DECLRQMGKLMTCEWAHNPS
RTLARVKKTLAKMSQDIKL

(SEQ ID NO: 1)

(2) E16 (LAT1, SLC7A5, Genbank accession no. NM_003486); Biochem. Biophys. Res. Commun. 255 (2), 283-288
WO2004048938 (Example 2); WO2004032842 (Example IV); WO2000342661 (Claim 12); WO2003016475 (Claim
1); WO200278524 (Example 2); WO200299074 (Claim 19; Page 127-129); WO200286443 (Claim 27; Pages 222,
393); WO2003003906 (Claim 10; Page 293); WO200264798 (Claim 33; Page 93-95); WO200014228 (Claim 5;
Page 133-136); US2003224454 (Fig 3); WO2003025138 (Claim 12; Page 150);
NP_003477 solute carrier family 7 (cationic amino acid transporter, y+ system), member 5 /pid=NP_003477.3 - Homo sapiens
Cross-references: MIM:600182; NP_003477.3; NM_015923; NM_003486_1 507 aa
(3) STEAP1 (six transmembrane epithelial antigen of prostate, Genbank accession no. NM_012449
WO2004065577 (Claim 6); WO2004027049 (Fig 1L); EP1394274 (Example 11); WO2004016225 (Claim 2);
WO2003042661 (Claim 12); US2003157089 (Example 5); USA2003185830 (Example 5); US2003064397 (Fig 2);
WO200289747 (Example 5; Page 618-619); WO2003022995 (Example 9; Fig 13A, Example 53; Page 173, Example 2;
Fig 2A);
NP_036581 six transmembrane epithelial antigen of the prostate Cross-references: MIM:604415; NP_036581.1;
NM_012449_1
339 aa

(4) 0772P (CA125, MUC16, Genbank accession no. AF361486 J. Biol. Chem. 276 (29):27371-27375 (2001));
WO2004045553 (Claim 14);
WO200292836 (Claim 6; Fig 12); WO200283866 (Claim 15; Page 116-121); US2003124140 (Example 16);
US2003091580 (Claim 6); WO200206317 (Claim 6; Page 400-408); Cross-references: GI:34501467; AAK74120.3;
AF361486_1
6995 aa
PTSLITPVGLVTIYRMGISREPGTSTSLSTHSLSTHELTTLEDVTDEAMQPSTHTAATV
VNTAVSGHESQSVSVELSDETPAKTPAMGTTCYTMCERSTSSITSTSDIETF4IRIEPTSSL
TSGRIETSSRERISSATEREGTVLSEQPGATGTVRVSSTRSRTMSPGQFTQSPDIS
TEAIIRIERSMTMSAIAITETTTGSGTDGCTLDTSTTTFTWGHTHTSTASPGFHS
EMTLMSRPGPQVPSLPVESVEAASSVSSSLSPMTSTSFSTLPESISSSSHPVPTALL
TLPQVKLETLRTESEPSSPNNLSSAIALELATSETVDREIHIPSSNTPVNGTVI
YKHLSPPSVALDVTPTSPMATTSTLGTNTSSTSTPTAPPMTMTQPTSSLSGLREIS
TSQRTSSATERSASLSGMPGATKVSRTTEALSGLRTSTPGPAQSTISPEISTETI
TPTTITGSAEMTITPGHSASSQGTFTTLDTSRASWPHTSAAATHRSPHSQGMTPFMSR
GPEQVWSRPSREVKTPSSPLSSLVSLAIVTSPLYSTSSPSSSLSLFLSSTLPFTVMKMT
TDMLDTSLEPVTTSSPSMNITSDESLSLATSKATMETAIQLSNTAVQMTISARQRFYS
SYFGPLPESPKVTPQVTSTIKDIVSTTIAPASSERIEMESTSTLTPTPRETSTSEQIH
SATPSPVYKALTSAEIESTQMSRSSGSPQDQSTSMQIDSTETVIRLSTSPKTES
TEMIVTTQCGSATSRGLTDTSTTPFMSGTHSTASQGFSQMTALMSRTPGEPVWLS
HSVEEASSAASFLLSFLLSTIPSSSLTLPSIHSSLPTSSLTSGLVTTELLGTSES
PETSPPNLSSAIALELATSETVDTEISKLTMNVTSQYTHESPSSPSVLASVTASSS
MGIYPTOQDNVTSTPAFSDTSTQKSGTSNLAGMETSISEETSSATEKSTVLSVPT
GATEVSRTEAISSRSRTIPQAPQTSMSDDSMTETITRIESTPTLRTKERTMAITPKGFS
GATSSQGFTILDSSASTWPGTHSATATQPRPSVVTTPMSRGEPWVPSLSEKNNPS
SLVSSSVTSPLTYSPPLSSHSSPVTSPLTPSIMKATDMLDASLEPTTSAPMN1
TSDESAIAASKATETEAIHPSNTAASSVNTSSATEELSSSPGPSEPPTKVISFVTVSS
IRDMVSSTMPQGSGRITIEIESMSSSLTPGRELRTSQQDITSTETSTVLYKMPGATPE
VQRTVEFPPSSRIQPGAPQTSMLISDEVVTRLSTSP1MTESAEITTTQGTSYELASQ
VTLPGLTSMFGLSGHSTMSQGSHMTNLMSRGPELSWTPRSFTRSSSSSLFSLP
LTSLLSPLLDDLSSLSPPLVTSLLIPGLVKTTEVLNTSEPSTKTSSPNLSSTSVIEIP
ATSEIMTDTEKIHPSNTAVAKVRTSSVSHESSHSSVLADSETTITIPSMGITSAVEDTTV
FTSNAPFSETTRIPEPTFLPSLTPGMFRDSTTSRTSDESSLTVLPGLPQTSATTEVSMTETI
MSSNRTHIPDSQSTMPSDIVITEVTRLSRSSSSMSESTQMTYTTQKSSPGATAQSTLTAL
TTTAPLARTHTSSTVPFRFLHSETMTLMRSFEPNSKSSPFVKESTSSSSSLSLPVTTPSP
VSTLPADDPSSSGFSTLVTSTVTDTSTETPGSTSLPSNLGTSVEILASTEVTDTE
KIHPSSSSMMATVNVGTSSGHELASSVHSEPKATVPGTSSMAMETESTSMFMNFTET
TGFBEAEFPFSHTSGLRTKNNSTLSIDSTSVPTNTPPSGTHSLQLQSKTDTSAKSTTPS
PPAASQYTEEIPVDPITFPNSPSTEOEIIEGESRFSRTMSTVSTHLTLSTLAPETTS
TGTIVMPSLSEAMTSFATTGVPRAISGSSPSFSRTESSGPDATLSTIAESLPSSTTPVPFSS
STFTTTSSTFSPLALHEITSSSTPFRVDSTLGTSETSSGTREREGLMVSTLDRSTSQGRTS
PIALDRTMSTSEVELTGVTSAQYVPSTLSRFLTRDGHMEHTIFKINEARRHTIPRPGQQT
STSPASKQLHMTGATTTLKTTTTATLKTSSRATLTSLTSVYTPPTLTPLTNPLASMQ
MSTITPMETTITPPYFDPVFPETSTTSLATLSGAETSTALPRTTPSVPFVPNRESSETTASLVR
SGAESRTVIPQFLDVSSESSPDHTASSWVHPAETFIPTSKTPTNFHELDVSTSSATASH
DVSSAIRPTNIPSPELDALTPLVTISGTDTSTTFPTILTKSSHETRTRTTLWHTAESSTI
PRPTIPNFSHSHEDATPSIASFGAETSAAPIMTVSQAGELVTSSQTVSSGTDNMNTPT
LTLSIPGEPSTLVLTHPEAQYSSAIPSTISAPVSRVLTSMVTSLSAASKSTTNRATNS
PGEPATTVSLVTHSAQVYPTVSIFHSSKDTTPSSMTGHSSAESASAPPTVSTPSTEV
PGVVTPLVTSSRAVISTIPILTLSPGEPETTPSMATSHGEEASSAIPTFTQPSVPGVPSV
TSLVSTRAVSTTTIPILTFLSGEPETTPSMATSHGEEASSAVPTPTQPSVPGVPSV
SSRATSTTLPTLSPGEPETTPSMATSHGEEASSAVPTPTQPSVPGVPSV
TSILSPPGEPETTPSMATSHGEEASSAVPTPTQPSVPGVPSV
STMSPEASEASSAIPITPLGVSTQVLTSVTLTVTSQSGSETSAFSLTVASSQFPT
IDSWAHFPSTLVPSVPTGEPNITNLSVLTHPAESTSSLSFHSHELDMTPS
TVSTPSIAESASSAIITPSGIPGVLTSVTLTVTSQGRDISATFFPTTVPSPESEATASA
WVTTHP
AVTSIFFTPFTTPNYSSHPEDTTPSIATPSGAETSADFPTITVSPDVDMVTSSQTVSSGTD
TSITIPITLTLSPGEPETTPSMITFSITETHTSSAIPITPLVPSDASKMLTLTVISSTGDSTTT
FPTLTETPETPPAIALIHIPMNTVMVPRPTPKHSKSDTTLPVTAISPPEASASSAV
TTISPDMSDLVTSLVPSGDTSTTFPTLTSSPETATATLWHTPAESTSTTVSTIPNI
FSHRGSDTAFLPSMVSTSVPDSTSGVVTIPTISPISIPGVSTQVSSATDSTIAITPLTSPG
EPETASSASATHGFQTGQTVPFTVPSTPSSEPDMASWVTHPPQTPSTVSTRSSESSPD
ATPVMAPSRTTEASSAVLTTISGPAEMPTTSQITSSGAATSTTVPTLTSHSGPETTALL
STHPRTESSKFSTPASVQVESTTASLITRPGEATSTAALPQTITTSSLFTLLTVGTSTVD
LSPTSGAFAKAPLSTHPGTETSTMTPISTSTLSGLLLETGGALLSTSAETSTSTLTLT
VSPAVSGLLSASITTDKQPTTVTSWMTETSPSVSTVPFRFMRVSRTVTGTTMTLIPSEPZPP
KTSHGHEVSPPIKLTMTTMVEATLNTONGSSPTVAKTTTFTNNTAGLSPPLTPLTPGMSTL
SSVSTTSYNSHRSWISTESTSNNKRYTWAPTSTPTSTPSGFSTSSIPSTSTATAVPMV
FPFTLNFNTLNIQYEDEMHRGRGSKNATRERQLQLKLPLRNFSLSEELYESGCRASLRE
KDSSATAVDAICTHRDPPEDEDLGDRLERLEYWELSNLTLNGQIGELGYTLDRNSLYVNGFTHR
SSMFTSTTPGTSVDTSGTSSPSSPTTAGPPLLFTNLFTNIQYTEDEMTATGRGSK
FNTMBSSVLQQLKPKLFTQNSVPSYGLSQRCLTLRPEKDGAATGVDIAICTHRDLPKSPGLN
REQLYWELSKITNDIEELPGYTLDRNSLYVNGFTQHSSVSTSTPTSTVDLRSTGTPP
LSSPFTPAAGPLLVPVTNLFTNPITLNQYGEDMPGHRGFKNTERVQLQGLLPIFKNTSVG
PLYSGCRILTSLRSKEKDAAGVDAICHHLDPSGLRNLRLRELYWELSNLTLNGQIGELGY
LDRNSLYVNGFTHRSTVSPTTSTPGSTSTVDSLGTSGTPFSLPSATAGPPLLVFNTNFTN

MALPTARPPLGSGTPALGSLFLFLSGLLVQPSRTRLAGTQGGAAPLDGVLANPNISS
LSRQLLGFPCAVSGLSTVERRELAVALAQKNVKLSTEGQRLCAHRLEPPEDLDALPL
DLILFLNPDAFPGQACTRFFSRITKANVLLIRPAGAEKRRQLPAAALACWGVYGLSLSEA
DVRALGGLACLDLPVAFSAELLPVLRSFCGPDQDDQEAARAALQGGFPGYPSTW
SVSTMALRGLLPLVQPIIRISIPQGGIVAAWQRSSRDSWNRQPERRILPRFVEK
CTACPSKKGARIDSLISFYKWKELACVAADLAATQMDRVNAIFQYYQDLVLHKLDELY
PGYQAPESVDQHLGLYMPSREDPKRWNTSLETKLALLEVNGHMSQPATLDHFK
GRQGLDQKTLTDLTTAYFPQGYSCLPLESSVPPSIAVRPQDLDCPFDOLVYPKA
RPALFCMNGSEYFVQDFSGAPTEDLKLASSQNVSMDLATFMYLRTDAVLPLTVVAVQ
KILGPHVVEKLAERHPRVDWIIIRQGDLDTLGLLGQIIPGNYLVDLSSMQELSCT
PCLLGPQPVTLVALLASLTA

(SEQ ID NO:5)

MAPWPHELDAQPNPDKYLEGAGAQQOPTAPDKSKETNKTDNTEAPVKIEELPSYATLL
DEPTVVDFFWNLQSDLQDSGKWERDTGKILCCFQQIQRGLILLLGLFYFVCSDLILSS
APQVGLGKMAQQPPSSSIMSNPLLGLVGLVLVTQSSSTSSSTSSIVSMVLSSLTIVA
APIIMGANIGTSINTTIVALGVRGDRFERAFAGATVHDFFNMGLVLVLPVEVATHY
LEITQOLIVESFHFKNGEDADPLKLVKTPKTLTVQDKKVSIQEMNDKAKKNLQK
IWCKTFTNKTQINVTVPSTANCTSPLCWTGDQIWNMTMNVTYKENIAKCHIQHFVPNFHLP
DLAVGTILLLISLLVLCLGCLINIVILGSGVLKQVATVTKITTINTDFPPFAWLTGIAL
LVGAGMTFQPQVSVSVPFTALTIGVITMEYAPYVTLLGNSATTTTIALAAASPGNA
LRSSLQIALCHFNNFISGILLWYHPIFTRLPIRMAGKGLNSIAKYRKWFVAFYFLIIFFLI
PLTTFGSLQAGWLTVGLVGYPVFVEIIILVCLTRLQLQRCPRVLPPKLQNWNLFPWNRSLS
KPFMDAVVEKSKPTFCQFOMRCYCCRCVRCCACCLGCPCKCCRSCKCEDLERAQKQDVVPK
APETFDNITISREAOQGEVPASDSKTECITAL

(SEQ ID NO:6)
(7) Sema 5b (FLJ10372, KIAA1445, Mm.42015, SEMAS5, SEMAG, Semaphorin 5b Hlog, sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5B, Genbank accession no. AB040878, Nagase T., et al. (2000) DNA Res. 7 (2):145-150; WO2004000997 (Claim 1); WO200303984 (Claim 1); WO200206339 (Claim 1; Page 50); WO200188133 (Claim 1; Page 41-43, 48-58); WO2003054152 (Claim 20); WO2003101400 (Claim 11); Accession: Q9P283; EMBL; AB040878; BAA95969.1. Genew; HGNC: 10737; 1093 aa

(8) PSCA hlg (2700050C12Rik, C530008O16Rik, RIKEN cDNA 2700050C12, RIKEN cDNA 2700050C12 gene, Genbank accession no. AY358628); US2003129192 (Claim 2); US2004044180 (Claim 12); US2004044179 (Claim 11); US2003096961 (Claim 11); US2003232056 (Example 5); WO2003105758 (Claim 12); US2003206918 (Example 5); EP1347046 (Claim 1); WO2003025148 (Claim 20); Cross-references: GI:37182378; AAQ88991.1; AY358628_1

(10) MSG783 (RNF124, hypothetical protein FLJ20315, Genbank accession no. NM_017763);
WO2003104275 (Claim 1); WO2004046342 (Example 2); WO2003042661 (Claim 12); WO2003083074 (Claim 14; Page 61); WO2003016689 (Example 6);
Cross-references: LocusID:54894; NP_060232.3; NM_017763_1
783 aa

(11) STEAP2 (HGNC_8639, IPCA-1, PCANAP1, STAMP1, STEAP2, STMP, prostate cancer associated gene 1, prostate cancer associated protein 1, six transmembrane epithelial antigen of prostate 2, six transmembrane prostate

57
protein, Genbank accession no. AF455138,
Lab. Invest. 82 (11):1573-1582 (2002)); WO2003087306; US2003064397 (Claim 1; Fig 1); WO200272596 (Claim 13; Page 54-55); WO200172962 (Claim 1; Fig 4B); WO2003104270 (Claim 11); WO2003104270 (Claim 16); US2004005598 (Claim 22); WO2003042661 (Claim 12); US2003060612 (Claim 12; Fig 10); WO200226822 (Claim 23; Fig 2); WO200216429 (Claim 12; Fig 10);
Cross-references: GI:22655488; AAN04080.1; AF455138_1
490 aa

MESI5MMGSPKSLSETVPNGIKDARKVTGVGIGSDFAKSLTIRLRCGYHVVG
RNPKFASEFFPHVVDTHEDALTITIIIFVAIHREHTSLWDRLHLLVGGKILIDVSNVM
RINQYPSNAEYLASLPDSLIVKGPNVSAWALQLGPDKASRQYICSNNIQRQVIE
LARQLNPFPIDGLSLSAREIEPLRPLFLTLWRGPVVVAISSLATFFLYSFVRDVIHPYA
RNQQSDFYKIPIEIVKTLPIVAITLLSGLVAGLLAAAYQLYGTYKRRFPFWLETWLQ
CRKQLLLSFFAMHVAYSLCLMRRSERYLFLMAYQVHANIENSNVEEBWRIEMY
ISFGIMSLGLSLASSALTVSIPSANALNWREFSPIQSTLGVALLISTPHVLIYGKWRAFE
EEYRFYTFPNFVIALVLPSSILGKIIIFLPCISQRLKIKKGEKWSQFLEGIGGTP
HVSPERVTVM

(SEQ ID NO:11)

(12) TrpM4 (BR22450, FLJ20041, TRPM4, TRPM4B, transient receptor potential cation channel, subfamily M, member 4, Genbank accession no. NM_017636 Xu,X.Z., et al. Proc. Natl. Acad. Sci. USA. 98 (19):10692-10697 (2001), Cell 109 (3):397-407 (2002), J. Biol. Chem. 278 (33):30813-30820 (2003)); US2003143557 (Claim 4); WO200040614 (Claim 14; Page 100-103); WO200210382 (Claim 1; Fig 9A); WO2003042661 (Claim 12); WO200230268 (Claim 27; Page 391); US2003219806 (Claim 4); WO200162794 (Claim 14; Fig 1A-D);
Cross-references: MIM:606936; NP_060106.2; NM_017636_1
1214 aa

MVVPEKEQSWIPKIFKKKCTTTFIVDSTDPPGTLCQGPRATHPVAMEDAPGAADVVT
WDSDAUTTEKPTDAYELDFTGARCRGHNFlRLS3RTDPAAVYSLVTRWFRAPNVVS
VLIGSSTGPGVLQTVLQDLLRGLRVAAQSTGAWIVTGLHTIGIRHGVAVRDOMASTGG
TKVAMGVPWGVVRNRDTLPNKGSFPARYRWGDFEDGVQFPLDYNAYSAPFLVDDGTH

58
EP 2 489 364 B1

5

GCLGGENRFRLRLSEYISQQKTGVGTGTDIPVLLLLILDGEKMLTIERATQAQLPCLL
VAGSGGAGGACLALTLETDLAPSSGGRQGRADDRIRRFPPKPDLLEVQAVERIMTRKEL
LTVYSSDEGSEFETVILKALVKOSSEASAYLDLRAVANRVDIAQSELRFGRDIOQ
RSFHLEASLMDALNNDRPEVFVRLLIISHGLSIGHLFTPMLRAQLYSAAPNSLIRNLDDQA
SHSAGTKAPALGGAELEPRPDVGHLRMLLGGMKCAPYPSGGWDPHPQFGFESMYLL
SDKATSPLSILADGQLPDSDLWALLNRAMQAMYWEMGSNAVSSALGACLLLRVMAR
RLPDEDAEBAARKDLAFKFGMVDLGECYRSSEVRAARLLRRCPLMGATCQLAMQ
ADARAFFAQDGQVQILTTQWKDWGMASTTPIMVALVAPFCPLLYTRLRIFRKEEPFRE
ELEPDMDSVINGEGPSVTADPAKETPLGVDFQGRPGCCGRCGGRCLRWFFHGWAPV
TIFMGNVSYLLPLLFLRSLPQAPPSLELLLYFWAFTLLCEELRQGLSGSSGLS
ASGGPGPGHASTSRLLYLDASMWNDLVALTRCLGVCRGTLPGYHLGRTLIDFM
VFATRLLHIPTVNQKQLPKIVSVKMKDVFLLFGLGWVLYAVGATTEGGLRPRDSDFP
SIIPRFRPYPIFQGQDIPQSMEDVAMEISHCSSEPFGFWAHPPQAQGTCSQYAWNLV
VLLVFLIFVANILVNLNIAFMYTFGKVQNSLYWKAQYRILRFERSRPALAPFPI
VISHLRLLRLQCRPPQSFSPALSHEFVRVSKEAERKLLTWESVHKEYNLARADK
RESDERLKRSTQKVDLAKQLKIGHVHEYEQLRQKLERQEVQCSRQLGWVABALERSALLP
PGGPPPDLPGKSD

(SEQ ID NO:12)

15

(13) CRIPTO (CR, CR1, CRGF, CRIPTO, TDGF1, teratocarcinoma-derived growth factor, Genbank accession no. NP_003203 or NM_003212,
(Claim 1); WO20030303401 (Example 1); WO2003034984 (Claim 12); WO200288170 (Claim 2; Page 52-53);
WO2003024392 (Claim 2; Fig 58); WO200216413 (Claim 1; Page 94-95, 105); WO200228208 (Claim 2; Fig 1);
US5854399 (Example 2; Col 17-28); US5792616 (Fig 2);
Cross-references: MIM:187395; NP_003203.1; NM_003212_1
188 aa

20

MDCRKMARPSYVISWIMAISSKVFCFELGLVAGLHQAQPAPRPSRGYLAFRDDSIPQEIPAIR
PRFSQQRPMMGSHSKELRTCCLANGTCMGLSFACCPPSFCGRNCHVDKENCQGVSVDH
DTWLPKKCSLCKWHGQLRCFPQALFPGCDGLVMDEHLVARSRTPELPSSARTTTTFMLVGI
CLSIQFYY

(SEQ ID NO:13)

25

(14) CD21 (CR2 (Complement receptor 2) or C3DR (C3d/Epstein Barr virus receptor) or Hs.7392 Genbank accession
WO2001240552 (Example 4); US2002055538 (Example 1); WO2003062401 (Claim 9); WO2004045520 (Example 4);
WO9102536 (Fig 9.1-9.9); WO2004020695 (Claim 1); Accession: P20023; Q13866; Q14212; EMBL; M26004;
AAA53786.1.
1033 aa
(15) CD79b (CD79B, CD79β, IGb (immunoglobulin-associated beta), B29, Genbank accession no. NM_000626 or 11038674, Proc. Natl. Acad. Sci. USA. (2003) 100 (7):4126-4131, Blood (2002) 100 (9):3068-3076, Muller et al. (1992) Eur. J. Immunol. 22 (6):1621-1625; WO2004016225 (claim 2, Fig 140); WO2003087768, US2004101874 (claim 1, page 102); WO2003062401 (claim 9); WO200278524 (Example 2); US2002150573 (claim 5, page 15); US5644033; WO2003048202 (claim 1, pages 306 and 309); WO 99/558658, US6534482 (claim 13, Fig 17A/B); WO200055351 (claim 11, pages 1145-1146); Cross-references: MIM:147245; NP_000617.1; NM_000626_1

229 aa

508 aa
(17) HER2 (ErbB2, Genbank accession no. M11730, Coussens L., et al. Science (1985) 230(4730):1132-1139; Yamamoto T., et al. Nature 319, 230-234, 1986; Semba K., et al. Proc. Natl. Acad. Sci. USA. 82, 6497-6501, 1985; Swiercz J.M., et al. J. Cell Biol. 165, 869-880, 2004; Kuhns J.J., et al. J. Biol. Chem. 274, 36422-36427, 1999; Cho H.-S., et al. Nature 421, 756-760, 2003; Ehsani A., et al. (1993) Genomics 15, 426-429; WO2004048938 (Example 2); WO2004009662; WO2003081210; WO2003089904 (Claim 9); WO2003016475 (Claim 1); US2003118592; WO2003008537 (Claim 1); WO2003055439 (Claim 9; Fig 1A-B); WO2003025228 (Claim 7); WO2000222638 (Example 13; Page 95-107); WO200212341 (Claim 68; Fig 7); WO200213847 (Page 71-74); WO200214503 (Page 114-117); WO200154276 (Claim 2); WO200141787 (Page 15); WO200044899 (Claim 52; Fig 7); WO200020579 (Claim 3; Fig 2); US869445 (Claim 3; Col 31-38); WO9630514 (Claim 2; Page 56-61); EP1439393 (Claim 7); WO2004043361 (Claim 7); WO2004022709; WO200100244 (Example 3; Fig 4); Accession: P04626; EMBL; M11767; AAA35808.1. EMBL; M11761; AAA35808.1. 1255 aa

MELAALCRWGLLLALLLLPPGAASTQCTGTDMDKLRPLAPSPETHDLMLHRHLQYQCQVQGNL
ELTYLPTNASLPSFLQDIQVQGVYLLAIHNSQVRQVLRLRIVRGTLQEDNYALAVLD
DPLNNTFVTGASPGGLRLEQLRSLRTELKGGVLQIRNPQLCYQDITLWIKDFIKHKNQLA
LTILDTRSCAPCMSPCSDKGNSCGWEHSSDCQSLTTRVTACGCARKGGPLPTDCHQCC
AAAGTCGGKHSCLACLHNFHSIGELHCAPLVNTYNDTSMPNPEKRTGFQASCVTACP
YNYLSTDVSTCLVPLHNQVITDAQTQRFCSEKSCPACRVCYGLMEHRELRAVTSAN
IQ8FAGKCKIIFSGLAFPSFDGDPASNTALPQLQEOFVFLT8EEITGYLYISAPDSL
LDSVFQNLVQRIGLIGNAYSITLQLGLISWGLRSLRELGSGLALTTHNTLCVFTV
PQWQLRPNQALLHTANPREDVCEGCLALCQARHCWGPGPTQCNCSQFLRQEQ
VSEECHRQLGPRXARNHCLPCHPECQPQNSVCFCFPEDQVACAHKDPFPFARVC
PSGSKPDLSSMPFIFKFEPDEGACOCPICPANTHCSCVDLDDGCPAEQRPSLTSIIASAVG
ILLVUVLGVFGILIKRQQIKIRYTMRLRR syndrome QL7ESTVEFPTSPGAMHPQAMMRKILKETEL
RKVKLGLGSAFPTGYKINGIPDGENVPKVAIKVLRENTSPKANEKELDEAYVMAGVGS
YVSRGLGICLCLSTQVLVTMYPGCLLIDRVRENRGRLGQSDLCLNQCMIAKGSMYLEDVR
LVHRLDAANVLVSKPHVKTIDPAFLGRLALLDIDTEYEHGDK TVKNMESIISSSRR
HOSDVWYGTVTWEMLTGPAGKYPDIPAREIPDLLEKGERLPQPPITCIDVYMIMKCM
IDSECRPRFRLVEFSRSMARDFQRFVQIENQLDGAPSLDSTYFIRLLLLDDDMDLVD
BEEYLVQQFGCCDPAPAGGMNVHRHSSSTRSTCSGDGDLTLGEPSEEEAQRPLAQPSCG
AGGDSVDFDDLGMAAKGQLQSLPHTDSPQOQEDTYPVLPSETDGVAPLTCQSEPY
NQFDVRQPQPSPPBRGLPAPAXAGATLQREPTKTLSPFOGNGVVKDFAFQGAVENPEYLTPO
GGAAPQHPHPAPFSDNLYWDQDPPEPAPSTFKGPTAESNPEYGLDLVPV

(Seq ID NO:16)

(Seq ID NO:17)
EP 2 489 364 B1

Accession: P40199; Q14920; M29541; AAA59915.1. EMBL; M18728; 344 aa

MGPSAPPCCRLHVPKEV LTTASLTLTFWNPPTTAKLTIESTTFP VNVAEGKEV LLLAHNL P Q
NRIGYSWKGERDV DGNLIVGYV GTQATPGPAYS GRETYPN ASSLILQIN TVQND TGFY
TLQVIKSLDVMERAT GQFHVPKIP SSSNSNPF DAVFCTEPEVQNTT YLWWV
NGQLPVLSPRLQS GNNMTTLSSVE RENDAGSY ECEIQNPAS A RSDPVTL NVLGY PDPV
TIPS KANYRGPN LNSCHAAANP QA YSWFINTFQQSTQELFI PNI TVNNSGSYM CQ
AHNSATGLNRTTVMTIVS GAPVLSAVAT VGI NGVTARVALI

(SEQ ID NO:18)

(19) MDP (DPEP1, Genbank accession no. BC017023);
Proc. Natl. Acad. Sci. USA. 99 (26):16899-16903 (2002)); WO2003016475 (Claim 1); WO200264798 (Claim 33; Page 85-87); JP05003790 (Fig 6-8); WO9946284 (Fig 9);
Cross-references: MIM:179780; AAH17023.1; BC017023_1

411 aa

MWSGWNLWPLVA VCTADDP FRDS BAER IM RDSPVIDG NDLPWQLLDMFNNRLQ DERANL TT
LAGHTHTPI PKLRAFVGQF WSYPCDTQND KAVRTLEQMDVHRM CRMP E PTVF LYT
SSAGIRQAFREKVASL IGVEGHG SIDS LGLUR LAYQLGMRYL T I THS C NT WAD NLV
DTGDSEPSQGLSPQQRVVKKLNRG LIDLAVHS V T MKATLQLS REPVIFSHSSAYS
VCASRRNVPDVRLV QKTDSL VMNHF NYYISCTKNANKLSQ VADHLDIKEVAGARAVG
FGFDGFVPVRP VGLEDSVK YPDIAELLRRNWTEAEVK GALADNLRLRF EAV Q ASNL T
QAPREEPIPLDQL GSCRTHGYSG ASSLHLH RWGL LLALS L APLVL CLSLL

(SEQ ID NO:19)

Accession: Q9UHF4; Q6UWA9; Q96SH8; EMBL; AF184971; AAF01320.1. 553 aa
(21) Brevican (BCAN, BEHAB, Genbank accession no. AF229053) Gary S.C., et al. Gene 256, 139-147, 2000; Clark H.F., et al. Genome Res. 13, 2265-2270, 2003; Strausberg R.L., et al. Proc. Natl. Acad. Sci. USA. 99, 16899-16903, 2002; US2003186372 (Claim 11); US2003186373 (Claim 11); US2003119131 (Claim 1; Fig 52); US2003119122 (Claim 1; Fig 52); US2003119126 (Claim 1); US2003119121 (Claim 1); US2003119129 (Claim 1); US2003119130 (Claim 1); US2003119128 (Claim 1; Fig 52); US2003119125 (Claim 1); WO2003016475 (Claim 1); WO200202634 (Claim 1);

(SEQ ID NO:20)

911 aa

Cross-references: MIM:600997; NP_004433.2; NM_004442_1

987 aa
(23) ASLG659 (B7h, Genbank accession no. AX092328)
US20040101899 (Claim 2); WO2003104399 (Claim 11); WO2004000221 (Fig 3); US2003165504 (Claim 1);
US2003124140 (Example 2); US2003065143 (Fig 60); WO2002102235 (Claim 13; Page 299); US2003091580
(Example 2); WO200210187 (Claim 6; Fig 10); WO200194641 (Claim 12; Fig 7b); WO200202624 (Claim 13; Fig
1A-1B); US2002034749 (Claim 54; Page 323-324, 452-453); WO200271928 (Page 468-469); WO200202587
(Example 1; Fig 1); WO200140309 (Example 1; Fig 17); US2001055751 (Example 1; Fig 1b); WO200032752
(Claim 1); US200281646 (Claim 1; Page 164); WO200303906 (Claim 10; Page 288); WO200140309 (Example
1; Fig 17); US2001055751 (Example 1; Fig 1b); WO200032752 (Claim 1); US9851805 (Claim 17; Page
97); WO9851824 (Claim 10; Page 94); WO9840403 (Claim 2; pg 1B);
Accession: 043653; EMBL; AF043498; AAC39607.1.

(SEQ ID NO:22)

MALRRGAILLLPLAVSVEATLMDTTTATAELGMMWVHPPSGWEVESGYDENMNTRYQ
VCNVRFSSQWWNLRTKIRRGRAGHRHVEKMFVSRDCSSIPSVPGSCKETFNLYYEADF
DSATKTEFNNENPENPVKDDTIAEDGFSQVDLGRVMKINTEVRSFPVGVRSGYFLAPQ
YGGCMSLAIVRFYRFKCPRIQNGAIPQETLSGAASTSLVAARGCIGNAAEVDVPKLY
CMGQEVWLPVGRCMCKAGFEAVENTFCRGFWSGFTKANQGDMEACTHCPIPNSRTSSEG
YHCVRCRGYARADLPDMCTITIPSAPAVISSNVMIESLMTWPDDGGRDDLYVNYI
ICKSCGSGRAGACTRCGDNVQYAPRQLGTEPRIYSDLLHAHTQYTFEIQAVNVTDQSFP
SQFAPAVTNINQAAPSASTMVSQTMVSDSITTSLWSQPDQNPQVLDYLQYKEKLES
YNATAIKSTNTTIVQQLGAIAYPFVQRAVETYGYSKMYFTMTBAYQTSIQEK
LPIIIGSSAAGLVFLIAVIIIYVCAVRRGIFERADERTKDVLQHYTSQMTPGMYIDP
FTYEDPNEAVREFAKEIDISCVKIQVIGAEFGEVGCVSCHLGPLRKEIFVAIKLSGY
TEKQRDFLSASEIMGQFDHPVNLHLEAGVTKTPVMIITEFMENGSLDLSFQDQFT
VQILVGLRGAAGMKYCLNMDVRLAARNLIVSINLVCKVSDPGLSRFLEDDTSMT
YTSALGGKIPSRTAPEAIQYKRTPSASADYSVGIMWEMVSMGERPYWDMNQVINAIN
EQDQVRPPMDCSAIQLHDQKDNRHPFCQIYVNDLNDKINPNLSKAMAPLSG
INLTTIDRTIPYDTSFNTVDEWELEAIKMGLGMQYKESFANAGPSTFSDVVSQMMEMLRUNVGVT
LAGHQKKILNSIQVMRAQMSNQIQSVEV

(2000) 275(3):783-788; WO2004022709; EP1394274 (Example 11); US200401853 (Claim 17); WO200208537
(Claim 1); WO200281646 (Claim 1; Page 164); WO200303906 (Claim 10; Page 288); WO200140309 (Example
1; Fig 17); US2001055751 (Example 1; Fig 1b); WO200032752 (Claim 1); US9851805 (Claim 17; Page
97); WO9851824 (Claim 10; Page 94); WO9840403 (Claim 2; pg 1B);
Accession: 043653; EMBL; AF043498; AAC39607.1.

(SEQ ID NO:23)

MASLGQILFWISISIIIIILAGAILIIIFGISGRHSITUTTASAGAIDEGDLISTFEP
DIKLSDIVQWLKEVVGILGHEISEKGDELSEQDEMFRGRTAVFAQDVQVGNASLRKVN
QLTDAGTGYKIIITSKGGNNANLEYKFGASMFEVMVVDASETLRCEAPRWFPQPTV
WASQDVQGANFSEVSNTSFLNSNEVTMKVSVLYNVNITNTSCMIENDIAKATGDIKV
TESEIKRRSSLQLNSKALCVSSFFAISWALLPSYMLK

123 aa
(25) GEDA (Genbank accession No. AY260763);
AAP14954 lipoma HMGIC fusion-partner-like protein /pid=AAP14954.1 - Homo sapiens
Species: Homo sapiens (human)
WO2003054152 (Claim 20); WO2003000842 (Claim 1); WO2003023013 (Example 3, Claim 20); US2003194704
(Cross-references: GI:30102449; AAP14954.1; AY260763_1
236 aa

MPEGAAAAAAMPAQQAKLYHTNYVRNSRAIGVLWAIFTCPAIVNVCFQPYW
IGDQVDTDTPQAYFGPHYCIGNFPSRELTCRGSFTDSTLPSGFAASFPIGLSMLII
ACIICPTFPFNCNTATYKICAWMQILTAACILVLGCMIFPDGDSDEVKRMGCEKTDKYT
LGACSVRWAYILAIIGILDALILSFLAVLGNRQDSLMAEELKAENKVILLSQYSLE

(SEQ ID NO:24)

(26) BAFF-R (B cell -activating factor receptor, BLyS receptor 3, BR3, Genbank accession No. NP_443177.1);
NP_443177 BAFF receptor /pid=NP_443177.1 - Homo sapiens Thompson, J.S., et al. Science 293 (5537), 2108-2111
(2001); WO2004058309; WO2004011611; WO2003045422 (Example; Page 32-33); WO2003014294 (Claim 35;
Fig 6B); WO2003035846 (Claim 70; Page 615-616); WO200294852 (Col 136-137); WO200238766 (Claim 3; Page
133); WO200224909 (Example 3; Fig 3); Cross-references: MIM:606269; NP_443177.1; NM_052945_1
184 aa

MRRGFRSLRGRDAAPAPTCPVAPBFCFDLVRHCVCAGLLRTPRKPAGASSPAPRTALQPQ
ESVGAGAGEAALPLPGALLGLGALAVLAVLGLVSNRRQRRHRGASSAABAPGD
KDAPEPLDKVIIIISPIGISDATAPAWPPPGEDPGTTPPCHSVPVAPTELGSTEVTKTAG
PEQQ

(SEQ ID NO:25)

(27) CD22 (B-cell receptor CD22-B isoform, Genbank accession No. NP-001762.1); Stamenkovic, I. and Seed, B.,
Nature 345 (6270), 74-77 (1990); US2003157113; US2003118592; WO2003062401 (Claim 9); WO2003072036
(Claim 1; Fig 1); WO200278524 (Example 2);
Cross-references: MIM:107266; NP_001762.1; NM_001771_1
847 aa

MHLLGPWLLLLVLEIALFSDSSKKVWEPETLYAWEGACVWIPCTYRALDGDLESFILPH
NPEYNKNKSTKFDSRTLRESTEKDKVPSSEQKVRQFLGDKKNCTLSIHPIVHLNDSGQLGLR
MSEKTEKMERIHLNVSERFFPFIQPLPEQIQSVTTLTCLNFSCYQIFIQLWLEGL
VMPRQAAVTSTLTTKSVPTRSELKFSQPSHSHHKIVTQCLQDADGBKFLSNDSVTQLMLW
TPKLEIKVTPSDAIERVGDSVMTCEVSSSNPEYTTWMLKGDTSLLKKQNTFTNLNREVT
KDQSKYCCCVSNVDVGGRSEEEVLQVYAPESTQVIKHPSAVEGSQVBEFLCMSLANPL
PTNVTWYHNGKEMQGRTEEEKVHIIPKILFWHAGTYSCVAENILGTGQRGPAGELDVQYPK

(SEQ ID NO:26)

(29) CXCR5 (Burkitt's lymphoma receptor 1, a G protein-coupled receptor that is activated by the CXCL13 chemokine, functions in lymphocyte migration and humoral defense, plays a role in HIV-2 infection and perhaps development of AIDS, lymphoma, myeloma, and leukemia) PROTEIN SEQUENCE Full mnyplt1...atslttf (1..372; 372 aa), pI: 8.54 MW: 41959 TM: 7 [P] Gene Chromosome: 11q23.3, Genbank accession No. NP_001707.1; WO2004040000; WO200415426; US2003161592 (Example 1); WO2002561078 (Fig 1); WO200157188 (Claim 20, page 269); WO200172830 (pages 12-13); WO200022129 (Example 1, pages 152-153, Example 2, pages 254-256); WO9928468 (claim 1, page 38); US5440021 (Example 2, col 49-52); WO9428931 (pages 56-58); WO9217497 (claim 7, Fig 5); Dobner et al. (1992) Eur. J. Immunol. 22:2795-2799; Barella et al. (1995) Biochem. J. 309:773-779; 372 aa

```
MGSGWVFNWALLVNLRSLDSSMTQGTDSLPSDEPVQAKADDCTNGTEKVPQVFVRFIFNL
EYVRFDSDVGFPQTLKQGDPAEQWNSRLDDLIESRQAVDGVRCHNYRLGAPFTVGRK
VQPFETVYVPTPLLHQNLLLHCSVTGYPFQDIIKWFLNQGERAGVMSTGP1RNGDWT
FQTVVMLMTGPLGHYTVCLVDDSSLSPVSVWRAQSEYSWRKMLSGIAAFLLGLIFLL
VGIVIQRLAQRKGYRTQMSGNEVSRALLPQSC
```

(SEQ ID NO:29)

(31) P2X5 (Purinergic receptor P2X ligand-gated ion channel 5, an ion channel gated by extracellular ATP, may be involved in synaptic transmission and neurogenesis, deficiency may contribute to the pathophysiology of idiopathic detrusor instability) PROTEIN SEQUENCE Full mqagck...lephrst (1..422; 422 aa), pl: 7.63, MW: 47206 TM: 1 [P] Gene Chromosome: 17p13.3, Genbank accession No. NP_002552.2; Le et al. (1997) FEBS Lett. 418(1-2):195-199; WO2004047749; WO2003072035 (claim 10); Touchman et al. (2000) Genome Res. 10:165-173; WO200222660 (claim 20); WO2003093444 (claim 1); WO2003087768 (claim 1); WO2003029277 (page 82); 422 aa

```
MGQAGCKGLCGLSDLFDYKTKEYVIKNNKGVGLYYRLQASILAYLVVWFLIJKQGVQDVDT
SLQSAVITKVKGVAFTPNTSDDLQRQIWQDADYVIPAQENVYFVVNTVLIYTMQVRQNVCAE
NEGIPDGACSKDSDCHAGEATANQVGRCLRERLNACTGECIFAWCOLTESRDPPEP
FLKAEABDTITFQHIFRPKFNSKSVMVDRSRSLKSCPHGFKNHCPIPFRLGSVIRW
AGSDFPQDIALEGVGGINENWCDLDAEACSECHPHYSFSLDNKLSKSVSSGYNFRAF
YRDAGAVERFRTLMAKYGIRFDMVNGKAGFCDDLVILYLIJKKREFYRDKKYEVEVRGLES
SQRDDEASGLGLSEQLTSGPGALLGMEPEQSEQBLEPPEAKGSSQKNGSVCQGLLEPHRS
```

(SEQ ID NO:30)


```
HQQNVFDJHGHQHVLQALQADASLQGRLQAFQAHQRQDOFKQVLKQGPQVTVQGKTQV
TVQWLQKGDPAEQWNSRLDDLIESRQAVDGVRCHNYRLGAPFTVGRK
VQPFETVYVPTPLLHQNLLLHCSVTGYPFQDIIKWFLNQGERAGVMSTGP1RNGDWT
FQTVVMLMTGPLGHYTVCLVDDSSLSPVSVWRAQSEYSWRKMLSGIAAFLLGLIFLL
VGIVIQRLAQRKGYRTQMSGNEVSRALLPQSC
```

(SEQ ID NO:31)

MAEAITYADLRVFKAPLKKISSSLRLQDGPGADDGGEITENVQVPVALGVPSSLASSVLGDKAAVKEQPTQSWRATVPSAVGRLIPCRTCLRYYLLGLTTCLLLGGTVAT1CQLVRVLYQVSSQLQQTNRVLLEVTSNLRRQQLRKLKITQQLGQSAEDLQGSRRLEAQSQEAULQVRRAHQAABGQLQACQADRRKQTKSTLQSEQQRALEBQLSMENRKLPFPTCGSDATCCPGSWIHHQKSCFYISILTSDKWQRESQKQCEFSLSSKLATFSEYPSHSYYFNLNLLPPGSSNYWTDLSSNKDWKLYTDDQRTTRTYAQSSKNKIVHTKWSWWTLSBESCRSSLPYICEMTARFRPD

(SEQ ID NO:32)

MAFDVSCFPWVVLFSAGCVKTWSQMCIEKEAKNTYCNENCNLGLSEIPDTLPNTTELEF SFNFLPTITHRTRSTFLMNLTDFDLRTCQINWHEBDFQSHHQLSLSTLVGTNPLIFMAET LSNGPKGLHFLQTQGISEINSFIPVHNLQENLSELYLSGHNISSIFKFPDPARNKLWFQ NQNAIHYISREDMRSELQAINSLNPNGNNVKGIELGAFDSTVFQSLNFGTPNLSVIPNF QLQMQSTQSSLWTFEDDIEDISSAMLKGCLESVESLNLQEHRSDFIDSSSTTFQCTQPL QELDLTATHLKLPSGMKGNLKLKLKLVLVSNHFDQLCISAANFPSLTHLYIRGNYKHQL LGVGCILEKLGNLQRTLSTHNDIEASDCSLQLKLNLSLQTLNLNSNEPLGLQSQAKCEQ PLBLLDLAFTPRLHINAPQSPQFNHLFQVLYNTYCFLDTSQNHLALAGPVLRHLNLKNHG HFQDTITKTNLQTVGSLELVLILSCGGLSISQAFAHSLGKMPSVLDLSHNLCTDSILS LSHLKGYIYNLAANSINISPRLLPLQLQSIQSTNILSNPLDCTCSIHFLTMYKNEHLKLE GSEETTSCANPFFSLRQVKSLSVDKLSCIGTAIGIFFLIVFLLLAILLLFFAVYKLLRWKYQH I

(SEQ ID NO:33)

(34) FCRH1 (Fc receptor-like protein 1, a putative receptor for the immunoglobulin Fc domain that contains C2 type Ig-like and ITAM domains, may have a role in B-lymphocyte differentiation) PROTEIN SEQUENCE Full mplri1...vyedam (1..429; 429 aa), pI: 5.28, MW: 46925 TM: 1 [P] Gene Chromosome: 1q21-1q22, Genbank accession No. NP_443170.1; WO2003077836; WO200138490 (claim 6, Fig 18E-1-18-E-2); Davis et al. (2001) Proc. Natl. Acad. Sci USA 98(17):9772-9777; WO2003089624 (claim 8); EP1347046 (claim 1); WO2003089624 (claim 7); 429 aa

MLPRLLLLICAPLCEPAELFLIASPSHPTEGSPVITCTKMPFLQSSDAQPFQCCFFRDTA LQGPWSSSPKLIQTAAMKWEDEGMTYWCEAQTMASKVLRSRQSNINVRHPVADVSLETQPP GQVMEGDRLLICESVAMGTGIDTFLWYKAVGLNLQSKTRQSLTAEEIESVRESDAEQ
(35) IRTA2 (Immunoglobulin superfamily receptor translocation associated 2, a putative immunoreceptor with possible roles in B cell development and lymphomagenesis; deregulation of the gene by translocation occurs in some B cell malignancies) PROTEIN SEQUENCE Full mllwvil...assaphr (1..977; 977 aa), pI: 6.88 MW: 106468 TM: 1 [P] Gene Chromosome: 1q21, Genbank accession No. NP_112571.1; WO2003024392 (claim 2, Fig 97); Nakayama et al. (2000) Biochem. Biophys. Res. Commun. 277(1):124-127; WO2003077836; WO200138490 (claim 3, Fig 18B-1-18B-2); 977 aa

See also: WO04/045516 (03 Jun 2004); WO03/000113 (03 Jan 2003); WO02/016429 (28 Feb 2002); WO02/16581 (28 Feb 2002); WO03/024392 (27 Mar 2003); WO04/016225 (26 Feb 2004); WO01/40309 (07 Jun 2001), and U.S. Provisional patent application Serial No. 60/520842 "COMPOSITIONS AND METHODS FOR THE TREATMENT OF TUMOR OF HEMATOPOIETIC ORIGIN", filed 17 Nov 2003.

In an example, the Ligand-Linker-Drug Conjugate has Formula \(\text{IIIa} \), where the Ligand is an antibody Ab including one that binds at least one of CD30, CD40, CD70, Lewis Y antigen, w=0, y=0, and D has Formula Ib. Exemplary Conjugates of Formula \(\text{IIIa} \) include where R17 is -(CH2)5-. Also included are such Conjugates of Formula \(\text{IIIa} \) in which D has the structure of Compound 2 in Example 3 and esters thereof. Also included are such Conjugates of Formula \(\text{IIIa} \) containing about 3 to about 8, in one aspect, about 3 to about 5 Drug moieties D, that is, Conjugates of Formula Ia wherein \(p \) is a value in the range about 3-8, for example about 3-5. Conjugates containing combinations of the structural features noted in this paragraph are also described.

In another example, the Ligand-Linker-Drug Conjugate has Formula \(\text{IIIa} \), where Ligand is an Antibody Ab that binds one of CD30, CD40, CD70, Lewis Y antigen, w=1, y=0, and D has Formula Ib. Included are such Conjugates of Formula \(\text{IIIa} \) in which W is -Val-Cit-, and/or

\[\text{SEQ ID NO:34} \]

\[\text{SEQ ID NO:35} \]
where D has the structure of Compound 2 in Example 3 and esters thereof. Also included are such Conjugates of Formula IIIa containing about 3 to about 8, preferably about 3 to about 5 Drug moieties D, that is, Conjugates of Formula la wherein p is a value in the range of about 3-8, preferably about 3-5. Conjugates containing combinations of the structural features noted in this paragraph are also contemplated.

In an example, the Ligand-Linker-Drug Conjugate has Formula IIIa, where the Ligand is an Antibody Ab that binds one of CD30, CD40, CD70, Lewis Y antigen, w=1, y=1, and D has Formula lb. Included are Conjugates of Formula IIIa in which R17 is -(CH2)5-. Also included are such Conjugates of Formula IIIa where: W is -Val-Cit-; Y has Formula X; D has the structure of Compound 2 in Example 3 and esters thereof; p is about 3 to about 8, preferably about 3 to about 5 Drug moieties D. Conjugates containing combinations of the structural features noted in this paragraph are also contemplated.

A further example is an antibody drug conjugate (ADC), or a pharmaceutically acceptable salt or solvate thereof, wherein Ab is an antibody that binds one of the tumor-associated antigens (1)-(35) noted above (the "TAA Compound"). Another example is the TAA Compound or pharmaceutically acceptable salt or solvate thereof that is in isolated and purified form.

Also described is a method for killing or inhibiting the multiplication of a tumor cell or cancer cell comprising administering to a patient, for example a human with a hyperproliferative disorder, an amount of the TAA Compound or a pharmaceutically acceptable salt or solvate thereof, said amount being effective to kill or inhibit the multiplication of a tumor cell or cancer cell.

Also described is a method for treating cancer comprising administering to a patient, for example a human with a hyperproliferative disorder, an amount of the TAA Compound or a pharmaceutically acceptable salt or solvate thereof, said amount being effective to treat cancer, alone or together with an effective amount of an additional anticancer agent.

Also described is a method for treating an autoimmune disease, comprising administering to a patient, for example a human with a hyperproliferative disorder, an amount of the TAA Compound or a pharmaceutically acceptable salt or solvate thereof, said amount being effective to treat an autoimmune disease.

The antibodies suitable for use in the invention can be produced by any method known in the art for the synthesis of antibodies, in particular, by chemical synthesis or by recombinant expression, and are preferably produced by recombinant expression techniques.

4.5.1 PRODUCTION OF RECOMBINANT ANTIBODIES

Antibodies can be produced using any method known in the art to be useful for the synthesis of antibodies, in particular, by chemical synthesis or by recombinant expression.

Recombinant expression of antibodies, or fragment, derivative or analog thereof, requires construction of a nucleic acid that encodes the antibody. If the nucleotide sequence of the antibody is known, a nucleic acid encoding the antibody may be assembled from chemically synthesized oligonucleotides (e.g., as described in Kutmeier et al., 1994, BioTechniques 17:242), which involves the synthesis of overlapping oligonucleotides containing portions of the sequence encoding the antibody, annealing and ligation of those oligonucleotides, and then amplification of the ligated oligonucleotides, e.g., by PCR.

Alternatively, a nucleic acid molecule encoding an antibody can be generated from a suitable source. If a clone containing the nucleic acid encoding the particular antibody is not available, but the sequence of the antibody is known, a nucleic acid encoding the antibody can be obtained from a suitable source (e.g., an antibody cDNA library, or cDNA library generated from any tissue or cells expressing the immunoglobulin) by, e.g., PCR amplification using synthetic primers hybridizable to the 3' and 5' ends of the sequence or by cloning using an oligonucleotide probe specific for the particular gene sequence.

If an antibody that specifically recognizes a particular antigen is not commercially available (or a source for a cDNA library for cloning a nucleic acid encoding such an immunoglobulin), antibodies specific for a particular antigen can be generated by any method known in the art, for example, by immunizing a patient, or suitable animal model such as a rabbit or mouse, to generate polyclonal antibodies or, more preferably, by generating monoclonal antibodies, e.g., as described by Kohler and Milstein (1975, Nature 256:495-497) or, as described by Kozbor et al. (1983, Immunology Today 4:72) or Cole et al. (1985 in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Alternatively, a clone encoding at least the Fab portion of the antibody can be obtained by screening Fab expression libraries (e.g., as described in Huse et al., 1989, Science 246:1275-1281) for clones of Fab fragments that bind the specific antigen or by screening antibody libraries (See, e.g., Clackson et al., 1991, Nature 352:624; Hane et al., 1997 Proc. Natl. Acad. Sci. USA 94:4937).

Once a nucleic acid sequence encoding at least the variable domain of the antibody is obtained, it can be introduced into a vector containing the nucleotide sequence encoding the constant regions of the antibody (see, e.g., International Publication No. WO 86/05807; WO 89/01036; and U.S. Patent No. 5122464). Vectors containing the complete light or heavy chain that allow for the expression of a complete antibody molecule are available. Then, the nucleic
acid encoding the antibody can be used to introduce the nucleotide substitutions or deletion necessary to substitute (or delete) the one or more variable region cysteine residues participating in an intrachain disulfide bond with an amino acid residue that does not contain a sulfhydyl group. Such modifications can be carried out by any method known in the art for the introduction of specific mutations or deletions in a nucleotide sequence, for example, but not limited to, chemical mutagenesis and in vitro site directed mutagenesis (Hutchinson et al., 1978, J. Biol. Chem. 253:6551).

[0264] In addition, techniques developed for the production of “chimeric antibodies” (Morrison et al., 1984, Proc. Natl. Acad. Sci. 81:851-855; Neuberger et al., 1984, Nature 312:604-608; Takeda et al., 1985, Nature 314:452-454) by splicing genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine monoclonal antibody and a human immunoglobulin constant region, e.g., humanized antibodies.

[0266] Antibody fragments that recognize specific epitopes can be generated by known techniques. For example, such fragments include, but are not limited to the F(ab)2 fragments that can be produced by pepsin digestion of the antibody molecule and the Fab fragments that can be generated by reducing the disulfide bridges of the F(ab)2 fragments.

[0267] Once a nucleic acid sequence encoding an antibody has been obtained, the vector for the production of the antibody can be recombinant DNA technology using techniques well known in the art. Methods that are well known to those skilled in the art can be used to construct expression vectors containing the antibody coding sequences and appropriate transcriptional and translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. See, for example, the techniques described in Sambrook et al. (1990, Molecular Cloning, A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) and Ausubel et al. (eds., 1998, Current Protocols in Molecular Biology, John Wiley & Sons, NY).

[0268] An expression vector comprising the nucleotide sequence of an antibody or the nucleotide sequence of an antibody can be transferred to a host cell by conventional techniques (e.g., electroporation, liposomal transfection, and calcium phosphate precipitation), and the transfected cells are then cultured by conventional techniques to produce the antibody. In specific embodiments, the expression of the antibody is regulated by a constitutive, an inducible or a tissue, specific promoter.

[0269] The host cells used to express the recombinant antibody can be either bacterial cells such as Escherichia coli, or, preferably, eukaryotic cells, especially for the expression of whole recombinant immunoglobulin molecule. In particular, mammalian cells such as Chinese hamster ovary cells (CHO), in conjunction with a vector such as the major intermediate early gene promoter element from human cytomegalovirus is an effective expression system for immunoglobulins (Foecking et al., 198, Gene 45:101; Cockett et al., 1990, BioTechnology 8:2).

[0270] A variety of host-expression vector systems can be utilized to express the immunoglobulin antibodies. Such host-expression systems represent vehicles by which the coding sequences of the antibody can be produced and subsequently purified, but also represent cells that can, when transformed or transfected with the appropriate nucleotide coding sequences, express an antibody immunoglobulin molecule in situ. These include, but are not limited to, microorganisms such as bacteria (e.g., E. coli and B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing immunoglobulin coding sequences; yeast (e.g., Saccharomyces Pichia) transformed with recombinant yeast expression vectors containing immunoglobulin coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the immunoglobulin coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus (CaMV) and tobacco mosaic virus (TMV)) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing immunoglobulin coding sequences; or mammalian cell systems (e.g., COS, CHO, BH, 293, 293T, 3T3 cells) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothioninein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

[0271] In bacterial systems, a number of expression vectors can be advantageously selected depending upon the use intended for the antibody being expressed. For example, when a large quantity of such a protein is to be produced, vectors that direct the expression of high levels of fusion protein products that are readily purified might be desirable. Such vectors include, but are not limited to, the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which the antibody coding sequence may be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 24:5503-5509); and the like. pGEX Vectors can also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and
can easily be purified from lysed cells by adsorption and binding to a matrix glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

[0272] In an insect system, *Autographa californica* nuclear polyhedrosis virus (AcNPV) or the analogous virus from *Drosophila melanogaster* is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. The antibody coding sequence can be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter).

[0273] In mammalian host cells, a number of viral-based expression systems can be utilized. In cases where an adenovirus is used as an expression vector, the antibody coding sequence of interest can be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene can then be inserted into the adenovirus genome by *in vitro* or *in vivo* recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) results in a recombinant virus that is viable and capable of expressing the immunoglobulin molecule in infected hosts. (e.g., see Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:355-359). Specific initiation signals can also be required for efficient translation of inserted antibody coding sequences. These signals include the ATG initiation codon and adjacent sequences. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., 1987, Methods in Enzymol. 153:51-544).

[0274] In addition, a host cell strain can be chosen to modulate the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products can be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells that possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product can be used. Such mammalian host cells include, but are not limited to, CHO, VERY, BH, Hela, COS, MDCK, 293, 293T, 3T3, WI38, BT483, Hs578T, HTB2, BT20 and T47D, CRL7030 and Hs578Bst.

[0275] For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines that stably express an antibody can be engineered. Rather than using expression vectors that contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells can be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci that in turn can be cloned and expanded into cell lines. This method can advantageously be used to engineer cell lines which express the antibody. Such engineered cell lines can be particularly useful in screening and evaluation of tumor antigens that interact directly or indirectly with the antibody.

[0277] The expression levels of an antibody can be increased by vector amplification (for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)). When a marker in the vector system expressing an antibody is amplifiable, an increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the nucleotide sequence of the antibody, production of the
antibody will also increase (Crouse et al., 1983, Mol. Cell. Biol. 3:257).

The host cell can be co-transfected with two expression vectors, the first vector encoding a heavy chain derived polypeptide and the second vector encoding a light chain derived polypeptide. The two vectors can contain identical selectable markers that enable equal expression of heavy and light chain polypeptides. Alternatively, a single vector can be used to encode both heavy and light chain polypeptides. In such situations, the light chain should be placed before the heavy chain to avoid an excess of toxic free heavy chain (Proudfoot, 1986, Nature 322:52; Kohler, 1980, Proc. Natl. Acad. Sci. USA 77:2197). The coding sequences for the heavy and light chains can comprise cDNA or genomic DNA.

Once the antibody has been recombinantly expressed, it can be purified using any method known in the art for purification of an antibody, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins.

The antibody can be a monoclonal antibody.

In any case, the hybrid antibodies have a dual specificity, preferably with one or more binding sites specific for the hapten of choice or one or more binding sites specific for a target antigen, for example, an antigen associated with a tumor, an autoimmune disease, an infectious organism, or other disease state.

4.5.2 PRODUCTION OF ANTIBODIES

The production of antibodies will be illustrated with reference to anti-CD30 antibodies but it will be apparent for those skilled in the art that antibodies to other members of the TNF receptor family can be produced and modified in a similar manner. The use of CD30 for the production of antibodies is exemplary only and not intended to be limiting.

The CD30 antigen to be used for production of antibodies may be, e.g., a soluble form of the extracellular domain of CD30 or a portion thereof, containing the desired epitope. Alternatively, cells expressing CD30 at their cell surface (e.g., L540 (Hodgkin’s lymphoma derived cell line with a T cell phenotype) and L428 (Hodgkin’s lymphoma derived cell line with a B cell phenotype)) can be used to generate antibodies. Other forms of CD30 useful for generating antibodies will be apparent to those skilled in the art.

In another example, the ErbB2 antigen to be used for production of antibodies may be, e.g., a soluble form of the extracellular domain of ErbB2 or a portion thereof, containing the desired epitope. Alternatively, cells expressing ErbB2 at their cell surface (e.g., NIH-3T3 cells transformed to overexpress ErbB2; or a carcinoma cell line such as SK-BR-3 cells, see Stancovski et al. Proc. Natl. Acad. Sci. USA 88:8691-8695 (1991)) can be used to generate antibodies. Other forms of ErbB2 useful for generating antibodies will be apparent to those skilled in the art.

(i) Polyclonal antibodies

Polyclonal antibodies are preferably raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl2, or R1N=C=NR, where R and R1 are different alkyl groups.

Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining, e.g., 100 μg or 5 μg of the protein or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund’s complete adjuvant and injecting the solution intradermally at multiple sites. One month later the animals are boosted with 1/5 to 1/10 the original amount of peptide or conjugate in Freund’s complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response.

(ii) Monoclonal antibodies

Monoclonal antibodies are obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Thus, the modifier “monoclonal” indicates the character of the antibody as not being a mixture of discrete antibodies.

For example, the monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Patent No. 4816567).
In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)).

The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.

Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, California USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Maryland USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); and Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).

Culture medium in which hybridomas are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA). The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al., Anal. Biochem., 107:220 (1980).

After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal.

The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional antibody purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce antibody protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., Curr. Opinion in Immunol., 5:256-262 (1993) and Plückthun, Immunol. Revs., 130:151-188 (1992).

The DNA also may be modified, for example, by substituting the coding sequence for human heavy chain and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4816567; and Morrison et al. (1984) Proc. Natl Acad. Sci. USA 81:6851), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.

Typically such non-immunoglin polypeptides are substituted for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.
(iii) Humanized antibodies

A humanized antibody may have one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988)), by substituting hypervariable region sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity. According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework region (FR) for the humanized antibody (Sims et al., J. Immunol., 151:2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987)). Another method uses a particular framework region derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol., 151:2623 (1993)).

The antibodies may be humanized with retention of high affinity for the antigen and other favorable biological properties. Humanized antibodies may be prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the hypervariable region residues are directly and most substantially involved in influencing antigen binding.

Various forms of the humanized antibody are contemplated. For example, the humanized antibody may be an antibody fragment, such as a Fab. Alternatively, the humanized antibody may be an intact antibody, such as an intact IgG1 antibody.

The Examples describe production of an exemplary humanized anti-ErbB2 antibody. The humanized antibody may, for example, comprise nonhuman hypervariable region residues incorporated into a human variable heavy domain and may further comprise a framework region (FR) substitution at a position selected from the group consisting of 69H, 71H and 73H utilizing the variable domain numbering system set forth in Kabat et al., Sequences of Proteins of Immuno-logical Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991). In one embodiment, the humanized antibody comprises FR substitutions at two or all of positions 69H, 71H and 73H. Another Example describes preparation of purified trastuzumab antibody from the HERCEPTIN® formulation.

(iv) Human antibodies

As an alternative to humanization, human antibodies can be generated. For example, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggermann et al., Year in Immuno., 7:33 (1993); and U.S. Patent Nos. 5,591,669, 5,589,369 and 5,545,807.

Alternatively, phage display technology (McCafferty et al., Nature 348:552-553 (1990)) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. According to this technique, antibody V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell. Phage display can

(v) Antibody fragments

[0306] Various techniques have been developed for the production of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992); and Brennan et al., Science, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. For example, the antibody fragments can be isolated from the antibody phage libraries discussed above. Alternatively, Fab'-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab')2 fragments (Carter et al., Bio/Technology 10:163-167 (1992)). According to another approach, F(ab')2 fragments can be isolated directly from recombinant host cell culture. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner. In other embodiments, the antibody of choice is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Patent No. 5,571,894; and U.S. Patent No. 5,587,458. The antibody fragment may also be a "linear antibody", e.g., as described in U.S. Patent No. 5,641,870 for example. Such linear antibody fragments may be monospecific or bispecific.

(vi) Bispecific antibodies

[0307] Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes. Exemplary bispecific antibodies may bind to two different epitopes of the CD30 protein. Alternatively, an anti-CD30 arm may be combined with an arm which binds to a Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the CD30-expressing cell. Bispecific antibodies may also be used to localize cytotoxic agents to cells which express CD30.

[0308] Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Mills et al., Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., EMBO J., 10:3655-3659 (1991). According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain binding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance.

[0309] In one example of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

[0310] According to another approach described in U.S. Patent No. 5,731,168, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 domain of an antibody constant domain. In this
method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g., tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g., alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

[0311] Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science, 229: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

[0312] Recent progress has facilitated the direct recovery of Fab'-SH fragments from E. coli, which can be chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med., 175: 217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')2 molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody.

[0313] Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol., 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al., J. Immunol., 152:5368 (1994).

[0314] Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al. J. Immunol. 147: 60 (1991).

(vii) Other amino acid sequence modifications

[0315] Amino acid sequence modification(s) of the antibodies described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence variants of the antibodies are prepared by introducing appropriate nucleotide changes into the antibody nucleic acid, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the antibody, such as changing the number or position of glycosylation sites.

[0316] A useful method for identification of certain residues or regions of the antibody that are favored locations for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells Science, 244:1081-1085 (1989). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with antigen. Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to analyze the performance of a mutation at a given site, ala scanning or random mutagenesis is conducted at the target codon or region and the expressed antibody variants are screened for the desired activity.

[0317] Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as insequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an antibody with an N-terminal methionyl residue or the antibody fused to a cytotoxic polypeptide. Other insertional variants of the antibody molecule include the fusion to the N- or C-terminus of the antibody to an enzyme (e.g., for ADEPT) or a polypeptide which increases the serum half-life of the antibody.
Another type of variant is an amino acid substitution variant. These variants have at least one amino acid residue in the antibody molecule replaced by a different residue. The sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated.

Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally-occurring residues are divided into groups based on common side-chain properties:

1. hydrophobic: norleucine, met, ala, val, leu, ile;
2. neutral hydrophilic: cys, ser, thr;
3. acidic: asp, glu;
4. basic: asn, gln, his, lys, arg;
5. residues that influence chain orientation: gly, pro; and
6. aromatic: trp, tyr, phe.

Non-conservative substitutions will entail exchanging a member of one of these classes for another class.

A particularly preferred type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g., a humanized or human antibody). Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e.g., 6-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g., binding affinity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the antibody and the antigen. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.

It may be desirable to modify the antibody with respect to effector function, e.g., so as to enhance antigen-dependent cell-mediated cytotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC) of the antibody. This may be achieved by introducing one or more amino acid substitutions in an Fc region of the antibody. Alternatively or additionally, cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al. J. Exp Med. 176:1191-1195 (1992) and Shopes, B. J. Immunol. 148:2918-2922 (1992). Homodimeric antibodies with enhanced antitumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research 53:2560-2565 (1993). Alternatively, an antibody can be engineered which has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al. Anti-Cancer Drug Design 3:219-230 (1989).

To increase the serum half life of the antibody, one may incorporate a salvage receptor binding epitope into the antibody (especially an antibody fragment) as described in U.S. Patent No. 5739277, for example. As used herein, the term "salvage receptor binding epitope" refers to an epitope of the Fc region of an IgG molecule (e.g., IgG1, IgG2, IgG3, or IgG4) that is responsible for increasing the in vivo serum half-life of the IgG molecule.

Antibodies in the ADC of the invention may be glycosylated at conserved positions in their constant regions (Jeffers and Lund, (1997) Chem. Immunol. 65:111-128; Wright and Morrison, (1997) TibTECH 15:26-32). The oligosaccharide side chains of the immunoglobulins affect the protein's function (Boyd et al., (1996) Mol. Immunol. 32:1311-1318; Wittwe and Howard, (1990) Biochem. 29:4175-4180), and the intramolecular interaction between portions of the glycoprotein which can affect the conformation and presented three-dimensional surface of the glycoprotein (Hefferis and Lund, supra; Wyss and Wagner, (1996) Current Opin. Biotech. 7:409-416). Oligosaccharides may also serve to target a given glycoprotein to certain molecules based upon specific recognition structures. For example, it has been reported that in agalactosylated IgG, the oligosaccharide moiety 'flips' out of the inter-CH2 space and terminal N-acetylgalcosamine residues become available to bind mannose binding protein (Malhotra et al., (1995) Nature Med. 1:237-243). Removal by glycopeptidase of the oligosaccharides from CAMPATH-1H (a recombinant humanized murine monoclonal IgG1
antibody which recognizes the CDw52 antigen of human lymphocytes (CHO cells) produced in Chinese Hamster Ovary (CHO) cells resulted in a complete reduction in complement mediated lysis (CMCL) (Boyd et al., (1996) Mol. Immunol. 32:1311-1318), while selective removal of sialic acid residues using neuraminidase resulted in no loss of DMCL. Glycosylation of antibodies has also been reported to affect antibody-dependent cellular cytotoxicity (ADCC). In particular, CHO cells with tetracycline-regulated expression of β(1,4)-N-acetylgalactosaminyltransferase III (GnTIII), a glycosyltransferase catalyzing formation of bisecting GlcNAc, was reported to have improved ADCC activity (Umana et al. (1999) Mature Biotech. 17:176-180).

[0325] Glycosylation of antibodies is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylsine may also be used.

[0326] Glycosylation variants of antibodies are variants in which the glycosylation pattern of an antibody is altered. By altering is meant deleting one or more carbohydrate moieties found in the antibody, adding one or more carbohydrate moieties to the antibody, changing the composition of glycosylation (glycosylation pattern), the extent of glycosylation, etc.

[0327] Addition of glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites). Similarly, removal of glycosylation sites can be accomplished by amino acid alteration within the native glycosylation sites of the antibody.

[0328] The amino acid sequence is usually altered by altering the underlying nucleic acid sequence. These methods include, but are not limited to, isolation from a natural source (in the case of naturally-occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the antibody.

[0329] The glycosylation (including glycosylation pattern) of antibodies may also be altered without altering the amino acid sequence or the underlying nucleotide sequence. Glycosylation largely depends on the host cell used to express the antibody. Since the cell type used for expression of recombinant glycoproteins, e.g., antibodies, as potential therapeutics is rarely the native cell, significant variations in the glycosylation pattern of the antibodies can be expected. See, e.g., Hse et al., (1997) J. Biol. Chem. 272:9062-9070. In addition to the choice of host cells, factors which affect glycosylation during recombinant production of antibodies include growth mode, media formulation, culture density, oxygenation, pH, purification schemes and the like. Various methods have been proposed to alter the glycosylation pattern achieved in a particular host organism including introducing or overexpressing certain enzymes involved in oligosaccharide production (U.S. Patent Nos. 5047335; 5510261; 5278299). Glycosylation, or certain types of glycosylation, can be enzymatically removed from the glycoprotein, for example using endoglycosidase H (Endo H). In addition, the recombinant host cell can be genetically engineered, e.g., make defective in processing certain types of polysaccharides. These and similar techniques are well known in the art.

[0330] The glycosylation structure of antibodies can be readily analyzed by conventional techniques of carbohydrate analysis, including lectin chromatography, NMR, Mass spectrometry, HPLC, GPC, monosaccharide compositional analysis, sequential enzymatic digestion, and HPAEC-PAD, which uses high pH anion exchange chromatography to separate oligosaccharides based on charge. Methods for releasing oligosaccharides for analytical purposes are also known, and include, without limitation, enzymatic treatment (commonly performed using peptide-N-glycosidase F/endo-β-galactosidase), elimination using harsh alkaline environment to release mainly O-linked structures, and chemical methods using anhydrous hydrazine to release both N- and O-linked oligosaccharides.

4.5.2a SCREENING FOR ANTIBODY-DRUG CONJUGATES (ADC)

[0331] Transgenic animals and cell lines are particularly useful in screening antibody drug conjugates (ADC) that have potential as prophylactic or therapeutic treatments of diseases or disorders involving overexpression of proteins including Lewis Y, CD30, CD40, and CD70. Transgenic animals and cell lines are particularly useful in screening antibody drug conjugates (ADC) that have potential as prophylactic or therapeutic treatments of diseases or disorders involving overexpression of HER2 (US6632979). Screening for a useful ADC may involve administering candidate ADC over a range of doses to the transgenic animal, and assaying at various time points for the effect(s) of the ADC on the disease or disorder being evaluated. Alternatively, or additionally, the drug can be administered prior to or simultaneously with exposure to an inducer of the disease, if applicable. Candidate ADC may be screened serially and individually, or in parallel under medium or high-throughput screening format. The rate at which ADC may be screened for utility for prophylactic or therapeutic treatments of diseases or disorders is limited only by the rate of synthesis or screening.
methodology, including detecting/measuring/analysis of data.

[0332] One example is a screening method comprising (a) transplanting cells from a stable renal cell cancer cell line into a non-human animal, (b) administering an ADC drug candidate to the non-human animal and (c) determining the ability of the candidate to inhibit the formation of tumors from the transplanted cell line.

[0333] Another example is a screening method comprising (a) contacting cells from a stable Hodgkin’s disease cell line with an ADC drug candidate and (b) evaluating the ability of the ADC candidate to block ligand activation of CD40.

[0334] Another example is a screening method comprising (a) contacting cells from a stable Hodgkin’s disease cell line with an ADC drug candidate and (b) evaluating the ability of the ADC candidate to induce cell death. In one embodiment the ability of the ADC candidate to induce apoptosis is evaluated.

One example is a screening method comprising (a) transplanting cells from a stable cancer cell line into a non-human animal, (b) administering an ADC drug candidate to the non-human animal and (c) determining the ability of the candidate to inhibit the formation of tumors from the transplanted cell line. The invention also concerns a method of screening ADC candidates for the treatment of a disease or disorder characterized by the overexpression of HER2 comprising (a) contacting cells from a stable breast cancer cell line with a drug candidate and (b) evaluating the ability of the ADC candidate to inhibit the growth of the stable cell line.

[0335] Another example is a screening method comprising (a) contacting cells from a stable cancer cell line with an ADC drug candidate and (b) evaluating the ability of the ADC candidate to block ligand activation of HER2. In one embodiment the ability of the ADC candidate to block heregulin binding is evaluated. In another embodiment the ability of the ADC candidate to block ligand-stimulated tyrosine phosphorylation is evaluated.

[0336] Also described is a screening method comprising (a) contacting cells from a stable cancer cell line with an ADC drug candidate and (b) evaluating the ability of the ADC candidate to induce cell death. In one embodiment the ability of the ADC candidate to induce apoptosis is evaluated.

[0337] Also described is a screening method comprising (a) administering an ADC drug candidate to a transgenic non-human mammal that overexpresses in its mammary gland cells a native human HER2 protein or a fragment thereof, wherein such transgenic mammal has stably integrated into its genome a nucleic acid sequence encoding a native human HER2 protein or a fragment thereof having the biological activity of native human HER2, operably linked to transcripational regulatory sequences directing its expression to the mammary gland, and develops a mammary tumor not responding or poorly responding to anti-HER2 antibody treatment, or to a non-human mammal bearing a tumor transplanted from said transgenic non-human mammal; and (b) evaluating the effect of the ADC candidate on the target disease or disorder. Without limitations, the disease or disorder may be a HER2-overexpressing cancer, such as breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, thyroid, pancreatic and bladder cancer. The cancer preferably is breast cancer which expressed HER2 in at least about 500,000 copies per cell, more preferably at least about 2,000,000 copies per cell. ADC drug candidates may, for example, be evaluated for their ability to induce cell death and/or apoptosis, using assay methods well known in the art and described hereinafter.

[0338] In one example, candidate ADC are screened by being administered to the transgenic animal over a range of doses, and evaluating the animal’s physiological response to the compounds over time. Administration may be oral, or by suitable injection, depending on the chemical nature of the compound being evaluated. In some cases, it may be appropriate to administer the compound in conjunction with co-factors that would enhance the efficacy of the compound. If cell lines derived from the subject transgenic animals are used to screen for compounds useful in treating various disorders, the test compounds are added to the cell culture medium at an appropriate time, and the cellular response to the compound is evaluated over time using the appropriate biochemical and/or histological assays. In some cases, it may be appropriate to apply the compound of interest to the culture medium in conjunction with co-factors that would enhance the efficacy of the compound.

[0339] Thus, described herein are assays for identifying ADC which specifically target and bind a target protein, the presence of which is correlated with abnormal cellular function, and in the pathogenesis of cellular proliferation and/or differentiation that is causally related to the development of tumors.

[0340] To identify an ADC which blocks ligand activation of an ErbB (e.g., ErbB2) receptor, the ability of the compound to block ErbB ligand binding to cells expressing the ErbB (ErbB2) receptor (e.g., in conjugation with another ErbB receptor with which the ErbB receptor of interest forms an ErbB hetero-oligomer) may be determined. For example, cells isolated from the transgenic animal overexpressing HER2 and transfected to express another ErbB receptor (with which HER2 forms hetero-oligomer) may be incubated, i.e. culturing, with the ADC and then exposed to labeled ErbB ligand. The ability of the compound to block ligand binding to the ErbB receptor in the ErbB hetero-oligomer may then be evaluated.

[0341] For example, inhibition of heregulin (HRG) binding to breast tumor cell lines, overexpressing HER2 and established from the transgenic non-human mammals (e.g., mice) herein, by the candidate ADC may be performed using monolayer cultures on ice in a 24-well-plate format. Anti-ErbB2 monoclonal antibodies may be added to each well and incubated for 30 minutes. 125 I-labeled rHRG (1177-224) (25,000 cpm) may then be added, and the incubation may be continued for 4 to 16 hours. Dose response curves may be prepared and an IC₅₀ value (cytotoxic activity) may be calculated for the compound of interest.
Alternatively, or additionally, the ability of an ADC to block ErbB ligand-stimulated tyrosine phosphorylation of an ErbB receptor present in an ErbB hetero-oligomer may be assessed. For example, cell lines established from the transgenic animals herein may be incubated with a test ADC and then assayed for ErbB ligand-dependent tyrosine phosphorylation activity using an anti-phosphotyrosine monoclonal antibody (which is optionally conjugated with a detectable label). The kinase receptor activation assay described in U.S. Patent No. 5766863 is also available for determining ErbB receptor activation and blocking of that activity by the compound.

In one example, one may screen for ADC which inhibit HRG stimulation of p180 tyrosine phosphorylation in MCF7 cells essentially as described below. For example, a cell line established from a HER2-transgenic animal may be plated in 24-well plates and the compound may be added to each well and incubated for 30 minutes at room temperature; then each well is centrifuged at 1200 rpm for 5 minutes at 4 °C, the pellet resuspended in 3 ml cold Ca2+ binding buffer (10 mM Hepes, pH 7.4, 140 mM NaCl, 2.5 mM CaCl2) and aliquoted into 35 mm strainer-capped 12 x 75 mm tubes (1 ml per tube, 3 tubes per treatment group) for removal of cell clumps. Tubes then receive PI (10 μg/ml) for a final concentration of 0.2 nM, and the incubation may be continued for about 8 minutes. Media may be aspirated from each well, and reactions may be stopped by the addition of 100 μl of SDS sample buffer (5% SDS, 25 mM DTT, and 25 mM Tris-HCl, pH 6.8). Each sample (25 μl) may be electrophoresed on a 4-12% gradient gel (Novex) and then electrophoretically transferred to polyvinylidene difluoride membrane. Antiphosphotyrosine (at 1 μg/ml) immunoblots may be developed, and the intensity of the predominant reactive band at Mr -180,000 may be quantified by reflectance densitometry. An alternate method to evaluate inhibition of receptor phosphorylation is the KIRA (kinase receptor activation) assay of Sadick et al. (1998) Jour. of Pharm. and Biomed. Anal. Some of the well established monoclonal antibodies against HER2 that are known to inhibit HRG stimulation of p180 tyrosine phosphorylation may be used as positive control in this assay. A dose-response curve for inhibition of HRG stimulation of p180 tyrosine phosphorylation as determined by reflectance densitometry may be prepared and an IC50 for the compound of interest may be calculated.

One may also assess the growth inhibitory effects of a test ADC on cell lines derived from a HER2-transgenic animal, e.g., essentially as described in Schaefer et al. (1997) Oncogene 15:1385-1394. According to this assay, the cells may be treated with a compound at various concentrations for 4 days and stained with crystal violet or the redox dye Alamar Blue. Incubation with the compound may show a growth inhibitory effect on this cell line similar to that displayed by monoclonal antibody 2C4 on MDA-MB-175 cells (Schaefer et al., supra). In a further embodiment, exogenous HRG will not significantly reverse this inhibition.

To identify growth inhibitory compounds that specifically target an antigen of interest, one may screen for compounds which inhibit the growth of cancer cells overexpressing antigen of interest derived from transgenic animals, the assay described in U.S. Patent No. 5677171 can be performed. According to this assay, cancer cells overexpressing the antigen of interest are grown in a 1:1 mixture of F12 and DMEM medium supplemented with 10% fetal bovine serum, glutamine and penicillin streptomycin. The cells are plated at 20,000 cells in a 35 mm cell culture dish (2 mls/35mm dish) and the test compound is added at various concentrations. After six days, the number of cells, compared to untreated cells is counted using an electronic COULTER™ cell counter. Those compounds which inhibit cell growth by about 20-100% or about 50-100% may be selected as growth inhibitory compounds.

To select for compounds which induce cell death, loss of membrane integrity as indicated by, e.g., PI, trypan blue or 7AAD uptake may be assessed relative to control. The PI uptake assay uses cells isolated from the tumor tissue of interest of a transgenic animal. According to this assay, the cells are cultured and seeded in dishes as discussed in the preceding paragraph. The medium is then removed and replaced with fresh medium alone or medium containing various concentrations of the compound. The cells are incubated for a 3-day time period. Following each treatment, monolayers are washed with PBS and detached by trypsinization. Cells are then centrifuged at 1200 rpm for 5 minutes at 4 °C, the pellet resuspended in 3 ml cold Ca2+ binding buffer (10 mM Hepes, pH 7.4, 140 mM NaCl, 2.5 mM CaCl2) and aliquoted into 35 mm strainer-capped 12 x 75 mm tubes (1 ml per tube, 3 tubes per treatment group) for removal of cell clumps. Tubes then receive PI (10 μg/ml). Samples may be analyzed using a FACSCAN™ flow cytometer and FACSCONVERT™ CellQuest software (Becton Dickinson). Those compounds which induce statistically significant levels of cell death as determined by PI uptake may be selected as cell death-inducing compounds.

In order to select for compounds which induce apoptosis, an annexin binding assay using cells established from the tumor tissue of interest of the transgenic animal is performed. The cells are cultured and seeded in dishes as discussed in the preceding paragraph. The medium is then removed and replaced with fresh medium alone or medium containing 10 μg/ml of the antibody drug conjugate (ADC). Following a three-day incubation period, monolayers are washed with PBS and detached by trypsinization. Cells are then centrifuged, resuspended in Ca2+ binding buffer and aliquoted into tubes as discussed above for the cell death assay. Tubes then receive labeled annexin (e.g., annexin V-FITC) (1 μg/ml). Samples may be analyzed using a FACSCAN™ flow cytometer and FACSCONVERT™ CellQuest software (Becton Dickinson). Those compounds which induce statistically significant levels of annexin binding relative to control are selected as apoptosis-inducing compounds.
IN VITRO CELL PROLIFERATION ASSAYS

[0348] Generally, the cytotoxic or cytostatic activity of an antibody drug conjugate (ADC) is measured by: exposing mammalian cells having receptor proteins to the antibody of the ADC in a cell culture medium; culturing the cells for a period from about 6 hours to about 5 days; and measuring cell viability. Cell-based in vitro assays were used to measure viability (proliferation), cytotoxicity, and induction of apoptosis (caspase activation) of the ADC of the invention.

[0349] The in vitro potency of antibody drug conjugates was measured by a cell proliferation assay (Example 18, Figures 7-10). The CellTitre-Glo® Luminescent Cell Viability Assay is a commercially available (Promega Corp., Madison, WI), homogeneous assay method based on the recombinant expression of Coleoptera luciferase (U.S. Patent Nos. 5583024; 5674713 and 5700670). This cell proliferation assay determines the number of viable cells in culture based on quantitation of the ATP present, an indicator of metabolically active cells (Crouch et al. (1993) J. Immunol. Meth. 160:81-88, U.S. Patent No. 6602677). The CellTitre-Glo® Assay was conducted in 96 well format, making it amenable to automated high-throughput screening (HTS) (Cree et al. (1995) AntiCancer Drugs 6:398-404). The homogeneous assay procedure involves adding the single reagent (CellTitre-Glo® Reagent) directly to cells cultured in serum-supplemented medium. Cell washing, removal of medium and multiple pipetting steps are not required. The system detects as few as 15 cells/well in a 384-well format in 10 minutes after adding reagent and mixing. The cells may be treated continuously with ADC, or they may be treated and separated from ADC. Generally, cells treated briefly, i.e. 3 hours, showed the same potency effects as continuously treated cells.

[0350] The homogeneous "add-mix-measure" format results in cell lysis and generation of a luminescent signal proportional to the amount of ATP present. The amount of ATP is directly proportional to the number of cells present in culture. The CellTitre-Glo® Assay generates a "glow-type" luminescent signal, produced by the luciferase reaction, which has a half-life generally greater than five hours, depending on cell type and medium used. Viable cells are reflected in relative luminescence units (RLU). The substrate, Beetle Luciferin, is oxidatively decarboxylated by recombinant firefly luciferase with concomitant conversion of ATP to AMP and generation of photons. The extended half-life eliminates the need to use reagent injectors and provides flexibility for continuous or batch mode processing of multiple plates. This cell proliferation assay can be used with various multiwell formats, e.g., 96 or 384 well format. Data can be recorded by luminometer or CCD camera imaging device. The luminescence output is presented as relative light units (RLU), measured over time.

\[
\text{Luciferase} \quad \text{ATP} + \text{Luciferin} + \text{O}_2 \xrightarrow{\text{Mg}^{2+}} \text{Oxyluciferin} + \text{AMP} + \text{PPI} + \text{CO}_2 \ + \text{light}
\]

[0351] The anti-proliferative effects of antibody drug conjugates were measured by the cell proliferation, in vitro cell killing assay above against four different breast tumor cell lines (Figures 7-10). IC\text{50} values were established for SK-BR-3 and BT-474 which are known to over express HER2 receptor protein. Table 2a shows the potency (IC\text{50}) measurements of exemplary antibody drug conjugates in the cell proliferation assay against SK-BR-3 cells. Table 2b shows the potency (IC\text{50}) measurements of exemplary antibody drug conjugates in the cell proliferation assay against BT-474 cells.

[0352] Antibody drug conjugates: Trastuzumab-MC-vc-PAB-MMAF, 3.8 MMAF/Ab; Trastuzumab-MC-(N-Me)vc-PAB-MMAF, 3.9 MMAF/Ab; Trastuzumab-MC-MMAF, 4.1 MMAE/Ab; Trastuzumab-MC-vc-PAB-MMAE, 4.1 MMAE/Ab; Trastuzumab-MC-vc-PAB-MMAE, 3.3 MMAE/Ab; and Trastuzumab-MC-vc-PAB-MMAF, 3.7 MMAF/Ab did not inhibit the proliferation of MCF-7 cells (Figure 9).

[0353] Antibody drug conjugates: Trastuzumab-MC-vc-PAB-MMAE, 4.1 MMAE/Ab; Trastuzumab-MC-vc-PAB-MMAE, 3.3 MMAE/Ab; Trastuzumab-MC-PB-PAB-MMAF, 3.7 MMAF/Ab; Trastuzumab-MC-vc-PB-PAB-MMAF, 3.9 MMAF/Ab; and Trastuzumab-MC-vc-PB-PAB-MMAF, 4.1 MMAF/Ab did not inhibit the proliferation of MDA-MB-468 cells (Figure 10).

[0354] MCF-7 and MDA-MB-468 cells do not overexpress HER2 receptor protein. The anti-HER2 antibody drug conjugates described herein therefore show selectivity for inhibition of cells which express HER2.

<table>
<thead>
<tr>
<th>Antibody Drug Conjugate</th>
<th>H = trastuzumab linked via a cysteine [cys] except where noted</th>
<th>IC\text{50} (\mu g ADC/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-MC-MMAF, 4.1 MMAF/Ab</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>H-MC-MMAF, 4.8 MMAF/Ab</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAE,</td>
<td>0.007</td>
<td></td>
</tr>
</tbody>
</table>

Table 2a SK-BR-3 cells
Table 2b BT474 cells

<table>
<thead>
<tr>
<th>Antibody Drug Conjugate H = trastuzumab linked via a cysteine [cys] except where noted</th>
<th>IC(_{50}) (µg ADC/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-MC-vc-PAB-MMAE</td>
<td>0.015</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF, 3.8 MMAF/Ab</td>
<td>0.0035 - 0.01</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF, 4.4 MMAF/Ab</td>
<td>0.006 - 0.007</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF, 4.8 MMAF/Ab</td>
<td>0.006</td>
</tr>
<tr>
<td>H-MC-(N-Me)vc-PAB-MMAF, 3.9 MMAF/Ab</td>
<td>0.0035</td>
</tr>
<tr>
<td>H-MC-MMAF, 4.1 MMAF/Ab</td>
<td>0.0035</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAE, 4.1 MMAE/Ab</td>
<td>0.010</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF, 3.8 MMAF/Ab</td>
<td>0.007</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF, 4.1 MMAE/Ab</td>
<td>0.015</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF, 3.7 MMAF/Ab.</td>
<td>0.010</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF, 7.5 MMAE/Ab</td>
<td>0.0025</td>
</tr>
<tr>
<td>H-MC-MMAE, 8.8 MMAE/Ab</td>
<td>0.018</td>
</tr>
<tr>
<td>H-MC- MMAE, 4.6 MMAE/Ab</td>
<td>0.05</td>
</tr>
<tr>
<td>H-MC-(L)val-(L)cit-PAB-MMAE, 8.7 MMAE/Ab</td>
<td>0.0003</td>
</tr>
<tr>
<td>H-MC-(D)val-(D)cit-PAB-MMAE, 8.2 MMAE/Ab</td>
<td>0.02</td>
</tr>
<tr>
<td>H-MC-(D)val-(L)cit-PAB-MMAE, 8.4 MMAE/Ab</td>
<td>0.0015</td>
</tr>
<tr>
<td>H-MC-(D)val-(L)cit-PAB-MMAE, 3.2 MMAE/Ab</td>
<td>0.003</td>
</tr>
<tr>
<td>H-Trastuzumab</td>
<td>0.083</td>
</tr>
<tr>
<td>H-vc-MMAE, linked via a lysine [lys]</td>
<td>0.002</td>
</tr>
<tr>
<td>H-phe-lys-MMAE, linked via a lysine [lys]</td>
<td>0.0015</td>
</tr>
<tr>
<td>4D5-Fc8-MC-vc-PAB-MMAF, 4.4 MMAF/Ab</td>
<td>0.004</td>
</tr>
<tr>
<td>Hg-MC-vc-PAB-MMAF, 4.1 MMAF/Ab</td>
<td>0.01</td>
</tr>
<tr>
<td>7C2-Mc-vc-PAB-MMAF, 4.0 MMAF/Ab</td>
<td>0.01</td>
</tr>
<tr>
<td>4D5 Fab-Mc-vc-PAB-MMAF, 1.5 MMAF/Ab</td>
<td>0.02</td>
</tr>
<tr>
<td>Anti-TF Fab-Mc-vc-PAB-MMAE*</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2a BT474 cells

<table>
<thead>
<tr>
<th>Antibody Drug Conjugate H = trastuzumab linked via a cysteine [cys]</th>
<th>IC(_{50}) (µg ADC/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-MC-MMAF, 4.1 MMAF/Ab</td>
<td>0.008</td>
</tr>
<tr>
<td>H-MC-MMAF, 4.8 MMAF/Ab</td>
<td>0.002</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAE, 4.1 MMAE/Ab</td>
<td>0.015</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF, 3.8 MMAF/Ab</td>
<td>0.02 - 0.05</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF, 4.4 MMAF/Ab</td>
<td>0.01</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF, 4.8 MMAF/Ab</td>
<td>0.01</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAE, 3.3 MMAE/Ab</td>
<td>0.02</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF, 3.7 MMAF/Ab.</td>
<td>0.02</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF, 3.8 MMAF/Ab</td>
<td>0.015</td>
</tr>
</tbody>
</table>
In a surprising and unexpected discovery, the \textit{in vitro} cell proliferation activity results of the ADC in Tables 2a and 2b show generally that ADC with a low average number of drug moieties per antibody showed efficacy, e.g., IC$_{50}$ < 0.1 mg ADC/ml. The results suggest that at least for trastuzumab ADC, the optimal ratio of drug moieties per antibody may be less than 8, and may be about 2 to about 5.

4.5.4 \textit{IN VIVO} PLASMA CLEARANCE AND STABILITY

Pharmacokinetic plasma clearance and stability of ADC were investigated in rats and cynomolgus monkeys. Plasma concentration was measured over time. Table 2c shows pharmacokinetic data of antibody drug conjugates and other dosed samples in rats. Rats are a non-specific model for ErbB receptor antibodies, since the rat is not known to express HER2 receptor proteins.

<table>
<thead>
<tr>
<th>Sample dose mg/kg</th>
<th>AUC$_{\text{inf}}$ (day*) µg/mL</th>
<th>CL mL/day/kg</th>
<th>C$_{\text{max}}$ µg/mL</th>
<th>T$_%$ Term. days</th>
<th>% Conj.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-MC-vc-PAB-MMAE (Total Ab)</td>
<td>78.6</td>
<td>26.3</td>
<td>39.5</td>
<td>5.80</td>
<td>40.6</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAE (Conj.)</td>
<td>31.1</td>
<td>64.4</td>
<td>33.2</td>
<td>3.00</td>
<td>40.6</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF (Total Ab)</td>
<td>170</td>
<td>12.0</td>
<td>47.9</td>
<td>8.4</td>
<td>50.0</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF (Conj.)</td>
<td>83.9</td>
<td>24.0</td>
<td>44.7</td>
<td>4.91</td>
<td>50.0</td>
</tr>
<tr>
<td>H-MC-MMAE (Total Ab)</td>
<td>279</td>
<td>18.9</td>
<td>79.6</td>
<td>7.65</td>
<td>33.0</td>
</tr>
<tr>
<td>H-MC-MMAE (Conj.) 5 mg/kg</td>
<td>90.6</td>
<td>62.9</td>
<td>76.9</td>
<td>4.46</td>
<td>33.0</td>
</tr>
<tr>
<td>H-MC-MMAF (Total Ab)</td>
<td>299</td>
<td>18.7</td>
<td>49.1</td>
<td>11.6</td>
<td>37.0</td>
</tr>
<tr>
<td>H-MC-MMAF (Conj.)</td>
<td>110</td>
<td>18.26</td>
<td>50.2</td>
<td>4.54</td>
<td>37.0</td>
</tr>
<tr>
<td>H-MC-MMAF, wo/PAB, (Total Ab)</td>
<td>306</td>
<td>6.6</td>
<td>78.7</td>
<td>11.9</td>
<td>19.6</td>
</tr>
<tr>
<td>H-MC-vc-MMAF, wo/PAB, (Conj.)</td>
<td>59.9</td>
<td>33.4</td>
<td>82.8</td>
<td>2.1</td>
<td>19.6</td>
</tr>
</tbody>
</table>

* activity against MDA-MB-468 cells

[0355] In a surprising and unexpected discovery, the \textit{in vitro} cell proliferation activity results of the ADC in Tables 2a and 2b show generally that ADC with a low average number of drug moieties per antibody showed efficacy, e.g., IC$_{50}$ < 0.1 mg ADC/ml. The results suggest that at least for trastuzumab ADC, the optimal ratio of drug moieties per antibody may be less than 8, and may be about 2 to about 5.

[0356] Pharmacokinetic plasma clearance and stability of ADC were investigated in rats and cynomolgus monkeys. Plasma concentration was measured over time. Table 2c shows pharmacokinetic data of antibody drug conjugates and other dosed samples in rats. Rats are a non-specific model for ErbB receptor antibodies, since the rat is not known to express HER2 receptor proteins.
AUC inf is the area under the plasma concentration-time curve from time of dosing to infinity and is a measure of the total exposure to the measured entity (drug, ADC). CL is defined as the volume of plasma cleared of the measured entity in unit time and is expressed by normalizing to body weight. T1/2 term is the half-life of the drug in the body measured during its elimination phase. The % Conj. term is the relative amount of ADC compared to total antibody detected, by separate ELISA immunoaffinity tests ("Analytical Methods for Biotechnology Products", Ferraiolo et al, p85-98 in Pharmacokinetics of Drugs (1994) P.G. Welling and L.P. Balant, Eds., Handbook of Experimental Pharmacology, Vol. 110, Springer-Verlag). The % Conj. calculation is simply AUCinf of ADC / AUCinf total Ab, and is a general indicator of linker stability, although other factors and mechanisms may be in effect.

Figure 11 shows a graph of a plasma concentration clearance study after administration of the antibody drug conjugates: H-MC-vc-PAB-MMAF-TEG and H-MC-vc-PAB-MMAF to Sprague-Dawley rats. Concentrations of total antibody and ADC were measured over time.

<table>
<thead>
<tr>
<th>Sample dose mg/kg</th>
<th>AUCinf</th>
<th>CL</th>
<th>Cmax</th>
<th>T½</th>
<th>% Conj.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-Me-vc-PAB-MMAF (Total Ab)</td>
<td>186</td>
<td>10.8</td>
<td>46.9</td>
<td>8.3</td>
<td>45.3</td>
</tr>
<tr>
<td>H-Me-vc-PAB-MMAF (Conj.)</td>
<td>84.0</td>
<td>23.8</td>
<td>49.6</td>
<td>4.3</td>
<td>49.0</td>
</tr>
<tr>
<td>H-Me-vc-PAB-MMAE (Total Ab)</td>
<td>135</td>
<td>15.0</td>
<td>44.9</td>
<td>11.2</td>
<td>23.8</td>
</tr>
<tr>
<td>H-Me-vc-PAB-MMAE (Conj.)</td>
<td>31.9</td>
<td>63.8</td>
<td>45.2</td>
<td>3.0</td>
<td>3.9</td>
</tr>
<tr>
<td>H-MC-vc-MMAF, wo/PAB, (Total Ab)</td>
<td>306</td>
<td>6.6</td>
<td>78.7</td>
<td>11.9</td>
<td>19.6</td>
</tr>
<tr>
<td>H-MC-vc-MMAF, wo/PAB, (Conj.)</td>
<td>59.9</td>
<td>33.4</td>
<td>82.8</td>
<td>2.1</td>
<td>2.8</td>
</tr>
<tr>
<td>H-MC-(D)val-(L)cit-PAB-MMAE (Total Ab)</td>
<td>107</td>
<td>19.2</td>
<td>30.6</td>
<td>9.6</td>
<td>3.9</td>
</tr>
<tr>
<td>H-MC-(D)val-(L)cit-PAB-MMAE (Conj.)</td>
<td>40</td>
<td>50.4</td>
<td>33.7</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>H-MC-(Me)-vc-PAB-MMAE, Total Ab</td>
<td>135.1</td>
<td>15.0</td>
<td>44.9</td>
<td>11.2</td>
<td>23.8</td>
</tr>
<tr>
<td>H-MC-(Me)-vc-PAB-MMAE, Conj.</td>
<td>31.9</td>
<td>63.8</td>
<td>45.2</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>H-MC-(D)val-(D)cit-PAB-MMAE, Total Ab</td>
<td>88.2</td>
<td>22.8</td>
<td>33.8</td>
<td>10.5</td>
<td>38.3</td>
</tr>
<tr>
<td>H-MC-(D)val-(D)cit-PAB-MMAE, Conj.</td>
<td>33.6</td>
<td>59.8</td>
<td>36.0</td>
<td>4.3</td>
<td>3.9</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAE, Total Ab</td>
<td>78.6</td>
<td>26.3</td>
<td>39.5</td>
<td>5.8</td>
<td>3.0</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAE, Conj. H linked to MC by lysine [lys]</td>
<td>31.1</td>
<td>64.4</td>
<td>33.2</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>MMAF 200 µg/kg</td>
<td>0.99</td>
<td>204</td>
<td>280</td>
<td>0.22</td>
<td>-</td>
</tr>
<tr>
<td>MMAEF 206 µg/kg</td>
<td>3.71</td>
<td>62.6</td>
<td>649</td>
<td>0.74</td>
<td>-</td>
</tr>
<tr>
<td>HER Fab(2)2-MC-vc-MMAE, Total Ab</td>
<td>9.3</td>
<td>217</td>
<td>34.4</td>
<td>0.35</td>
<td>95</td>
</tr>
<tr>
<td>HER Fab(2)2-MC-vc-MMAE, Conj.</td>
<td>8.8</td>
<td>227</td>
<td>36.9</td>
<td>0.29</td>
<td>-</td>
</tr>
<tr>
<td>4DS-H-Fab-MC-vc-MMAF, Total Ab</td>
<td>43.8</td>
<td>46.2</td>
<td>38.5</td>
<td>1.49</td>
<td>68</td>
</tr>
<tr>
<td>4DS-H-Fab-MC-vc-MMAF, Conj.</td>
<td>29.9</td>
<td>68.1</td>
<td>34.1</td>
<td>1.12</td>
<td>-</td>
</tr>
<tr>
<td>4DS-H-Fab-MC-vc-MMAE, Total Ab</td>
<td>71.5</td>
<td>70.3</td>
<td>108</td>
<td>1.18</td>
<td>59</td>
</tr>
<tr>
<td>4DS-H-Fab-MC-vc-MMAE, Conj.</td>
<td>42.2</td>
<td>118.9</td>
<td>114</td>
<td>0.74</td>
<td>-</td>
</tr>
<tr>
<td>4DS-H-Fab</td>
<td>93.4</td>
<td>53.9</td>
<td>133</td>
<td>1.08</td>
<td>-</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF, Total Ab</td>
<td>170</td>
<td>12.03</td>
<td>47.9</td>
<td>8.44</td>
<td>49.5</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF, Conj.</td>
<td>83.9</td>
<td>23.96</td>
<td>44.7</td>
<td>4.01</td>
<td>-</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF-DMAEA, Total Ab</td>
<td>211</td>
<td>9.8</td>
<td>39.8</td>
<td>8.53</td>
<td>34.3</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF-DMAEA, Conj.</td>
<td>71.5</td>
<td>28.2</td>
<td>38.8</td>
<td>3.64</td>
<td>-</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF-TEG, Total Ab</td>
<td>209</td>
<td>9.75</td>
<td>53.2</td>
<td>8.32</td>
<td>29.7</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF-TEG, Conj.</td>
<td>63.4</td>
<td>31.8</td>
<td>34.9</td>
<td>4.36</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 12 shows a graph of a two stage plasma concentration clearance study where ADC was administered at different dosages and concentrations of total antibody and ADC were measured over time.

IN VIVO EFFICACY

The *in vivo* efficacy of the ADC of the invention was measured by a high expressing HER2 transgenic explant mouse model. An allograft was propagated from the Fo5 mmtv transgenic mouse which does not respond to, or responds poorly to, HERCEPTIN® therapy. Subjects were treated once with ADC and monitored over 3-6 weeks to measure the time to tumor doubling, log cell kill, and tumor shrinkage. Follow up dose-response and multi-dose experiments were conducted.

Tumors arise readily in transgenic mice that express a mutationally activated form of neu, the rat homolog of HER2, but the HER2 that is overexpressed in breast cancers is not mutated and tumor formation is much less robust in transgenic mice that overexpress nonmutated HER2 (Webster et al. (1994) Semin. Cancer Biol. 5:69-76).

To improve tumor formation with nonmutated HER2, transgenic mice were produced using a HER2 cDNA plasmid in which an upstream ATG was deleted in order to prevent initiation of translation from the downstream authentic initiation codon of HER2 (for example, see Child et al. (1999) J. Biol. Chem. 274: 24335-24341). Additionally, a chimeric intron was added to the 5'-end, which should also enhance the level of expression as reported earlier (Neuberger and Williams (1988) Nucleic Acids Res. 16: 6713; Buchman and Berg (1988) Mol. Cell. Biol. 8:4395; Brinster et al. (1988) Proc. Natl. Acad. Sci. USA 85:836). The chimeric intron was derived from a Promega vector, pCI-neo mammalian expression vector (bp 890-1022). The cDNA 3'-end is flanked by human growth hormone exons 4 and 5, and polyadenylation sequences. Moreover, FVB mice were used because this strain is more susceptible to tumor development. The promoter from MMTV-LTR was used to ensure tissue-specific HER2 expression in the mammary gland. Animals were fed the AIN 76A diet in order to increase susceptibility to tumor formation (Rao et al. (1997) Breast Cancer Res. and Treatment 45:149-158).

Table 2d Tumor measurements in allograft mouse model - MMTV-HER2 Fo5 Mammary Tumor, athymic nude mice

<table>
<thead>
<tr>
<th>Sample Drugs per antibody</th>
<th>Dose</th>
<th>Ti</th>
<th>PR</th>
<th>CR</th>
<th>Tumor doubling time (days)</th>
<th>Mean log cell kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>2-5</td>
<td>2-5</td>
<td>2-5</td>
<td>2-5</td>
<td>2-5</td>
<td>2-5</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAE 8.7</td>
<td>1250 mg/m²</td>
<td>5/5</td>
<td>4/7</td>
<td>0/7</td>
<td>18</td>
<td>1.5</td>
</tr>
<tr>
<td>MMAE/Ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF 3.8</td>
<td>555 mg/m²</td>
<td>2/5</td>
<td>2/7</td>
<td>5/7</td>
<td>69</td>
<td>6.6</td>
</tr>
<tr>
<td>MMAF/Ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-MC(Me)-vc-PAB-MMAF</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
<td>6.4</td>
</tr>
<tr>
<td>H-MC-MMAF 4.8 MMAF/Ab</td>
<td>9.2 mg/kg Ab 550 μg/m² at 0, 7, 14 and 21 days</td>
<td>7/7</td>
<td>6/7</td>
<td>0/7</td>
<td>63</td>
<td>9</td>
</tr>
<tr>
<td>H-MC-MMAF 4.8 MMAF/Ab</td>
<td>14 mg/kg Ab 840 μg/m² at 0, 7, 14 and 21 days</td>
<td>5/5</td>
<td>5/7</td>
<td>2/7</td>
<td>>63</td>
<td></td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF 5.9</td>
<td>3.5 mg/kg Ab 300 μg/m² at 0, 21, and 42 days</td>
<td>5/6</td>
<td>1/7</td>
<td>3/7</td>
<td>>36</td>
<td></td>
</tr>
<tr>
<td>MMAF/Ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF 5.9</td>
<td>4.9 mg/kg Ab 425 μg/m² at 0, 21, and 42 days</td>
<td>4/7</td>
<td>2/7</td>
<td>5/7</td>
<td>>90</td>
<td></td>
</tr>
<tr>
<td>MMAF/Ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF 5.9</td>
<td>6.4 mg/kg Ab 550 μg/m² at0,21, and 42 days</td>
<td>3/6</td>
<td>1/7</td>
<td>6/7</td>
<td>>90</td>
<td></td>
</tr>
<tr>
<td>MMAF/Ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-(L)val-(L)cit-MMAE 8.7</td>
<td>10 mg/kg</td>
<td>7/7</td>
<td>1/7</td>
<td>0/7</td>
<td>15.2</td>
<td>1.1</td>
</tr>
<tr>
<td>MMAE/Ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-MC-MMAE 4.6 MMAE/Ab</td>
<td>10 mg/kg</td>
<td>7/7</td>
<td>0/7</td>
<td>0/7</td>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>H-(D)val-(D)cit-MMAE 4.2</td>
<td>10 mg/kg</td>
<td>7/7</td>
<td>0/7</td>
<td>0/7</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
sample dose at day 1 (T = 0) except where noted

<table>
<thead>
<tr>
<th>Sample Drugs per antibody</th>
<th>Dose</th>
<th>Ti</th>
<th>PR</th>
<th>CR</th>
<th>Tumor doubling time (days)</th>
<th>Mean log cell kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-(D)val-(L)cit-MMAE 3.2 MMAE/Ab</td>
<td>13 mg/kg</td>
<td>7/7</td>
<td>0/7</td>
<td>0/7</td>
<td>9</td>
<td>0.6</td>
</tr>
<tr>
<td>H-MC(Me)-vc-MMAE 3.0 MMAE/Ab</td>
<td>13 mg/kg</td>
<td>7/7</td>
<td>3/7</td>
<td>0/7</td>
<td>17</td>
<td>1.2</td>
</tr>
<tr>
<td>H-(L)val-(D)cit-MMAE 3.5 MMAE/Ab</td>
<td>12 mg/kg</td>
<td>7/7</td>
<td>0/7</td>
<td>0/7</td>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>H-vc-MMAE 8.7 MMAE/Ab</td>
<td>10 mg/kg</td>
<td>7/7</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>H-cys-vc-MMAF 3.8 MMAF/Ab</td>
<td>1 mg/kg</td>
<td>7/7</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>H-cys-vc-MMAF 3.8 MMAF/Ab</td>
<td>3 mg/kg</td>
<td>7/7</td>
<td></td>
<td></td>
<td>>17</td>
<td></td>
</tr>
<tr>
<td>H-cys-vc-MMAF 3.8 MMAF/Ab</td>
<td>10 mg/kg</td>
<td>4/7</td>
<td>4/7</td>
<td>3/7</td>
<td>>17</td>
<td></td>
</tr>
<tr>
<td>H-MC-vc-MMAF-TEG 4 MMAF/Ab</td>
<td>10 mg/kg</td>
<td>3/6</td>
<td>1/7</td>
<td>6/7</td>
<td>81</td>
<td>7.8</td>
</tr>
<tr>
<td>H-MC-vc-MMAF-TEG 4 MMAF/Ab</td>
<td>10 mg/kg</td>
<td>0/5</td>
<td>0/7</td>
<td>7/7</td>
<td>81</td>
<td>7.9</td>
</tr>
<tr>
<td>H-vc-MMAF (lot 1)</td>
<td>10 mg/kg</td>
<td>4/6</td>
<td>2/8</td>
<td>5/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-vc-MMAF (lot 2)</td>
<td>10 mg/kg</td>
<td>7/8</td>
<td>1/8</td>
<td>1/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-MC-MMAF</td>
<td>10 mg/kg</td>
<td>8/8</td>
<td>1/8</td>
<td>0/8</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>H-(Me)-vc-MMAF</td>
<td>10 mg/kg</td>
<td>3/7</td>
<td>2/8</td>
<td>5/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-vc-MMAE 7.5 MMAE/Ab</td>
<td>3.7 mg/kg at 0, 7, 14, 21, 28 days</td>
<td>6/6</td>
<td>0/7</td>
<td>1/7</td>
<td>17</td>
<td>2.3</td>
</tr>
<tr>
<td>H-vc-MMAE 7.5 MMAE/Ab</td>
<td>7.5 mg/kg at 0, 7, 14, 21, 28 days</td>
<td>5/7</td>
<td>3/7</td>
<td>3/7</td>
<td>69</td>
<td>10</td>
</tr>
<tr>
<td>anti IL8-vc-MMAE 7.5 MMAE/Ab</td>
<td>7.5 mg/kg at 0, 7, 14, 21, 28 days</td>
<td>7/7</td>
<td>0/7</td>
<td>0/7</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>anti IL8-vc-MMAE 7.5 MMAE/Ab</td>
<td>3.7 mg/kg at 0, 7, 14, 21, 28 days</td>
<td>6/6</td>
<td>0/7</td>
<td>0/7</td>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td>H-fk-MMAE 7.5 MMAE/Ab</td>
<td>7.5 mg/kg at 0, 7, 14, 21, 28 days</td>
<td>7/7</td>
<td>1/7</td>
<td>0/7</td>
<td>31</td>
<td>4.4</td>
</tr>
<tr>
<td>H-fk-MMAE 7.5 MMAE/Ab</td>
<td>3.7 mg/kg at 0, 7, 14, 21, 28 days</td>
<td>7/7</td>
<td>0/7</td>
<td>0/7</td>
<td>8.3</td>
<td>0.9</td>
</tr>
<tr>
<td>anti IL8-fk-MMAE 7.5 MMAE/Ab</td>
<td>7.5 mg/kg at 0, 7, 14, 21, 28 days</td>
<td>7/7</td>
<td>0/7</td>
<td>0/7</td>
<td>6</td>
<td>0.5</td>
</tr>
<tr>
<td>anti IL8-fk-MMAE 7.5 MMAE/Ab</td>
<td>3.7 mg/kg at 0, 7, 14, 21, 28 days</td>
<td>7/7</td>
<td>0/7</td>
<td>0/7</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>7.5 mg/kg at 0, 7, 14, 21, 28 days</td>
<td>7/7</td>
<td>0/7</td>
<td>0/7</td>
<td>5</td>
<td>0.4</td>
</tr>
<tr>
<td>H-vc-MMAE 8.7 MMAE/Ab</td>
<td>10 mg/kg 1250 μg/m²</td>
<td>6/6</td>
<td>3/6</td>
<td>0/6</td>
<td>15</td>
<td>1.3</td>
</tr>
</tbody>
</table>
The term Ti is the number of animals in the study group with tumor at T = 0, total animals in group. The term PR is the number of animals attaining partial remission of tumor animals with tumor at T = 0 in group. The term CR is the number of animals attaining complete remission of tumor animals with tumor at T = 0 in group. The term Log cell kill is the time in days for the tumor volume to double - the time in days for the control tumor volume to double divided by 3.32 X time for tumor volume to double in control animals (dosed with Vehicle). The log-cell-kill calculation takes into account tumor growth delay resulting from treatment and tumor volume doubling time of the control group. Anti-tumor activity of ADC is classified with log-cell-kill values of:

<table>
<thead>
<tr>
<th>Sample Drugs per antibody</th>
<th>Dose</th>
<th>Ti</th>
<th>PR</th>
<th>CR</th>
<th>Tumor doubling time (days)</th>
<th>Mean log cell kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-vc-MMAE</td>
<td>10 mg/kg</td>
<td>7/7</td>
<td>5/7</td>
<td>>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-vc-MMAE</td>
<td>3 mg/kg at 0, 7, and 14 days</td>
<td>7/7</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-vc-MMAE</td>
<td>1 mg/kg at 0, 7, and 14 days</td>
<td>7/7</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-vc-MMAF</td>
<td>10 mg/kg</td>
<td>8/8</td>
<td>5/8</td>
<td>>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-vc-MMAF</td>
<td>10 mg/kg at 0, 7, and 14 days</td>
<td>4/7</td>
<td>4/7</td>
<td>3/7</td>
<td>>21</td>
<td></td>
</tr>
<tr>
<td>H-vc-MMAF</td>
<td>3 mg/kg at 0, 7, and 14 days</td>
<td>7/7</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-vc-MMAF</td>
<td>1 mg/kg at 0, 7, and 14 days</td>
<td>8/8</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>10 mg/kg at 0 and 7 days</td>
<td>8/8</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg-MC-vc-PAB-MMAF 4.1 MMAF/Ab</td>
<td>10 mg/kg at 0 days</td>
<td>6/7</td>
<td>3/8</td>
<td>5/8</td>
<td>56</td>
<td>5.1</td>
</tr>
<tr>
<td>Fc8-MC-vc-PAB-MMAF 4.4 MMAF/Ab</td>
<td>10 mg/kg at 0 days</td>
<td>7/7</td>
<td>6/8</td>
<td>0/8</td>
<td>25</td>
<td>2.1</td>
</tr>
<tr>
<td>7C2-MC-vc-PAB-MMAF 4 MMAF/Ab</td>
<td>10 mg/kg at 0 days</td>
<td>5/6</td>
<td>6/8</td>
<td>1/8</td>
<td>41</td>
<td>3.7</td>
</tr>
<tr>
<td>H-MC-vc-PAB-MMAF 5.9 MMAF/Ab</td>
<td>10 mg/kg at 0 days</td>
<td>3/8</td>
<td>3/8</td>
<td>5/8</td>
<td>62</td>
<td>5.7</td>
</tr>
<tr>
<td>2H9-MC-vc-PAB-MMAE</td>
<td>9/9</td>
<td></td>
<td></td>
<td>>14 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2H9-MC-vc-PAB-MMAF</td>
<td>9/9</td>
<td></td>
<td></td>
<td>>14 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11D10-vc-PAB-MMAE</td>
<td>9/9</td>
<td></td>
<td></td>
<td>>14 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11D10-vc-PAB-MMAF</td>
<td>9/9</td>
<td></td>
<td></td>
<td>11 days</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7C2 = anti-HER2 murine antibody which binds a different epitope than trastuzumab.
Fc8 = mutant that does not bind to FcRn
Hg = “Hingeless” full-length humanized 4D5, with heavy chain hinge cysteines mutated to serines. Expressed in E. coli (therefore non-glycosylated.)
2H9 = Anti-EphB2R
11D10 = Anti-0772P

[0363] The term Ti is the number of animals in the study group with tumor at T = 0 total animals in group. The term PR is the number of animals attaining partial remission of tumor animals with tumor at T = 0 in group. The term CR is the number of animals attaining complete remission of tumor animals with tumor at T = 0 in group. The term Log cell kill is the time in days for the tumor volume to double - the time in days for the control tumor volume to double divided by 3.32 X time for tumor volume to double in control animals (dosed with Vehicle). The log-cell-kill calculation takes into account tumor growth delay resulting from treatment and tumor volume doubling time of the control group. Anti-tumor activity of ADC is classified with log-cell-kill values of:

<table>
<thead>
<tr>
<th>(++++)</th>
<th>≥ 3.4</th>
<th>(highly active)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+++)</td>
<td>2.5-3.4</td>
<td></td>
</tr>
<tr>
<td>++</td>
<td>1.7-2.4</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>1.0-1.6</td>
<td></td>
</tr>
<tr>
<td>inactive</td>
<td>= 0</td>
<td></td>
</tr>
</tbody>
</table>
Figure 13 shows the mean tumor volume change over time in athymic nude mice with MMTV-HER2 Fo5 Mammary tumor allografts dosed on Day 0 with: Vehicle, Trastuzumab-MC-PAB-MMAE (1250 μg/m²) and Trastuzumab-MC-vc-PAB-MMAF (555 μg/m²). (H = Trastuzumab). The growth of tumors was retarded by treatment with ADC as compared to control (Vehicle) level of growth. Figure 14 shows the mean tumor volume change over time in athymic nude mice with MMTV-HER2 Fo5 Mammary tumor allografts dosed on Day 0 with 10 mg/kg (660 μg/m²) of Trastuzumab-MC-MMAE and 1250 μg/m² Trastuzumab-MC-vc-PAB-MMAE. Figure 15 shows the mean tumor volume change over time in athymic nude mice with MMTV-HER2 Fo5 Mammary tumor allografts dosed with 650 μg/m² Trastuzumab-MC-MMAF. Table 2d and Figures 13-15 show that the ADC have strong anti-tumor activity in the allograft of a HER2 positive tumor (Fo5) that originally arose in an MMTV-HER2 transgenic mouse. The antibody alone (e.g., Trastuzumab) does not have significant anti-tumor activity in this model (Erickson et al. U.S. Patent No. 6632979). As illustrated in Figures 13-15, the growth of the tumors was retarded by treatment with ADC as compared to control (Vehicle) level of growth.

In a surprising and unexpected discovery, the in vivo anti-tumor activity results of the ADC in Table 2d show generally that ADC with a low average number of drug moieties per antibody showed efficacy, e.g., tumor doubling time > 15 days and mean log cell kill > 1.0. Figure 16 shows that for the antibody drug conjugate, trastuzumab-MC-vc-PAB-MMAF, the mean tumor volume diminished and did not progress where the MMAF:trastuzumab ratio was 2 and 4, whereas tumor progressed at a ratio of 5.9 and 6, but at a rate lower than Vehicle (buffer). The rate of tumor progression in this mouse xenograft model was about the same, i.e. 3 days, for Vehicle and trastuzumab. The results suggest that at least for trastuzumab ADC, the optimal ratio of drug moieties per antibody may be less than about 8, and may be about 2 to about 4.

4.5.5 RODENT TOXICITY

Antibody drug conjugates and an ADC-minus control, "Vehicle", were evaluated in an acute toxicity rat model. Toxicity of ADC was investigated by treatment of male and female Sprague-Dawley rats with the ADC and subsequent inspection and analysis of the effects on various organs. Gross observations included changes in body weights and signs of lesions and bleeding. Clinical pathology parameters (serum chemistry and hematology), histopathology, and necropsy were conducted on dosed animals.

It is considered that weight loss, or weight change relative to animals dosed only with Vehicle, in animals after dosing with ADC is a gross and general indicator of systemic or localized toxicity. Figures 17-19 show the effects of various ADC and control (Vehicle) after dosing on rat body weight.

Hepatotoxicity was measured by elevated liver enzymes, increased numbers of mitotic and apoptotic figures and hepatocyte necrosis. Hematoxylinic toxicity was observed by depletion of leukocytes, primarily granulocytes (neutrophils), and/or platelets, and lymphoid organ involvement, i.e. atrophy or apoptotic activity. Toxicity was also noted by gastrointestinal tract lesions such as increased numbers of mitotic and apoptotic figures and degenerative enterocolitis.

Enzymes indicative of liver injury that were studied include:

AST (aspartate aminotransferase)
- Localization: cytoplasmic; liver, heart, skeletal muscle, kidney
- Liver:Plasma ratio of 7000:1
- T1/2: 17hrs

ALT (alanine aminotransferase)
- Localization: cytoplasmic; liver, kidney, heart, skeletal muscle
- Liver:Plasma ratio of 3000:1
 - T1/2: 42 hrs; diurnal variation

GGT (g-glutamyl transferase)
- Localization: plasma membrane of cells with high secretory or absorptive capacity; liver, kidney, intestine
- Poor predictor of liver injury; commonly elevated in bile duct disorders

The toxicity profiles of trastuzumab-MC-val-cit-MMAF, trastuzumab-MC(Me)-val-cit-PAB-MMAF, trastuzumab-MC-MMAF and trastuzumab-MC-val-cit-PAB-MMAF were studied in female Sprague-Dawley rats (Example 19). The humanized trastuzumab antibody does not bind appreciably to rat tissue, and any toxicity would be considered non-specific. Variants at dose levels of 840 and 2105 ug/m² MMAF were compared to trastuzumab-MC-val-cit-PAB-MMAF.
at 2105 ug/m².

[0371] Animals in groups 1, 2, 3, 4, 6, and 7 (Vehicle, 9.94 & 24.90 mg/kg trastuzumab-MC-val-cit-MMAF, 10.69 mg/kg trastuzumab-MC(Me)-val-cit-PAB-MMAF, and 10.17 & 25.50 mg/kg trastuzumab-MC-MMAF, respectively) gained weight during the study. Animals in groups 5 and 8 (26.78 mg/kg trastuzumab-MC(Me)-val-cit-PAB-MMAF and 21.85 mg/kg trastuzumab-MC-val-cit-PAB-MMAF, respectively) lost weight during the study. On Study Day 5, the change in body weight of animals in groups 2, 6 and 7 were not significantly different from group 1 animals. The change in body weights of animals in groups 3, 4, 5 and 8 were statistically different from group 1 animals (Example 19).

[0372] Rats treated with trastuzumab-MC-MMAF (groups 6 and 7) were indistinguishable from vehicle-treated control animals at both dose levels; i.e., this conjugate showed a superior safety profile in this model. Rats treated with trastuzumab-MC-val-cit-MMAF (without the self-immmolative PAB moiety; groups 2 and 3) showed dose-dependent changes typical for MMAF conjugates; the extent of the changes was less compared with a full length MC-val-cit-PAB-MMAF conjugate (group 8). The platelet counts on day 5 were at approximately 30% of baseline values in animals of group 3 (high dose trastuzumab-MC-val-cit-MMAF) compared with 15% in animals of group 8 (high dose trastuzumab-MC-val-cit-PAB-MMAF). Elevation of liver enzymes AST and ALT, of bilirubin and the extent of thrombocytopenia was most evident in animals treated with trastuzumab-MC(Me)-val-cit-PAB-MMAF (groups 4 and 5) in a dose-dependent fashion; animals of group 5 (high dose group) showed on day 5 levels of ALT of approximately 10x the baseline value and platelets were reduced by approximately 90% at the time of necropsy.

[0373] Female Sprague Dawley Rats were also dosed at high levels (Example 19, High Dose study: Groups 2, 3, 4) with trastuzumab-MC-MMAF, and Vehicle control (Group 1). Mild toxicity signals were observed, including a dose-dependent elevation of liver enzymes ALT, AST and GGT. On day 5 animals in the highest dose group showed a 2-fold elevation of ALT and a 5-fold elevation of AST; GGT is also elevated (6U/L). Enzyme levels show a trend towards normalization on day 12. There was a mild granulocytosis in all three dose groups on day 5, the platelet count remained essentially unchanged in all animals. Morphological changes were mild; animals treated at the 4210 μg/m² dose level (Group 2) showed unremarkable histology of liver, spleen, thymus, intestines and bone marrow. Mildly increased apoptotic and mitotic activity was observed in thymus and liver, respectively in animals treated at the 5500 μg/m² dose level (Group 3). The bone marrow was normocellular, but showed evidence of granulocytic hyperplasia, which is consistent with the absolute granulocytosis observed in the peripheral blood counts in these animals. Animals at the highest dose in group 4 showed qualitatively the same features; the mitotic activity in the liver appears somewhat increased compared to animals in Group 3. Also, extramedullary hematopoiesis was seen in spleen and liver.

[0374] EphB2R is a type 1 TM tyrosine kinase receptor with close homology between mouse and human, and is over-expressed in colorectal cancer cells. 2H9 is an antibody against EphB2R. The naked antibody has no effect on tumor growth, but 2H9-val-cit-MMAE killed EphB2R expressing cells and showed efficacy in a mouse xenograft model using CXF1103 human colon tumors (Mao et al (2004) Cancer Res. 64:781-788). 2H9 and 7C2 are both mouse IgG1 anti-HER2 antibodies. The toxicity profiles of 2H9-MC-val-cit-PAB-MMAF (3.7 MMAF/Ab), 7C2-MC-val-cit-PAB-MMAF (4 MMAF/Ab), and trastuzumab-MC-val-cit-PAB-MMAF (5.9 MMAF/Ab) were compared. The differences in the structure of each immunoconjugate or the drug portion of the immunoconjugate may affect the pharmacokinetics and ultimately the safety profile. The humanized trastuzumab antibody does not bind appreciably to rat tissue, and any toxicity would be considered non-specific.

CYNOMOLGUS MONKEY TOXICITY/SAFETY

[0375] Similar to the rat toxicity/safety study, cynomolgus monkeys were treated with ADC followed by liver enzyme measurements, and inspection and analysis of the effects on various organs. Gross observations included changes in body weights and signs of lesions and bleeding. Clinical pathology parameters (serum chemistry and hematology), histopathology, and necropsy were conducted on dosed animals (Example 19).

[0376] The antibody drug conjugate, H-MC-vc-PAB-MMAE (H = trastuzumab linked through cysteine) showed no evidence of liver toxicity at any of the dose levels tested. Peripheral blood granulocytes showed depletion after a single dose of 1100mg/m² with complete recovery 14 days post-dose. The antibody drug conjugate H-MC-vc-PAB-MMAF showed elevation of liver enzymes at 550 (transient) and 880 mg/m² dose level, no evidence of granulocytopenia, and a dose-dependent, transient (groups 2 & 3) decline of platelets.

4.6 SYNTHESIS OF THE COMPOUNDS

[0377] The Exemplary Compounds and Exemplary Conjugates can be made using the synthetic procedures outlined below in Schemes 5-16. As described in more detail below, the Exemplary Compounds or Exemplary Conjugates can be conveniently prepared using a Linker having a reactive site for binding to the Drug and Ligand, such as but not limited to an antibody. Useful nucleophilic groups on an antibody include but are not limited to, sulphydryl,
hydroxyl and amino groups. The heteroatom of the nucleophilic group of an antibody is reactive to an electrophilic group on a Linker and forms a covalent bond to a Linker unit. Useful electrophilic groups include, but are not limited to, maleimide and haloacetamide groups. The electrophilic group provides a convenient site for antibody attachment. [0378] In another example, a Linker has a reactive site which has a nucleophilic group that is reactive to an electrophilic group present on an antibody. Useful electrophilic groups on an antibody include, but are not limited to, aldehyde and ketone carbonyl groups. The heteroatom of a nucleophilic group of a Linker can react with an electrophilic group on an antibody and form a covalent bond to an antibody unit. Useful nucleophilic groups on a Linker include, but are not limited to, hydrazide, oxime, amino, hydrazine, thiosemicarbazone, hydrazine carboxylate, and arylhydrazide. The electrophilic group on an antibody provides a convenient site for attachment to a Linker. [0379] Carboxylic acid functional groups and chloroformate functional groups are also useful reactive sites for a Linker because they can react with secondary amino groups of a Drug to form an amide linkage. Also useful as a reactive site is a carbonate functional group on a Linker, such as but not limited to p-nitrophenyl carbonate, which can react with an amino group of a Drug, such as but not limited to N-methyl valine, to form a carbamate linkage. Typically, peptide-based Drugs can be prepared by forming a peptide bond between two or more amino acids and/or peptide fragments. Such peptide bonds can be prepared, for example, according to the liquid phase synthesis method (see E. Schröder and K. Lübke, "The Peptides", volume 1, pp 76-136, 1965, Academic Press) that is well known in the field of peptide chemistry. [0380] The synthesis of an illustrative Stretcher having an electrophilic maleimide group is illustrated below in Schemes 8-9. General synthetic methods useful for the synthesis of a Linker are described in Scheme 10. Scheme 11 shows the construction of a Linker unit having a val-cit group, an electrophilic maleimide group and a PAB self-immolative Spacer group. Scheme 12 depicts the synthesis of a Linker having a phe-lys group, an electrophilic maleimide group, with and without the PAB self-immolative Spacer group. Scheme 13 presents a general outline for the synthesis of a Drug-Linker Compound, while Scheme 14 presents an alternate route for preparing a Drug-Linker Compound. Scheme 15 depicts the synthesis of a branched linker containing a BHMS group. Scheme 16 outlines the attachment of an antibody to a Drug-Linker Compound to form a Drug-Linker-Antibody Conjugate, and Scheme 14 illustrates the synthesis of Drug-Linker-Antibody Conjugates having, for example but not limited to, 2 or 4 drugs per Antibody. [0381] As described in more detail below, the Exemplary Conjugates are conveniently prepared using a Linker having two or more Reactive Sites for binding to the Drug and a Ligand. In one example, a Linker has a Reactive site which has an electrophilic group that is reactive to a nucleophilic group present on a Ligand, such as an antibody. Useful nucleophilic groups on an antibody include but are not limited to, sulfhydryl, hydroxyl and amino groups. The heteroatom of the nucleophilic group of an antibody is reactive to an electrophilic group on a Linker and forms a covalent bond to a Linker unit. Useful electrophilic groups include, but are not limited to, maleimide and haloacetamide groups. The electrophilic group provides a convenient site for antibody attachment. [0382] In another example, a Linker has a Reactive site which has a nucleophilic group that is reactive to an electrophilic group present on a Ligand, such as an antibody. Useful electrophilic groups on an antibody include, but are not limited to, aldehyde and ketone carbonyl groups. The heteroatom of a nucleophilic group of a Linker can react with an electrophilic group on an antibody and form a covalent bond to an antibody unit. Useful nucleophilic groups on a Linker include, but are not limited to, hydrazide, oxime, amino, hydrazine, thiosemicarbazone, hydrazine carboxylate, and arylhydrazide. The electrophilic group on an antibody provides a convenient site for attachment to a Linker. 4.6.1 DRUG MOIETY SYNTHESIS [0383] Typically, peptide-based Drugs can be prepared by forming a peptide bond between two or more amino acids and/or peptide fragments. Such peptide bonds can be prepared, for example, according to the liquid phase synthesis method (see E. Schröder and K. Lübke, "The Peptides", volume 1, pp 76-136, 1965, Academic Press) that is well known in the field of peptide chemistry. [0384] The auristatin/dolastatin drug moieties may be prepared according to the general methods of: U.S. Patent No. 5635483; U.S. Patent No. 5780588; Pettit et al. (1989) J. Am. Chem. Soc. 111:5463-5465; Pettit et al. (1998) Anti-Cancer Drug Design 13:243-277; and Pettit et al. (1996) J. Chem. Soc. Perkin Trans. 1 5:859-863. [0385] In one example, a Drug is prepared by combining about a stoichiometric equivalent of a dipeptide and a tripeptide, preferably in a one-pot reaction under suitable condensation conditions. This approach is illustrated in Schemes 5-7, below. [0386] Scheme 5 illustrates the synthesis of an N-terminal tripeptide unit F which is a useful intermediate for the synthesis of the drug compounds of Formula Ib.
As illustrated in Scheme 5, a protected amino acid A (where PG represents an amine protecting group, R^4 is selected from hydrogen, C_1-C_8 alkyl, C_3-C_8 carbocycle, -O-(C_1-C_8 alkyl), -aryl, alkyl-aryl, alkyl-(C_3-C_8 carbocycle), C_3-C_8 heterocycle, alkyl-(C_3-C_8 heterocycle) wherein R^5 is selected from H and methyl; or R^4 and R^5 join, have the formula -(CR^aR^b)_n-, wherein R^a and R^b are independently selected from hydrogen, C_1-C_8 alkyl and C_3-C_8 carbocycle and n is selected from 2, 3, 4, 5 and 6, and form a ring with the carbon atom to which they are attached) is coupled to \(t \)-butyl ester B (where R^6 is selected from -H and -C_1-C_8 alkyl; and R^7 is selected from hydrogen, C_1-C_8 alkyl, C_3-C_8 carbocycle, -O-(C_1-C_8 alkyl), -aryl, alkyl-aryl, alkyl-(C_3-C_8 carbocycle), C_3-C_8 heterocycle and alkyl-(C_3-C_8 heterocycle)) under suitable coupling conditions, e.g., in the presence of PyBrop and diisopropylethylamine, or using DCC (see, for example, Miyazaki, K. et al. Chem. Charm. Bull. 1995, 43(10), 1706-1718).

Suitable protecting groups PG, and suitable synthetic methods to protect an amino group with a protecting group are well known in the art. See, e.g., Greene, T.W. and Wuts, P.G.M., Protective Groups in Organic Synthesis, 2nd Edition, 1991, John Wiley & Sons. Exemplary protected amino acids A are PG-Ile and, particularly, PG-Val, while other suitable protected amino acids include, without limitation: PG-cyclohexylglycine, PG-cyclohexylalanine, PG-amino-cyclopropane-1-carboxylic acid, PG-aminoisobutyric acid, PG-phenylalanine, PG-phenylglycine, and PG-tert-butylglycine. Z is an exemplary protecting group. Fmoc is another exemplary protecting group. An exemplary \(t \)-butyl ester \(B \) is dolaisoleuine \(t \)-butyl ester.

The dipeptide \(C \) can be purified, e.g., using chromatography, and subsequently deprotected, e.g., using H_2 and 10% Pd/C in ethanol when PG is benzoyloxycarbonyl, or using diethylamine for removal of an Fmoc protecting group. The resulting amine \(D \) readily forms a peptide bond with an amino acid \(B \) (wherein R^1 is selected from -H, -C_1-C_8 alkyl and -C_3-C_8 carbocycle; and R^2 is selected from -H and -C_1-C_8 alkyl; or R^1 and R^2 join, have the formula -(CR^aR^b)_n-, wherein R^a and R^b are independently selected from hydrogen, -C_1-C_8 alkyl and -C_3-C_8 carbocycle and n is selected from 2, 3, 4, 5 and 6, and form a ring with the nitrogen atom to which they are attached; and R^3 is selected from hydrogen, C_1-C_8 alkyl, C_3-C_8 carbocycle, -O-(C_1-C_8 alkyl), -aryl, alkyl-aryl, alkyl-(C_3-C_8 carbocycle), C_3-C_8 heterocycle and alkyl-(C_3-C_8 heterocycle)). N,N-Dialkyl amino acids are exemplary amino acids for \(B \), such as commercially available N,N-dimethylvaline. Other N,N-dialkyl amino acids can be prepared by reductive bis-alkylation using known procedures (see, e.g., Bowman, R.E, Stroud, H.H. J. Chem. Soc., 1950, 1342-1340). Fmoc-Me-L-Val and Fmoc-Me-L-glycine are two exemplary amino acids \(B \) useful for the synthesis of \(N \)-monoalkyl derivatives. The amine \(D \) and the amino acid \(B \) react to provide the tripeptide \(E \) using coupling reagent DEPC with triethylamine as the base. The C-terminus protecting group of \(E \) is subsequently deprotected using HCl to provide the tripeptide compound of formula \(F \).

Illustrative DEPC coupling methodology and the PyBrop coupling methodology shown in Scheme 5 are outlined below in General Procedure A and General Procedure B, respectively. Illustrative methodology for the deprotection of a Z-protected amine via catalytic hydrogenation is outlined below in General Procedure C.

General Procedure A: Peptide synthesis using DEPC. The \(N \)-protected or N, N-disubstituted amino acid or
peptide D (1.0 eq.) and an amine BB (1.1 eq.) are diluted with an aprotic organic solvent, such as dichloromethane (0.1 to 0.5 M). An organic base such as triethylamine or disopropylethylamine (1.5 eq.) is then added, followed by DEPC (1.1 eq.). The resulting solution is stirred, preferably under argon, for up to 12 hours while being monitored by HPLC or TLC. The solvent is removed in vacuo at room temperature, and the crude product is purified using, for example, HPLC or flash column chromatography (silica gel column). Relevant fractions are combined and concentrated in vacuo to afford tripeptide E which is dried under vacuum overnight.

[0392] General procedure B: Peptide synthesis using PyBrop. The amino acid B (1.0 eq.), optionally having a carboxyl protecting group, is diluted with an aprotic organic solvent such as dichloromethane or DME to provide a solution of a concentration between 0.5 and 1.0 mM, then disopropylethylamine (1.5 eq.) is added. Fmoc-, or Z-protected amino acid A (1.1 eq.) is added as a solid in one portion, then PyBrop (1.2 eq.) is added to the resulting mixture. The reaction is monitored by TLC or HPLC, followed by a workup procedure similar to that described in General Procedure A.

[0393] General procedure C: Z-removal via catalytic hydrogenation. Z-protected amino acid or peptide C is diluted with ethanol to provide a solution of a concentration between 0.5 and 1.0 mM in a suitable vessel, such as a thick-walled round bottom flask. 10% palladium on carbon is added (5-10% w/w) and the reaction mixture is placed under a hydrogen atmosphere. Reaction progress is monitored using HPLC and is generally complete within 1-2 h. The reaction mixture is filtered through a pre-washed pad of celite and the celite is again washed with a polar organic solvent, such as methanol after filtration. The eluent solution is concentrated in vacuo to afford a residue which is diluted with an organic solvent, preferably toluene. The organic solvent is then removed in vacuo to afford the deprotected amine C.

[0394] Scheme 6 shows a method useful for making a C-terminal dipeptide of formula K and a method for coupling the dipeptide of formula K with the tripeptide of formula F to make drug compounds of Formula Ib.

Scheme 6

![Diagram of Scheme 6](image)

[0395] The dipeptide K can be readily prepared by condensation of the modified amino acid Boc-Dolaproine G (see, for example, Pettit, G.R., et al. Synthesis, 1 996, 719-725), with an amine of formula H using condensing agents well
known for peptide chemistry, such as, for example, DEPC in the presence of triethylamine, as shown in Scheme 5.

The dipeptide of formula K can then be coupled with a tripeptide of formula F using General Procedure D to make the Fmoc-protected drug compounds of formula L which can be subsequently deprotected using General Procedure E in order to provide the drug compounds of formula (Ib).

General procedure D: Drug synthesis. A mixture of dipeptide K (1.0 eq.) and tripeptide F (1 eq.) is diluted with an aprotic organic solvent, such as dichloromethane, to form a 0.1M solution, then a strong acid, such as trifluoroacetic acid (1/2 v/v) is added and the resulting mixture is stirred under a nitrogen atmosphere for two hours at 0°C. The reaction can be monitored using TLC or, preferably, HPLC. The solvent is removed in vacuo and the resulting residue is azeotropically dried twice, preferably using toluene. The resulting residue is dried under high vacuum for 12 h and then diluted with an aprotic organic solvent, such as dichloromethane. An organic base such as triethylamine or diisopropylethylamine (1.5 eq.) is then added, followed by either PyBrop (1.2 eq.) or DEPC (1.2 eq.) depending on the chemical functionality on the residue. The reaction mixture is monitored by either TLC or HPLC and upon completion, the reaction is subjected to a workup procedure similar or identical to that described in General Procedure A.

General procedure E: Fmoc-removal using diethylamine. An Fmoc-protected Drug L is diluted with an aprotic organic solvent such as dichloromethane and to the resulting solution is added diethylamine (½ v/v). Reaction progress is monitored by TLC or HPLC and is typically complete within 2 h. The reaction mixture is concentrated in vacuo and the resulting residue is azeotropically dried, preferably using toluene, then dried under high vacuum to afford Drug Ib having a deprotected amino group.

Scheme 7 shows a method useful for making MMAF derivatives of Formula (Ib).
The dipeptide O can be readily prepared by condensation of the modified amino acid Boc-Dolaproine G (see, for example, Pettit, G.R., et al. Synthesis, 1996, 719-725), with a protected amino acid of formula M using condensing agents well known for peptide chemistry, such as, for example, DEPC in the presence of triethylamine, as shown in Schemes 5 and 6.

The dipeptide of formula O can then be coupled with a tripeptide of formula F using General Procedure D to make the Fmoc-protected MAAF compounds of formula P which can be subsequently deprotected using General Procedure E in order to provide the MAAF drug compounds of formula (Ib).

Thus, the above methods are useful for making Drugs as described herein.

4.6.2 DRUG LINKER SYNTHESIS

To prepare a Drug-Linker Compound, the Drug is reacted with a reactive site on the Linker. In general, the Linker can have the structure:
when both a Spacer unit (-Y-) and a Stretcher unit (-A-) are present. Alternately, the Linker can have the structure:

when the Spacer unit (-Y-) is absent.

The Linker can also have the structure:

when both the Stretcher unit (-A-) and the Spacer unit (-Y-) are absent.

The Linker can also have the structure:

when both the Amino Acid unit (W) and the Spacer Unit (Y) are absent.

In general, a suitable Linker has an Amino Acid unit linked to an optional Stretcher Unit and an optional Spacer Unit. Reactive Site 1 is present at the terminus of the Spacer and Reactive site 2 is present at the terminus of the Stretcher. If a Spacer unit is not present, then Reactive site 1 is present at the C-terminus of the Amino Acid unit. In an example of the invention, Reactive Site No. 1 is reactive to a nitrogen atom of the Drug, and Reactive Site No. 2 is reactive to a sulfhydryl group on the Ligand. Reactive Sites 1 and 2 can be reactive to different functional groups.

In one example, Reactive Site No. 1 is

In another example, Reactive Site No. 1 is

In still another example, Reactive Site No. 1 is a p-nitrophenyl carbonate having the formula

In one example, Reactive Site No. 2 is a thiol-accepting group. Suitable thiol-accepting groups include haloacetamide groups having the formula
wherein X represents a leaving group, preferably O-mesyl, O-tosyl, -Cl, -Br, or -I; or a maleimide group having the formula

[0411] Useful Linkers can be obtained via commercial sources, such as Molecular Biosciences Inc. (Boulder, CO), or prepared as summarized in Schemes 8-10 below.

Scheme 8

wherein X is -CH₂ or -CH₂OCH₂; and n is an integer ranging either from 0-10 when X is -CH₂; or 1-10 when X is -CH₂OCH₂.

[0412] The method shown in Scheme 9 combines maleimide with a glycol under Mitsunobu conditions to make a polyethylene glycol maleimide Stretcher (see for example, Walker, M.A. J. Org. Chem. 1995, 60, 5352-5), followed by installation of a p-nitrophenyl carbonate Reactive Site group.
wherein \(E \) is \(-\text{CH}_2-\) or \(-\text{CH}_2\text{OCH}_2-\); and \(e \) is an integer ranging from 0-8;

Alternatively, PEG-maleimide and PEG-haloacetamide stretchers can be prepared as described by Frisch, et al., Bioconjugate Chem. 1996, 7, 180-186. Scheme 10 illustrates a general synthesis of an illustrative Linker unit containing a maleimide Stretcher group and optionally a p-aminobenzyl ether self-immolative Spacer.

wherein \(Q \) is \(-\text{C}_1-\text{C}_8 \text{ alkyl}, -\text{O-(C}_1-\text{C}_8 \text{ alkyl}), -\text{halogen}, -\text{nitro} \) or \(-\text{cyano}; m \) is an integer ranging from 0-4; and \(n \) is an integer ranging from 0-10.

Useful Stretchers may be incorporated into a Linker using the commercially available intermediates from Molecular Biosciences (Boulder, CO) described below by utilizing known techniques of organic synthesis. Stretchers of formula (\(\text{IIIa} \)) can be introduced into a Linker by reacting the following intermediates with the N-terminus of an Amino Acid unit as depicted in Schemes 11 and 12:

wherein \(R^1 \) is benzyl; \(R^2=\text{(CH}_3\text{)}_4\text{NHNtr} \) (U)
\(R^1=\text{isopropyl; } R^2=\text{(CH}_3\text{)}_3\text{NHCONH}_2 \) (V)
where \(n \) is an integer ranging from 1-10 and \(T \) is -H or -SO\(_3\)Na;

where \(n \) is an integer ranging from 0-3;

and

[0415] Stretcher units of formula (IIIb) can be introduced into a Linker by reacting the following intermediates with the N-terminus of an Amino Acid unit:
[0416] Stretcher units of formula (IV) can be introduced into a Linker by reacting the following intermediates with the N-terminus of an Amino Acid unit:

[0417] Stretcher units of formula (Va) can be introduced into a Linker by reacting the following intermediates with the
Other useful Stretchers may be synthesized according to known procedures. Aminoxy Stretchers of the formula shown below can be prepared by treating alkyl halides with N-Boc-hydroxylamine according to procedures described in Jones, D.S. et al., Tetrahedron Letters, 2000, 41 (10), 1531-1533; and Gilon, C. et al., Tetrahedron, 1967, 23(11), 4441-4447.

\[
\text{NH}_2-O-R^{17}\cdot C(O)\quad ^{\circledast}
\]

wherein \(R^{17}\) is selected from \(-C_1-C_{10}~\text{alkylene}-\), \(-C_3-C_8~\text{carbocyclo}-\), \(-O-(C_1-C_8~\text{alkyl})-\), \(-\text{arylene}-\), \(-C_1-C_{10}~\text{alkylene}-\text{arylene}-\), \(-\text{arylene}-C_1-C_{10}~\text{alkylene}-\), \(-C_1-C_{10}~\text{alkylene}-(C_3-C_8~\text{carbocyclo})-\), \(-(C_3-C_8~\text{carbocyclo})-C_1-C_{10}~\text{alkylene}-\), \(-C_3-C_8~\text{heterocyclo}-\), \(-C_1-C_{10}~\text{alkylene}-(C_3-C_8~\text{heterocyclo})-\), \(-(C_3-C_8~\text{heterocyclo})-C_1-C_{10}~\text{alkylene}-\), \(-(\text{CH}_2\text{CH}_2\text{O})_r-\), \(-\text{(CH}_2\text{CH}_2\text{O})_r-\text{CH}_2-\); and \(r\) is an integer ranging from 1-10; Isothiocyanate Stretchers of the formula shown below may be prepared from isothiocyanato carboxylic acid chlorides as described in Angew. Chem., 1975, 87(14):517.

\[
S=\text{C}^=\text{N}\cdot R^{17}\cdot C(O)\quad ^{\circledast}
\]

wherein \(R^{17}\) is as described herein.

Scheme 11 shows a method for obtaining of a val-cit dipeptide Linker having a maleimide Stretcher and optionally a p-aminobenzyl self-immolative Spacer.
Scheme 12 illustrates the synthesis of a phe-lys(Mtr) dipeptide Linker unit having a maleimide Stretcher unit and a p-aminobenzyl self-immolative Spacer unit. Starting material AD (lys(Mtr)) is commercially available (Bachem, Torrance, CA) or can be prepared according to Dubowchik, et al. Tetrahedron Letters (1997) 38:5257-60.
wherein Q is -C₁-C₈ alkyl, -O-(C₁-C₈ alkyl), -halogen, -nitro or -cyano; and m is an integer ranging from 0-4.

[0421] As shown in Scheme 13, a Linker can be reacted with an amino group of a Drug Compound of Formula (Ib) to form a Drug-Linker Compound that contains an amide or carbamate group, linking the Drug unit to the Linker unit. When Reactive Site No. 1 is a carboxylic acid group, as in Linker AJ, the coupling reaction can be performed using HATU or PyBrop and an appropriate amine base, resulting in a Drug-Linker Compound AK, containing an amide bond between the Drug unit and the Linker unit. When Reactive Site No. 1 is a carbonate, as in Linker AL, the Linker can be coupled to the Drug using HOBt in a mixture of DMF/pyridine to provide a Drug-Linker Compound AM, containing a carbamate bond between the Drug unit and the Linker unit.

[0422] Alternately, when Reactive Site No. 1 is a good leaving group, such as in Linker AN, the Linker can be coupled with an amine group of a Drug via a nucleophilic substitution process to provide a Drug-Linker Compound having an amine linkage (AO) between the Drug unit and the Linker unit.

[0423] Illustrative methods useful for linking a Drug to a Ligand to form a Drug-Linker Compound are depicted in Scheme 13 and are outlined in General Procedures G-H.
General Procedure G: Amide formation using HATU. A Drug (Ib) (1.0 eq.) and an N-protected Linker containing a carboxylic acid Reactive site (1.0 eq.) are diluted with a suitable organic solvent, such as dichloromethane, and the resulting solution is treated with HATU (1.5 eq.) and an organic base, preferably pyridine (1.5 eq.). The reaction mixture is allowed to stir under an inert atmosphere, preferably argon, for 6h, during which time the reaction mixture is monitored using HPLC. The reaction mixture is concentrated and the resulting residue is purified using HPLC to yield the amide of formula AK.

Procedure H: Carbamate formation using HOBt. A mixture of a Linker AL having a p-nitrophenyl carbonate Reactive site (1.1 eq.) and Drug (Ib) (1.0 eq.) are diluted with an aprotic organic solvent, such as DMF, to provide a solution having a concentration of 50-100 mM, and the resulting solution is treated with HOBt (2.0 eq.) and placed under an inert atmosphere, preferably argon. The reaction mixture is allowed to stir for 15 min, then an organic base, such as pyridine (1/4 v/v), is added and the reaction progress is monitored using HPLC. The Linker is typically consumed within 16 h. The reaction mixture is then concentrated in vacuo and the resulting residue is purified using, for example, HPLC to yield the carbamate AM.

An alternate method of preparing Drug-Linker Compounds is outlined in Scheme 14. Using the method of Scheme 14, the Drug is attached to a partial Linker unit (ZA, for example), which does not have a Stretcher unit attached. This provides intermediate AP, which has an Amino Acid unit having an Fmoc-protected N-terminus. The Fmoc group is then removed and the resulting amine intermediate AQ is then attached to a Stretcher unit via a coupling reaction catalyzed using PyBrop or DEPC. The construction of Drug-Linker Compounds containing either a bromoacetamide Stretcher AR or a PEG maleimide Stretcher AS is illustrated in Scheme 14.
wherein Q is -C₁₋₈ alkyl, -O-(C₁₋₈ alkyl), -halogen, -nitro or -cyano; and m is an integer ranging from 0-4.

[0427] Methodology useful for the preparation of a Linker unit containing a branched spacer is shown in Scheme 15.
Scheme 15

Scheme 15 illustrates the synthesis of a val-cit dipeptide linker having a maleimide Stretcher unit and a bis(4-hydroxymethyl)styrene (BHMS) unit. The synthesis of the BHMS intermediate \((\text{AW})\) has been improved from previous literature procedures (see International Publication No, WO 9813059 to Firestone et al., and Crozet, M.P.; Archaimbault, G.; Vanelle, P.; Nouguier, R. Tetrahedron Lett. (1985) 26:5133-5134) and utilizes as starting materials, commercially available diethyl (4-nitrobenzyl)phosphonate \((\text{AT})\) and commercially available 2,2-dimethyl-1,3-dioxan-5-one \((\text{AU})\). Linkers \((\text{AY})\) and \((\text{BA})\) can be prepared from intermediate \((\text{AW})\) using the methodology described in Scheme 9.

4.6.3 DENDRITIC LINKERS

The linker may be a dendritic type linker for covalent attachment of more than one drug moiety through a branching, multifunctional linker moiety to a Ligand, such as but not limited to an antibody (Sun et al. (2002) Bioorganic & Medicinal Chemistry Letters 12:2213-2215; Sun et al. (2003) Bioorganic & Medicinal Chemistry 11:1761-1768). Dendritic linkers can increase the molar ratio of drug to antibody, i.e. loading, which is related to the potency of the Drug-Linker-Ligand Conjugate. Thus, where a cysteine engineered antibody bears only one reactive cysteine thiol group, a multitude of drug moieties may be attached through a dendritic linker.

The following exemplary embodiments of dendritic linker reagents allow up to nine nucleophilic drug moiety
4.6.4 CONJUGATION OF DRUG MOIETIES TO ANTIBODIES

Scheme 16 illustrates methodology useful for making Drug-Linker-Ligand conjugates having about 2 to about 4 drugs per antibody. An antibody is treated with a reducing agent, such as dithiothreitol (DTT) to reduce some or all of the cysteine disulfide residues to form highly nucleophilic cysteine thiol groups (-CH₂SH). The partially reduced antibody thus reacts with drug-linker compounds, or linker reagents, with electrophilic functional groups such as maleimide or α-halo carbonyl, according to the conjugation method at page 766 of Klussman, et al. (2004), Bioconjugate Chemistry 15(4):765-773.

For example, an antibody, e.g., AC10, dissolved in 500 mM sodium borate and 500 mM sodium chloride at pH 8.0 is treated with an excess of 100 mM dithiothreitol (DTT). After incubation at 37 °C for about 30 minutes, the buffer is
exchanged by elution over Sephadex G25 resin and eluted with PBS with 1mM DTPA. The thiol/Ab value is checked by determining the reduced antibody concentration from the absorbance at 280 nm of the solution and the thiol concentration by reaction with DTNB (Aldrich, Milwaukee, WI) and determination of the absorbance at 412 nm. The reduced antibody dissolved in PBS is chilled on ice. The drug linker, e.g., MC-val-cit-PAB-MMAE in DMSO, dissolved in acetonitrile and water at known concentration, is added to the chilled reduced antibody in PBS. After about one hour, an excess of maleimide is added to quench the reaction and cap any unreacted antibody thiol groups. The reaction mixture is concentrated by centrifugal ultrafiltration and the ADC, e.g., AC10-MC-vc-PAB-MMAE, is purified and desalted by elution through G25 resin in PBS, filtered through 0.2 μm filters under sterile conditions, and frozen for storage.

A variety of antibody drug conjugates (ADC) were prepared, with a variety of linkers, and the drug moieties, MMAE and MMAF. The following table is an exemplary group of ADC which were prepared following the protocol of Example 27, and characterized by HPLC and drug loading assay.
4.7 COMPOSITIONS AND METHODS OF ADMINISTRATION

[0433] Also described is a composition including an effective amount of an Exemplary Compound and/or Exemplary Conjugate and a pharmaceutically acceptable carrier or vehicle. For convenience, the Drug units and Drug-Linker Compounds can be referred to as Exemplary Compounds, while Drug-Ligand Conjugates and Drug-Linker-Ligand Conjugates can be referred to as Exemplary Conjugates. The compositions are suitable for veterinary or human administration.

[0434] The present compositions can be in any form that allows for the composition to be administered to a patient. For example, the composition can be in the form of a solid, liquid or gas (aerosol). Typical routes of administration include, without limitation, oral, topical, parenteral, sublingual, rectal, vaginal, ocular, intra-tumor, and intranasal. Parenteral administration includes subcutaneous injections, intravenous, intramuscular, intratumoral injection or infusion techniques. The compositions may be administered parenterally. Alternatively, the Exemplary Compounds and/or the Exemplary Conjugates or compositions may be administered intravenously.

[0435] Pharmaceutical compositions can be formulated so as to allow an Exemplary Compound and/or Exemplary Conjugate to be bioavailable upon administration of the composition to a patient. Compositions can take the form of one or more dosage units, where for example, a tablet can be a single dosage unit, and a container of an Exemplary Compound and/or Exemplary Conjugate in aerosol form can hold a plurality of dosage units.

[0436] Materials used in preparing the pharmaceutical compositions can be nontoxic in the amounts used. It will be evident to those of ordinary skill in the art that the optimal dosage of the active ingredient(s) in the pharmaceutical composition will depend on a variety of factors. Relevant factors include, without limitation, the type of animal (e.g., human), the particular form of the Exemplary Compound or Exemplary Conjugate, the manner of administration, and the composition employed.

[0437] The pharmaceutically acceptable carrier or vehicle can be particulate, so that the compositions are, for example, in tablet or powder form. The carrier(s) can be liquid, with the compositions being, for example, an oral syrup or injectable liquid. In addition, the carrier(s) can be gaseous or particulate, so as to provide an aerosol composition useful in, e.g., inhalatory administration.

[0438] When intended for oral administration, the composition is preferably in solid or liquid form, where semi-solid, semi-liquid, suspension and gel forms are included within the forms considered herein as either solid or liquid.

[0439] As a solid composition for oral administration, the composition can be formulated into a powder, granule, compressed tablet, pill, capsule, chewing gum, wafer or the like form. Such a solid composition typically contains one

<table>
<thead>
<tr>
<th>Target (antigen)</th>
<th>ADC</th>
<th>isolated amount (mg)</th>
<th>drug/Ab ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Napi3b 10H1-MC-vc-PAB-MMAF</td>
<td>95</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Napi3b 10H1-MC-MMAF</td>
<td>92</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EphB2R 2H9-MC-vc-PAB-MMAE</td>
<td>79</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>EphB2R 2H9-MC-MMAF</td>
<td>92</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>0772P 11D10(Fc chimera)-MC-vc-PAB-MMAE</td>
<td>79</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>0772P 11D10(Fc chimera)-MC-vc-PAB-MMAF</td>
<td>70.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0772P 11D10(Fc chimera)-MC-MMAF</td>
<td>23</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Brevican 6D2-MC-vc-PAB-MMAF</td>
<td>0.3</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Brevican 6D2-MC-MMAF</td>
<td>0.36</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>EphB2R 2H9(Fc chimera)-MC-vc-PAB-MMAE</td>
<td>1983</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>E16 12B9-MC-vc-PAB-MMAE</td>
<td>14.1</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>E16 12B9-MC-vc-PAB-MMAF</td>
<td>16.4</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>E16 12G12-Mc-vc-PAB-MMAE</td>
<td>10.5</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>E16 12G12-Mc-vc-PAB-MMAF</td>
<td>10.23.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E16 3B5-Mc-vc-PAB-MMAE</td>
<td>58.6</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>E16 3B5-Mc-vc-PAB-MMAF</td>
<td>8</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>0772P 11D10(Fc chimera)-MC-vc-PAB-MMAE</td>
<td>340</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>Steap1 (Steap1-92)-MC-vc-PAB-MMAE</td>
<td>3.5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Steap1 (Steap1-92)-MC-vc-PAB-MMAF</td>
<td>4.7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Steap1 (Steap1-120)-MC-vc-PAB-MMAE</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Steap1 (Steap1-120)-MC-vc-PAB-MMAF</td>
<td>2.3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>E16 3B5-MC-vc-PAB-MMAF</td>
<td>52.2</td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>
or more inert diluents. In addition, one or more of the following can be present: binders such as carboxymethylcellulose, ethyl cellulose, microcrystalline cellulose, or gelatin; excipients such as starch, lactose or dextrins, disintegrating agents such as alginic acid, sodium alginate, Primogel, corn starch and the like; lubricants such as magnesium stearate or Sterotex; glidants such as colloidal silicon dioxide; sweetening agents such as sucrose or saccharin, a flavoring agent such as peppermint, methyl salicylate or orange flavoring, and a coloring agent.

The composition is preferably sterile.

When the composition is in the form of a capsule, e.g., a gelatin capsule, it can contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol, cyclodextrin or a fatty oil.

The compositions comprise an effective amount of an Exemplary Compound and/or Exemplary Conjugate administered to a patient is between about 0.1 mg/kg and about 20 mg/kg of the animal's body weight, or the dosage administered is between about 0.1 mg/kg and about 250 mg/kg of the animal's body weight, in yet another aspect, the dosage administered is between about 0.1 mg/kg to about 10 mg/kg of the animal's body weight. The dosage administered to a patient may be between about 0.1 mg/kg and about 250 mg/kg of the animal's body weight, in yet another aspect, the dosage administered to a patient is between about 0.1 mg/kg and about 20 mg/kg of the animal's body weight, or the dosage administered is between about 0.1 mg/kg to about 10 mg/kg of the animal's body weight, or the dosage administered is between about 0.1 mg/kg to about 10 mg/kg of the animal's body weight.

The Exemplary Compounds and/or Exemplary Conjugate or compositions can be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.). Administration can be systemic or local. Various delivery systems are known, e.g., encapsulation in liposomes, microparticles, microcapsules, capsules, etc., and can be used to administer an Exemplary Compound and/or Exemplary Conjugate or composition. In certain cases, more than one Exemplary Compound and/or Exemplary Conjugate or composition is administered to a patient.

In specific cases, it can be desirable to administer one or more Exemplary Compounds and/or Exemplary Conjugate or compositions locally to the area in need of treatment. This can be achieved, for example, and not by way of limitation, by local infusion during surgery; topical application, e.g., in conjunction with a wound dressing after surgery; by injection; by means of a catheter; by means of a suppository; or by means of an implant, the implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. In one example, administration can be by direct injection at the site (or former site) of a cancer, tumor or neoplastic or pre-neoplastic
tissue. In another example, administration can be by direct injection at the site (or former site) of a manifestation of an autoimmune disease.

In certain cases, it can be desirable to introduce one or more Exemplary Compounds and/or Exemplary Conjugate or compositions into the central nervous system by any suitable route, including intraventricular and intrathecal injection. Intraventricular injection can be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir.

Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent, or via perfusion in a fluorocarbon or synthetic pulmonary surfactant.

In yet another example, the Exemplary Compounds and/or Exemplary Conjugate or compositions can be delivered in a controlled release system, such as but not limited to, a pump or various polymeric materials can be used. In yet another example, a controlled-release system can be placed in proximity of the target of the Exemplary Compounds and/or Exemplary Conjugate or compositions, e.g., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)). Other controlled-release systems discussed in the review by Langer (Science 249:1527-1533 (1990)) can be used.

The term "carrier" refers to a diluent, adjuvant or excipient, with which an Exemplary Compound and/or Exemplary Conjugate is administered. Such pharmaceutical carriers can be liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. The carriers can be saline, gum acacia, gelatin, starch paste, talc, keratin, colloidal silica, urea, and the like. In addition, auxiliary, stabilizing, thickening, lubricating and coloring agents can be used. In one example, when administered to a patient, the Exemplary Compound and/or Exemplary Conjugate or compositions and pharmaceutically acceptable carriers are sterile. Water is an exemplary carrier when the Exemplary Compounds and/or Exemplary Conjugates are administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical carriers also include excipients such as starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene glycol, water, ethanol and the like. The present compositions, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.

The present compositions can take the form of solutions, suspensions, emulsion, tablets, pills, pellets, capsules, capsules containing liquids, powders, sustained-release formulations, suppositories, emulsions, aerosols, sprays, suspensions, or any other form suitable for use. Other examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E.W. Martin.

The Exemplary Compounds and/or Exemplary Conjugates may be formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to animals, particularly human beings. Typically, the carriers or vehicles for intravenous administration are sterile isotonic aqueous buffer solutions. Where necessary, the compositions can also include a solubilizing agent. Compositions for intravenous administration can optionally comprise a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where an Exemplary Compound and/or Exemplary Conjugate is to be administered by infusion, it can be dispensed, for example, with an infusion bottle containing sterile pharmaceutically grade water or saline. Where the Exemplary Compound and/or Exemplary Conjugate is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients can be mixed prior to administration.

Compositions for oral delivery can be in the form of tablets, lozenges, aqueous or oily suspensions, granules, powders, emulsions, capsules, syrups, or elixirs, for example. Orally administered compositions can contain one or more optionally agents, for example, sweetening agents such as fructose, aspartame or saccharin; flavoring agents such as peppermint, oil of wintergreen, or cherry; coloring agents; and preserving agents, to provide a pharmaceutically palatable preparation. Moreover, where in tablet or pill form, the compositions can be coated to delay disintegration and absorption in the gastrointestinal tract thereby providing a sustained action over an extended period of time. Selectively permeable membranes surrounding an osmotically active driving compound are also suitable for orally administered compounds. In these later platforms, fluid from the environment surrounding the capsule is imbibed by the driving compound, which swells to displace the agent or agent composition through an aperture. These delivery platforms can provide an essentially zero order delivery profile as opposed to the spiked profiles of immediate release formulations. A time-delay material such as glycerol monostearate or glycerol stearate can also be used.

The compositions can be intended for topical administration, in which case the carrier may be in the form of a solution, emulsion, ointment or gel base. If intended for transdermal administration, the composition can be in the form of a transdermal patch or an iontophoresis device. Topical formulations can comprise a concentration of an Exemplary Compound and/or Exemplary Conjugate of from about 0.05% to about 50% w/v (weight per unit volume of composition), in another aspect, from 0.1% to 10% w/v.

The composition can be intended for rectal administration, in the form, e.g., of a suppository which will melt in
the rectum and release the Exemplary Compound and/or Exemplary Conjugate.

[0458] The composition can include various materials that modify the physical form of a solid or liquid dosage unit. For example, the composition can include materials that form a coating shell around the active ingredients. The materials that form the coating shell are typically inert, and can be selected from, for example, sugar, shellac, and other enteric coating agents. Alternatively, the active ingredients can be encased in a gelatin capsule.

[0459] The compositions can consist of gaseous dosage units, e.g., it can be in the form of an aerosol. The term aerosol is used to denote a variety of systems ranging from those of colloidal nature to systems consisting of pressurized packages. Delivery can be by a liquefied or compressed gas or by a suitable pump system that dispenses the active ingredients.

[0460] Whether in solid, liquid or gaseous form, the present compositions can include a pharmacological agent used in the treatment of cancer, an autoimmune disease or an infectious disease.

4.8 THERAPEUTIC USES OF THE EXEMPLARY CONJUGATES

[0461] The Exemplary Compounds and/or Exemplary Conjugates are useful for treating cancer, an autoimmune disease or an infectious disease in a patient.

4.8.1 TREATMENT OF CANCER

[0462] The Exemplary Compounds and/or Exemplary Conjugates are useful for inhibiting the multiplication of a tumor cell or cancer cell, causing apoptosis in a tumor or cancer cell, or for treating cancer in a patient. The Exemplary Compounds and/or Exemplary Conjugates can be used accordingly in a variety of settings for the treatment of animal cancers. The Drug-Linker-Ligand Conjugates can be used to deliver a Drug or Drug unit to a tumor cell or cancer cell. Without being bound by theory, in one embodiment, the Ligand unit of an Exemplary Conjugate binds to or associates with a cancer-cell or a tumor-cell-associated antigen, and the Exemplary Conjugate can be taken up inside a tumor cell or cancer cell through receptor-mediated endocytosis. The antigen can be attached to a tumor cell or cancer cell or can be an extracellular matrix protein associated with the tumor cell or cancer cell. Once inside the cell, one or more specific peptide sequences within the Linker unit are hydrolytically cleaved by one or more tumor-cell or cancer-cell-associated proteases, resulting in release of a Drug or a Drug-Linker Compound. The released Drug or Drug-Linker Compound is then free to migrate within the cell and induce cytotoxic or cytostatic activities. In an alternative embodiment, the Drug or Drug unit is cleaved from the Exemplary Conjugate outside the tumor cell or cancer cell, and the Drug or Drug-Linker Compound subsequently penetrates the cell.

In one example, the Ligand unit binds to the tumor cell or cancer cell.

[0463] In another example, the Ligand unit binds to a tumor cell or cancer cell antigen which is on the surface of the tumor cell or cancer cell.

[0464] In another example, the Ligand unit binds to a tumor cell or cancer cell antigen which is an extracellular matrix protein associated with the tumor cell or cancer cell.

[0465] The specificity of the Ligand unit for a particular tumor cell or cancer cell can be important for determining those tumors or cancers that are most effectively treated. For example, Exemplary Conjugates having a BR96 Ligand unit can be useful for treating antigen positive carcinomas including those of the lung, breast, colon, ovaries, and pancreas. Exemplary Conjugates having an Anti-CD30 or an anti-CD40 Ligand unit can be useful for treating hematologic malignancies.

[0466] Other particular types of cancers that can be treated with Exemplary Conjugates include, but are not limited to, those disclosed in Table 3.

<table>
<thead>
<tr>
<th>TABLE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid tumors, including but not limited to:</td>
</tr>
<tr>
<td>fibrosarcoma</td>
</tr>
<tr>
<td>myxosarcoma</td>
</tr>
<tr>
<td>liposarcoma</td>
</tr>
<tr>
<td>chondrosarcoma</td>
</tr>
<tr>
<td>osteogenic sarcoma</td>
</tr>
<tr>
<td>chordoma</td>
</tr>
<tr>
<td>angiosarcoma</td>
</tr>
<tr>
<td>endotheliosarcoma</td>
</tr>
<tr>
<td>lymphangiosarcoma</td>
</tr>
</tbody>
</table>
(continued)

lymphangioendotheliosarcoma
synovioma
mesothelioma
Ewing's tumor
leiomyosarcoma
rhabdomyosarcoma
colon cancer
colorectal cancer
kidney cancer
pancreatic cancer
bone cancer
breast cancer
ovarian cancer
prostate cancer
esophageal cancer
stomach cancer
oral cancer
nasal cancer
throat cancer
squamous cell carcinoma
basal cell carcinoma
adenocarcinoma
sweat gland carcinoma
sebaceous gland carcinoma
papillary carcinoma
papillary adenocarcinomas
cystadenocarcinoma
medullary carcinoma
bronchogenic carcinoma
renal cell carcinoma
hepatoma
bile duct carcinoma
choriocarcinoma
seminoma
embryonal carcinoma
Wilms' tumor
cervical cancer
uterine cancer
testicular cancer
small cell lung carcinoma
bladder carcinoma
lung cancer
epithelial carcinoma
glioma
glioblastoma multiforme
astrocytoma
medulloblastoma
craniopharyngioma
ependymoma
pinealoma
hemangioblastoma
The Exemplary Conjugates provide conjugation-specific tumor or cancer targeting, thus reducing general toxicity of these compounds. The Linker units stabilize the Exemplary Conjugates in blood, yet are cleavable by tumor-specific proteases within the cell, liberating a Drug.

4.8.2 MULTI-MODALITY THERAPY FOR CANCER

Cancers, including, but not limited to, a tumor, metastasis, or other disease or disorder characterized by uncontrolled cell growth, can be treated or prevented by administration of an Exemplary Conjugate and/or an Exemplary Compound.

Methods for treating or preventing cancer are described herein, including administering to a patient in need
thereof an effective amount of an Exemplary Conjugate and a chemotherapeutic agent. In one example the chemotherapeutic agent is that with which treatment of the cancer has not been found to be refractory. In another example, the chemotherapeutic agent is that with which the treatment of cancer has been found to be refractory. The Exemplary Conjugates can be administered to a patient that has also undergone surgery as treatment for the cancer.

[0470] In one example, the additional method of treatment is radiation therapy.

[0471] In a specific example, the Exemplary Conjugate is administered concurrently with the chemotherapeutic agent or with radiation therapy. In another specific example, the chemotherapeutic agent or radiation therapy is administered prior or subsequent to administration of an Exemplary Conjugates, for example least an hour, five hours, 12 hours, a day, a week, a month, or several months (e.g., up to three months), prior or subsequent to administration of an Exemplary Conjugate.

[0472] A chemotherapeutic agent can be administered over a series of sessions. Any one or a combination of the chemotherapeutic agents listed in Table 4 can be administered. With respect to radiation, any radiation therapy protocol can be used depending upon the type of cancer to be treated. For example, but not by way of limitation, x-ray radiation can be administered; in particular, high-energy megavoltage (radiation of greater that 1 MeV energy) can be used for deep tumors, and electron beam and orthovoltage x-ray radiation can be used for skin cancers. Gamma-ray emitting radioisotopes, such as radioactive isotopes of radium, cobalt and other elements, can also be administered.

[0473] Additionally, methods of treatment of cancer with an Exemplary Compound and/or Exemplary Conjugate are described as an alternative to chemotherapy or radiation therapy where the chemotherapy or the radiation therapy has proven or can prove too toxic, e.g., results in unacceptable or unbearable side effects, for the subject being treated. The animal being treated can, optionally, be treated with another cancer treatment such as surgery, radiation therapy or chemotherapy, depending on which treatment is found to be acceptable or bearable.

[0474] The Exemplary Compounds and/or Exemplary Conjugates can also be used in an in vitro or ex vivo fashion, such as for the treatment of certain cancers, including, but not limited to leukemias and lymphomas, such treatment involving autologous stem cell transplants. This can involve a multi-step process in which the animal’s autologous hematopoietic stem cells are harvested and purged of all cancer cells, the animal’s remaining bone-marrow cell population is then eradicated via the administration of a high dose of an Exemplary Compound and/or Exemplary Conjugate with or without accompanying high dose radiation therapy, and the stem cell graft is infused back into the animal. Supportive care is then provided while bone marrow function is restored and the animal recovers.

4.8.3 MULTI-DRUG THERAPY FOR CANCER

[0475] Methods for treating cancer including administering to a patient in need thereof an effective amount of an Exemplary Conjugate and another therapeutic agent that is an anti-cancer agent are disclosed. Suitable anticancer agents include, but are not limited to, methotrexate, taxol, L-asparaginase, mercaptopurine, thioguanine, hydroxyurea, cytarabine, cyclophosphamide, ifosfamide, nitrosoureas, cisplatin, carboplatin, mitomycin, dacarbazine, procarbazine, topotecan, nitrogen mustards, cytoxan, etoposide, 5-fluorouracil, BCNU, irinotecan, camptothecins, bleomycin, doxorubicin, idarubicin, daunorubicin, dactinomycin, plicamycin, mitoxantrone, asparaginase, vinblastine, vincristine, vinorelbine, paclitaxel, and docetaxel. In one aspect, the anti-cancer agent includes, but is not limited to, a drug listed in Table 4.

| TABLE 4 |
|-----------------|---------------|
| Alkylating agents | |
| Nitrogen mustards: | cyclophosphamide |
| | ifosfamide |
| | trofosfamide |
| | chlorambucil |
| | melphalan |
| Nitrosoureas: | carmustine (BCNU) |
| | lomustine (CCNU)|
| Alkylsulphonates | busulfan |
| | treosulfan |
| Triazenes: | decarbazine |
| Platinum containing compounds: | cisplatin |
| | carboplatin |
Alkylating agents

<table>
<thead>
<tr>
<th>Plant Alkaloids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinca alkaloids: vincristine, vinblastine, vindesine, vinorelbine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taxoids:</th>
</tr>
</thead>
<tbody>
<tr>
<td>paclitaxel, docetaxol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DNA Topoisomerase Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epipodophyllins: etoposide, teniposide, topotecan, 9-aminocamptothecin, camptothecin, crisnatol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mitomycins:</th>
</tr>
</thead>
<tbody>
<tr>
<td>mitomycin C</td>
</tr>
</tbody>
</table>

Anti-metabolites

<table>
<thead>
<tr>
<th>Anti-folates:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHFR inhibitors: methotrexate, trimetrexate</td>
</tr>
</tbody>
</table>

| IMP dehydrogenase Inhibitors: mycophenolic acid, tiazofurin, ribavirin, EICAR |

| Ribonucleotide reductase Inhibitors: hydroxyurea, deferoxamine |

Pyrimidine analogs

<table>
<thead>
<tr>
<th>Uracil analogs: 5-Fluorouracil</th>
</tr>
</thead>
<tbody>
<tr>
<td>floxuridine, doxifluoridine, rafitrexed</td>
</tr>
</tbody>
</table>

| Cytosine analogs: cytarabine (ara C), cytosine arabinoside, fludarabine |

| Purine analogs: mercaptopurine, thioguanine |

Hormonal therapies

<table>
<thead>
<tr>
<th>Receptor antagonists:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-estrogen tamoxifen, raloxifene, megestrol</td>
</tr>
</tbody>
</table>

| LHRH agonists: goscin, leuprolide acetate |
4.8.4 TREATMENT OF A UTOIMMUNE DISEASES

[0476] The Exemplary Conjugates are useful for killing or inhibiting the replication of a cell that produces an autoimmune disease or for treating an autoimmune disease. The Exemplary Conjugates can be used accordingly in a variety of settings for the treatment of an autoimmune disease in a patient. The Drug-Linker-Ligand Conjugates can be used to deliver a Drug to a target cell. Without being bound by theory, the Drug-Linker-Ligand Conjugate may associates with an antigen on the surface of a target cell, and the Exemplary Conjugate is then taken up inside a target-cell through receptor-mediated endocytosis. Once inside the cell, one or more specific peptide sequences within the Linker unit are enzymatically or hydrolytically cleaved, resulting in release of a Drug. The released Drug is then free to migrate in the cytosol and induce cytotoxic or cytostatic activities. In an alternative example, the Drug is cleaved from the Exemplary...
Conjugate outside the target cell, and the Drug subsequently penetrates the cell. In one example, the Ligand unit binds to an autoimmune antigen. In one aspect, the antigen is on the surface of a cell involved in an autoimmune condition.

In another example, the Ligand unit binds to an autoimmune antigen which is on the surface of a cell.

In one example, the Ligand binds to activated lymphocytes that are associated with the autoimmune disease state.

In a further example, the Exemplary Conjugates kill or inhibit the multiplication of cells that produce an autoimmune antibody associated with a particular autoimmune disease.

Particular types of autoimmune diseases that can be treated with the Exemplary Conjugates include, but are not limited to, Th2 lymphocyte related disorders (e.g., atopic dermatitis, atopic asthma, rhinoconjunctivitis, allergic rhinitis, Omenn’s syndrome, systemic sclerosis, and graft versus host disease); Th1 lymphocyte-related disorders (e.g., rheumatoid arthritis, multiple sclerosis, psoriasis, Sjögren’s syndrome, Hashimoto’s thyroiditis, Grave’s disease, primary biliary cirrhosis, Wegener’s granulomatosis, and tuberculosis); activated B lymphocyte-related disorders (e.g., systemic lupus erythematosus, Goodpasture’s syndrome, rheumatoid arthritis, and type I diabetes); and those disclosed in Table 5.

TABLE 5

<table>
<thead>
<tr>
<th>Active Chronic Hepatitis</th>
<th>Addison’s Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic Alveolitis</td>
<td></td>
</tr>
<tr>
<td>Allergic Reaction</td>
<td></td>
</tr>
<tr>
<td>Allergic Rhinitis</td>
<td></td>
</tr>
<tr>
<td>Alport’s Syndrome</td>
<td></td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td></td>
</tr>
<tr>
<td>Ankylosing Spondylitis</td>
<td></td>
</tr>
<tr>
<td>Anti-phospholipid Syndrome</td>
<td></td>
</tr>
<tr>
<td>Arthritis</td>
<td></td>
</tr>
<tr>
<td>Ascariasis</td>
<td></td>
</tr>
<tr>
<td>Aspergillosis</td>
<td></td>
</tr>
<tr>
<td>Atopic Allergy</td>
<td></td>
</tr>
<tr>
<td>Atopic Dermatitis</td>
<td></td>
</tr>
<tr>
<td>Atopic Rhinitis</td>
<td></td>
</tr>
<tr>
<td>Behcet’s Disease</td>
<td></td>
</tr>
<tr>
<td>Bird-Fancier’s Lung</td>
<td></td>
</tr>
<tr>
<td>Bronchial Asthma</td>
<td></td>
</tr>
<tr>
<td>Caplan’s Syndrome</td>
<td></td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td></td>
</tr>
<tr>
<td>Celiac Disease</td>
<td></td>
</tr>
<tr>
<td>Chagas’ Disease</td>
<td></td>
</tr>
<tr>
<td>Chronic Glomerulonephritis</td>
<td></td>
</tr>
<tr>
<td>Cogan’s Syndrome</td>
<td></td>
</tr>
<tr>
<td>Cold Agglutinin Disease</td>
<td></td>
</tr>
<tr>
<td>Congenital Rubella Infection</td>
<td></td>
</tr>
<tr>
<td>CREST Syndrome</td>
<td></td>
</tr>
<tr>
<td>Crohn’s Disease</td>
<td></td>
</tr>
<tr>
<td>Cryoglobulinemia</td>
<td></td>
</tr>
<tr>
<td>Cushing’s Syndrome</td>
<td></td>
</tr>
<tr>
<td>Dermatomyositis</td>
<td></td>
</tr>
<tr>
<td>Discoid Lupus</td>
<td></td>
</tr>
<tr>
<td>Dressler’s Syndrome</td>
<td></td>
</tr>
<tr>
<td>Eaton-Lambert Syndrome</td>
<td></td>
</tr>
<tr>
<td>Echovirus Infection</td>
<td></td>
</tr>
<tr>
<td>Encephalomyelitis</td>
<td></td>
</tr>
<tr>
<td>Endocrine ophthalmopathy</td>
<td></td>
</tr>
<tr>
<td>Epstein-Barr Virus Infection</td>
<td></td>
</tr>
</tbody>
</table>
Equine Heaves
Erythematosis
Evan's Syndrome
Felty's Syndrome
Fibromyalgia
Fuch's Cyclitis
Gastric Atrophy
Gastrointestinal Allergy
Giant Cell Arteritis
Glomerulonephritis
Goodpasture's Syndrome
Graft v. Host Disease
Graves' Disease
Guillain-Barre Disease
Hashimoto's Thyroiditis
Hemolytic Anemia
Henoch-Schonlein Purpura
Idiopathic Adrenal Atrophy
Idiopathic Pulmonary Fibritis
IgA Nephropathy
Inflammatory Bowel Diseases
Insulin-dependent Diabetes Mellitus
Juvenile Arthritis
Juvenile Diabetes Mellitus (Type I)
Lambert-Eaton Syndrome
Laminitis
Lichen Planus
Lupoid Hepatitis
Lupus
Lymphopenia
Meniere's Disease
Mixed Connective Tissue Disease
Multiple Sclerosis
Myasthenia Gravis
Pernicious Anemia
Polyglandular Syndromes
Presenile Dementia
Primary Agammaglobulinemia
Primary Biliary Cirrhosis
Psoriasis
Psoriatic Arthritis
Raynauds Phenomenon
Recurrent Abortion
Reiter's Syndrome
Rheumatic Fever
Rheumatoid Arthritis
Sampter's Syndrome
Schistosomiasis
Schmidt's Syndrome
Scleroderma
Shulman's Syndrome
(continued)

Sjögren’s Syndrome
Stiff-Man Syndrome
Sympathetic Ophthalmia
Systemic Lupus Erythematosus
Takayasu’s Arteritis
Temporal Arteritis
Thyroiditis
Thrombocytopenia
Thyrotoxicosis
Toxic Epidermal Necrolysis
Type B Insulin Resistance
Type I Diabetes Mellitus
Ulcerative Colitis
Uveitis
Vitiligo
Waldenstrom’s Macroglobulemia
Wegener’s Granulomatosis

4.8.5 MULTI-DRUG THERAPY OF AUTOIMMUNE DISEASES

Methods for treating an autoimmune disease are also disclosed including administering to a patient in need thereof an effective amount of an Exemplary Conjugate and another therapeutic agent known for the treatment of an autoimmune disease. In one example, the anti-autoimmune disease agent includes, but is not limited to, agents listed in Table 6.

<table>
<thead>
<tr>
<th>Table 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclosporine</td>
</tr>
<tr>
<td>cyclosporine A</td>
</tr>
<tr>
<td>mycophenylate mofetil</td>
</tr>
<tr>
<td>sirolimus</td>
</tr>
<tr>
<td>tacrolimus</td>
</tr>
<tr>
<td>enanercept</td>
</tr>
<tr>
<td>prednisonone</td>
</tr>
<tr>
<td>azathioprine</td>
</tr>
<tr>
<td>methotrexate cyclophosphamide</td>
</tr>
<tr>
<td>prednisonone</td>
</tr>
<tr>
<td>aminocaproic acid</td>
</tr>
<tr>
<td>chloroquine</td>
</tr>
<tr>
<td>hydroxychloroquine</td>
</tr>
<tr>
<td>hydrocortisone</td>
</tr>
<tr>
<td>dexamethasone</td>
</tr>
<tr>
<td>chlorambucil</td>
</tr>
<tr>
<td>DHEA</td>
</tr>
<tr>
<td>danazol</td>
</tr>
<tr>
<td>bromocriptine</td>
</tr>
<tr>
<td>meloxicam</td>
</tr>
<tr>
<td>infliximab</td>
</tr>
</tbody>
</table>

4.8.6 TREATMENT OF INFECTIOUS DISEASES

The Exemplary Conjugates are useful for killing or inhibiting the multiplication of a cell that produces an infectious
disease or for treating an infectious disease. The Exemplary Conjugates can be used accordingly in a variety of settings for the treatment of an infectious disease in a patient. The Drug-Linker-Ligand Conjugates can be used to deliver a Drug to a target cell. In one example, the Ligand unit binds to the infectious disease cell.

In one example, the Conjugates kill or inhibit the multiplication of cells that produce a particular infectious disease. Particular types of infectious diseases that can be treated with the Exemplary Conjugates include, but are not limited to, those disclosed in Table 7.

TABLE 7

Bacterial Diseases:
- Diphtheria
- Pertussis
- Occult Bacteremia
- Urinary Tract Infection
- Gastroenteritis
- Cellulitis
- Epiglottitis
- Tracheitis
- Adenoid Hypertrophy
- Retropharyngeal Abscess
- Impetigo
- Ecthyma
- Pneumonia
- Endocarditis
- Septic Arthritis
- Pneumococcal Peritonitis
- Bacteremia
- Meningitis
- Acute Purulent Meningitis
- Urethritis
- Cervicitis
- Proctitis
- Pharyngitis
- Salpingitis
- Epididymitis
- Gonorrhea
- Syphilis
- Listeriosis
- Anthrax
- Nocardiosis
- Salmonella
- Typhoid Fever
- Dysentery
- Conjunctivitis
- Sinusitis
- Brucellosis
- Tularemia
- Cholera
- Bubonic Plague
- Tetanus
- Necrotizing Enteritis
- Actinomycosis
- Mixed Anaerobic Infections
Bacterial Diseases:
- Syphilis
- Relapsing Fever
- Leptospirosis
- Lyme Disease
- Rat Bite Fever
- Tuberculosis
- Lymphadenitis
- Leprosy
- Chlamydia
- Chlamydial Pneumonia
- Trachoma
- Inclusion Conjunctivitis

Systemic Fungal Diseases:
- Histoplasmosis
- Coccidiodomycosis
- Blastomycosis
- Sporotrichosis
- Cryptococcosis
- Systemic Candidiasis
- Aspergillosis
- Mucormycosis
- Mycetoma
- Chromomycosis

Rickettsial Diseases:
- Typhus
- Rocky Mountain Spotted Fever
- Ehrlichiosis
- Eastern Tick-Borne Rickettsioses
- Rickettsialpox
- Q Fever
- Bartonellosis

Parasitic Diseases:
- Malaria
- Babesiosis
- African Sleeping Sickness
- Chagas’ Disease
- Leishmaniasis
- Dum-Dum Fever
- Toxoplasmosis
- Meningoencephalitis
- Keratitis
- Entamebiasis
- Giardiasis
- Cryptosporidiosis
- Isosporiasis
- Cyclosporiasis
- Microsporidiosis
- Ascariasis
- Whipworm Infection
- Hookworm Infection
Parasitic Diseases:
- Threadworm Infection
- Ocular Larva Migrans
- Trichinosis
- Guinea Worm Disease
- Lymphatic Filariasis
- Loiasis
- River Blindness
- Canine Heartworm Infection
- Schistosomiasis
- Swimmer’s Itch
- Oriental Lung Fluke
- Oriental Liver Fluke
- Fascioliasis
- Fasciolopsiasis
- Opisthorchiasis
- Tapeworm Infections
- Hydatid Disease
- Alveolar Hydatid Disease

Viral Diseases:
- Measles
- Subacute sclerosing panencephalitis
- Common Cold
- Mumps
- Rubella
- Roseola
- Fifth Disease
- Chickenpox
- Respiratory syncytial virus infection
- Croup
- Bronchiolitis
- Infectious Mononucleosis
- Poliomyelitis
- Herpangina
- Hand-Foot-and-Mouth Disease
- Bornholm Disease
- Genital Herpes
- Genital Warts
- Aseptic Meningitis
- Myocarditis
- Pericarditis
- Gastroenteritis
- Acquired Immunodeficiency Syndrome (AIDS)
- Human Immunodeficiency Virus (HIV)
- Reye’s Syndrome
- Kawasaki Syndrome
- Influenza
- Bronchitis
- Viral "Walking" Pneumonia
- Acute Febrile Respiratory Disease
- Acute pharyngoconjunctival fever
4.8.7 MULTI-DRUG THERAPY OF INFECTIOUS DISEASES

Methods for treating an infectious disease are disclosed including administering to a patient in need thereof an Exemplary Conjugate and another therapeutic agent that is an anti-infectious disease agent. In one example, the anti-infectious disease agent is, but not limited to, agents listed in Table 8.

TABLE 8

<table>
<thead>
<tr>
<th>β-Lactam Antibiotics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin G</td>
</tr>
<tr>
<td>Penicillin V</td>
</tr>
<tr>
<td>Cloxacillin</td>
</tr>
<tr>
<td>Dicloxacillin</td>
</tr>
<tr>
<td>Methicillin</td>
</tr>
<tr>
<td>Nafcillin</td>
</tr>
<tr>
<td>Oxacillin</td>
</tr>
<tr>
<td>Ampicillin</td>
</tr>
<tr>
<td>Amoxicillin</td>
</tr>
<tr>
<td>Bacampicillin</td>
</tr>
<tr>
<td>Azlocillin</td>
</tr>
<tr>
<td>Carbenicillin</td>
</tr>
<tr>
<td>Mezlocillin</td>
</tr>
<tr>
<td>Piperacillin</td>
</tr>
<tr>
<td>Ticarcillin</td>
</tr>
<tr>
<td>Aminoglycosides:</td>
</tr>
<tr>
<td>Amikacin</td>
</tr>
</tbody>
</table>
Aminoglycosides:
 Gentamicin
 Kanamycin
 Neomycin
 Netilmicin
 Streptomycin
 Tobramycin

Macrolides:
 Azithromycin
 Clarithromycin
 Erythromycin
 Lincomycin
 Clindamycin

Tetracyclines:
 Demeclocycline
 Doxycycline
 Minocycline
 Oxytetracycline
 Tetracycline

Quinolones:
 Cinoxacin
 Nalidixic Acid

Fluoroquinolones:
 Ciprofloxacin
 Enoxacin
 Grepafloxacin
 Levofloxacin
 Lomefloxacin
 Norfloxacin
 Ofloxacin
 Sparfloxacin
 Trovafloxacin

Polypeptides:
 Bacitracin
 Colistin
 Polymyxin B

Sulfonamides:
 Sulfisoxazole
 Sulfamethoxazole
 Sulfadiazine
 Sulfamethizole
 Sulfacetamide

Miscellaneous Antibacterial Agents:
 Trimethoprim
 Sulfamethazole
 Chloramphenicol
 Vancomycin
 Metronidazole
 Quinupristin
 Dalfopristin
 Rifampin
(continued)

Miscellaneous Antibacterial Agents:
 Spectinomycin
 Nitrofurantoin

Antiviral Agents:
General Antiviral Agents:
 Idoxuridine
 Vidarabine
 Trifluridine
 Acyclovir
 Foscarnet
 Ribavirin
 Amantadine
 Rimantadine
 Cidofovir
 Antisense Oligonucleotides
 Immunoglobulins
 Interferons

Drugs for HIV infection:
 Tenofovir
 Emtricitabine
 Zidovudine
 Didanosine
 Zalcitabine
 Stavudine
 Lamivudine
 Nevirapine
 Delavirdine
 Saquinavir
 Ritonavir
 Indinavir
 Nelfinavir

5. EXAMPLES

Example 1 - Preparation of compound AB

[0486]
Fmoc-val-cit-PAB-OH (14.61 g, 24.3 mmol, 1.0 eq., U.S. Patent No. 6214345 to Firestone et al.) was diluted with DMF (120 mL, 0.2 M) and to this solution was added a diethylamine (60 mL). The reaction was monitored by HPLC and found to be complete in 2 h. The reaction mixture was concentrated and the resulting residue was precipitated using ethyl acetate (ca. 100 mL) under sonication over for 10 min. Ether (200 mL) was added and the precipitate was further sonicated for 5 min. The solution was allowed to stand for 30 min. without stirring and was then filtered and dried under high vacuum to provide Val-cit-PAB-OH, which was used in the next step without further purification. Yield: 8.84 g (96%).

Val-cit-PAB-OH (8.0 g, 21 mmol) was diluted with DMF (110 mL) and the resulting solution was treated with MC-OSu (Willner et al., (1993) Bioconjugate Chem. 4:521; 6.5 g, 21 mmol, 1.0 eq.). Reaction was complete according to HPLC after 2 h. The reaction mixture was concentrated and the resulting oil was precipitated using ethyl acetate (50 mL). After sonicating for 15 min, ether (400 mL) was added and the mixture was sonicated further until all large particles were broken up. The solution was then filtered and the solid dried to provide an off-white solid intermediate. Yield: 11.63 g (96%); ES-MS m/z 757.9 [M-H].

The off-white solid intermediate (8.0 g, 14.0 mmol) was diluted with DMF (120 mL, 0.12 M) and to the resulting solution was added bis(4-nitrophenyl)carbonate (8.5 g, 28.0 mmol, 2.0 eq.) and DIEA (3.66 mL, 21.0 mmol, 1.5 eq.). The reaction was complete in 1 h according to HPLC. The reaction mixture was concentrated and the resulting solution was precipitated with ether (ca. 200 mL) and triturated with EtOAc (ca. 25 mL). The solute was further precipitated with ether (ca. 200 mL) and triturated for 15 min. The solution was filtered and dried under high vacuum to provide Compound AB which was 93% pure according to HPLC and used in the next step without further purification. Yield: 9.7 g (94%).

Example 2 - Preparation of compound 1

[0487] [0488] [0489] [0490]
Phenylalanine \(t \)-butyl ester HCl salt (868 mg, 3 mmol), N-Boc-Dolaproine (668 mg, 1 eq.), DEPC (820 \(\mu \)L, 1.5 eq.), and DIEA (1.2 mL) were diluted with dichloromethane (3 mL). After 2 hours (h) at room temperature (about 28 degrees Celsius), the reaction mixture was diluted with dichloromethane (20 mL), washed successively with saturated aqueous (aq.) NaHCO\(_3\) (2 x 10 mL), saturated aq. NaCl (2 x 10 mL). The organic layer was separated and concentrated. The resulting residue was re-suspended in ethyl acetate and was purified via flash chromatography in ethyl acetate. The relevant fractions were combined and concentrated to provide the dipeptide as a white solid: 684 mg (46 %). ES-MS \(m/z \) 491.3 \([M+H]^+\).

For selective Boc cleavage in the presence of \(t \)-butyl ester, the above dipeptide (500 mg, 1.28 mmol) was diluted with dioxane (2 mL). 4M HCl/dioxane (960 \(\mu \)L, 3 eq.) was added, and the reaction mixture was stirred overnight at room temperature. Almost complete Boc deprotection was observed by RP-HPLC with minimal amount of \(t \)-butyl ester cleavage. The mixture was cooled down on an ice bath, and triethylamine (500 \(\mu \)L) was added. After 10 min., the mixture was removed from the cooling bath, diluted with dichloromethane (20 mL), washed successively with saturated aq. NaHCO\(_3\) (2 x 10 mL), saturated aq. NaCl (2 x 10 mL). The organic layer was concentrated to give a yellow foam: 287 mg (57 %). The intermediate was used without further purification.

The tripeptide Fmoc-Meval-val-dil-\(O \)-\(t \)-Bu (prepared as described in WO 02/088172, entitled "Pentapeptide Compounds and Uses Related Thereto"); 0.73 mmol) was treated with TFA (3 mL), dichloromethane (3 mL) for 2 h at room temperature. The mixture was concentrated to dryness, the residue was co-evaporated with toluene (3 x 20 mL), and dried in vacuum overnight. The residue was diluted with dichloromethane (5 mL) and added to the deprotected dipeptide (287 mg, 0.73 mmol), followed by DIEA (550 \(\mu \)L, 4 eq.), DEPC (201 \(\mu \)L, 1.1 eq.). After 2 h at room temperature the reaction mixture was diluted with ethyl acetate (50 mL), washed successively with 10\% aq. citric acid (2 x 20 mL), saturated aq. NaHCO\(_3\) (2 x 10 mL), saturated aq. NaCl (10 mL). The organic layer was separated and concentrated. The resulting residue was re-suspended in ethyl acetate and was purified via flash chromatography in ethyl acetate. The relevant fractions were combined and concentrated to provide Fmoc-Meval-val-dil-dap-phe-\(O \)-\(t \)-Bu as a white solid: 533 mg (71 %). \(R_f \) 0.4 (EtOAc). ES-MS \(m/z \) 1010.6 \([M+H]^+\).

The product (200 mg, 0.2 mmol) was diluted with dichloromethane (3 mL), diethylamine (1 mL). The reaction mixture was stirred overnight at room temperature. Solvents were removed to provide an oil that was purified by flash silica gel chromatography in a step gradient 0-10 \% MeOH in dichloromethane to provide Compound 1 as a white solid: 137 mg (87 %). \(R_f \) 0.3 (10 \% MeOH/CH\(_2\)Cl\(_2\)). ES-MS \(m/z \) 788.6 \([M+H]^+\).

Example 3 - Preparation of compound 2

Compound 2 was prepared from compound 1 (30 mg, 0.038 mmol) by treatment with 4M HCl/dioxane (4 ml) for 7 h at room temperature. The solvent was removed, and the residue was dried in a vacuum overnight to provide Compound 2 as a hydroscopic white solid: 35 mg (120 % calculated for HCl salt). ES-MS \(m/z \) 732.56 \([M+H]^+\).
Example 4 - Preparation of compound 3

Fmoc-Meval-val-dil-dap-phe-O-t-Bu (Example 2, 50 mg) was treated with 4M HCl/dioxane (4 ml) for 16 h at room temperature. The solvent was removed, and the residue was dried in vacuum overnight to give 50 mg of a hydroscopic white solid intermediate.

The white solid intermediate (20 mg, 0.02 mmol) was diluted with dichloromethane (1 mL); DEPC (5 μL, 0.03 mmol, 1.5 eq.) was added followed by DIEA (11 μL, 0.06 mmol, 3 eq.), and t-butylamine (3.2 μL, 0.03 mmol, 1.5 eq.). After 2 h at room temperature, the reaction was found to be uncompleted by RP-HPLC. More DEPC (10 μL) and t-butylamine (5 μL) were added and the reaction was stirred for additional 4 h. Reaction mixture was diluted with dichloromethane (15 mL), washed successively with water (5 mL), 0.1 M aq. HCl (10 mL), saturated aq. NaCl (10 mL). The organic layer was separated and concentrated. The resulting residue was diluted with dichloromethane and purified via flash chromatography in a step gradient 0-5 % MeOH in dichloromethane. The relevant fractions were combined and concentrated to provide the Fmoc protected intermediate as a white solid: 7.3 mg (36 %). Rf 0.75 (10 % MeOH/CH2Cl2).

Fmoc protected intermediate was diluted with dichloromethane (0.5 mL) and treated with diethylamine (0.5 mL) for 3 h at room temperature. The reaction mixture was concentrated to dryness. The product was isolated by flash silica gel chromatography in a step gradient 0-10 % MeOH in dichloromethane to provide Compound 3 as a white solid: 4 mg (70 %). Rf 0.2 (10 % MeOH/CH2Cl2). ES-MS m/z 787 [M+H]+, 809 [M+Na]+.

Example 5 - Preparation of compound 4

Boc-L-Phenylalanine (265 mg, 1 mmol, 1 eq.) and triethyleneglycol monomethyl ether (164 μL, 1 mmol, 1 eq.) were diluted with dichloromethane (5 mL). Then, DCC (412 mg, 2 mmol, 2 eq.) was added, followed by DMAP (10 mg). The reaction mixture was stirred overnight at room temperature. The precipitate was filtered off. The solvent was removed in a vacuum, the residue was diluted with ethyl acetate, and purified by silica gel flash chromatography in ethyl acetate. The product containing fractions were pulled, concentrated, and dried in vacuum to give a white solid: 377 mg (91 %). Rf 0.5 (EtOAc). ES-MS m/z 434 [M+Na]+.

Removal of Boc protecting group was performed by treatment of the above material in dioxane (10 mL) with 4M HCl/dioxane (6 mL) for 6 h at room temperature. The solvent was removed in a vacuum, the residue was dried in a vacuum to give a white solid.

The HCl salt of Phenylalanine-triethyleneglycol monomethyl ether ester (236 mg, 0.458 mmol, leq.) and N-Boc-Dolaproine (158 mg, 0.55 mmol, 1.2 eq.) were diluted with dichloromethane (3 mL). DEPC (125 μL, 1.5 eq.) and added to the mixture followed by DIEA (250 μL, 3 eq.). After 2 h at room temperature the reaction mixture was diluted with...
ethyl acetate (30 mL), washed successively with saturated aq. NaHCO₃ (2 x 10 mL), 10% aq. citric acid (2 x 10 mL), saturated aq. NaCl (10 mL). The organic layer was separated and concentrated. The resulting residue was re-suspended in ethyl acetate and was purified via flash chromatography on silica gel in ethyl acetate. The relevant fractions were combined and concentrated to provide a white foam intermediate: 131 mg (50 %). Rf 0.25 (EtOAc). ES-MS m/z 581.3 [M+H]+.

[0505] Boc deprotection was done in dichloromethane (2 mL), TFA (0.5 mL) at room temperature for 2 h. Solvent was removed in vacuum, and the residue was co-evaporated with toluene (3 x 25 mL), then dried in vacuum to give 138 mg of dipeptide TFA salt.

[0506] Fmoc-Meval-val-dil-OH (Example 2, 147 mg, 0.23 mmol, 1 eq.), and dipeptide TFA salt (138 mg) were diluted with dichloromethane (2 mL). To the mixture DEPC (63 µL, 1.5 eq.) was added, followed by DIEA (160 µL, 4 eq.). After 2 h at room temperature the reaction mixture was diluted with dichloromethane (30 mL), washed successively with 10% aq. citric acid (2 x 20 mL), saturated aq. NaCl (20 mL). The organic layer was separated and concentrated. The resulting residue was re-suspended in dichloromethane and was purified via flash chromatography on silica gel in a step gradient 0-5 % MeOH in dichloromethane. The relevant fractions were combined and concentrated to provide white foam: 205 mg (81 %). Rf 0.4 (10% MeOH/CH₂Cl₂). ES-MS m/z 1100.6 [M+H]+, 1122.4 [M+Na]+.

[0507] Fmoc protecting group was removed by treatment with diethylamine (2 mL) in dichloromethane (6 mL). After 6 h at room temperature solvent was removed in vacuum, product was isolated by flash chromatography on silica gel in a step gradient 0-10 % MeOH in dichloromethane. The relevant fractions were combined and concentrated. After evaporation from dichloromethane/hexane, 1:1, Compound 4 was obtained as a white foam: 133 mg (80 %). Rf 0.15 (10% MeOH/CH₂Cl₂). ES-MS m/z 878.6 [M+H]+.

Example 6 - Preparation of compound 5

[0508]

Fmoc-Meval-val-dil-OH (Example 2, 0.50 g, 0.78 mmol) and dap-phe-OMe·HCl (0.3 g, 0.78 mmol, prepared according to Pettit, G.R., et al. Anti-Cancer Drug Design 1998, 13, 243-277) were dissolved in CH₂Cl₂ (10 mL) followed by the addition of diisopropylethylamine (0.30 mL, 1.71 mmol, 2.2 eq.). DEPC (0.20 mL, 1.17, 1.5 eq.) was added and the contents stood over Ar. Reaction was complete according to HPLC in 1h. The mixture was concentrated to an oil and purified by SiO₂ chromatography (300 × 25 mm column) and eluting with 100 % EtOAc. The product was isolated as a white foamy solid. Yield: 0.65 g (87 %). ES-MS m/z 968.35 [M+H]+, 991.34 [M+Na]+; UV λ max 215,265 nm.

[0509] The Fmoc-protected peptide (0.14 g, 0.14 mmol) in methylene chloride (5 mL) was treated with diethylamine (2 mL) and the contents stood at room temperature for 2 h. The reaction, complete by HPLC, was concentrated to an oil, taken up in 2 mL of DMSO and injected into a preparative-HPLC (C₁₂-RP column, 5µ, 100 Å, linear gradient of MeCN in water (containing 0.1% TFA) 10 to 100 % in 40 min followed by 20 min at 100 %, at a flow rate of 25 mL/min). Fractions containing the product were evaporated to afford a white powder for the trifluoroacetate salt. Yield: 0.126 g (98 %). Rf 0.28 (100 % EtOAc); ES-MS m/z 746.59 [M+H]+, 768.51 [M+Na]+; UV λ max 215 nm.

Example 7 - Preparation of compound 6

[0511]
The trifluoroacetate salt of Compound 5 (0.11 g, 0.13 mmol), Compound AB (0.103 g, 0.14 mmol, 1.1 eq.) and HOBt (3.4 mg, 26 μmol, 0.2 eq.) were suspended in DMF/pyridine (2 mL/0.5 mL, respectively). Diisopropylethylamine (22.5 μL, 0.13 mmol, 1.0 eq.) was added and the yellow solution stirred while under argon. After 3 h, an additional 1.0 eq. of DIEA was added. 24 hours later, 0.5 eq. of the activated linker was included in the reaction mixture. After 40 h total, the reaction was complete. The contents were evaporated, taken up in DMSO and injected into a prep-HPLC (C12-RP column, 5 μ, 100 Å, linear gradient of MeCN in water (containing 0.1 % TFA) 10 to 100 % in 40 min followed by 20 min at 100 %, at a flow rate of 50 mL/min). The desired fractions were evaporated to give the product as a yellow oil. Methylene chloride (ca. 2 mL) and excess ether were added to provide Compound 6 as a white precipitate that was filtered and dried. Yield: 90 mg (52 %). ES-MS m/z 1344.32 [M+H]+, 1366.29 [M+Na]+; UV λ max 215, 248 nm.

Example 8 - Preparation of compound 7

Compound 4 (133 mg, 0.15 mmol, 1 eq.), Compound AB, (123 mg, 0.167 mmol, 1.1 eq.), and HOBt (4 mg, 0.2 eq.) were diluted with DMF (1.5 mL). After 2 min, pyridine (5 mL) was added and the reaction was monitored using RP-HPLC. The reaction was shown to be complete within 18 h. The reaction mixture was diluted with dichloromethane (20 mL), washed successively with 10 % aq. citric acid (2 x 10 mL), water (10 mL), saturated aq. NaCl (10 mL). The organic layer was separated and concentrated. The resulting residue was re-suspended in dichloromethane and was purified via flash chromatography on silica gel in a step gradient 0-10% MeOH in dichloromethane. The relevant fractions were combined and concentrated to provide Compound 7 as a white foam: 46 mg (21 %). Rf 0.15 (10 % MeOH/CH2Cl2). ES-MS m/z 1476.94 [M+H]+.

Example 9 - Preparation of MC-Val-Cit-PAB-MMAF t-butyl ester 8

Compound 4 (133 mg, 0.15 mmol, 1 eq.), Compound AB, (123 mg, 0.167 mmol, 1.1 eq.), and HOBt (4 mg, 0.2 eq.) were diluted with DMF (1.5 mL). After 2 min, pyridine (5 mL) was added and the reaction was monitored using RP-HPLC. The reaction was shown to be complete within 18 h. The reaction mixture was diluted with dichloromethane (20 mL), washed successively with 10 % aq. citric acid (2 x 10 mL), water (10 mL), saturated aq. NaCl (10 mL). The organic layer was separated and concentrated. The resulting residue was re-suspended in dichloromethane and was purified via flash chromatography on silica gel in a step gradient 0-10% MeOH in dichloromethane. The relevant fractions were combined and concentrated to provide Compound 7 as a white foam: 46 mg (21 %). Rf 0.15 (10 % MeOH/CH2Cl2). ES-MS m/z 1476.94 [M+H]+.
Compound 1 (83 mg, 0.11 mmol), Compound AB (85 mg, 0.12 mmol, 1.1 eq.), and HOBt (2.8 mg, 21 μmol, 0.2 eq.) were taken up in dry DMF (1.5 mL) and pyridine (0.3 mL) while under argon. After 30 h, the reaction was found to be essentially complete by HPLC. The mixture was evaporated, taken up in a minimal amount of DMSO and purified by prep-HPLC (C12-RP column, 5 μ, 100 Å, linear gradient of MeCN in water (containing 0.1% TFA) 10 to 100% in 40 min followed by 20 min at 100%, at a flow rate of 25 mL/min) to provide Compound 8 as a white solid. Yield: 103 mg (71%). ES-MS m/z 1387.06 [M+H]+, 1409.04 [M+Na]+; UV λmax 205, 248 nm.

Example 10 - Preparation of MC-val-cit-PAB-MMAF 9

Compound 8 (45 mg, 32 μmol) was suspended in methylene chloride (6 mL) followed by the addition of TFA (3 mL). The resulting solution stood for 2 h. The reaction mixture was concentrated in vacuo and purified by prep-HPLC (C12-RP column, 5 μ, 100 Å, linear gradient of MeCN in water (containing 0.1% TFA) 10 to 100% in 40 min followed by 20 min at 100%, at a flow rate of 25 mL/min). The desired fractions were concentrated to provide maleimidocaproyl-valine-citrulline-p-hydroxymethylaminobenzene-MMAF (MC-val-cit-PAB-MMAF) 9 as an off-white solid. Yield: 11 mg (25%). ES-MS m/z 1330.29 [M+H]+, 1352.24 [M+Na]+; UV λmax 205, 248 nm.

Example 11 - Preparation of MC-val-cit-PAB-MMAF tert-butyl amide 10
Example 12 - Preparation of AC10-MC-MMAE by conjugation of AC10 and MC-MMAE

AC10, dissolved in 500 mM sodium borate and 500 mM sodium chloride at pH 8.0 is treated with an excess of 100 mM dithiothreitol (DTT). After incubation at 37 °C for about 30 minutes, the buffer is exchanged by elution over Sephadex G25 resin and eluted with PBS with 1mM DTPA. The thiol/Ab value is checked by determining the reduced antibody concentration from the absorbance at 280 nm of the solution and the thiol concentration by reaction with DTNB (Aldrich, Milwaukee, WI) and determination of the absorbance at 412 nm. The reduced antibody dissolved in PBS is chilled on ice.

The drug linker reagent, maleimidocaproyl-monomethyl auristatin E, i.e. MC-MMAE, dissolved in DMSO, is diluted in acetonitrile and water at known concentration, and added to the chilled reduced antibody AC10 in PBS. After about one hour, an excess of maleimide is added to quench the reaction and cap any unreacted antibody thiol groups. The reaction mixture is concentrated by centrifugal ultrafiltration and AC10-MC-MMAE is purified and desalted by elution through G25 resin in PBS, filtered through 0.2 μm filters under sterile conditions, and frozen for storage.

Example 13 - Preparation of AC10-MC-MMAF by conjugation of AC10 and MC-MMAF

AC10-MC-MMAF was prepared by conjugation of AC10 and MC-MMAF following the procedure of Example 12.

Example 14 - Preparation of AC10-MC-val-cit-PAB-MMAE by conjugation of AC10 and MC-val-cit-PAB-MMAE

AC10-MC-val-cit-PAB-MMAE was prepared by conjugation of AC10 and MC-val-cit-PAB-MMAE following the procedure of Example 12.

Example 15 - Preparation of AC10-MC-val-cit-PAB-MMAF by conjugation of AC10 and MC-val-cit-PAB-MMAF (9)

AC10-MC-val-cit-PAB-MMAF was prepared by conjugation of AC10 and MC-val-cit-PAB-MMAF (9) following the procedure of Example 12.

Example 16 - Determination of cytotoxicity of selected compounds

Cytotoxic activity of MMAF and Compounds 1-5 was evaluated on the Lewis Y positive cell lines OVCAR-3, H3396 breast carcinoma, L2987 lung carcinoma and LS174T colon carcinoma. Lewis Y positive cell lines can be assayed for cytotoxicity. To evaluate the cytotoxicity of Compounds 1-5, cells can be seeded at approximately 5 - 10,000 per well in 150 μl of culture medium then treated with graded doses of Compounds 1-5 in quadruplicates at the initiation of assay. Cytotoxicity assays are usually carried out for 96 hours after addition of test compounds. Fifty μl of resazurin dye may be added to each well during the last 4 to 6 hours of the incubation to assess viable cells at the end of culture. Dye reduction can be determined by fluorescence spectrometry using the excitation and emission wavelengths of 535nm and 590nm, respectively. For analysis, the extent of resazurin reduction by the treated cells can be compared to that of the untreated control cells.
EXAMPLE 17 - *in vitro* cytotoxicity data for selected compounds

Table 10 shows cytotoxic effect of cAC10 Conjugates of Compounds 7-10, assayed as described in General Procedure I on a CD30+ cell line Karpas 299. Data of two separate experiments are presented. The cAC10 conjugates of Compounds 7 and 9 were found to be slightly more active than cAC10-val-cit-MMAE.

<table>
<thead>
<tr>
<th>Conjugate</th>
<th>IC_{50} (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cAC10-val-cit-MMAE</td>
<td>6</td>
</tr>
<tr>
<td>cAC10-7</td>
<td>1.0</td>
</tr>
<tr>
<td>cAC10-8</td>
<td>15</td>
</tr>
<tr>
<td>cAC10-9</td>
<td>0.5</td>
</tr>
<tr>
<td>eAC10-10</td>
<td>20</td>
</tr>
</tbody>
</table>

In other experiments, BR96-val-cit-MMAF was at least 250 fold more potent than the free MMAF.

General Procedure I - Cytotoxicity determination. To evaluate the cytotoxicity of Exemplary Conjugates 7-10, cells were seeded at approximately 5 - 10,000 per well in 150 μl of culture medium then treated with graded doses of Exemplary Conjugates 7-10 in quadruplicates at the initiation of assay. Cytotoxicity assays were carried out for 96 hours after addition of test compounds. Fifty μl of the resazurin dye was added to each well during the last 4 to 6 hours of the incubation to assess viable cells at the end of culture. Dye reduction was determined by fluorescence spectrometry using the excitation and emission wavelengths of 535nm and 590nm, respectively. For analysis, the extent of resazurin reduction by the treated cells was compared to that of the untreated control cells.

Example 18 - *In vitro* cell proliferation assay

Efficacy of ADC can be measured by a cell proliferation assay employing the following protocol (Promega Corp. Technical Bulletin TB288; Mendoza et al. (2002) Cancer Res. 62:5485-5488):

1. An aliquot of 100 μl of cell culture containing about 10^4 cells (SKBR-3, BT474, MCF7 or MDA-MB-468) in medium was deposited in each well of a 96-well, opaque-walled plate.
2. Control wells were prepared containing medium and without cells.
3. ADC was added to the experimental wells and incubated for 3-5 days.
4. The plates were equilibrated to room temperature for approximately 30 minutes.
5. A volume of CellTiter-Glo Reagent equal to the volume of cell culture medium present in each well was added.
6. The contents were mixed for 2 minutes on an orbital shaker to induce cell lysis.
7. The plate was incubated at room temperature for 10 minutes to stabilize the luminescence signal.
8. Luminescence was recorded and reported in graphs as RLU = relative luminescence units.

Example 19 - Plasma clearance in rat

Plasma clearance pharmacokinetics of antibody drug conjugates and total antibody was studied in Sprague-Dawley rats (Charles River Laboratories, 250-275 gms each). Animals were dosed by bolus tail vein injection (IV Push). Approximately 300 μl whole blood was collected through jugular cannula, or by tail stick, into lithium/heparin anticoagulant vessels at each timepoint: 0 (predose), 10, and 30 minutes; 1, 2, 4, 8, 24 and 36 hours; and 2, 3, 4, 7, 14, 21, 28 days post dose. Total antibody was measured by ELISA - ECD/GxhuFc-HRP. Antibody drug conjugate was measured by ELISA - MMAE/MMAF/ECD-Bio/SA-HRP.

Example 20 - Plasma clearance in monkey

Plasma clearance pharmacokinetics of antibody drug conjugates and total antibody can be studied in cynomolgus monkeys. Figure 12 shows a two-stage plasma concentration clearance study after administration of H-MC-vc-
MMAE to Cynomolgus monkeys at different doses: 0.5, 1.5, 2.5, and 3.0 mg/kg, administered at day 1 and day 21. Concentrations of total antibody and ADC were measured over time. (H = Trastuzumab).

Example 21 - Tumor volume in vivo efficacy in transgenic explant mice

[0534] Animals suitable for transgenic experiments can be obtained from standard commercial sources such as Taconic (Germantown, N.Y.). Many strains are suitable, but FVB female mice are preferred because of their higher susceptibility to tumor formation. FVB males can be used for mating and vasectomized CD.1 studs can be used to stimulate pseudo-pregnancy. Vasectomized mice can be obtained from any commercial supplier. Founders can be bred with either FVB mice or with 129/Bl6 x FVB p53 heterozygous mice. The mice with heterozygosity at p53 allele can be used to potentially increase tumor formation. Some F1 tumors are of mixed strain. Founder tumors can be FVB only.

[0535] Animals having tumors (allograft propagated from Fo5 mmtv transgenic mice) can be treated with a single or multiple dose by IV injection of ADC. Tumor volume can be assessed at various time points after injection.

Example 22 - Synthesis of MC-MMAF via t-butyl ester

Synthesis 1:

[0536]

MeVal-Val-Dil-Dap-Phe-OtBu (compound 1, 128.6 mg, 0.163 mmol) was suspended in CH$_2$Cl$_2$ (0.500 mL). 6-Maleimidocaproic acid (68.9 mg, 0.326 mmol) and 1,3-diisopropylcarbodiimide (0.0505 mL, 0.326 mmol) were added followed by pyridine (0.500 mL). Reaction mixture was allowed to stir for 1.0 hr. HPLC analysis indicated complete consumption of starting compound 1. Volatile organics were evaporated under reduced pressure. Product was isolated via flash column chromatography, using a step gradient from 0 to 5% Methanol in CH$_2$Cl$_2$. A total of 96 mg of pure MC-MeVal-Val-Dil-Dap-Phe-OtBu (12) (60% yield) was recovered. ES-MS m/z 981.26 [M+H]$^+$; 1003.47 [M+Na]$^+$; 979.65 [M-H]$^-$.

[0537] MC-MeVal-Val-Dil-Dap-Phe-OtBu (Compound 12, 74 mg, 0.0754 mmol) was suspended in CH$_3$Cl$_2$ (2.0 mL) and TFA (1 mL) at room temperature. After 2.5 hr, HPLC analysis indicated complete consumption of starting material. Volatile organics were evaporated under reduced pressure, and the product was isolated via preparatory RP-HPLC, using a Phenomenex C$_{18}$ Synergi Max-RP 80Å Column (250 x 21.20 mm). Eluent: linear gradient 10% to 90% MeCN/0.05% TFA (aq) over 30 minutes, then isocratic 90% MeCN/0.05% TFA (aq) for an additional 20 minutes. ES-MS m/z 925.33 [M+H]$^+$; 947.30 [M+Na]$^+$; 923.45 [M-H]$^-$.
Example 23a - Synthesis of MC-MMAF (11) via dimethoxybenzyl ester

[0539]

Synthesis 2:

[0540] Preparation of Fmoc-L-Phenylalanine-2,4-dimethoxybenzyl ester (Fmoc-Phe-ODMB)

[0541] A 3-neck, 5-L round-bottom flask was charged with Fmoc-L-Phenylalanine (200 g, 516 mmol Bachem), 2,4-dimethoxybenzyl alcohol (95.4 g, 567 mmol, Aldrich), and CH2Cl2 (2.0 L). N,N-dimethylformamide t-butyl acetal (155 mL, 586 mmol, Fluka) was added to the resulting suspension over 20 min under N2, which resulted in a clear solution. The reaction was then stirred at room temperature overnight, after which time TLC analysis (0.42, Heptane/EtOAc = 2:1) indicated that the reaction was complete. The reaction mixture was concentrated under reduced pressure to give
EP 2 489 364 B1

Preparation L-Phenylalanine-2,4-dimethoxybenzyl ester (Phe-ODMB)

A 500-mL round-bottom flask was charged with Fmoc-L-phenylalanine-2,4-dimethoxybenzyl ester (26.00g, 48.3 mmol), CH2Cl2 (150 mL) and diethylamine (75 mL, Acros). Mixture was stirred at room temperature and the completion monitored by HPLC. After 4h, the mixture was concentrated (bath temp <30 °C). The residue was resuspended in CH2Cl2 (200 mL) and concentrated. This was repeated once. To the residue was added MeOH (20 mL), which caused the formation of a gel. This residue was diluted with CH2Cl2 (200 mL), concentrated and the cloudy oil left under vacuum overnight. The residue was suspended in CH2Cl2 (100 mL), then toluene (120mL) was added. The mixture was concentrated and the residue left under vacuum overnight.

Preparation of Fmoc-Dolaproine (Fmoc-Dap)

Boc-Dolaproine (58.8 g, 0.205 mol) was suspended in 4 N HCl in 1,4-dioxane (256 mL, 1.02 mol, Aldrich). After stirring for 1.5 hours, TLC analysis indicated the reaction was complete (10% MeOH/CH2Cl2) and the mixture was concentrated to near-dryness. Additional 1,4-dioxane was charged (50 mL) and the mixture was concentrated to dryness and dried under vacuum overnight. The resulting white solid was dissolved in H2O (400 mL) and transferred to a 3-L, three-neck, round-bottom flask with a mechanical stirrer and temperature probe. N,N-diisopropylethylamine (214.3 mL, 1.23 mol, Acros) was added over one minute, causing an exotherm from 20.5 to 28.2 °C (internal). The mixture was cooled in an ice bath and 1,4-dioxane was added (400 mL). A solution of Fmoc-OSu (89.90 g, 0.267 mol, Advanced ChemTech) in 1,4-dioxane (400 mL) was added from an addition funnel over 15 minutes, maintaining the reaction temperature below 9 °C. The mixture was allowed to warm to room temperature and stir for 19 hours, after which the mixture was concentrated by rotary evaporation to an aqueous slurry (390 g). The suspension was diluted with H2O (750 mL) and Et2O (750 mL), causing a copious white precipitate to form. The layers were separated, keeping the solids with the organic layer. The aqueous layer was acidified using conc. HCl (30 mL) and extracted with EtOAc (3 x 500 mL). The combined extracts were dried over MgSO4, filtered and concentrated to give 59.25 g of a yellow oil A. The Et2O extract was extracted once with sat. NaHCO3 (200 mL), keeping the solids with the aqueous layer. The aqueous suspension was acidified using conc. HCl (50 mL) and extracted with Et2O (50 mL) keeping the solids with the organic layer. The organic layer was filtered and concentrated to give 32.33 g of a yellow oil B. The two oils (A and B) were combined and purified by flash chromatography on silica gel eluting with CH2Cl2 (3.5 L), then 3% MeOH/CH2Cl2 (9 L) to give 68.23 g of Fmoc-dolaproine as a white foam (81%, 97.5% purity by HPLC (AUC)).

Preparation of Fmoc-Dap-Phe-ODMB

Crude Phe-ODMB (48.3 mmol) was suspended in anhydrous DMF (105 mL, Acros) for 5 minutes and Fmoc-Dap (19.80g, 48.3 mmol) was added. The mixture was cooled in an ice bath and TBTU (17.08 g, 53.20 mmol, Matrix Innovations) was added. N,N-diisopropylethylamine (25.3 mL, 145.0 mmol, Acros) was added via syringe over 3 min. After 1h, the ice bath was removed and the mixture was allowed to warm over 30 min. The mixture was poured into water (1 L) and extracted with ethyl acetate (300 mL). After separation, the aqueous layer was re-extracted with ethyl acetate (2 x 150 mL). The combined organic layers were washed with brine (150 mL), dried (MgSO4) and filtered (filter paper) to remove the insolubles (inorganics and some dibenzofulvene). After concentration, the residue (41 g) was adsorbed on silica (41 g) and purified by chromatography (22 cm x 8 cm column; 65% Heptane/EtOAc (2.5 L); 33% Heptane/EtOAc (3.8 L), to give 29.4 g of product as a white foam (86%, 92% purity by HPLC)).

Preparation of Dap-Phe-ODMB

A 1-L round bottom flask was charged with Fmoc-Dap-Phe-ODMB (27.66 g), CH2Cl2 (122 mL) and diethylamine (61 mL, Acros). The solution was stirred at room temperature and the completion monitored by HPLC. After 7h, the mixture was concentrated (bath temp. <30 °C). The residue was suspended in CH2Cl2 (300 mL) and concentrated. This was repeated twice. To the residue was added MeOH (20 mL) and CH2C12 (300 mL), and the solution was concentrated. The residue was suspended in CH2Cl2 (100 mL) and toluene (400mL), concentrated, and the residue left under vacuum
overnight to give a cream-like residue.

Preparation of Fmoc-MeVal-Val-Dil-Dap-Phe-ODMB

- **Crude Dap-Phe-ODMB (39.1 mmol)** was suspended in anhydrous DMF (135 mL, Acros) for 5 minutes and Fmoc-MeVal-Val-Dil-OH (24.94 g, 39.1 mmol, see Example 2 for preparation) was added. The mixture was cooled in an ice bath and TBTU (13.81 g, 43.0 mmol, Matrix Innovations) was added. N,N-Diisopropylethylamine (20.5 mL, 117.3 mmol, Acros) was added via syringe over 2 minutes. After 1 hour, the mixture was allowed to warm over 30 min. The mixture was poured into water (1.5 L) and diluted with ethyl acetate (480 mL). After standing for 15 minutes, the layers were separated and the aqueous layer was extracted with ethyl acetate (300 mL). The combined organic layers were washed with brine (200 mL), dried (MgSO4) and filtered (filter paper) to remove insolubles (inorganics and some dibenzofulvene). After concentration, the residue (49 g) was scraped from the flask and adsorbed on silica (49 g) and purified by chromatography (15 cm x 10 cm dia column; 2:1 EtOAc/Heptane (3 L), EtOAc (5 L); 250 mL fractions) to give 31.84 g of Fmoc-MeVal-Val-Dil-Dap-Phe-ODMB as a white foam (73%, 93% purity by HPLC (AUC)).

Preparation of MeVal-Val-Dil-Dap-Phe-ODMB

- A 1-L, round-bottom flask was charged with Fmoc-MeVal-Val-Dil-Dap-Phe-ODMB (28.50 g), CH2Cl2 (80 mL) and diethylamine (40 mL). The mixture was stirred at room temperature overnight and then was concentrated under reduced pressure. The residue was adsorbed on silica (30 g) and purified by flash chromatography (15 cm x 8 cm dia column; 2% MeOH/DCM (2 L), 3% MeOH/DCM (1 L), 6% MeOH/DCM (4 L); 250 mL fractions) to give 15.88 g of MeVal-Val-Dil-Dap-Phe-ODMB as a white foam (69%, 96% purity by HPLC (AUC)).

Preparation of MC-MeVal-Val-Dil-Dap-Phe-ODMB

- A 50-mL, round-bottom flask was charged with MeVal-Val-Dil-Dap-Phe-ODMB (750 mg, 0.85 mmol), anhydrous DMF (4 mL), maleimidocaproic acid (180 mg, 0.85 mmol), and TBTU (300 mg, 0.93 mmol, Matrix Innovations) at room temperature. N,N-Diisopropylethylamine (450 μL, 2.57 mmol) was added via syringe. After 1.5 hours, the mixture was poured in water (50 mL) and diluted with ethyl acetate (30 mL). NaCl was added to improve the separation. After separation of the layers, the aqueous layer was extracted with ethyl acetate (25 mL). The combined organic layers were dried (MgSO4), filtered and concentrated. The resulting oil (1 g) was purified by flash chromatography [100 mL silica; 25% Heptane/EtOAc (100 mL), 10% Heptane/EtOAc (200 mL), EtOAc (1.5 L)] to give MC-MeVal-Val-Dil-Dap-Phe-ODMB (13) as a white foam (521 mg, 57%, 94% purity by HPLC (AUC)).

Preparation of MC-MeVal-Val-Dil-Dap-Phe-OH (MC-MMAF)

- A 50-mL, round-bottom flask was charged with MC-MeVal-Val-Dil-Dap-Phe-ODMB (Compound 13, 428 mg, 0.39 mmol) and dissolved in 2.5% TFA/CH2C12 (20 mL). The solution turned pink-purple over 2 min. The completion was monitored by HPLC and TLC (6% MeOH/DCM, KMnO4 stain). After 40 min, three drops of water were added and the cloudy pink-purple mixture was concentrated to give 521 mg of a pink residue. Purification by chromatography (15% IPA/DCM) gave 270 mg of MC-MMAF (73%, 92% purity by HPLC) as a white solid.

Example 23b - Synthesis of analog of mc-MMAF

Preparation of MC-MeVal-Val-Dil-Dap-Phe-ODMB

- A 50-mL, round-bottom flask was charged with MC-MeVal-Val-Dil-Dap-Phe-ODMB (Compound 13, 428 mg, 0.39 mmol) and dissolved in 2.5% TFA/CH2C12 (20 mL). The solution turned pink-purple over 2 min. The completion was monitored by HPLC and TLC (6% MeOH/DCM, KMnO4 stain). After 40 min, three drops of water were added and the cloudy pink-purple mixture was concentrated to give 521 mg of a pink residue. Purification by chromatography (15% IPA/DCM) gave 270 mg of MC-MMAF (73%, 92% purity by HPLC) as a white solid.

Preparation of MC-MeVal-Val-Dil-Dap-Phe-OH (MC-MMAF)

- A 50-mL, round-bottom flask was charged with MC-MeVal-Val-Dil-Dap-Phe-ODMB (Compound 13, 428 mg, 0.39 mmol) and dissolved in 2.5% TFA/CH2C12 (20 mL). The solution turned pink-purple over 2 min. The completion was monitored by HPLC and TLC (6% MeOH/DCM, KMnO4 stain). After 40 min, three drops of water were added and the cloudy pink-purple mixture was concentrated to give 521 mg of a pink residue. Purification by chromatography (15% IPA/DCM) gave 270 mg of MC-MMAF (73%, 92% purity by HPLC) as a white solid.
MeVal-Val-Dil-Dap-Phe-OtBu (compound 1, 35 mg, 0.044 mmol) was suspended in DMF (0.250 mL). 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-benzoic acid (11 mg, 0.049 mmol) and HATU (17 mg, 0.044 mmol) were added followed by DIEA (0.031 mL, 0.17 mmol). This reaction mixture was allowed to stir for 2.0 hr. HPLC analysis indicated complete consumption of starting compound 1.

Product was isolated via preparatory RP-HPLC, using a Phenomenex C12 Synergi Max-RP 80Å Column (250 x 21.20 mm). Eluent: linear gradient 10% to 80% MeCN/0.05% TFA (aq) over 8 minutes, then isocratic 80% MeCN/0.05% TFA (aq) for an additional 12 minutes. A total of 20 mg of pure product (14) was isolated (0.02 mmol, 46% yield). ES-MS m/z 987.85 [M+H]+; 1019.41 [M+Na]+; 985.54 [M-H]-.

MB-MeVal-Val-Dil-Dap-Phe-OtBu (Compound 14, 38 mg, 0.0385 mmol) was suspended in CH2Cl2 (1 mL) and TFA (1 mL). Mixture was stirred for 2.0 hr, and then volatile organics were evaporated under reduced pressure. Product was purified by preparatory RP-HPLC, using a Phenomenex C12 Synergi Max-RP 80Å Column (250 x 21.20 mm). Eluent: linear gradient 10% to 80% MeCN/0.05% TFA (aq) over 8 minutes, then isocratic 80% MeCN/0.05% TFA (aq) for an additional 12 minutes. A total of 14.4 mg of MB-MMAF product was isolated (0.015 mmol, 40% yield). ES-MS m/z 930.96 [M+H]+; 952.98 [M+Na]+; 929.37 [M-H]-.

Example 23c - Preparation of MC-MeVal-Cit-PAB-MMAF (16)

[0560]
To a room temperature suspension of Fmoc-MeVal-OH (3.03 g, 8.57 mmol) and N,N'-disuccimidyl carbonate (3.29 g, 12.86 mmol) in CH₂Cl₂ (80 mL) was added DIEA (4.48 mL, 25.71 mmol). This reaction mixture was allowed to stir for 3.0 hr, and then poured into a separation funnel where the organic mixture was extracted with 0.1 M HCl (aq). The crude organic residue was concentrated under reduced pressure, and the product was isolated by flash column chromatography on silica gel using a 20-100% ethyl acetate/hexanes linear gradient. A total of 2.18 g of pure Fmoc-MeVal-OSu (4.80 mmoles, 56% yield) was recovered.

To a room temperature suspension of Fmoc-MeVal-OSu (2.18 g, 4.84 mmol) in DME (13 mL) and THF (6.5 mL) was added a solution of L-citrulline (0.85 g, 4.84 mmol) and NaHCO₃ (0.41 g, 4.84 mmol) in H₂O (13 mL). The suspension was allowed to stir at room temperature for 16 hr, then it was extracted into tert-ButOH/CHCl₃/H₂O, acidified to pH=2-3 with 1 M HCl. The organic phase was separated, dried and concentrated under reduced pressure. The residue was triturated with diethyl ether resulting in 2.01 g of Fmoc-MeVal-Cit-COOH which was used without further purification.

The crude Fmoc-MeVal-Cit-COOH was suspended in 2:1 CH₂Cl₂/MeOH (100 mL), and to it was added p-aminobenzyl alcohol (0.97 g, 7.9 mmol) and EEDQ (1.95 g, 7.9 mmol). This suspension was allowed to stir for 125 hr, then the volatile organics were removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel using a 10% MeOH/CH₂Cl₂. Pure Fmoc-MeVal-Cit-PAB-OH (0.55 g, 0.896 mmol, 18.5 % yield) was recovered. ES-MS m/z 616.48 [M+H]+.

To a suspension of Fmoc-MeVal-Cit-PAB-OH (0.55g, 0.896 mmol) in CH₂Cl₂ (40 mL) was added STRATOSPHERESTM(piperazine-resin-bound) (>5 mmol/g, 150 mg). After being stirred at room temperature for 16 hr the mixture was filtered through celite (pre-washed with MeOH), and concentrated under reduced pressure. Residue was triturated with diethyl ether and hexanes. Resulting solid material, MeVal-Cit-PAB-OH, was suspended in CH₂Cl₂ (20 mL), and to it was added MC-OSu (0.28 g, 0.896 mmol), DIEA (0.17 mL, 1.09 mmol), and DMF (15 mL). This suspension was stirred for 16 hr, but HPLC analysis of the reaction mixture indicated incomplete reaction, so the suspension was concentrated under reduced pressure to a volume of 6 mL, then a 10% NaHCO₃ (aq) solution was added and the suspension stirred for an additional 16 hr. Solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel using a 0-10% MeOH/CH₂Cl₂ gradient, resulting in 42 mg (0.072 mmol, 8% yield) of MC-MeVal-Cit-PAB-OH.

To a suspension of MC-MeVal-Cit-PAB-OCO-pNP (0.57 g, 0.896 mmol) in CH₂Cl₂ (10 mL) was added DIEA (1.06 mL, 6.06 mmol). This suspension was stirred for 5.5 hr, concentrated under reduced pressure and purified by trituration with diethyl ether. MC-MeVal-Cit-PAB-OCO-pNP (147 mg, 0.196 mmol) was suspended in a 1:5 pyridine/DMF solution (3 mL), and to it was added HOBt (5 mg, 0.039 mmol), DIEA (0.17 mL, 1.09 mmol), and MMAF (compound 2, 150 mg, 0.205 mmol). This reaction mixture was stirred for 16 hr at room temperature, and then purified by preparatory RP-HPLC (x3), using a Phenomenex C12 Synergi Max-RP 80Å Column (250 x 21.20 mm). Eluent: linear gradient 10% to 90% MeCN/0.05% TFA (aq) over 30 minutes, then isocratic 90% MeCN/0.05% TFA (aq) for an additional 20 minutes. MC-MeVal-Cit-PAB-MMAF (16) was obtained as a yellowish solid (24.5 mg, 0.0182,0.45 % yield). ES-MS m/z 1344.95 [M+H]+; 1366.94 [M+Na]+.

Example 23d - Preparation of succinimide ester of suberyl-Val-Cit-PAB-:MMAF (17)

To a suspension of Compound 1 (300 mg, 0.38 mmol), Fmoc-Val-Cit-PAB-pNP (436 mg, 0.57 mmol, 1.5 eq.) were suspended in anhydrous pyridine, 5 mL. HOBt (10 mg, 0.076 mmol, 0.2 eq.) was added followed by DIEA (199 μL, 1.14 mmol, 3 eq.). Reaction mixture was sonicated for 10 min, and then stirred overnight at room temperature. Pyridine was removed under reduced pressure, residue was re-suspended in CH₂Cl₂. Mixture was separated by silica gel flash chromatography in a step gradient of MeOH, from 0 to 10%, in CH₂Cl₂. Product containing fractions were pulled, concentrated, dried in
vacuum overnight to give 317 mg (59% yield) of Fmoc-Val-Cit-PAB-MMAF-OtBu. ES-MS m/z 1415.8 [M+H]+.

Example 24 - *In vivo* Efficacy of mcMMAF Antibody-Drug Conjugates

[0568] Fmoc-Val-Cit-PAB-MMAF-OtBu (100 mg) was stirred in 20% TFA/CH₂Cl₂ (10 mL) for 2 hrs. Mixture was diluted with CH₂Cl₂ (50 mL). Organic layer was washed successively with water (2 x 30 mL) and brine (1 x 30 mL). Organic phase was concentrated, loaded onto pad of silica gel in 10% MeOH/CH₂Cl₂. Product was eluted with 30% MeOH/CH₂Cl₂. After drying in vacuum overnight, Fmoc-Val-Cit-PAB-MMAF was obtained as a white solid, 38 mg, 40% yield. ES-MS m/z 1357.7 [M-H]-.

[0569] Fmoc-Val-Cit-PAB-MMAF, 67 mg, was suspended in CH₂Cl₂ (2 mL) diethyamine (2 mL) and DMF (2 mL). Mixture was stirred for 2 hrs at room temperature. Solvent was removed under reduced pressure. Residue was co-evaporated with pyridine (2 mL), then with toluene (2 x 5 mL), dried in vacuum. Val-Cit-PAB-MMAF was obtained as brownish oil, and used without further purification.

[0570] All Val-Cit-PAB-MMAF prepared from 67 mg of Fmoc-Val-Cit-PAB-MMAF, was suspended in pyridine (2 mL), and added to a solution of disuccinimidyl suberate (74 mg, 0.2 mmol, 4 eq.), in pyridine (1 mL). Reaction mixture was stirred at room temperature. After 3 hrs ether (20 mL) was added. Precipitate was collected, washed with additional amount of ether. Reddish solid was suspended in 30% MeOH/CH₂Cl₂, filtered through a pad of silica gel with 30% MeOH/CH₂Cl₂ as an eluent. Compound 17 was obtained as white solid, 20 mg (29% yield). ES-MS m/z 1388.5 [M-H]-.

Example 25 - *In vitro* efficacy of MC-MMAF Antibody-Drug Conjugates

[0571] Efficacy of cAC10-mcMMAF in Karpas-299 ALCL xenografts: To evaluate the *in vivo* efficacy of cAC10-mcMMAF with an average of 4 drug moieties per antibody (cAC10-mcF4), Karpas-299 human ALCL cells were implanted subcutaneously into immunodeficient C.B-17 SCID mice (5x10⁶ cells per mouse). Tumor volumes were calculated using the formula (0.5xLxW²) where L and W are the longer and shorter of two bidirectional measurements. When the average tumor volume in the study animals reached approximately 100 mm³ (range 48-162) the mice were divided into 3 groups (5 mice per group) and were either left untreated or were given a single intravenous injection through the tail vein of either 1 or 2 mg/kg cAC10-mcF4 (Figure 1). The tumors in the untreated mice grew rapidly to an average volume of >1,000 mm³ within 7 days of the start of therapy. In contrast, all of the cAC10-mcF4 treated tumors showed rapid regression either 1 or 2 mg/kg cAC10-mcF4 (Figure 1). The tumors in the remaining 4/5 responders in this group and in the 3 complete responders in the 1 mg/kg group at 10 weeks post therapy. While the tumor in one of the complete responders in the 2 mg/kg group did recur approximately 4 weeks later, there were no detectable tumors in the remaining 4/5 responders in this group and in the 3 complete responders in the 1 mg/kg group at 10 weeks post therapy.

[0572] Efficacy of cBR96-mcMMAF in L2987 NSCLC xenografts: cBR96 is a chimeric antibody that recognizes the LeY antigen. To evaluate the *in vivo* efficacy of cBR96-mcMMAF with 4 drugs per antibody (cBR96-mcF4) L2987 non-small cell lung cancer (NSCLC) tumor fragments were implanted into athymic nude mice. When the tumors averaged approximately 100 mm³ the mice were divided into 3 groups: untreated and 2 therapy groups. For therapy, as shown in Figure 3a, mice were administered cBR96-mcF4 at either 3 or 10 mg/kg/injection every 4 days for a total of 4 injections (q4dx4). As shown in Figure 3b, mice were administered cBR96-mcF4 or a non-binding control conjugate, cAC10-mcF4, at 10 mg/kg/injection every 4 days for a total of 4 injections (q4dx4). As shown in Figures 3a and 3b, BR96-mcF4 produced pronounced tumor growth delay compared to the controls.

[0573] Figure 2 shows an *in vivo*, single dose, efficacy assay of cAC10-mcMMAF in subcutaneous L540CY. For this study there were 4 mice in the untreated group and 10 in each of the treatment groups.

Activity of cAC10-antibody-drug conjugates against CD30⁺ cell lines. Figures 4a and 16b show dose-response curves from a representative experiment where cultures of Karpas 299 (anaplastic large cell lymphoma) and L428 (Hodgkin’s Lymphoma) were incubated with serially diluted cAC10-mcMMAF (Figure 4a) or cAC10-vcMMAF (Figure 4b) for 96 hours. The cultures were labeled with 4 hours with 50 μM resazurin [7-hydroxy-3H-phenoxazin-3-one 10-oxide] and the fluorescence measured. The data were reduced in GraphPad Prism version 4.00 using the 4-parameter dose-response curve fit procedure. IC₅₀ values are defined as the concentration where growth is reduced 50% compared with untreated control cultures. Each concentration was tested in quadruplicate.

Activity of cBR96-antibody-drug conjugates against LeY⁺ cell lines. Figures 5a and 5b show dose-response curves from a representative experiment where cultures of H3396 (breast carcinoma) and L2987 (non small cell lung carcinoma) were incubated with serially diluted cBR96-mcMMAF (Figure 5a) or-vcMMAF (Figure 5b) for 96 hours. The cultures were labeled for 4 hours with 50 μM resazurin and the fluorescence measured. The data were reduced in GraphPad Prism version 4.00 using the 4-parameter dose-response curve fit procedure. IC₅₀ values are defined as the concentration where growth is reduced 50% compared with untreated control cultures. Each concentration is tested in quadruplicate.

Activity of c1f6-antibody-drug conjugates against CD70⁺ renal cell carcinoma cell lines. Figures 6a and 6b
show dose-response curves from a representative experiment where cultures of Caki-1 and 786-O cells were incubated
with serially diluted clF6-mcMMAF (Figure 6a) or-vcMMAF (Figure 6b) for 96 hours. The cultures were labeled for 4
hours with 50 μM resazurin and the fluorescence measured. The data were reduced in GraphPad Prism version 4.00
using the 4-parameter dose-response curve fit procedure. IC50 values are defined as the concentration where growth
is reduced 50% compared with untreated control cultures. Each concentration is tested in quadruplicate.

Example 26 - Purification of trastuzumab

[0577] One vial containing 440 mg HERCEPTIN® (huMAb4D5-8, rhuMAb HER2, U.S. Patent No. 5821337) antibody
was dissolved in 50 mL MES buffer (25 mM MES, 50 mM NaCl, pH 5.6) and loaded on a cation exchange column
(Sepharose S, 15 cm x 1.7 cm) that had been equilibrated in the same buffer. The column was then washed with the
same buffer (5 column volumes). Trastuzumab was eluted by raising the NaCl concentration of the buffer to 200 mM.
Fractions containing the antibody were pooled, diluted to 10 mg/mL, and dialyzed into a buffer containing 50 mm potassium
phosphate, 50 mM NaCl, 2 mM EDTA, pH 6.5.

Example 27 - Preparation of trastuzumab-MC-MMAE by conjugation of trastuzumab and MC-MMAE

[0578] Trastuzumab, dissolved in 500 mM sodium borate and 500 mM sodium chloride at pH 8.0 is treated with an
excess of 100 mM dithiothreitol (DTT). After incubation at 37°C for about 30 minutes, the buffer is exchanged by elution
over Sephadex G25 resin and eluted with PBS with 1mM DTPA. The thiol/Ab value is checked by determining the
reduced antibody concentration from the absorbance at 280 nm of the solution and the thiol concentration by reaction
with DTNB (Aldrich, Milwaukee, WI) and determination of the absorbance at 412 nm. The reduced antibody dissolved
in PBS is chilled on ice.

[0579] The drug linker reagent, maleimidocaproyl-monomethyl auristatin E (MMAE), i.e. MC-MMAE, dissolved in
DMSO, is diluted in acetonitrile and water at known concentration, and added to the chilled reduced antibody trastuzumab
in PBS. After about one hour, an excess of maleimide is added to quench the reaction and cap any unreacted antibody
thiol groups. The reaction mixture is concentrated by centrifugal ultrafiltration and trastuzumab-MC-MMAE is purified
and desalted by elution through G25 resin in PBS, filtered through 0.2 μm filters under sterile conditions, and frozen for
storage.

Example 28 - Preparation of trastuzumab-MC-MMAF by conjugation of trastuzumab and MC-MMAF

[0580] Trastuzumab-MC-MMAF was prepared by conjugation of trastuzumab and MC-MMAF following the procedure
of Example 27.

Example 29 - Preparation of trastuzumab-MC-val-cit-PAB-NMAE by conjugation of trastuzumab and MC-val-cit-PAB-
MMAE

[0581] Trastuzumab-MC-val-cit-PAB-MMAE was prepared by conjugation of trastuzumab and MC-val-cit-PAB-MMAE
following the procedure of Example 27.

Example 30 - Preparation of trastuzumab-MC-val-cit-PAB-MMAF by conjugation of trastuzumab and MC-val-cit-PAB-
MMAF 9

[0582] Trastuzumab-MC-val-cit-PAB-MMAF was prepared by conjugation of trastuzumab and MC-val-cit-PAB-MMAF
9 following the procedure of Example 27.

Example 31 - Rat toxicity

[0583] The acute toxicity profile of free drugs and ADC was evaluated in adolescent Sprague-Dawley rats (75-125
gms each, Charles River Laboratories (Hollister, CA). Animals were injected on day 1, complete chemistry and hematology
profiles were obtained at baseline, day 3 and day 5 and a complete necropsy was performed on day 5. Liver enzyme
measurements was done on all animals and routine histology as performed on three random animals for each group for
the following tissues: sternum, liver, kidney, thymus, spleen, large and small intestine. The experimental groups were
as follows:
For trastuzumab-MC-val-cit-MMAF, trastuzumab-MC(Me)-val-cit-PAB-MMAF, trastuzumab-MC-MMAF and trastuzumab-MC-val-cit-PAB-MMAF, the \(\mu g \) MMAF/m\(^2\) was calculated using 731.5 as the MW of MMAF and 145167 as the MW of Herceptin.

The body surface area was calculated as follows: \([(\text{body weight in grams to 0.667 power}) \times 11.8] / 10000 \). (Guidance for Industry and Reviewers, 2002).

The dose solutions were administered by a single intravenous bolus tail-vein injection on Study Day 1 at a dose volume of 10 mL/kg. Body weights of the animals were measured pre-dose on Study Day 1 and daily thereafter. Whole blood was collected into EDTA containing tubes for hematology analysis. Whole blood was collected into serum separator tubes for clinical chemistry analysis. Blood samples were collected pre-dose on Study Day -4, Study Day 3 and Study Day 5. Whole blood was also collected into sodium heparin containing tubes at necropsy and the plasma was frozen at -70°C for possible later analysis. The following tissues were collected and placed in neutral buffered formalin at necropsy: liver, kidneys, heart, thymus, spleen, brain, sternum and sections of the GI tract, including stomach, large and small intestine. Sternal, small intestine, large intestine, liver, thymus, spleen and kidney were examined.

Liver associated serum enzyme levels at each timepoint were compared to a range (5th and 95th percentile) from normal female Sprague-Dawley rats. White blood cell and platelet counts at each timepoint were compared to a range (5th and 95th percentile) from normal female Sprague-Dawley rats.

High dose study in normal female Sprague-Dawley rats:

Tissues from 11 animals were submitted for routine histology. These animals had been part of an acute dose-ranging toxicity study using a trastuzumab-MC-MMAF immunoconjugate. Animals were followed for 12 days following dosing.

Example 32 - Cynomolgus Monkey Toxicity/Safety

Three groups of four (2 male, 2 female) naive Macaca fascicularis (cynomolgus monkey) were studied for trastuzumab-MC-vc-PAB-MMAE and trastuzumab-MC-vc-PAB-MMAF. Intravenous administration was conducted at days 1 and 22 of the studies.

<table>
<thead>
<tr>
<th>Group</th>
<th>Administered</th>
<th>mg/kg</th>
<th>(\mu g) MMAF/ m(^2)</th>
<th>MMAF/ MAb</th>
<th>N/Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vehicle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2/F</td>
</tr>
<tr>
<td>2</td>
<td>trastuzumab-MC-val-cit-MMAF</td>
<td>9.94</td>
<td>840</td>
<td>4.2</td>
<td>6/F</td>
</tr>
<tr>
<td>3</td>
<td>trastuzumab-MC-val-cit-MMAF</td>
<td>24.90</td>
<td>2105</td>
<td>4.2</td>
<td>6/F</td>
</tr>
<tr>
<td>4</td>
<td>trastuzumab-MC(Me)-val-cit-PAB-MMAF</td>
<td>10.69</td>
<td>840</td>
<td>3.9</td>
<td>6/F</td>
</tr>
<tr>
<td>5</td>
<td>trastuzumab-MC(Me)-val-cit-PAB-MMAF</td>
<td>26.78</td>
<td>2105</td>
<td>3.9</td>
<td>6/F</td>
</tr>
<tr>
<td>6</td>
<td>trastuzumab-MC-MMAF</td>
<td>10.17</td>
<td>840</td>
<td>4.1</td>
<td>6/F</td>
</tr>
<tr>
<td>7</td>
<td>trastuzumab-MC-MMAF</td>
<td>25.50</td>
<td>2105</td>
<td>4.1</td>
<td>6/F</td>
</tr>
<tr>
<td>8</td>
<td>trastuzumab-MC-val-cit-PAB-MMAF</td>
<td>21.85</td>
<td>2105</td>
<td>4.8</td>
<td>6/F</td>
</tr>
</tbody>
</table>

Sample Group Dose

1. Vehicle
 - Day 1: 1M/1F
 - Day 22: 1M/1F

2. H-MC-vc-PAB-MMAE
 - Day 1: 2M/2F
 - Day 22: 2M/2F
 - Day 29: 2M/2F

3. H-MC-vc-PAB-MMAE
 - Day 8: 2M/2F
 - Day 29: 2M/2F

4. H-MC-vc-PAB-MMAE
 - Day 15: 2M/2F
 - Day 36: 2M/2F
Dosing is expressed in surface area of an animal so as to be relevant to other species, i.e. dosage at \(\mu g/m^2 \) is independent of species and thus comparable between species. Formulations of ADC contained PBS, 5.4 mM sodium phosphate, 4.2 mM potassium phosphate, 140 mM sodium chloride, pH 6.5.

Blood was collected for hematology analysis predose, and at 5 min., 6 hr, 10 hr, and 1, 3, 5, 7, 14, 21 days after each dose. Erythrocyte (RBC) and platelet (PLT) counts were measured by the light scattering method. Leukocyte (WBC) count was measured by the peroxidase/basophil method. Reticulocyte count was measured by the light scattering method with cationic dye. Cell counts were measured on an Advia 120 apparatus. ALT (alanine aminotransferase) and AST (aspartate aminotransferase) were measured in U/L by UV/NADH; IFCC methodology on an Olympus AU400 apparatus, and using Total Ab ELISA - ECD/GxhuFc-HRP. Conj. Ab ELISA - MMAE/MMAF/ECD-Bio/SA-HRP tests.

Example 33 - Production, Characterization and Humanization of Anti-ErbB2 Monoclonal Antibody 4D5

The murine monoclonal antibody 4D5 which specifically binds the extracellular domain of ErbB2 was produced as described in Fendly et al. (1990) Cancer Research 50:1550-1558. Briefly, NIH 3T3/HER2-3400 cells (expressing approximately 1 x 10^5 ErbB2 molecules/cell) produced as described in Hudziak et al. Proc. Natl. Acad. Sci. (USA) 84:7158-7163 (1987) were harvested with phosphate buffered saline (PBS) containing 25mM EDTA and used to immunize BALB/c mice. The mice were given injections i.p. of 10^7 cells in 0.5ml PBS on weeks 0, 2, 5 and 7. The mice with antisera that immunoprecipitated 32P-labeled ErbB2 were given i.p. injections of a wheat germ agglutinin-Sepharose (WGA) purified ErbB2 membrane extract on weeks 9 and 13. This was followed by an i.v. injection of 0.1 ml of the ErbB2 preparation and the splenocytes were fused with mouse myeloma line X63-Ag8.653. Hybridoma supernatants were screened for ErbB2-binding by ELISA and radioimmunoprecipitation.

Epitope mapping and characterization

The ErbB2 epitope bound by monoclonal antibody 4D5 was determined by competitive binding analysis (Fendly et al. Cancer Research 50:1550-1558 (1990)). Cross-blocking studies were done by direct fluorescence on intact cells using the PANDEX™ Screen Machine to quantitate fluorescence. The monoclonal antibody was conjugated with fluorescein isothiocyanate (FITC), using established procedures (Wofsy et al. Selected Methods in Cellular Immunology, p. 287, Mishel and Schiigi (eds.) San Francisco: W.J. Freeman Co. (1980)). Confluent monolayers of NIH 3T3/HER2-3400 cells were trypsinized, washed once, and resuspended at 1.75 x 10^6 cell/ml in cold PBS containing 0.5% bovine serum albumin (BSA) and 0.1 % NaN_3. A final concentration of 1 % latex particles (IDC, Portland, OR) was added to reduce clogging of the PANDEX™ plate membranes. Cells in suspension, 20 ml, and 20 ml of purified monoclonal antibodies (100ug/ml to 0.1 \(\mu g/ml \)) were added to the PANDEX™ plate wells and incubated on ice for 30 minutes. A predetermined dilution of the FITC-labeled monoclonal antibody in 20 \(\mu l \) was added to each well, incubated for 30 minutes, washed, and the fluorescence was quantitated by the PANDEX™. Monoclonal antibodies were considered to share an epitope if each blocked binding of the other by 50% or greater in comparison to an irrelevant monoclonal antibody control. In this experiment, monoclonal antibody 4D5 was assigned epitope I (amino acid residues from about 529 to about 625, inclusive within the ErbB2 extracellular domain.

The growth inhibitory characteristics of monoclonal antibody 4D5 were evaluated using the breast tumor cell line, SK-BR-3 (see Hudziak et al. (1989) Molec. Cell. Biol. 9(3):1165-1172). Briefly, SK-BR-3 cells were detached by using 0.25% (vol/vol) trypsin and suspended in complete medium at a density of 4 x 10^5 cells per ml. Aliquots of 100 \(\mu l \) (4 x 10^4 cells) were plated into 96-well microdilution plates, the cells were allowed to adhere, and 100 \(\mu l \) of media alone...
or media containing monoclonal antibody (final concentration 5 μg/ml) was then added. After 72 hours, plates were washed twice with PBS (pH 7.5), stained with crystal violet (0.5% in methanol), and analyzed for relative cell proliferation as described in Sugarman et al. (1985) Science 230:943-945. Monoclonal antibody 4D5 inhibited SK-BR-3 relative cell proliferation by about 56%.

[0596] Monoclonal antibody 4D5 was also evaluated for its ability to inhibit HRG-stimulated tyrosine phosphorylation of proteins in the M₀ 180,000 range from whole-cell lysates of MCF7 cells (Lewis et al. (1996) Cancer Research 56:1457-1465). MCF7 cells are reported to express all known ErbB receptors, but at relatively low levels. Since ErbB2, ErbB3, and ErbB4 have nearly identical molecular sizes, it is not possible to discern which protein is becoming tyrosine phosphorylated when whole-cell lysates are evaluated by Western blot analysis. However, these cells are ideal for HRG tyrosine phosphorylation assays because under the assay conditions used, in the absence of exogenously added HRG, they exhibit low to undetectable levels of tyrosine phosphorylation proteins in the M₀ 180,000 range.

[0597] MCF7 cells were plated in 24-well plates and monoclonal antibodies to ErbB2 were added to each well and incubated for 30 minutes at room temperature; then rHRGβ₁[177-244] was added to each well to a final concentration of 0.2 nM, and the incubation was continued for 8 minutes. Media was carefully aspirated from each well, and reactions were stopped by the addition of 100 μl of SDS sample buffer (5% SDS, 25 mM DTT, and 25 mM Tris-HCl, pH 6.8). Each sample (25 μl) was electrophoresed on a 4-12% gradient gel (Novex) and then electrophoretically transferred to polyvinylidene difluoride membrane. Antiphosphotyrosine (4G10, from UBI, used at 1 μg/ml) immunoblots were developed, and the intensity of the predominant reactive band at M₀ 180,000 was quantified by reflectance densitometry, as described previously (Holmes et al. (1992) Science 256:1205-1210; Sliwkowski et al. J. Biol. Chem. 269:14661-14665 (1994)).

[0598] Monoclonal antibody 4D5 significantly inhibited the generation of a HRG-induced tyrosine phosphorylation signal at M₀ 180,000. In the absence of HRG, but was unable to stimulate tyrosine phosphorylation of proteins in the M₀ 180,000 range. Also, this antibody does not cross-react with EGFR (Fendly et al. Cancer Research 50:1550-1558 (1990)), ErbB3, or ErbB4. Monoclonal antibody 4D5 was able to block HRG stimulation of tyrosine phosphorylation by 50%.

[0599] The growth inhibitory effect of monoclonal antibody 4D5 on MDA-MB-175 and SK-BR-3 cells in the presence or absence of exogenous rHRGβ₁ was assessed (Schaefer et al. Oncogene 15:1385-1394 (1997)). ErbB2 levels in MDA-MB-175 cells are 4-6 times higher than the level found in normal breast epithelial cells and the ErbB2-ErbB4 receptor is constitutively tyrosine phosphorylated in MDA-MB-175 cells. Monoclonal antibody 4D5 was able to inhibit cell proliferation of MDA-MB-175 cells, both in the presence and absence of exogenous HRG. Inhibition of cell proliferation by 4D5 is dependent on the ErbB2 expression level (Lewis et al. Cancer Immunol. Immunother. 37:255-263 (1993)). A maximum inhibition of 66% in SK-BR-3 cells could be detected. However this effect could be overcome by exogenous HRG.

[0600] The murine monoclonal antibody 4D5 was humanized, using a "gene conversion mutagenesis" strategy, as described in U.S. Patent No. 5821337. The humanized monoclonal antibody 4D5 used in the following experiments is designated huMAb4D5-8. This antibody is of IgG1 isotype.

Sequence Listing

[0601] MONOMETHYLVALINE COMPOUNDS CAPABLE OF CONJUGATION TO LIGANDS

018891-001020PC
0204-11-05
US 60/598,899
0204-08-04
US 60/557,116
Met Leu Leu Arg Ser Ala Gly Lys Leu Asn Val Gly Thr Lys Lys
1 5 10 15
Glu Asp Gly Glu Ser Thr Ala Pro Thr Pro Arg Pro Lys Val Leu
20 25 30
Arg Cys Lys Cys His His His Cys Pro Glu Asp Ser Val Asn Asn
35 40 45
Ile Cys Ser Thr Asp Gly Tyr Cys Phe Thr Met Ile Glu Glu Asp
50 55 60
Asp Ser Gly Leu Pro Val Val Thr Ser Gly Cys Leu Gly Leu Glu
65 70 75
Gly Ser Asp Phe Gln Cys Arg Asp Thr Pro Ile Pro His Gln Arg
80 85 90
Arg Ser Ile Glu Cys Thr Glu Arg Asn Glu Cys Asn Lys Asp
95 100 105
Leu His Pro Thr Leu Pro Pro Leu Lys Asn Arg Asp Phe Val Asp
110 115 120
Gly Pro Ile His His Arg Ala Leu Leu Ile Ser Val Thr Val Cys
125 130 135
Ser Leu Leu Leu Val Leu Ile Ile Leu Phe Cys Tyr Phe Arg Tyr
140 145 150

Lys Arg Gln Glu Thr Arg Pro Arg Tyr Ser Ile Gly Leu Glu Gln
155 160 165

Asp Glu Thr Tyr Ile Pro Pro Gly Glu Ser Leu Arg Asp Leu Ile
170 175 180

Glu Gln Ser Gln Ser Ser Gly Ser Gly Ser Gly Leu Pro Leu Leu
185 190 195

Val Gln Arg Thr Ile Ala Lys Gln Ile Gln Met Val Lys Gln Ile
200 205 210

Gly Lys Gly Arg Tyr Gly Glu Val Trp Met Gly Lys Trp Arg Gly
215 220 225

Glu Lys Val Ala Val Lys Val Phe Phe Thr Thr Glu Ala Ser
230 235 240

Trp Phe Arg Glu Thr Glu Ile Tyr Gln Thr Val Leu Met Arg His
245 250 255

Glu Asn Ile Leu Gly Phe Ile Ala Ala Asp Ile Lys Gly Thr Gly
260 265 270

Ser Trp Thr Gln Leu Tyr Leu Ile Thr Asp Tyr His Glu Asn Gly
275 280 285

Ser Leu Tyr Asp Tyr Leu Lys Ser Thr Thr Leu Asp Ala Lys Ser
290 295 300

Met Leu Lys Leu Ala Tyr Ser Ser Val Ser Gly Leu Cys His Leu
305 310 315

His Thr Glu Ile Phe Ser Thr Gln Gly Lys Pro Ala Ile Ala His
320 325 330

Arg Asp Leu Lys Ser Lys Asn Ile Leu Val Lys Lys Asn Gly Thr
335 340 345

Cys Cys Ile Ala Asp Leu Gly Leu Ala Val Lys Phe Ile Ser Asp
350 355 360

Thr Asn Glu Val Asp Ile Pro Pro Asn Thr Arg Val Gly Thr Lys
365 370 375

Arg Tyr Met Pro Pro Glu Val Leu Asp Glu Ser Leu Asn Arg Asn
380 385 390

His Phe Gln Ser Tyr Ile Met Ala Asp Met Tyr Ser Phe Gly Leu
395 400 405

Ile Leu Trp Glu Val Ala Arg Arg Cys Val Ser Gly Gly Ile Val
410 415 420

Glu Glu Tyr Gln Leu Pro Tyr His Asp Leu Val Pro Ser Asp Pro
425 430 435

Ser Tyr Glu Asp Met Arg Glu Ile Val Cys Ile Lys Leu Arg
<table>
<thead>
<tr>
<th>440</th>
<th>445</th>
<th>450</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>Ser</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
<td>Asn</td>
<td>Arg</td>
</tr>
<tr>
<td>Trp</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>Asp</td>
<td>Glu</td>
<td>Cys</td>
</tr>
<tr>
<td>Leu</td>
<td>Arg</td>
<td>Gln</td>
</tr>
<tr>
<td>455</td>
<td>460</td>
<td>465</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>470</th>
<th>475</th>
<th>480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>Gly</td>
<td>Lys</td>
</tr>
<tr>
<td>Leu</td>
<td>Met</td>
<td>Thr</td>
</tr>
<tr>
<td>Glu</td>
<td>Cys</td>
<td>Trp</td>
</tr>
<tr>
<td>Ala</td>
<td>His</td>
<td>Asn</td>
</tr>
<tr>
<td>Pro</td>
<td>Ala</td>
<td>Ser</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>485</th>
<th>490</th>
<th>495</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg</td>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>Arg</td>
<td>Lys</td>
<td>Lys</td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>Ala</td>
</tr>
<tr>
<td>Lys</td>
<td>Met</td>
<td>Ser</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu</td>
</tr>
<tr>
<td>Asp</td>
</tr>
<tr>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>65</td>
</tr>
</tbody>
</table>
Ile Ile Leu Leu Gly Phe Val Gln Ile Gly Lys Gly Val Val Ser 215 220 225

Asn Leu Asp Pro Asn Phe Ser Phe Glu Gly Thr Lys Leu Asp Val 230 235 240

Gly Asn Ile Val Leu Ala Leu Tyr Ser Gly Leu Phe Ala Tyr Gly 245 250 255

Gly Trp Asn Tyr Leu Asn Phe Val Thr Glu Glu Met Ile Asn Pro 260 265 270

Tyr Arg Asn Leu Pro Leu Ala Ile Ile Ile Ser Leu Pro Ile Val 275 280 285

Thr Leu Val Tyr Val Leu Thr Asn Leu Ala Tyr Phe Thr Thr Leu 290 295 300

Ser Thr Glu Gln Met Leu Ser Ser Glu Ala Val Ala Val Asp Phe 305 310 315

Gly Asn Tyr His Leu Gly Val Met Ser Trp Ile Ile Pro Val Phe 320 325 330

Val Gly Leu Ser Cys Phe Gly Ser Val Asn Gly Ser Leu Phe Thr 335 340 345

Ser Ser Arg Leu Phe Phe Val Gly Ser Arg Glu Gly His Leu Pro 350 355 360

Ser Ile Leu Ser Met Ile His Pro Gln Leu Leu Thr Pro Val Pro 365 370 375

Ser Leu Val Phe Thr Cys Val Met Thr Leu Leu Tyr Ala Phe Ser 380 385 390

Lys Asp Ile Phe Ser Val Ile Asn Phe Phe Ser Phe Phe Asn Trp 395 400 405

Leu Cys Val Ala Leu Ala Ile Ile Gly Met Ile Trp Leu Arg His 410 415 420

Arg Lys Pro Glu Leu Glu Arg Pro Ile Lys Val Asn Leu Ala Leu 425 430 435

Pro Val Phe Phe Ile Leu Ala Cys Leu Phe Leu Ile Ala Val Ser 440 445 450

Phe Trp Lys Thr Pro Val Glu Cys Gly Ile Gly Phe Thr Ile Ile 455 460 465

Leu Ser Gly Leu Pro Val Tyr Phe Phe Gly Val Trp Trp Lys Asn 470 475 480

Lys Pro Lys Trp Leu Leu Gln Gly Ile Phe Ser Thr Thr Val Leu 485 490 495

Cys Gln Lys Leu Met Gln Val Val Pro Gln Glu Thr 500 505
<210> 3
<211> 339
<212> PRT
<213> Homo sapien

5

<400> 3

10

15

20

25

30

35

40

45

50

55
<210> 4
<211> 6995
<212> PRT
<213> Homo sapiens

<400> 4
<table>
<thead>
<tr>
<th></th>
<th>Pro Val Thr Ser Leu Leu Thr Pro Gly Leu Val Ile Thr Thr Asp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Arg Met Gly Ile Ser Arg Glu Pro Gly Thr Ser Ser Thr Ser Asn</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>Leu Ser Ser Thr Ser His Glu Arg Leu Thr Thr Leu Glu Asp Thr</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>Val Asp Thr Glu Ala Met Glu Pro Ser Ser Thr His Thr Ala Val Thr</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>20</td>
<td>Asn Val Arg Thr Ser Ile Ser Gly His Glu Ser Gln Ser Ser Val</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>25</td>
<td>Leu Ser Asp Ser Glu Thr Pro Lys Ala Thr Ser Pro Met Gly Thr</td>
</tr>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>30</td>
<td>Thr Tyr Thr Met Gly Thr Ser Val Ser Ile Ser Thr Ser Asp</td>
</tr>
<tr>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>35</td>
<td>Phe Phe Glu Thr Ser Arg Ile Gln Ile Glu Pro Thr Ser Ser Leu</td>
</tr>
<tr>
<td>110</td>
<td>115</td>
</tr>
<tr>
<td>40</td>
<td>Thr Ser Gly Leu Arg Glu Thr Ser Ser Glu Arg Ile Ser Ser</td>
</tr>
<tr>
<td>125</td>
<td>130</td>
</tr>
<tr>
<td>45</td>
<td>Ala Thr Glu Gly Ser Thr Val Leu Ser Glu Val Pro Ser Gly Ala</td>
</tr>
<tr>
<td>140</td>
<td>145</td>
</tr>
<tr>
<td>50</td>
<td>Thr Thr Glu Val Ser Arg Thr Glu Val Ile Ser Ser Arg Gly Thr</td>
</tr>
<tr>
<td>155</td>
<td>160</td>
</tr>
<tr>
<td>55</td>
<td>Ser Met Ser Gly Pro Asp Gln Phe Thr Ile Ser Pro Asp Ile Ser</td>
</tr>
<tr>
<td>170</td>
<td>175</td>
</tr>
<tr>
<td>60</td>
<td>Thr Glu Ala Ile Thr Arg Leu Ser Thr Ser Pro Ile Met Thr Glu</td>
</tr>
<tr>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td>65</td>
<td>Ser Ala Glu Ser Ala Ile Thr Ile Glu Thr Gly Ser Pro Gly Ala</td>
</tr>
<tr>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thr</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Trp</td>
</tr>
<tr>
<td>15</td>
<td>Glu</td>
</tr>
<tr>
<td>20</td>
<td>Pro</td>
</tr>
<tr>
<td>25</td>
<td>Leu</td>
</tr>
<tr>
<td>30</td>
<td>Pro</td>
</tr>
<tr>
<td>35</td>
<td>Thr</td>
</tr>
<tr>
<td>40</td>
<td>Glu</td>
</tr>
<tr>
<td>45</td>
<td>Glu</td>
</tr>
<tr>
<td>50</td>
<td>His</td>
</tr>
<tr>
<td>55</td>
<td>Tyr</td>
</tr>
<tr>
<td>60</td>
<td>Thr</td>
</tr>
<tr>
<td>65</td>
<td>Thr</td>
</tr>
<tr>
<td>70</td>
<td>Thr</td>
</tr>
<tr>
<td>75</td>
<td>Thr</td>
</tr>
<tr>
<td>80</td>
<td>Ser</td>
</tr>
<tr>
<td>85</td>
<td>Ala</td>
</tr>
<tr>
<td>90</td>
<td>Thr</td>
</tr>
<tr>
<td>95</td>
<td>Thr</td>
</tr>
<tr>
<td>100</td>
<td>Lys</td>
</tr>
</tbody>
</table>
Asp Thr Ser Ser Arg Ala Ser Trp Pro Gly Thr His Ser Ala Ala 515 520 525
Thr His Arg Ser Pro His Ser Gly Met Thr Thr Pro Met Ser Arg 530 535 540
Gly Pro Glu Asp Val Ser Trp Pro Ser Arg Pro Ser Val Glu Lys 545 550 555
Thr Ser Pro Pro Ser Ser Leu Val Ser Leu Ser Ala Val Thr Ser 560 565 570
Pro Ser Pro Leu Tyr Ser Thr Pro Ser Glu Ser Ser His Ser Ser 575 580 585
Pro Leu Arg Val Thr Ser Leu Phe Thr Pro Val Met Met Lys Thr 590 595 600
Thr Asp Met Leu Asp Thr Ser Leu Glu Pro Val Thr Thr Ser Pro 605 610 615
Pro Ser Met Asn Ile Thr Ser Asp Glu Ser Leu Ala Thr Ser Lys 620 625 630
Ala Thr Met Glu Thr Glu Ala Ile Gln Leu Ser Glu Asn Thr Ala 635 640 645
Val Thr Gln Met Gly Thr Ile Ser Ala Arg Gln Glu Phe Tyr Ser 650 655 660
Ser Tyr Pro Gly Leu Pro Glu Pro Ser Lys Val Thr Ser Pro Val 665 670 675
Val Thr Ser Ser Thr Ile Lys Asp Ile Val Ser Thr Ile Pro 690 695 700
Ala Ser Ser Glu Ile Thr Arg Ile Glu Met Glu Ser Thr Ser Thr 695 700 705
Leu Thr Pro Thr Pro Arg Glu Thr Ser Thr Ser Gln Glu Ile His 710 715 720
Ser Ala Thr Lys Pro Ser Thr Val Pro Tyr Lys Ala Leu Thr Ser 725 730 735
Ala Thr Ile Glu Asp Ser Met Thr Gln Val Met Ser Ser Ser Arg 740 745 750
Gly Pro Ser Pro Asp Gln Ser Thr Met Ser Gln Asp Ile Ser Thr 755 760 765
Glu Val Ile Thr Arg Leu Ser Thr Ser Pro Ile Lys Thr Glu Ser 770 775 780
Thr Glu Met Thr Ile Thr Thr Gln Thr Gly Ser Pro Gly Ala Thr 785 790 795
Ser Arg Gly Thr Leu Thr Leu Asp Thr Ser Thr Thr Phe Met Ser 800 805 810
Gly Thr His Ser Thr Ala Ser Gln Gly Phe Ser His Ser Gln Met
Thr Ala Leu Met Ser Arg Thr Pro Gly Glu Val Pro Trp Leu Ser
815 820 825
Thr Pro Ser Val Glu Glu Ala Ser Ser Ala Ser Phe Ser Leu Ser
830 835
Ser Pro Val Met Thr Ser Ser Ser Pro Val Ser Ser Thr Leu Pro
845 850 855
Asp Ser Ile His Ser Ser Ser Leu Pro Val Thr Ser Leu Leu Thr
860 865
Ser Gly Leu Val Lys Thr Thr Glu Leu Leu Gly Thr Ser Ser Glu
875 880
Pro Glu Thr Ser Ser Pro Pro Asn Leu Ser Ser Thr Ser Ala Glu
890 895 900
Ile Leu Ala Thr Thr Glu Val Thr Thr Asp Thr Glu Lys Leu Glu
905 910
Met Thr Asn Val Val Thr Ser Gly Tyr Thr His Glu Ser Pro Ser
920 925
Ser Val Leu Ala Asp Ser Val Thr Lys Ala Thr Ser Ser Met
935 940
Gly Ile Thr Tyr Pro Thr Gly Asp Thr Asn Val Leu Thr Ser Thr
950 955
Pro Ala Phe Ser Asp Thr Ser Arg Ile Gln Thr Lys Ser Lys Leu
965 970
Ser Leu Thr Pro Gly Leu Met Glu Thr Ser Ile Ser Glu Glu Thr
980 985
Ser Ser Ala Thr Glu Lys Ser Thr Val Leu Ser Ser Val Pro Thr
995 1000
Gly Ala Thr Thr Glu Val Ser Arg Thr Glu Ala Ile Ser Ser
1010 1015
Arg Thr Ser Ile Pro Gly Pro Ala Gln Ser Thr Met Ser Ser Asp
1025 1030
Thr Ser Met Glu Thr Ile Thr Arg Ile Ser Thr Pro Leu Thr Arg
1040 1045
Lys Glu Ser Thr Asp Met Ala Ile Thr Pro Lys Thr Gly Pro Ser
1055 1060
Gly Ala Thr Ser Gln Gly Thr Phe Thr Leu Asp Ser Ser Ser Thr
1075 1080
Ala Ser Trp Pro Gly Thr His Ser Ala Thr Thr Gln Arg Phe Pro
1090 1095
Arg Ser Val Val Thr Thr Pro Met Ser Arg Gly Pro Glu Asp Val
1100 1105
1115 1120
Ser Trp Pro Ser Pro Leu Ser Val Glu Lys Asn Ser Pro Pro Ser
1130 1135 1140
Ser Leu Val Ser Ser Ser Ser Val Thr Ser Pro Ser Pro Leu Tyr
1145 1150 1155
Ser Thr Pro Ser Gly Ser Ser His Ser Ser Pro Val Pro Val Thr
1160 1165 1170
Ser Leu Phe Thr Ser Ile Met Met Lys Ala Thr Asp Met Leu Asp
1175 1180 1185
Ala Ser Leu Glu Pro Glu Thr Ser Ala Pro Asn Met Asn Ile
1190 1195 1200
Thr Ser Asp Glu Ser Leu Ala Ala Ser Lys Ala Thr Glu Thr
1205 1210 1215
Glu Ala Ile His Val Phe Glu Asn Thr Ala Ala Ser His Val Glu
1220 1225 1230
Thr Thr Ser Ala Thr Glu Glu Leu Tyr Ser Ser Ser Pro Gly Phe
1235 1240 1245
Ser Glu Pro Thr Lys Val Ile Ser Pro Val Val Thr Ser Ser Ser
1250 1255 1260
Ile Arg Asp Asn Met Val Ser Thr Thr Met Pro Gly Ser Ser Gly
1265 1270 1275
Ile Thr Arg Ile Glu Ile Glu Ser Met Ser Ser Leu Thr Pro Gly
1280 1285 1290
Leu Arg Glu Thr Arg Thr Ser Gln Asp Ile Thr Ser Ser Ser Glu
1295 1300 1305
Thr Ser Thr Val Leu Tyr Lys Met Pro Ser Gly Ala Thr Pro Glu
1310 1315 1320
Val Ser Arg Thr Glu Val Met Pro Ser Ser Arg Thr Ile Pro
1325 1330 1335
Gly Pro Ala Gln Ser Thr Met Ser Leu Asp Ile Ser Asp Glu Val
1340 1345 1350
Val Thr Arg Leu Ser Thr Ser Pro Ile Met Thr Glu Ser Ala Glu
1355 1360 1365
Ile Thr Ile Thr Thr Gln Thr Gly Tyr Ser Leu Ala Thr Ser Gln
1370 1375 1380
Val Thr Leu Pro Leu Gly Thr Ser Met Thr Phe Leu Ser Gly Thr
1385 1390 1395
His Ser Thr Met Ser Gln Gly Leu Ser His Ser Glu Met Thr Asn
1400 1405 1410
Leu Met Ser Arg Gly Pro Glu Ser Leu Ser Trp Thr Ser Pro Arg
1415 1420 1425
EP 2 489 364 B1

Phe Val Glu Thr Thr Arg Ser Ser Ser Ser Leu Thr Ser Leu Pro
1430 1435 1440

Leu Thr Thr Ser Leu Ser Pro Val Ser Ser Thr Leu Leu Asp Ser
1445 1450 1455

Ser Pro Ser Ser Pro Leu Pro Val Thr Ser Leu Ile Leu Pro Gly
1460 1465 1470

Leu Val Lys Thr Thr Glu Val Leu Asp Thr Ser Ser Glu Pro Lys
1475 1480 1485

Thr Ser Ser Ser Pro Asn Leu Ser Ser Ser Thr Ser Val Glu Ile Pro
1490 1495 1500

Ala Thr Ser Glu Ile Met Thr Asp Thr Glu Lys Ile His Pro Ser
1505 1510 1515

Ser Asn Thr Ala Val Ala Lys Val Arg Thr Ser Ser Ser Val His
1520 1525 1530

Glu Ser His Ser Ser Val Leu Ala Asp Ser Glu Thr Thr Ile Thr
1535 1540 1545

Ile Pro Ser Met Gly Ile Thr Ser Ala Val Glu Asp Thr Thr Val
1550 1555 1560

Phe Thr Ser Asn Pro Ala Phe Ser Glu Thr Arg Arg Ile Pro Thr
1565 1570 1575

Glu Pro Thr Phe Ser Leu Thr Pro Gly Phe Arg Glu Thr Ser Thr
1580 1585 1590

Ser Glu Glu Thr Ser Ile Thr Glu Thr Ser Ala Val Leu Phe
1595 1600 1605

Gly Val Pro Thr Ser Ala Thr Glu Val Ser Met Thr Glu Ile
1610 1615 1620

Met Ser Ser Asn Arg Thr His Ile Pro Asp Ser Asp Gln Ser Thr
1625 1630 1635

Met Ser Pro Asp Ile Ile Thr Glu Val Ile Thr Arg Leu Ser Ser
1640 1645 1650

Ser Ser Met Ser Glu Ser Thr Gln Met Thr Ile Thr Thr Gln
1655 1660 1665

Lys Ser Ser Pro Gly Ala Thr Ala Gln Ser Thr Leu Thr Leu Ala
1670 1675 1680

Thr Thr Thr Ala Pro Leu Ala Arg Thr His Ser Thr Val Pro Pro
1685 1690 1695

Arg Phe Leu His Ser Glu Met Thr Leu Met Ser Arg Ser Pro
1700 1705 1710

Glu Asn Pro Ser Trp Lys Ser Ser Pro Phe Val Glu Lys Thr Ser
1715 1720 1725

Ser Ser Ser Ser Leu Leu Ser Leu Pro Val Thr Thr Ser Pro Ser

159
<table>
<thead>
<tr>
<th>Position</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1730</td>
<td>Val Ser Ser Thr Leu Pro Gln Ser Ile Pro Ser Ser Phe Ser</td>
</tr>
<tr>
<td>1735</td>
<td>1740</td>
</tr>
<tr>
<td>1745</td>
<td>Val Thr Ser Leu Leu Thr Pro Gly Met Val Lys Thr Thr Asp Thr</td>
</tr>
<tr>
<td>1760</td>
<td>1765</td>
</tr>
<tr>
<td>1775</td>
<td>Ser Thr Glu Pro Gly Thr Ser Leu Ser Pro Asn Leu Ser Gly Thr</td>
</tr>
<tr>
<td>1780</td>
<td>1785</td>
</tr>
<tr>
<td>1790</td>
<td>Ser Val Glu Ile Leu Ala Ala Ser Glu Val Thr Thr Asp Thr Glu</td>
</tr>
<tr>
<td>1795</td>
<td>1800</td>
</tr>
<tr>
<td>1805</td>
<td>Lys Ile His Pro Ser Ser Ser Met Ala Val Thr Asn Val Gly Thr</td>
</tr>
<tr>
<td>1810</td>
<td>1815</td>
</tr>
<tr>
<td>1820</td>
<td>Thr Ser Gly His Glu Leu Tyr Ser Ser Val Ser Ile His Ser</td>
</tr>
<tr>
<td>1825</td>
<td>1830</td>
</tr>
<tr>
<td>1835</td>
<td>Glu Pro Ser Lys Ala Thr Tyr Pro Val Gly Thr Pro Ser Ser Met</td>
</tr>
<tr>
<td>1840</td>
<td>1845</td>
</tr>
<tr>
<td>1850</td>
<td>Ala Glu Thr Ser Ile Ser Thr Ser Met Pro Ala Asn Phe Glu Thr</td>
</tr>
<tr>
<td>1855</td>
<td>1860</td>
</tr>
<tr>
<td>1865</td>
<td>Thr Gly Phe Glu Ala Glu Pro Phe Ser His Leu Thr Ser Gly Leu</td>
</tr>
<tr>
<td>1870</td>
<td>1875</td>
</tr>
<tr>
<td>1880</td>
<td>Arg Lys Thr Asn Met Ser Leu Asp Thr Ser Ser Val Thr Pro Thr</td>
</tr>
<tr>
<td>1885</td>
<td>1890</td>
</tr>
<tr>
<td>1895</td>
<td>Asn Thr Pro Ser Ser Pro Gly Ser Thr His Leu Leu Gln Ser Ser</td>
</tr>
<tr>
<td>1900</td>
<td>1905</td>
</tr>
<tr>
<td>1910</td>
<td>Lys Thr Asp Phe Thr Ser Ser Ala Lys Thr Ser Ser Pro Asp Trp</td>
</tr>
<tr>
<td>1915</td>
<td>1920</td>
</tr>
<tr>
<td>1925</td>
<td>Pro Pro Ala Ser Gln Tyr Thr Glu Ile Pro Val Asp Ile Ile Thr</td>
</tr>
<tr>
<td>1930</td>
<td>1935</td>
</tr>
<tr>
<td>1940</td>
<td>Pro Phe Asn Ala Ser Pro Ser Ile Thr Glu Ser Thr Gly Ile Thr</td>
</tr>
<tr>
<td>1945</td>
<td>1950</td>
</tr>
<tr>
<td>1955</td>
<td>Ser Phe Pro Glu Ser Arg Phe Thr Met Ser Val Thr Glu Ser Thr</td>
</tr>
<tr>
<td>1960</td>
<td>1965</td>
</tr>
<tr>
<td>1970</td>
<td>His His Leu Ser Thr Asp Leu Leu Pro Ser Ala Glu Thr Ile Ser</td>
</tr>
<tr>
<td>1975</td>
<td>1980</td>
</tr>
<tr>
<td>1985</td>
<td>Thr Gly Thr Val Met Pro Ser Leu Ser Glu Ala Met Thr Ser Phe</td>
</tr>
<tr>
<td>1990</td>
<td>1995</td>
</tr>
<tr>
<td>2000</td>
<td>Ala Thr Thr Gly Val Pro Arg Ala Ile Ser Gly Ser Gly Ser Pro</td>
</tr>
<tr>
<td>2005</td>
<td>2010</td>
</tr>
<tr>
<td>2015</td>
<td>Phe Ser Arg Thr Glu Ser Gly Pro Gly Asp Ala Thr Leu Ser Thr</td>
</tr>
<tr>
<td>2020</td>
<td>2025</td>
</tr>
<tr>
<td>2030</td>
<td>Ile Ala Glu Ser Leu Pro Ser Ser Thr Pro Val Pro Phe Ser Ser</td>
</tr>
<tr>
<td>2035</td>
<td>2040</td>
</tr>
</tbody>
</table>
Ser Thr Phe Thr Thr Thr Asp Ser Ser Thr Ile Pro Ala Leu His 2045 2050 2055
Glu Ile Thr Ser Ser Ser Ala Thr Pro Tyr Arg Val Asp Thr Ser 2060 2065 2070
Leu Gly Thr Glu Ser Ser Thr Thr Glu Gly Arg Leu Val Met Val 2075 2080 2085
Ser Thr Leu Asp Thr Ser Ser Gln Pro Gly Arg Thr Ser Ser Ser 2090 2095 2100
Pro Ile Leu Asp Thr Arg Met Thr Glu Ser Val Glu Leu Gly Thr 2105 2110 2115
Val Thr Ser Ala Tyr Gln Val Pro Ser Leu Ser Thr Arg Leu Thr 2120 2125 2130
Arg Thr Asp Gly Ile Met Glu His Ile Thr Lys Ile Pro Asn Glu 2135 2140 2145
Ala Ala His Arg Gly Thr Ile Arg Pro Val Lys Gly Pro Gln Thr 2150 2155 2160
Ser Thr Ser Pro Ala Ser Pro Lys Gly Leu His Thr Gly Gly Thr 2165 2170 2175
Lys Arg Met Glu Thr Thr Thr Ala Leu Lys Thr Thr Thr Thr 2180 2185 2190
Ala Leu Lys Thr Thr Ser Arg Ala Thr Leu Thr Thr Ser Val Tyr 2195 2200 2205
Thr Pro Thr Leu Gly Thr Leu Thr Pro Leu Asn Ala Ser Met Gln 2210 2215 2220
Met Ala Ser Thr Ile Pro Thr Glu Met Met Ile Thr Thr Pro Tyr 2225 2230 2235
Val Phe Pro Asp Val Pro Glu Thr Thr Ser Ser Leu Ala Thr Ser 2240 2245 2250
Leu Gly Ala Glu Thr Ser Thr Ala Leu Pro Arg Thr Thr Pro Ser 2255 2260 2265
Val Phe Asn Arg Glu Ser Glu Thr Thr Ala Ser Leu Val Ser Arg 2270 2275 2280
Ser Gly Ala Glu Arg Ser Pro Val Ile Gln Thr Leu Asp Val Ser 2285 2290 2295
Ser Ser Glu Pro Asp Thr Thr Ala Ser Trp Val Ile His Pro Ala 2300 2305 2310
Glu Thr Ile Pro Thr Val Ser Lys Thr Thr Pro Asn Phe Phe His 2315 2320 2325
Ser Glu Leu Asp Thr Val Ser Ser Thr Ala Thr Ser His Gly Ala 2330 2335 2340
<table>
<thead>
<tr>
<th>Position</th>
<th>Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-20</td>
<td>Asp Val Ser Ser Ala Ile Pro Thr Asn Ile Ser Pro Ser Glu Leu</td>
</tr>
<tr>
<td></td>
<td>2345 2350 2355</td>
</tr>
<tr>
<td>5-10</td>
<td>Asp Ala Leu Thr Pro Leu Val Thr Ile Ser Gly Thr Asp Thr Ser</td>
</tr>
<tr>
<td></td>
<td>2360 2365 2370</td>
</tr>
<tr>
<td>10-15</td>
<td>Thr Thr Phe Pro Thr Leu Thr Lys Ser Pro His Glu Thr Glu Thr</td>
</tr>
<tr>
<td></td>
<td>2375 2380 2385</td>
</tr>
<tr>
<td>15-20</td>
<td>Arg Thr Thr Trp Leu Thr His Pro Ala Glu Thr Ser Ser Thr Ile</td>
</tr>
<tr>
<td></td>
<td>2390 2395 2400</td>
</tr>
<tr>
<td>20-25</td>
<td>Pro Arg Thr Ile Pro Asn Phe Ser His His Glu Ser Asp Ala Thr</td>
</tr>
<tr>
<td></td>
<td>2405 2410 2415</td>
</tr>
<tr>
<td>25-30</td>
<td>Pro Ser Ile Ala Thr Ser Pro Gly Ala Glu Thr Ser Ser Ala Ile</td>
</tr>
<tr>
<td></td>
<td>2420 2425 2430</td>
</tr>
<tr>
<td>30-35</td>
<td>Pro Ile Met Thr Val Ser Pro Gly Ala Glu Asp Leu Val Thr Ser</td>
</tr>
<tr>
<td></td>
<td>2435 2440 2445</td>
</tr>
<tr>
<td>35-40</td>
<td>Gln Val Thr Ser Ser Gly Thr Asp Arg Asn Met Thr Ile Pro Thr</td>
</tr>
<tr>
<td></td>
<td>2450 2455 2460</td>
</tr>
<tr>
<td>40-45</td>
<td>Leu Thr Leu Ser Pro Gly Glu Pro Lys Thr Ile Ala Ser Leu Val</td>
</tr>
<tr>
<td></td>
<td>2465 2470 2475</td>
</tr>
<tr>
<td>45-50</td>
<td>Thr His Pro Glu Ala Gln Thr Ser Ser Ala Ile Pro Thr Ser Thr</td>
</tr>
<tr>
<td></td>
<td>2480 2485 2490</td>
</tr>
<tr>
<td>50-55</td>
<td>Ile Ser Pro Ala Val Ser Arg Leu Val Thr Ser Met Val Thr Ser</td>
</tr>
<tr>
<td></td>
<td>2495 2500 2505</td>
</tr>
<tr>
<td>55-60</td>
<td>Leu Ala Ala Lys Thr Ser Thr Thr Thr Asn Arg Ala Leu Thr Asn Ser</td>
</tr>
<tr>
<td></td>
<td>2510 2515 2520</td>
</tr>
<tr>
<td>60-65</td>
<td>Pro Gly Glu Pro Ala Thr Thr Val Ser Leu Val Thr His Ser Ala</td>
</tr>
<tr>
<td></td>
<td>2525 2530 2535</td>
</tr>
<tr>
<td>65-70</td>
<td>Gln Thr Ser Pro Thr Val Pro Trp Thr Thr Ser Ile Phe Phe His</td>
</tr>
<tr>
<td></td>
<td>2540 2545 2550</td>
</tr>
<tr>
<td>70-75</td>
<td>Ser Lys Ser Asp Thr Thr Pro Ser Met Thr Thr Ser His Gly Ala</td>
</tr>
<tr>
<td></td>
<td>2555 2560 2565</td>
</tr>
<tr>
<td>75-80</td>
<td>Glu Ser Ser Ala Val Pro Thr Pro Thr Val Ser Thr Glu Val</td>
</tr>
<tr>
<td></td>
<td>2570 2575 2580</td>
</tr>
<tr>
<td>80-85</td>
<td>Pro Gly Val Thr Pro Leu Val Thr Ser Ser Arg Ala Val Ile</td>
</tr>
<tr>
<td></td>
<td>2585 2590 2595</td>
</tr>
<tr>
<td>85-90</td>
<td>Ser Thr Thr Ile Pro Ile Leu Thr Leu Ser Pro Gly Glu Pro Glu</td>
</tr>
<tr>
<td></td>
<td>2600 2605 2610</td>
</tr>
<tr>
<td>90-95</td>
<td>Thr Thr Pro Ser Met Ala Thr Ser His Gly Glu Ala Ser Ser</td>
</tr>
<tr>
<td></td>
<td>2615 2620 2625</td>
</tr>
<tr>
<td>95-100</td>
<td>Ala Ile Pro Thr Pro Thr Val Ser Pro Gly Val Pro Gly Val Val</td>
</tr>
<tr>
<td></td>
<td>2630 2635 2640</td>
</tr>
<tr>
<td>100-105</td>
<td>Thr Ser Leu Val Thr Ser Ser Arg Ala Val Thr Ser Thr Thr Ile</td>
</tr>
<tr>
<td>2645</td>
<td>2650</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Pro Ile Leu Thr Phe Ser Leu Gly Glu Pro Glu Thr Thr Pro Ser</td>
<td>2660</td>
</tr>
<tr>
<td>Met Ala Thr Ser His Gly Thr Glu Ala Gly Ser Ala Val Pro Thr</td>
<td>2675</td>
</tr>
<tr>
<td>Val Leu Pro Glu Val Pro Gly Met Val Thr Ser Leu Val Ala Ser</td>
<td>2690</td>
</tr>
<tr>
<td>Ser Arg Ala Val Thr Ser Thr Thr Leu Pro Thr Leu Thr Leu Ser</td>
<td>2705</td>
</tr>
<tr>
<td>Pro Gly Glu Pro Glu Thr Thr Pro Ser Met Ala Thr Ser His Gly</td>
<td>2720</td>
</tr>
<tr>
<td>Ala Glu Ala Ser Ser Thr Val Pro Thr Val Ser Pro Glu Val Pro</td>
<td>2735</td>
</tr>
<tr>
<td>Gly Val Val Thr Ser Leu Val Thr Ser Ser Ser Gly Val Asn Ser</td>
<td>2750</td>
</tr>
<tr>
<td>Thr Ser Ile Pro Thr Leu Ile Leu Ser Pro Gly Glu Leu Glu Thr</td>
<td>2765</td>
</tr>
<tr>
<td>Thr Pro Ser Met Ala Thr Ser His Gly Ala Glu Ala Ser Ser Ala</td>
<td>2780</td>
</tr>
<tr>
<td>Val Pro Thr Pro Thr Val Ser Pro Gly Val Ser Gly Val Val Thr</td>
<td>2795</td>
</tr>
<tr>
<td>Pro Leu Val Thr Ser Ser Arg Ala Val Thr Ser Thr Thr Ile Pro</td>
<td>2810</td>
</tr>
<tr>
<td>Ile Leu Thr Leu Ser Ser Ser Glu Pro Glu Thr Thr Pro Ser Met</td>
<td>2825</td>
</tr>
<tr>
<td>Ala Thr Ser His Gly Val Glu Ala Ser Ser Ala Val Leu Thr Val</td>
<td>2840</td>
</tr>
<tr>
<td>Ser Pro Glu Val Pro Gly Met Val Thr Phe Leu Val Thr Ser Ser</td>
<td>2855</td>
</tr>
<tr>
<td>Arg Ala Val Thr Ser Thr Thr Pro Thr Leu Thr Ile Ser Ser</td>
<td>2870</td>
</tr>
<tr>
<td>Asp Glu Pro Glu Thr Thr Ser Leu Val Thr His Ser Glu Ala</td>
<td>2885</td>
</tr>
<tr>
<td>Lys Met Ile Ser Ala Ile Pro Thr Leu Gly Val Ser Pro Thr Val</td>
<td>2900</td>
</tr>
<tr>
<td>Gln Gly Leu Val Thr Ser Leu Val Thr Ser Ser Gly Ser Glu Thr</td>
<td>2915</td>
</tr>
<tr>
<td>Ser Ala Phe Ser Asn Leu Thr Val Ala Ser Ser Gln Pro Glu Thr</td>
<td>2930</td>
</tr>
<tr>
<td>Ile Asp Ser Trp Val Ala His Pro Gly Thr Glu Ala Ser Ser Val</td>
<td>2945</td>
</tr>
</tbody>
</table>
Val Pro Thr Leu Thr Val Ser Thr Gly Glu Pro Phe Thr Asn Ile
2960 2965 2970

Ser Leu Val Thr His Pro Ala Glu Ser Ser Thr Leu Pro Arg
2975 2980 2985

Thr Thr Ser Arg Phe Ser His Ser Glu Leu Asp Thr Met Pro Ser
2990 2995 3000

Thr Val Thr Ser Pro Glu Ala Glu Ser Ser Ser Ala Ile Ser Thr
3005 3010 3015

Thr Ile Ser Pro Gly Ile Pro Gly Val Leu Thr Ser Leu Val Thr
3020 3025 3030

Ser Ser Gly Arg Asp Ile Ser Ala Thr Phe Pro Thr Val Pro Glu
3035 3040 3045

Ser Pro His Glu Ser Glu Ala Thr Ala Ser Trp Val Thr His Pro
3050 3055 3060

 Ala Val Thr Ser Thr Val Pro Arg Thr Thr Pro Asn Tyr Ser
3065 3070 3075

His Ser Glu Pro Asp Thr Thr Pro Ser Ile Ala Thr Ser Pro Gly
3080 3085 3090

Ala Glu Ala Thr Ser Asp Phe Pro Thr Ile Thr Val Ser Pro Asp
3095 3100 3105

Val Pro Asp Met Val Thr Ser Gln Val Thr Ser Ser Gly Thr Asp
3110 3115 3120

Thr Ser Ile Thr Ile Pro Thr Leu Thr Leu Ser Ser Gly Glu Pro
3125 3130 3135

Glu Thr Thr Ser Phe Ile Thr Tyr Ser Glu Thr His Thr Ser
3140 3145 3150

Ser Ala Ile Pro Thr Leu Pro Val Ser Pro Asp Ala Ser Lys Met
3155 3160 3165

Leu Thr Ser Leu Val Ile Ser Ser Gly Thr Asp Ser Thr Thr Thr
3170 3175 3180

Phe Pro Thr Leu Thr Glu Thr Pro Tyr Glu Pro Glu Thr Ala
3185 3190 3195

Ile Gln Leu Ile His Pro Ala Glu Thr Asn Thr Met Val Pro Arg
3200 3205 3210

Thr Thr Pro Lys Phe Ser His Ser Lys Ser Asp Thr Thr Leu Pro
3215 3220 3225

Val Ala Ile Thr Ser Pro Gly Pro Glu Ala Ser Ser Ala Val Ser
3230 3235 3240

Thr Thr Thr Ile Ser Pro Asp Met Ser Asp Leu Val Thr Ser Leu
3245 3250 3255
<table>
<thead>
<tr>
<th></th>
<th>3560</th>
<th>3565</th>
<th>3570</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Ser Thr Leu Ser Leu Gly Leu Leu Glu Thr Gly Leu Leu Ala</td>
<td>3575</td>
<td>3580</td>
</tr>
<tr>
<td>10</td>
<td>Thr Ser Ser Ser Ala Glu Thr Ser Thr Ser Thr Leu Thr</td>
<td>3590</td>
<td>3595</td>
</tr>
<tr>
<td>15</td>
<td>Val Ser Pro Ala Val Ser Gly Leu Ser Ser Ala Ser Ile Thr Thr</td>
<td>3605</td>
<td>3610</td>
</tr>
<tr>
<td>20</td>
<td>Asp Lys Pro Gln Thr Val Thr Ser Trp Asn Thr Glu Thr Ser Pro</td>
<td>3620</td>
<td>3625</td>
</tr>
<tr>
<td>25</td>
<td>Ser Val Thr Ser Val Gly Pro Glu Phe Ser Arg Thr Val Thr</td>
<td>3635</td>
<td>3640</td>
</tr>
<tr>
<td>30</td>
<td>Gly Thr Thr Met Thr Leu Ile Pro Ser Glu Met Pro Thr Pro Pro</td>
<td>3650</td>
<td>3655</td>
</tr>
<tr>
<td>35</td>
<td>Lys Thr Ser His Gly Glu Gly Val Ser Pro Thr Thr Ile Leu Arg</td>
<td>3665</td>
<td>3670</td>
</tr>
<tr>
<td>40</td>
<td>Thr Thr Met Val Glu Ala Thr Asn Leu Ala Thr Gly Ser Ser</td>
<td>3680</td>
<td>3685</td>
</tr>
<tr>
<td>45</td>
<td>Pro Thr Val Ala Lys Thr Thr Thr Phe Asn Thr Leu Ala Gly</td>
<td>3695</td>
<td>3700</td>
</tr>
<tr>
<td>50</td>
<td>Ser Leu Phe Thr Pro Leu Thr Pro Gly Met Ser Thr Leu Ala</td>
<td>3710</td>
<td>3715</td>
</tr>
<tr>
<td>55</td>
<td>Ser Glu Ser Val Thr Ser Arg Thr Ser Tyr Asn His Arg Ser Trp</td>
<td>3725</td>
<td>3730</td>
</tr>
<tr>
<td>60</td>
<td>Ile Ser Thr Thr Ser Ser Tyr Asn Arg Arg Tyr Trp Thr Pro Ala</td>
<td>3740</td>
<td>3745</td>
</tr>
<tr>
<td>65</td>
<td>Thr Ser Thr Pro Val Thr Ser Thr Ser Thr Phe Ser Pro Gly Ile Ser Thr</td>
<td>3755</td>
<td>3760</td>
</tr>
<tr>
<td>70</td>
<td>Ser Ser Ile Pro Ser Ser Thr Ala Ala Thr Val Pro Phe Met Val</td>
<td>3770</td>
<td>3775</td>
</tr>
<tr>
<td>75</td>
<td>Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu</td>
<td>3785</td>
<td>3790</td>
</tr>
<tr>
<td>80</td>
<td>Asp Met Arg His Pro Gly Ser Arg Lys Phe Asn Ala Thr Glu Arg</td>
<td>3800</td>
<td>3805</td>
</tr>
<tr>
<td>85</td>
<td>Glu Leu Gln Gly Leu Leu Lys Pro Leu Phe Arg Asn Ser Ser Leu</td>
<td>3815</td>
<td>3820</td>
</tr>
<tr>
<td>90</td>
<td>Glu Tyr Leu Tyr Ser Gly Cys Arg Leu Ala Ser Leu Arg Pro Glu</td>
<td>3830</td>
<td>3835</td>
</tr>
<tr>
<td>95</td>
<td>Lys Asp Ser Ser Ala Thr Ala Val Asp Ala Ile Cys Thr His Arg</td>
<td>3845</td>
<td>3850</td>
</tr>
<tr>
<td>100</td>
<td>Pro Asp Pro Glu Asp Leu Gly Leu Asp Arg Glu Arg Leu Tyr Trp</td>
<td>3860</td>
<td>3865</td>
</tr>
</tbody>
</table>
Glu Leu Ser Asn Leu Thr Asn Gly Ile Gln Glu Leu Gly Pro Tyr
3875 3880 3885
Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg
3890 3895 3900
Ser Ser Met Pro Thr Ser Thr Pro Gly Thr Ser Thr Val Asp
3905 3910 3915
Val Gly Thr Ser Gly Thr Pro Ser Ser Ser Pro Ser Pro Thr Thr
3920 3925 3930
Ala Gly Pro Leu Leu Met Pro Phe Thr Leu Asn Phe Thr Ile Thr
3935 3940 3945
Asn Leu Gln Tyr Glu Glu Asp Met Arg Arg Thr Gly Ser Arg Lys
3950 3955 3960
Phe Asn Thr Met Glu Ser Val Leu Gln Gly Leu Leu Lys Pro Leu
3965 3970 3975
Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu
3980 3985 3990
Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Gly Val Asp
3995 4000 4005
Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser Pro Gly Leu Asn
4010 4015 4020
Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr Asn Asp Ile
4025 4030 4035
Glu Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val
4040 4045 4050
Asn Gly Phe Thr His Glu Ser Ser Val Ser Thr Thr Ser Thr Pro
4055 4060 4065
Gly Thr Ser Thr Val Asp Leu Arg Thr Ser Gly Thr Pro Ser Ser
4070 4075 4080
Leu Ser Ser Pro Thr Ile Met Ala Ala Gly Pro Leu Leu Val Pro
4085 4090 4095
Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Gly Glu Asp
4100 4105 4110
Met Gly His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val
4115 4120 4125
Leu Gln Gly Leu Leu Gly Pro Ile Phe Lys Asn Thr Ser Val Gly
4130 4135 4140
Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Ser Glu Lys
4145 4150 4155
Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Ile His His Leu
4160 4165 4170
Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Arg Leu Tyr Trp Glu
 4175 4180 4185
Leu Ser Gln Leu Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr
 4190 4195 4200
Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Thr
 4205 4210 4215
Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu
 4220 4225 4230
Gly Thr Ser Gly Thr Pro Phe Ser Leu Pro Ser Pro Ala Thr Ala
 4235 4240 4245
Gly Pro Leu Leu Val Leu Phe Thr Leu Asn Phe Thr Ile Thr Asn
 4250 4255 4260
Leu Lys Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys Phe
 4265 4270 4275
Asn Thr Thr Glu Arg Val Leu Gln Thr Leu Val Gly Pro Met Phe
 4280 4285 4290
Lys Asn Thr Ser Val Gly Leu Leu Tyr Ser Gly Cys Arg Leu Thr
 4295 4300 4305
Leu Leu Arg Ser Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala
 4310 4315 4320
Ile Cys Thr His Arg Leu Asp Pro Lys Ser Pro Gly Val Asp Arg
 4325 4330 4335
Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr Asn Gly Ile Lys
 4340 4345 4350
Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn
 4355 4360 4365
Gly Phe Thr His Trp Ile Pro Val Pro Thr Ser Ser Thr Pro Gly
 4370 4375 4380
Thr Ser Thr Val Asp Leu Gly Ser Gly Thr Pro Ser Ser Leu Pro
 4385 4390 4395
Ser Pro Thr Ser Ala Thr Ala Gly Pro Leu Leu Val Pro Phe Thr
 4400 4405 4410
Leu Asn Phe Thr Ile Thr Asn Leu Lys Tyr Glu Glu Asp Met His
 4415 4420 4425
Cys Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln
 4430 4435 4440
Ser Leu Leu Gly Pro Met Phe Lys Asn Thr Ser Val Gly Pro Leu
 4445 4450 4455
Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Ser Glu Lys Asp Gly
 4460 4465 4470
Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His Arg Leu Asp Pro
Lys Ser Pro Gly Val Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser
Gln Leu Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp
Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Gln Thr Ser Ala
Pro Asn Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Gly Thr
Ser Gly Thr Pro Ser Ser Leu Pro Ser Pro Thr Ser Ala Gly Pro
Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln
Tyr Glu Glu Asp Met His His Pro Gly Ser Arg Lys Phe Asn Thr
Thr Glu Arg Val Leu Gln Gly Leu Leu Gly Pro Met Phe Lys Asn
Thr Ser Val Gly Leu Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu
Arg Pro Glu Lys Asn Gly Ala Ala Thr Gly Met Asp Ala Ile Cys
Ser His Arg Leu Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Gln
Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Gly Ile Lys Glu Leu
Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe
Thr His Arg Ser Ser Val Ala Pro Thr Ser Thr Pro Gly Thr Ser
Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Ser Leu Pro Ser
Pro Thr Thr Ala Val Pro Leu Leu Val Pro Phe Thr Leu Asn Phe
Thr Ile Thr Asn Leu Gln Tyr Gly Glu Asp Met Arg His Pro Gly
Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu
Gly Pro Leu Phe Lys Asn Ser Ser Val Gly Pro Leu Tyr Ser Gly
Cys Arg Leu Ile Ser Leu Arg Ser Glu Lys Asp Gly Ala Ala Thr
| Gly Val Asp Ala Ile Cys Thr His His Leu Asn Pro Gln Ser Pro | 4790 4795 4800 |
| Gly Leu Asp Arg Glu Gln Leu Tyr Trp Gln Leu Ser Gln Met Thr | 4805 4810 4815 |
| Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser | 4820 4825 4830 |
| Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Gly Leu Thr Thr | 4835 4840 4845 |
| Ser Thr Pro Trp Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr | 4850 4855 4860 |
| Pro Ser Pro Val Pro Ser Pro Thr Ala Gly Pro Leu Leu Val | 4865 4870 4875 |
| Pro Phe Thr Leu Asp Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu | 4880 4885 4890 |
| Asp Met His Arg Pro Gly Ser Arg Lys Phe Asn Ala Thr Glu Arg | 4895 4900 4905 |
| Val Leu Gln Gly Leu Leu Ser Pro Ile Phe Lys Asn Ser Ser Val | 4910 4915 4920 |
| Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu | 4925 4930 4935 |
| Lys Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His | 4940 4945 4950 |
| Pro Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp | 4955 4960 4965 |
| Glu Leu Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr | 4970 4975 4980 |
| Ser Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Gln | 4985 4990 4995 |
| Asn Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Tyr | 5000 5005 5010 |
| Trp Ala Thr Thr Gly Thr Pro Ser Ser Phe Pro Gly His Thr Glu | 5015 5020 5025 |
| Pro Gly Pro Leu Leu Ile Pro Phe Thr Phe Asn Phe Thr Ile Thr | 5030 5035 5040 |
| Asn Leu His Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys | 5045 5050 5055 |
| Phe Asn Thr Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu | 5060 5065 5070 |
| Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu | 5075 5080 5085 |
Thr Leu Leu Arg Pro Glu Lys Gln Glu Ala Ala Thr Gly Val Asp 5090 5095 5100
Thr Ile Cys Thr His Arg Val Asp Pro Ile Gly Pro Gly Leu Asp 5105 5110 5115
Arg Glu Arg Leu Tyr Trp Glu Leu Ser Gln Leu Thr Asn Ser Ile 5120 5125 5130
Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val 5135 5140 5145
Asn Gly Phe Asn Pro Trp Ser Ser Val Pro Thr Thr Ser Thr Pro 5150 5155 5160
Gly Thr Ser Thr Val His Leu Ala Thr Ser Gly Thr Pro Ser Ser 5165 5170 5175
Leu Pro Gly His Thr Val Pro Val Pro Leu Leu Ile Pro Phe Thr 5180 5185 5190
Leu Asn Phe Thr Ile Thr Asn Leu His Tyr Glu Glu Asn Met Gln 5195 5200 5205
His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln 5210 5215 5220
Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser Val Gly Pro Leu 5225 5230 5235
Tyr Ser Gly Cys Arg Leu Thr Leu Arg Pro Glu Lys His Gly 5240 5245 5250
 Ala Ala Thr Gly Val Asp Ala Ile Cys Thr Leu Arg Leu Asp Pro 5255 5260 5265
Thr Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu Ser 5270 5275 5280
Gln Leu Thr Asn Ser Val Thr Glu Leu Gly Pro Tyr Thr Leu Asp 5285 5290 5295
Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val 5300 5305 5310
Pro Thr Thr Ser Ile Pro Gly Thr Ser Ala Val His Leu Gly Thr 5315 5320 5325
Ser Gly Thr Pro Ala Ser Leu Pro Gly His Thr Ala Pro Gly Pro 5330 5335 5340
Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln 5345 5350 5355
Tyr Glu Glu Asp Met Arg His Pro Gly Ser Arg Lys Phe Asn Thr 5360 5365 5370
Thr Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser 5375 5380 5385
Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu
Arg Pro Glu Lys Arg Gly Ala Ala Thr Gly Val Asp Thr Ile Cys
5405 5410 5415

Thr His Arg Leu Asp Pro Leu Asn Pro Gly Leu Asp Arg Glu Gln
5420 5425 5430

Leu Tyr Trp Glu Leu Ser Lys Leu Thr Arg Gly Ile Ile Glu Leu
5435 5440 5445

Gly Pro Tyr Leu Leu Asp Arg Gly Ser Leu Tyr Val Asn Gly Phe
5450 5455 5460

Thr His Arg Asn Phe Val Pro Ile Thr Ser Thr Pro Gly Thr Ser
5465 5470 5475

Thr Val His Leu Gly Thr Ser Glu Thr Pro Ser Ser Leu Pro Arg
5480 5485 5490

Pro Ile Val Pro Gly Pro Leu Val Pro Phe Thr Leu Asn Phe
5495 5500 5505

Thr Ile Thr Asn Leu Gln Tyr Glu Ala Met Arg His Pro Gly
5510 5515 5520

Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu
5525 5530 5535

Arg Pro Leu Phe Lys Asn Thr Ser Ile Gly Pro Leu Tyr Ser Ser
5540 5545 5550

Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Lys Ala Ala Thr
5555 5560 5565

Arg Val Asp Ala Ile Cys Thr His His Pro Asp Pro Gln Ser Pro
5570 5575 5580

Gly Leu Asn Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr
5585 5590 5595

His Gly Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser
5600 5605 5610

Leu Tyr Val Asp Gly Phe Thr His Thr Ser Pro Ile Pro Thr Thr
5615 5620 5625

Ser Thr Pro Gly Thr Ser Ile Val Asn Leu Gly Thr Ser Gly Ile
5630 5635 5640

Pro Pro Ser Leu Pro Glu Thr Ala Thr Gly Pro Leu Leu Val
5645 5650 5655

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu
5660 5665 5670

Asn Met Gly His Pro Gly Ser Arg Lys Phe Asn Ile Thr Glu Ser
5675 5680 5685

Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser Val
5690 5695 5700
Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu
 5705 5710 5715
Lys Asp Gly Val Ala Thr Arg Val Asp Ala Ile Cys Thr His Arg
 5720 5725 5730
Pro Asp Pro Lys Ile Pro Gly Leu Asp Arg Gln Gln Leu Tyr Trp
 5735 5740 5745
Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr
 5750 5755 5760
Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr Gln Arg
 5765 5770 5775
Ser Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Phe Thr Val Gln
 5780 5785 5790
Pro Glu Thr Ser Gln Thr Pro Ser Ser Leu Pro Gly Pro Thr Ala
 5795 5800 5805
Thr Gly Pro Val Leu Leu Pro Phe Thr Leu Asn Phe Thr Ile Ile
 5810 5815 5820
Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys
 5825 5830 5835
Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Met Pro Leu
 5840 5845 5850
Phe Lys Asn Thr Ser Val Ser Ser Leu Tyr Ser Gly Cys Arg Leu
 5855 5860 5865
Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Arg Val Asp
 5870 5875 5880
Ala Val Cys Thr His Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp
 5885 5890 5895
Arg Glu Arg Leu Tyr Trp Lys Leu Ser Gln Leu Thr His Gly Ile
 5900 5905 5910
Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg His Ser Leu Tyr Val
 5915 5920 5925
Asn Gly Phe Thr His Gln Ser Ser Met Thr Thr Thr Arg Thr Pro
 5930 5935 5940
Asp Thr Ser Thr Met His Leu Ala Thr Ser Arg Thr Pro Ala Ser
 5945 5950 5955
Leu Ser Gly Pro Thr Thr Ala Ser Pro Leu Leu Val Leu Phe Thr
 5960 5965 5970
Ile Asn Phe Thr Ile Thr Asn Leu Arg Tyr Glu Glu Asn Met His
 5975 5980 5985
His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln
 5990 5995 6000
Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys
 6305 6310 6315
 6320 6325 6330

Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Glu Ala Thr Gly
 6335 6340 6345

Val Asp Ala Ile Cys Thr His Arg Pro Asp Pro Thr Gly Pro Gly
 6350 6355 6360

Leu Asp Arg Glu Gln Leu Tyr Leu Glu Leu Ser Gln Leu Thr His
 6365 6370 6375

Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu
 6380 6385 6390

Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Pro Thr Thr Ser
 6395 6400 6405

Thr Gly Val Val Ser Glu Glu Pro Phe Thr Leu Asn Phe Thr Ile
 6410 6415 6420

Asn Asn Leu Arg Tyr Met Ala Asp Met Gly Gln Pro Gly Ser Leu
 6425 6430 6435

Lys Phe Asn Ile Thr Asp Asn Val Met Gln His Leu Leu Ser Pro
 6440 6445 6450

Leu Phe Gln Arg Ser Ser Leu Gly Ala Arg Tyr Thr Gly Cys Arg
 6455 6460 6465

Val Ile Ala Leu Arg Ser Val Lys Asn Gly Ala Glu Thr Arg Val
 6470 6475 6480

Asp Leu Leu Cys Thr Tyr Leu Gln Pro Leu Ser Gly Pro Gly Leu
 6485 6490 6495

Pro Ile Lys Gln Val Phe His Glu Leu Ser Gln Gln Thr His Gly
 6500 6505 6510

Ile Thr Arg Leu Gly Pro Tyr Ser Leu Asp Lys Asp Ser Leu Tyr
 6515 6520 6525

Leu Asn Gly Tyr Asn Glu Pro Gly Pro Asp Glu Pro Pro Thr Thr
 6530 6535 6540

Pro Lys Pro Ala Thr Thr Phe Leu Pro Pro Leu Ser Glu Ala Thr
 6545 6550 6555

Thr Ala Met Gly Tyr His Leu Lys Thr Leu Thr Leu Asn Phe Thr
 6560 6565 6570

Ile Ser Asn Leu Gln Tyr Ser Pro Asp Met Gly Lys Gly Ser Ala
 6575 6580 6585

Thr Phe Asn Ser Thr Glu Gly Val Leu Gln His Leu Leu Arg Pro
 6590 6595 6600

Leu Phe Gln Lys Ser Ser Met Gly Pro Phe Tyr Leu Gly Cys Gln
 6605 6610 6615
Leu Ile Ser Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Gly Val
6620 6625 6630
Asp Thr Thr Cys Thr Tyr His Pro Asp Pro Val Gly Pro Gly Leu
6635 6640 6645
Asp Ile Gln Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Gly
6650 6655 6660
Val Thr Gln Leu Gly Phe Tyr Val Leu Asp Arg Asp Ser Leu Phe
6665 6670 6675
Ile Asn Gly Tyr Ala Pro Gln Asn Leu Ser Ile Arg Gly Glu Tyr
6680 6685 6690
Gln Ile Asn Phe His Ile Val Asn Trp Asn Leu Ser Asn Pro Asp
6695 6700 6705
Pro Thr Ser Ser Tyr Ile Thr Leu Leu Arg Asp Ile Gln Asp
6710 6715 6720
Lys Val Thr Thr Leu Tyr Lys Gly Ser Gln Leu His Asp Thr Phe
6725 6730 6735
Arg Phe Cys Leu Val Thr Asn Leu Thr Met Asp Ser Val Leu Val
6740 6745 6750
Thr Val Lys Ala Leu Phe Ser Ser Asn Leu Asp Pro Ser Leu Val
6755 6760 6765
Glu Gln Val Phe Leu Asp Lys Thr Leu Asn Ala Ser Phe His Trp
6770 6775 6780
Leu Gly Ser Thr Tyr Gln Leu Val Asp Ile His Val Thr Glu Met
6785 6790 6795
Glu Ser Ser Val Tyr Gln Pro Thr Ser Ser Ser Ser Thr Gln His
6800 6805 6810
Phe Tyr Leu Asn Phe Thr Ile Thr Asn Leu Pro Tyr Ser Gln Asp
6815 6820 6825
Lys Ala Gln Pro Gly Thr Thr Asn Tyr Gln Arg Asn Lys Arg Asn
6830 6835 6840
Ile Glu Asp Ala Leu Asn Gln Leu Phe Arg Asn Ser Ser Ile Lys
6845 6850 6855
Ser Tyr Phe Ser Asp Cys Gln Val Ser Thr Phe Arg Ser Val Pro
6860 6865 6870
Asn Arg His His Thr Gly Val Asp Ser Leu Cys Asn Phe Ser Pro
6875 6880 6885
Leu Ala Arg Arg Val Asp Arg Val Ala Ile Tyr Glu Glu Phe Leu
6890 6895 6900
Arg Met Thr Arg Asn Gly Thr Gln Leu Gln Asn Phe Thr Leu Asp
6905 6910 6915
Arg Ser Ser Val Leu Val Asp Gly Tyr Ser Pro Asn Arg Asn Glu 6920 6925 6930
Pro Leu Thr Gly Asn Ser Asp Leu Pro Phe Trp Ala Val Ile Leu 6935 6940 6945
Ile Gly Leu Ala Gly Leu Leu Gly Leu Ile Thr Cys Leu Ile Cys 6950 6955 6960
Gly Val Leu Val Thr Thr Arg Arg Lys Lys Glu Gly Glu Tyr 6965 6970 6975
Asn Val Gln Gln Gln Cys Pro Gly Tyr Tyr Gln Ser His Leu Asp 6980 6985 6990
Leu Glu Asp Leu Gln 6995

<210> 5
<211> 622
<212> PRT
<213> Homo sapiens

<400> 5
Met Ala Leu Pro Thr Ala Arg Pro Leu Leu Gly Ser Cys Gly Thr
1 5 10 15

Pro Ala Leu Gly Ser Leu Leu Phe Leu Leu Phe Ser Leu Gly Trp
20 25 30

Val Gln Pro Ser Arg Thr Leu Ala Gly Glu Thr Gly Gln Glu Ala
35 40 45

Ala Pro Leu Asp Gly Val Leu Ala Asn Pro Pro Asn Ile Ser Ser
50 55 60

Leu Ser Pro Arg Gln Leu Leu Gly Phe Pro Cys Ala Glu Val Ser
65 70 75

Gly Leu Ser Thr Glu Arg Val Arg Glu Leu Ala Val Ala Leu Ala
80 85 90

Gln Lys Asn Val Lys Leu Ser Thr Glu Gln Leu Arg Cys Leu Ala
95 100 105

His Arg Leu Ser Glu Pro Pro Glu Asp Leu Asp Ala Leu Pro Leu
110 115 120

Asp Leu Leu Leu Phe Leu Asn Pro Asp Ala Phe Ser Gly Pro Gln
125 130 135

Ala Cys Thr Arg Phe Phe Ser Arg Ile Thr Lys Ala Asn Val Asp
140 145 150

Leu Leu Pro Arg Gly Ala Pro Glu Arg Gln Arg Leu Leu Pro Ala
155 160 165

Ala Leu Ala Cys Trp Gly Val Arg Gly Ser Leu Leu Ser Glu Ala
170 175 180

Asp Val Arg Ala Leu Gly Gly Leu Ala Cys Asp Leu Pro Gly Arg
Phe Val Ala Glu Ser Ala Glu Val Leu Leu Pro Arg Leu Val Ser
 200 205 210

Cys Pro Gly Pro Leu Asp Gln Asp Gln Gln Glu Ala Ala Arg Ala
 215 220 225

Ala Leu Gln Gly Gly Gly Pro Pro Tyr Gly Pro Pro Ser Thr Trp
 230 235 240

Ser Val Ser Thr Met Asp Ala Leu Arg Gly Leu Leu Pro Val Leu
 245 250 255

Gly Gln Pro Ile Ile Arg Ser Ile Pro Glu Gly Ile Val Ala Ala
 260 265 270

Trp Arg Gln Arg Ser Ser Arg Asp Pro Ser Trp Arg Gln Pro Glu
 275 280 285

Arg Thr Ile Leu Arg Pro Arg Phe Arg Arg Glu Val Glu Lys Thr
 290 295 300

Ala Cys Pro Ser Gly Lys Lys Ala Arg Glu Ile Asp Glu Ser Leu
 305 310 315

Ile Phe Tyr Lys Lys Trp Glu Leu Glu Ala Cys Val Asp Ala Ala
 320 325 330

Leu Leu Ala Thr Gln Met Asp Arg Val Asn Ala Ile Pro Phe Thr
 335 340 345

Tyr Glu Gln Leu Asp Val Leu Lys His Lys Leu Asp Glu Leu Tyr
 350 355 360

Pro Gln Gly Tyr Pro Glu Ser Val Ile Gln His’Leu Gly Tyr Leu
 365 370 375

Phe Leu Lys Met Ser Pro Glu Asp Ile Arg Lys Trp Asn Val Thr
 380 385 390

Ser Leu Glu Thr Leu Lys Ala Leu Leu Glu Val Asn Lys Gly His
 395 400 405

Glu Met Ser Pro Gln Val Ala Thr Leu Ile Asp Arg Phe Val Lys
 410 415 420

Gly Arg Gly Gln Leu Asp Lys Asp Thr Leu Asp Thr Leu Thr Ala
 425 430 435

Phe Tyr Pro Gly Tyr Leu Cys Ser Leu Ser Pro Glu Glu Leu Ser
 440 445 450

Ser Val Pro Pro Ser Ser Ile Trp Ala Val Arg Pro Gln Asp Leu
 455 460 465

Asp Thr Cys Asp Pro Arg Gln Leu Asp Val Leu Tyr Pro Lys Ala
 470 475 480

Arg Leu Ala Phe Gln Asn Met Asn Gly Ser Glu Tyr Phe Val Lys
 485 490 495
Ile Gln Ser Phe Leu Gly Gly Ala Pro Thr Glu Asp Leu Lys Ala
500 505 510
Leu Ser Gln Gln Asn Val Ser Met Asp Leu Ala Thr Phe Met Lys
515 520 525
Leu Arg Thr Asp Ala Val Leu Pro Leu Thr Val Ala Glu Val Gln
530 535 540
Lys Leu Leu Gly Pro His Val Glu Gly Leu Lys Ala Glu Glu Arg
545 550 555
His Arg Pro Val Arg Asp Trp Ile Leu Arg Glu Arg Glu Asp Asp
560 565 570
Leu Asp Thr Leu Gly Leu Gly Leu Gln Gly Gly Ile Pro Asn Gly
575 580 585
Tyr Leu Val Leu Asp Leu Ser Met Gln Glu Ala Leu Ser Gly Thr
590 595 600
Pro Cys Leu Leu Gly Pro Gly Pro Val Leu Thr Val Leu Ala Leu
605 610 615
Leu Leu Ala Ser Thr Leu Ala
620

<210> 6
<211> 690
<212> PRT
<213> Homo sapiens

<400> 6
<table>
<thead>
<tr>
<th></th>
<th>Met</th>
<th>Ala</th>
<th>Pro</th>
<th>Trp</th>
<th>Pro</th>
<th>Glu</th>
<th>Leu</th>
<th>Gly</th>
<th>Asp</th>
<th>Ala</th>
<th>Gln</th>
<th>Pro</th>
<th>Asn</th>
<th>Pro</th>
<th>Asp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lys</td>
<td>Tyr</td>
<td>Leu</td>
<td>Glu</td>
<td>Gly</td>
<td>Ala</td>
<td>Ala</td>
<td>Gly</td>
<td>Gln</td>
<td>Gln</td>
<td>Pro</td>
<td>Thr</td>
<td>Ala</td>
<td>Pro</td>
<td>Asp</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Lys</td>
<td>Ser</td>
<td>Lys</td>
<td>Glu</td>
<td>Thr</td>
<td>Asn</td>
<td>Lys</td>
<td>Thr</td>
<td>Asn</td>
<td>Thr</td>
<td>Glu</td>
<td>Ala</td>
<td>Pro</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Thr</td>
<td>Lys</td>
<td>Ile</td>
<td>Glu</td>
<td>Leu</td>
<td>Leu</td>
<td>Pro</td>
<td>Ser</td>
<td>Tyr</td>
<td>Ser</td>
<td>Thr</td>
<td>Ala</td>
<td>Thr</td>
<td>Leu</td>
<td>Ile</td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Asp</td>
<td>Glu</td>
<td>Pro</td>
<td>Thr</td>
<td>Glu</td>
<td>Val</td>
<td>Asp</td>
<td>Asp</td>
<td>Pro</td>
<td>Trp</td>
<td>Asn</td>
<td>Leu</td>
<td>Pro</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Gln</td>
<td>Asp</td>
<td>Ser</td>
<td>Gly</td>
<td>Ile</td>
<td>Lys</td>
<td>Trp</td>
<td>Ser</td>
<td>Glu</td>
<td>Arg</td>
<td>Asp</td>
<td>Thr</td>
<td>Lys</td>
<td>Gly</td>
<td>Lys</td>
</tr>
<tr>
<td>65</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Ile</td>
<td>Leu</td>
<td>Cys</td>
<td>Phe</td>
<td>Phe</td>
<td>Gln</td>
<td>Gly</td>
<td>Ile</td>
<td>Gly</td>
<td>Arg</td>
<td>Leu</td>
<td>Ile</td>
<td>Leu</td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td>85</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Gly</td>
<td>Phe</td>
<td>Leu</td>
<td>Tyr</td>
<td>Phe</td>
<td>Phe</td>
<td>Val</td>
<td>Cys</td>
<td>Ser</td>
<td>Leu</td>
<td>Asp</td>
<td>Ile</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Ala</td>
<td>Phe</td>
<td>Glu</td>
<td>Leu</td>
<td>Val</td>
<td>Gly</td>
<td>Gly</td>
<td>Lys</td>
<td>Met</td>
<td>Ala</td>
<td>Gly</td>
<td>Gln</td>
<td>Phe</td>
<td>Phe</td>
<td>Ser</td>
</tr>
<tr>
<td>115</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
</tr>
</tbody>
</table>
Asn Ser Ser Ile Met Ser Asn Pro Leu Leu Gly Leu Val Ile Gly
140
145
150
Val Leu Val Thr Val Leu Val Gln Ser Ser Ser Thr Ser Thr Ser
155
160
165
Ile Val Val Ser Met Val Ser Ser Ser Leu Leu Thr Val Arg Ala
170
175
180
Ala Ile Pro Ile Ile Met Gly Ala Asn Ile Gly Thr Ser Ile Thr
185
190
195
Asn Thr Ile Val Ala Leu Met Gln Val Gly Asp Arg Ser Glu Phe
200
205
210
Arg Arg Ala Phe Ala Gly Ala Thr Val His Asp Phe Phe Asn Trp
215
220
225
Leu Ser Val Leu Val Leu Leu Pro Val Glu Val Ala Thr His Tyr
230
235
240
Leu Glu Ile Ile Thr Gln Leu Ile Val Glu Ser Phe His Phe Lys
245
250
255
Asn Gly Glu Asp Ala Pro Asp Leu Leu Lys Val Ile Thr Lys Pro
260
265
270
Phe Thr Lys Leu Ile Val Gln Leu Asp Lys Lys Val Ile Ser Gln
275
280
285
Ile Ala Met Asn Asp Glu Lys Ala Lys Asn Lys Ser Leu Val Lys
290
295
300
Ile Trp Cys Lys Thr Phe Thr Asn Lys Thr Gln Ile Asn Val Thr
305
310
315
Val Pro Ser Thr Ala Asn Cys Thr Ser Pro Ser Leu Cys Trp Thr
320
325
330
Asp Gly Ile Gln Asn Trp Thr Met Lys Asn Val Thr Tyr Lys Glu
335
340
345
Asn Ile Ala Lys Cys Gln His Ile Phe Val Asn Phe His Leu Pro
350
355
360
Asp Leu Ala Val Gly Thr Ile Leu Leu Ile Leu Ser Leu Leu Val
365
370
375
Leu Cys Gly Cys Leu Ile Met Ile Val Lys Ile Leu Gly Ser Val
380
385
390
Leu Lys Gly Gln Val Ala Thr Val Ile Lys Thr Ile Asn Thr
395
400
405
Asp Phe Pro Phe Pro Phe Ala Trp Leu Thr Gly Tyr Leu Ala Ile
410
415
420
Leu Val Gly Ala Gly Met Thr Phe Ile Val Gln Ser Ser Ser Val
425
430
435
Phe Thr Ser Ala Leu Thr Pro Leu Ile Gly Ile Gly Val Ile Thr
EP 2 489 364 B1

<table>
<thead>
<tr>
<th>440</th>
<th>445</th>
<th>450</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile Glu Arg Ala Tyr Pro Leu Thr Leu Gly Ser Asn Ile Gly Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>455</td>
<td>460</td>
<td>465</td>
</tr>
<tr>
<td>Thr Thr Thr Ala Ile Leu Ala Ala Leu Ala Ser Pro Gly Asn Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>475</td>
<td>480</td>
</tr>
<tr>
<td>Leu Arg Ser Ser Leu Gln Ile Ala Cys His Phe Phe Phe Asn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>485</td>
<td>490</td>
<td>495</td>
</tr>
<tr>
<td>Ile Ser Gly Ile Leu Leu Trp Tyr Pro Ile Pro Phe Thr Arg Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>505</td>
<td>510</td>
</tr>
<tr>
<td>Pro Ile Arg Met Ala Lys Gly Leu Gly Asn Ile Ser Ala Lys Tyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>520</td>
<td>525</td>
</tr>
<tr>
<td>Arg Trp Phe Ala Val Phe Tyr Leu Ile Phe Phe Phe Leu Ile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>535</td>
<td>540</td>
</tr>
<tr>
<td>Pro Leu Thr Val Phe Gly Leu Ser Leu Ala Gly Trp Arg Val Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>545</td>
<td>550</td>
<td>555</td>
</tr>
<tr>
<td>Val Gly Val Gly Val Pro Val Val Phe Ile Ile Ile Leu Val Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>560</td>
<td>565</td>
<td>570</td>
</tr>
<tr>
<td>Cys Leu Arg Leu Leu Gln Ser Arg Cys Pro Arg Val Leu Pro Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>575</td>
<td>580</td>
<td>585</td>
</tr>
<tr>
<td>Lys Leu Gln Asn Trp Asn Phe Leu Pro Leu Trp Met Arg Ser Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>595</td>
<td>600</td>
</tr>
<tr>
<td>Lys Pro Trp Asp Ala Val Val Ser Lys Phe Thr Gly Cys Phe Gln</td>
<td></td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>610</td>
<td>615</td>
</tr>
<tr>
<td>Met Arg Cys Cys Tyr Cys Cys Arg Val Cys Cys Arg Ala Cys Cys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>620</td>
<td>625</td>
<td>630</td>
</tr>
<tr>
<td>Leu Leu Cys Gly Cys Pro Lys Cys Cys Arg Cys Ser Lys Cys Cys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>635</td>
<td>640</td>
<td>645</td>
</tr>
<tr>
<td>Glu Asp Leu Glu Glu Ala Gln Glu Gly Gln Asp Val Pro Val Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>650</td>
<td>655</td>
<td>660</td>
</tr>
<tr>
<td>Ala Pro Glu Thr Phe Asp Asn Ile Thr Ile Ser Arg Glu Ala Gln</td>
<td></td>
<td></td>
</tr>
<tr>
<td>665</td>
<td>670</td>
<td>675</td>
</tr>
<tr>
<td>Gly Glu Val Pro Ala Ser Asp Ser Lys Thr Glu Cys Thr Ala Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>685</td>
<td>690</td>
</tr>
</tbody>
</table>

<210> 7
<211> 1093
<212> PRT
<213> Homo sapiens

<400> 7
Met Val Leu Ala Gly Pro Leu Ala Val Ser Leu Leu Leu Pro Ser
1 5 10 15
Leu Thr Leu Leu Val Ser His Leu Ser Ser Ser Gln Asp Val Ser
20 25 30
Ser Glu Pro Ser Ser Glu Gln Gln Leu Cys Ala Leu Ser Lys His
35 40 45
Pro Thr Val Ala Phe Glu Asp Leu Gln Pro Trp Val Ser Asn Phe
50 55 60
Thr Tyr Pro Gly Ala Arg Asp Phe Ser Gln Leu Ala Leu Asp Pro
65 70 75
Ser Gly Asn Gln Leu Ile Val Gly Ala Arg Asn Tyr Leu Phe Arg
80 85 90
Leu Ser Leu Ala Asn Val Ser Leu Leu Gln Ala Thr Glu Trp Ala
95 100 105
Ser Ser Glu Asp Thr Arg Arg Ser Cys Gln Ser Lys Gly Lys Thr
110 115 120
Glu Glu Glu Cys Gln Asn Tyr Val Arg Val Leu Ile Val Ala Gly
125 130 135
Arg Lys Val Phe Met Cys Gly Thr Asn Ala Phe Ser Pro Met Cys
140 145 150
Thr Ser Arg Glu Val Gly Asn Leu Ser Arg Thr Thr Glu Lys Ile
155 160 165
Asn Gly Val Ala Arg Cys Pro Tyr Asp Pro Arg His Asn Ser Thr
170 175 180
Ala Val Ile Ser Ser Gln Gly Glu Leu Tyr Ala Ala Thr Val Ile
185 190 195
Asp Phe Ser Gly Arg Asp Pro Ala Ile Tyr Arg Ser Leu Gly Ser
200 205 210
Gly Pro Pro Leu Arg Thr Ala Glu Tyr Asn Ser Lys Trp Leu Asn
215 220 225
Glu Pro Asn Phe Val Ala Ala Tyr Asp Ile Gly Leu Phe Ala Tyr
230 235 240
Phe Phe Leu Arg Glu Asn Ala Val Gly His Asp Cys Gly Arg Thr
245 250 255
Val Tyr Ser Arg Val Ala Arg Val Cys Lys Asn Asp Val Gly Gly
260 265 270
Arg Phe Leu Leu Glu Asp Thr Trp Thr Thr Phe Met Lys Ala Arg
275 280 285
Leu Asn Cys Ser Arg Pro Gly Glu Val Pro Phe Tyr Tyr Asn Glu
290 295 300
Leu Gln Ser Ala Phe His Leu Pro Glu Gln Asp Leu Ile Tyr Gly
305 310 315
Val Phe Thr Thr Asn Val Asn Ser Ile Ala Ala Ser Ala Val Cys
320 325 330
Ala Phe Asn Leu Ser Ala Ile Ser Gln Ala Phe Asn Gly Pro Phe 335 340 345

Arg Tyr Gln Glu Asn Pro Arg Ala Ala Trp Leu Pro Ile Ala Asn 350 355 360

Pro Ile Pro Asn Phe Gln Cys Gly Thr Leu Pro Glu Thr Gly Pro 365 370 375

Asn Glu Asn Leu Thr Glu Arg Ser Leu Gln Asp Ala Gln Arg Leu 380 385 390

Phe Leu Met Ser Glu Ala Val Gln Pro Val Thr Pro Glu Pro Cys 395 400 405

Val Thr Gln Asp Ser Val Arg Phe Ser His Leu Val Val Asp Leu 410 415 420

Val Gln Ala Lys Asp Thr Leu Tyr His Val Leu Tyr Ile Gly Thr 425 430 435

Glu Ser Gly Thr Ile Leu Lys Ala Leu Ser Thr Ala Ser Arg Ser 440 445 450

Leu His Gly Cys Tyr Leu Glu Leu His Val Leu Pro Pro Gly 455 460 465

Arg Arg Glu Pro Leu Arg Ser Leu Arg Ile Leu His Ser Ala Arg 470 475 480

Ala Leu Phe Val Gly Leu Arg Asp Gly Val Leu Arg Val Pro Leu 485 490 495

Glu Arg Cys Ala Ala Tyr Arg Ser Gln Gly Ala Cys Leu Gly Ala 500 505 510

Arg Asp Pro Tyr Cys Gly Trp Asp Gly Lys Gln Gln Arg Cys Ser 515 520 525

Thr Leu Glu Asp Ser Ser Asn Met Ser Leu Trp Thr Gln Asn Ile 530 535 540

Thr Ala Cys Pro Val Arg Asn Val Thr Arg Asp Gly Gly Phe Gly 545 550 555

Pro Trp Ser Pro Trp Gln Pro Cys Glu His Leu Asp Gly Asp Asn 560 565 570

Ser Gly Ser Cys Leu Cys Arg Ala Arg Ser Cys Asp Ser Pro Arg 575 580 585

Pro Arg Cys Gly Gly Leu Asp Cys Leu Gly Pro Ala Ile His Ile 590 595 600

Ala Asn Cys Ser Arg Asn Gly Ala Trp Thr Pro Trp Ser Ser Trp 605 610 615

Ala Leu Cys Thr Ser Cys Gly Ile Gly Phe Gln Val Arg Gln 620 625 630

Arg Ser Cys Ser Asn Pro Ala Pro Arg His Gly Gly Arg Ile Cys
EP 2 489 364 B1

<table>
<thead>
<tr>
<th></th>
<th>635</th>
<th>640</th>
<th>645</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val</td>
<td>Gly</td>
<td>Lys</td>
<td>Ser</td>
</tr>
<tr>
<td>Arg</td>
<td>Glu</td>
<td>Glu</td>
<td>Arg</td>
</tr>
<tr>
<td>Phe</td>
<td>Cys</td>
<td>Asn</td>
<td>Glu</td>
</tr>
<tr>
<td>Asn</td>
<td>Thr</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>655</td>
<td>660</td>
</tr>
<tr>
<td>Cys</td>
<td>Pro</td>
<td>Val</td>
<td>Pro</td>
</tr>
<tr>
<td>Ile</td>
<td>Phe</td>
<td>Trp</td>
<td>Ala</td>
</tr>
<tr>
<td>Ser</td>
<td>Trp</td>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td>Trp</td>
<td>Ser</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>665</td>
<td>670</td>
<td>675</td>
</tr>
<tr>
<td>Cys</td>
<td>Ser</td>
<td>Ser</td>
<td>Asn</td>
</tr>
<tr>
<td>Cys</td>
<td>Gly</td>
<td>Gly</td>
<td>Met</td>
</tr>
<tr>
<td>Gln</td>
<td>Ser</td>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Arg</td>
<td>Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>680</td>
<td>685</td>
<td>690</td>
</tr>
<tr>
<td>Cys</td>
<td>Glu</td>
<td>Asn</td>
<td>Gly</td>
</tr>
<tr>
<td>Asn</td>
<td>Ser</td>
<td>Cys</td>
<td>Leu</td>
</tr>
<tr>
<td>Gly</td>
<td>Cys</td>
<td>Gly</td>
<td>Val</td>
</tr>
<tr>
<td>Glu</td>
<td>Phe</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>695</td>
<td>700</td>
<td>705</td>
</tr>
<tr>
<td>Thr</td>
<td>Cys</td>
<td>Asn</td>
<td>Pro</td>
</tr>
<tr>
<td>Glu</td>
<td>Gly</td>
<td>Cys</td>
<td>Pro</td>
</tr>
<tr>
<td>Glu</td>
<td>Val</td>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Asn</td>
<td>Thr</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>710</td>
<td>715</td>
<td>720</td>
</tr>
<tr>
<td>Trp</td>
<td>Thr</td>
<td>Pro</td>
<td>Trp</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Val</td>
<td>Asn</td>
</tr>
<tr>
<td>Val</td>
<td>Thr</td>
<td>Gln</td>
<td>Gly</td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>725</td>
<td>730</td>
<td>735</td>
</tr>
<tr>
<td>Gln</td>
<td>Glu</td>
<td>Arg</td>
<td>Phe</td>
</tr>
<tr>
<td>Arg</td>
<td>Phe</td>
<td>Thr</td>
<td>Cys</td>
</tr>
<tr>
<td></td>
<td>740</td>
<td>745</td>
<td>750</td>
</tr>
<tr>
<td>Pro</td>
<td>His</td>
<td>Gly</td>
<td>Leu</td>
</tr>
<tr>
<td>Gln</td>
<td>Phe</td>
<td>Gly</td>
<td>Arg</td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td>Glu</td>
<td>Thr</td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>755</td>
<td>760</td>
<td>765</td>
</tr>
<tr>
<td>Cys</td>
<td>Pro</td>
<td>Ala</td>
<td>Asp</td>
</tr>
<tr>
<td>Gly</td>
<td>Ser</td>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td>Cys</td>
<td>Asp</td>
<td>Thr</td>
<td>Asp</td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td></td>
<td>770</td>
<td>775</td>
<td>780</td>
</tr>
<tr>
<td>Glu</td>
<td>Asp</td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td>Arg</td>
<td>Ser</td>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td>Thr</td>
<td>Ser</td>
<td>Pro</td>
<td>His</td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>785</td>
<td>790</td>
<td>795</td>
</tr>
<tr>
<td>Gly</td>
<td>Gly</td>
<td>Trp</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Trp</td>
<td>Gly</td>
<td>Pro</td>
</tr>
<tr>
<td>Trp</td>
<td>Ser</td>
<td>Ser</td>
<td>Cys</td>
</tr>
<tr>
<td>Ser</td>
<td>Arg</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>805</td>
<td>810</td>
</tr>
<tr>
<td>Cys</td>
<td>Glu</td>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td>Phe</td>
<td>Arg</td>
<td>Val</td>
<td>Arg</td>
</tr>
<tr>
<td>Lys</td>
<td>Arg</td>
<td>Thr</td>
<td>Cys</td>
</tr>
<tr>
<td>Thr</td>
<td>Asn</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>815</td>
<td>820</td>
<td>825</td>
</tr>
<tr>
<td>Glu</td>
<td>Pro</td>
<td>Arg</td>
<td>Asn</td>
</tr>
<tr>
<td>Gly</td>
<td>Gly</td>
<td>Leu</td>
<td>Pro</td>
</tr>
<tr>
<td>Cys</td>
<td>Val</td>
<td>Gly</td>
<td>Asp</td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>830</td>
<td>835</td>
<td>840</td>
</tr>
<tr>
<td>Tyr</td>
<td>Gln</td>
<td>Asp</td>
<td>Cys</td>
</tr>
<tr>
<td>Asn</td>
<td>Pro</td>
<td>Gln</td>
<td>Ala</td>
</tr>
<tr>
<td>Cys</td>
<td>Pro</td>
<td>Val</td>
<td>Arg</td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td>Trp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>845</td>
<td>850</td>
<td>855</td>
</tr>
<tr>
<td>Ser</td>
<td>Cys</td>
<td>Trp</td>
<td>Thr</td>
</tr>
<tr>
<td>Ser</td>
<td>Trp</td>
<td>Ser</td>
<td>Pro</td>
</tr>
<tr>
<td>Cys</td>
<td>Ser</td>
<td>Ala</td>
<td>Ser</td>
</tr>
<tr>
<td>Cys</td>
<td>Gly</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>860</td>
<td>865</td>
<td>870</td>
</tr>
<tr>
<td>Gly</td>
<td>His</td>
<td>Tyr</td>
<td>Gln</td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td>Arg</td>
<td>Ser</td>
</tr>
<tr>
<td>Cys</td>
<td>Thr</td>
<td>Ser</td>
<td>Pro</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>875</td>
<td>880</td>
<td>885</td>
</tr>
<tr>
<td>Pro</td>
<td>Gly</td>
<td>Glu</td>
<td>Asp</td>
</tr>
<tr>
<td>Ile</td>
<td>Cys</td>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td>Leu</td>
<td>His</td>
<td>Thr</td>
<td>Glu</td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>890</td>
<td>895</td>
<td>900</td>
</tr>
<tr>
<td>Cys</td>
<td>Ala</td>
<td>Thr</td>
<td>Gln</td>
</tr>
<tr>
<td>Ala</td>
<td>Cys</td>
<td>Pro</td>
<td>Glu</td>
</tr>
<tr>
<td>Gly</td>
<td>Trp</td>
<td>Ser</td>
<td>Pro</td>
</tr>
<tr>
<td>Trp</td>
<td>Ser</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Thr</td>
<td>Arg</td>
<td>Asp</td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td>Gln</td>
<td>Ser</td>
</tr>
<tr>
<td>Arg</td>
<td>Arg</td>
<td>Ser</td>
<td>His</td>
</tr>
<tr>
<td></td>
<td>905</td>
<td>910</td>
<td>915</td>
</tr>
<tr>
<td>Trp</td>
<td>Ser</td>
<td>Lys</td>
<td>Cys</td>
</tr>
<tr>
<td>Thr</td>
<td>Asp</td>
<td>Arg</td>
<td>Ala</td>
</tr>
<tr>
<td>Gln</td>
<td>Ser</td>
<td>Arg</td>
<td>Ser</td>
</tr>
<tr>
<td>Arg</td>
<td>His</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>920</td>
<td>925</td>
<td>930</td>
</tr>
<tr>
<td>Cys</td>
<td>Glu</td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td>Pro</td>
<td>Gly</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>Ala</td>
<td>Cys</td>
<td>Ala</td>
<td>Gly</td>
</tr>
<tr>
<td>Asn</td>
<td>Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>935</td>
<td>940</td>
<td>945</td>
</tr>
</tbody>
</table>
Ser Gln Ser Arg Pro Cys Pro Tyr Ser Glu Ile Pro Val Ile Leu 950 955 960
Pro Ala Ser Ser Met Glu Glu Ala Thr Gly Cys Ala Gly Phe Asn 965 970 975
Leu Ile His Leu Val Ala Thr Gly Ile Ser Cys Phe Leu Gly Ser 980 985 990
Gly Leu Leu Thr Leu Ala Val Tyr Leu Ser Cys Gln His Cys Gln 995 1000 1005
Arg Gln Ser Gln Glu Ser Thr Leu Val His Pro Ala Thr Pro Asn 1010 1015 1020
His Leu His Tyr Lys Gly Gly Gly Thr Pro Lys Asn Glu Lys Tyr 1025 1030 1035
Thr Pro Met Glu Phe Lys Thr Leu Asn Lys Asn Asn Leu Ile Pro 1040 1045 1050
Asp Asp Arg Ala Asn Phe Tyr Pro Leu Gln Gln Thr Asn Val Tyr 1055 1060 1065
Thr Thr Thr Tyr Tyr Pro Ser Pro Leu Asn Lys His Ser Phe Arg 1070 1075 1080
Pro Glu Ala Ser Pro Gly Gln Arg Cys Phe Pro Asn Ser 1085 1090

<210> 8
<211> 141
<212> PRT
<213> Homo sapiens

<400> 8
<table>
<thead>
<tr>
<th>Residue</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Met</td>
</tr>
<tr>
<td>2</td>
<td>Trp</td>
</tr>
<tr>
<td>3</td>
<td>Val</td>
</tr>
<tr>
<td>4</td>
<td>Leu</td>
</tr>
<tr>
<td>5</td>
<td>Gly</td>
</tr>
<tr>
<td>6</td>
<td>Ile</td>
</tr>
<tr>
<td>7</td>
<td>Ala</td>
</tr>
<tr>
<td>8</td>
<td>Ala</td>
</tr>
<tr>
<td>9</td>
<td>Ala</td>
</tr>
<tr>
<td>10</td>
<td>Thr</td>
</tr>
<tr>
<td>11</td>
<td>Phe</td>
</tr>
<tr>
<td>12</td>
<td>Cys</td>
</tr>
<tr>
<td>13</td>
<td>Gly</td>
</tr>
<tr>
<td>14</td>
<td>Leu</td>
</tr>
<tr>
<td>15</td>
<td>Phe</td>
</tr>
<tr>
<td>16</td>
<td>Leu</td>
</tr>
<tr>
<td>17</td>
<td>Pro</td>
</tr>
<tr>
<td>18</td>
<td>Gly</td>
</tr>
<tr>
<td>19</td>
<td>Phe</td>
</tr>
<tr>
<td>20</td>
<td>Ala</td>
</tr>
<tr>
<td>21</td>
<td>Val</td>
</tr>
<tr>
<td>22</td>
<td>Leu</td>
</tr>
<tr>
<td>23</td>
<td>Gln</td>
</tr>
<tr>
<td>24</td>
<td>Ile</td>
</tr>
<tr>
<td>25</td>
<td>Gln</td>
</tr>
<tr>
<td>26</td>
<td>Cys</td>
</tr>
<tr>
<td>27</td>
<td>Tyr</td>
</tr>
<tr>
<td>28</td>
<td>Gln</td>
</tr>
<tr>
<td>29</td>
<td>Cys</td>
</tr>
<tr>
<td>30</td>
<td>Glu</td>
</tr>
<tr>
<td>31</td>
<td>Glu</td>
</tr>
<tr>
<td>32</td>
<td>Pro</td>
</tr>
<tr>
<td>33</td>
<td>Glu</td>
</tr>
<tr>
<td>34</td>
<td>Phe</td>
</tr>
<tr>
<td>35</td>
<td>Ile</td>
</tr>
<tr>
<td>36</td>
<td>Val</td>
</tr>
<tr>
<td>37</td>
<td>Asn</td>
</tr>
<tr>
<td>38</td>
<td>Asn</td>
</tr>
<tr>
<td>39</td>
<td>Asp</td>
</tr>
<tr>
<td>40</td>
<td>Cys</td>
</tr>
<tr>
<td>41</td>
<td>Ser</td>
</tr>
<tr>
<td>42</td>
<td>Ser</td>
</tr>
<tr>
<td>43</td>
<td>Pro</td>
</tr>
<tr>
<td>44</td>
<td>Glu</td>
</tr>
<tr>
<td>45</td>
<td>Phe</td>
</tr>
<tr>
<td>46</td>
<td>Ile</td>
</tr>
<tr>
<td>47</td>
<td>Val</td>
</tr>
<tr>
<td>48</td>
<td>Asn</td>
</tr>
<tr>
<td>49</td>
<td>Ser</td>
</tr>
<tr>
<td>50</td>
<td>Ala</td>
</tr>
<tr>
<td>51</td>
<td>Ser</td>
</tr>
<tr>
<td>52</td>
<td>Ser</td>
</tr>
<tr>
<td>53</td>
<td>Ala</td>
</tr>
<tr>
<td>54</td>
<td>Ser</td>
</tr>
<tr>
<td>55</td>
<td>Ala</td>
</tr>
</tbody>
</table>

<210> 9
<211> 442
<212> PRT
<213> Homo sapiens

<400> 9
Met Gln Pro Pro Pro Ser Leu Cys Gly Arg Ala Leu Val Ala Leu 1 5 10 15
Val Leu Ala Cys Gly Leu Ser Arg Ile Trp Gly Glu Glu Arg Gly 20 25 30
Phe Pro Pro Asp Arg Ala Thr Pro Leu Leu Gln Thr Ala Glu Ile 35 40 45
Met Thr Pro Pro Thr Lys Thr Leu Trp Pro Lys Gly Ser Asn Ala 50 55 60
Ser Leu Ala Arg Ser Leu Ala Pro Ala Glu Val Pro Lys Gly Asp 65 70 75
Arg Thr Ala Gly Ser Pro Pro Arg Thr Ile Ser Pro Pro Pro Cys 80 85 90
Gln Gly Pro Ile Glu Ile Lys Glu Thr Phe Lys Tyr Ile Asn Thr 95 100 105
Val Val Ser Cys Leu Val Phe Val Leu Gly Ile Ile Gly Asn Ser 110 115 120
Thr Leu Leu Arg Ile Ile Tyr Lys Asn Lys Cys Met Arg Asn Gly 125 130 135
Pro Asn Ile Leu Ile Ala Ser Leu Ala Leu Gly Asp Leu Leu His 140 145 150
Ile Val Ile Asp Ile Pro Ile Asn Val Tyr Lys Leu Leu Ala Glu 155 160 165
Asp Trp Pro Phe Gly Ala Glu Met Cys Lys Leu Val Pro Phe Ile 170 175 180
Gln Lys Ala Ser Val Gly Ile Thr Val Leu Ser Leu Cys Ala Leu 185 190 195
Ser Ile Asp Arg Tyr Arg Ala Val Ala Ser Trp Ser Arg Ile Lys 200 205 210
Gly Ile Gly Val Pro Lys Trp Thr Ala Val Glu Ile Val Leu Ile 215 220 225
Trp Val Val Ser Val Val Leu Ala Val Pro Glu Ala Ile Gly Phe 230 235 240
Asp Ile Ile Thr Met Asp Tyr Lys Gly Ser Tyr Leu Arg Ile Cys...
Leu Leu His Pro Val Gln Lys Thr Ala Phe Met Gln Phe Tyr Lys
260 265 270

Thr Ala Lys Asp Trp Trp Leu Phe Ser Phe Tyr Phe Cys Leu Pro
275 280 285

Leu Ala Ile Thr Ala Phe Phe Tyr Thr Leu Met Thr Cys Glu Met
290 295 300

Leu Arg Lys Lys Ser Gly Met Gln Ile Ala Leu Asn Asp His Leu
305 310 315

Lys Gln Arg Arg Glu Val Ala Lys Thr Val Phe Cys Leu Val Leu
320 325 330

Val Phe Ala Leu Cys Trp Leu Pro Leu His Leu Ser Arg Ile Leu
335 340 345

Lys Leu Thr Leu Tyr Asn Gln Asn Asp Pro Asn Arg Cys Glu Leu
350 355 360

Leu Ser Phe Leu Leu Val Leu Asp Tyr Ile Gly Ile Asn Met Ala
365 370 375

Ser Leu Asn Ser Cys Ile Asn Pro Ile Ala Leu Tyr Leu Val Ser
380 385 390

Lys Arg Phe Lys Asn Cys Phe Lys Ser Cys Leu Cys Cys Trp Cys
395 400 405

Gln Ser Phe Glu Glu Lys Gln Ser Leu Glu Glu Lys Gln Ser Cys
410 415 420

Leu Lys Phe Lys Ala Asn Asp His Gly Tyr Asp Asn Phe Arg Ser
425 430 435

Ser Asn Lys Tyr Ser Ser Ser
440

<210> 10
<211> 783
<212> PRT
<213> Homo sapiens

<400> 10
Met Ser Gly Gly His Gln Leu Gln Leu Ala Ala Leu Trp Pro Trp
1 5 10 15
Leu Leu Met Ala Thr Leu Gln Ala Gly Phe Gly Arg Thr Gly Leu
20 25 30
Val Leu Ala Ala Val Glu Ser Glu Arg Ser Ala Glu Gln Lys
35 40 45
Ala Ile Ile Arg Val Ile Pro Leu Lys Met Asp Pro Thr Gly Lys
50 55 60
Leu Asn Leu Thr Leu Glu Gly Val Phe Ala Gly Val Ala Glu Ile
65 70 75
Thr Pro Ala Glu Gly Lys Leu Met Gln Ser His Pro Leu Tyr Leu
80 85 90

Cys Asn Ala Ser Asp Asp Asn Leu Glu Pro Gly Phe Ile Ser
95 100 105

Ile Val Lys Leu Glu Ser Pro Arg Arg Ala Pro Arg Pro Cys Leu
110 115 120

Ser Leu Ala Ser Lys Ala Arg Met Ala Gly Glu Arg Gly Ala Ser
125 130 135

Ala Val Leu Phe Asp Ile Thr Glu Asp Arg Ala Ala Ala Glu Gln
140 145 150

Leu Gln Gln Pro Leu Gly Leu Thr Trp Pro Val Val Leu Ile Trp
155 160 165

Gly Asn Asp Ala Glu Lys Leu Met Gln Phe Val Tyr Lys Asn Gln
170 175 180

Lys Ala His Val Arg Ile Glu Leu Lys Glu Pro Pro Ala Trp Pro
185 190 195

Asp Tyr Asp Val Trp Ile Leu Met Thr Val Val Gly Thr Ile Phe
200 205 210

Val Ile Ile Leu Ala Ser Val Leu Arg Ile Arg Cys Arg Pro Arg
215 220 225

His Ser Arg Pro Asp Pro Leu Gln Gln Arg Thr Ala Trp Ala Ile
230 235 240

Ser Gln Leu Ala Thr Arg Arg Tyr Gln Ala Ser Cys Arg Gln Ala
245 250 255

Arg Gly Glu Trp Pro Asp Ser Gly Ser Ser Cys Ser Ser Ala Pro
260 265 270

Val Cys Ala Ile Cys Leu Glu Glu Phe Ser Glu Gly Gln Glu Leu
275 280 285

Arg Val Ile Ser Cys Leu His Glu Phe His Arg Asn Cys Val Asp
290 295 300

Pro Trp Leu His Gln His Arg Thr Cys Pro Leu Cys Val Phe Asn
305 310 315

Ile Thr Glu Gly Asp Ser Phe Ser Gln Ser Leu Gly Pro Ser Arg
320 325 330

Ser Tyr Gln Glu Pro Gly Arg Arg Leu His Leu Ile Arg Gln His
335 340 345

Pro Gly His Ala His Tyr His Leu Pro Ala Ala Tyr Leu Leu Gln
350 355 360

Pro Ser Arg Ser Ala Val Ala Ala Arg Pro Arg Pro Gly Pro Phe
365 370 375
Leu Pro Ser Gln Glu Pro Gly Met Gly Pro Arg His His Arg Phe 380 385 390
Pro Arg Ala Ala His Pro Arg Ala Pro Gly Glu Gln Gln Arg Leu 395 400 405
Ala Gly Ala Gln His Pro Tyr Ala Gln Gly Trp Gly Met Ser His 410 415 420
Leu Gln Ser Thr Ser Gln His Pro Ala Ala Cys Pro Val Pro Leu 425 430 435
Arg Arg Ala Arg Pro Pro Asp Ser Ser Gly Ser Gln Ser Tyr 440 445 450
Cys Thr Glu Arg Ser Gly Tyr Leu Ala Asp Gly Pro Ala Ser Asp 455 460 465
Ser Ser Ser Gly Pro Cys His Gly Ser Ser Ser Asp Ser Val Val 470 475 480
Asn Cys Thr Asp Ile Ser Leu Gln Gly Val His Gly Ser Ser 485 490 495
Thr Phe Cys Ser Ser Leu Ser Ser Asp Phe Asp Pro Leu Val Tyr 500 505 510
Cys Ser Pro Lys Gly Asp Pro Gln Arg Val Asp Met Gln Pro Ser 515 520 525
Val Thr Ser Arg Pro Arg Ser Leu Asp Ser Val Val Pro Thr Gly 530 535 540
Glu Thr Gln Val Ser Ser His Val His Tyr His Arg His Arg His 545 550 555
His His Tyr Lys Lys Arg Phe Gln Trp His Gly Arg Lys Pro Gly 560 565 570
Pro Glu Thr Gly Val Pro Gln Ser Arg Pro Pro Ile Pro Arg Thr 575 580 585
Gln Pro Gln Pro Glu Pro Pro Ser Pro Asp Gln Gln Val Thr Gly 590 595 600
Ser Asn Ser Ala Ala Pro Ser Gly Arg Leu Ser Asn Pro Gln Cys 605 610 615
Pro Arg Ala Leu Pro Glu Pro Ala Pro Gly Pro Val Asp Ala Ser 620 625 630
Ser Ile Cys Pro Ser Thr Ser Ser Leu Phe Asn Leu Gln Lys Ser 635 640 645
Ser Leu Ser Ala Arg His Pro Gln Arg Lys Arg Arg Gly Gly Pro 650 655 660
Ser Glu Pro Thr Pro Gly Ser Arg Pro Gln Asp Ala Thr Val His 665 670 675
Pro Ala Cys Gln Ile Phe Pro His Tyr Thr Pro Ser Val Ala Tyr

194
<table>
<thead>
<tr>
<th>680</th>
<th>685</th>
<th>690</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>Trp</td>
<td>Ser</td>
</tr>
<tr>
<td>695</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Asp</td>
</tr>
<tr>
<td>710</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asn</td>
<td>Ser</td>
</tr>
<tr>
<td>725</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glu</td>
<td>Pro</td>
</tr>
<tr>
<td>740</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thr</td>
<td>Ala</td>
</tr>
<tr>
<td>755</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td>Ala</td>
</tr>
<tr>
<td>770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Ala</td>
<td>Val</td>
</tr>
</tbody>
</table>

<210> 11
<211> 490
<212> PRT
<213> Homo sapiens

<400> 11
<table>
<thead>
<tr>
<th>Position</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Met Glu Ser Ile Ser Met Met Gly Ser Pro Lys Ser Leu Ser Glu</td>
</tr>
<tr>
<td>5</td>
<td>Thr Val Leu Pro Asn Gly Ile Asn Gly Ile Lys Asp Ala Arg Lys</td>
</tr>
<tr>
<td>10</td>
<td>Val Thr Val Gly Val Ile Gly Ser Gly Asp Phe Ala Lys Ser Leu</td>
</tr>
<tr>
<td>15</td>
<td>Thr Ile Arg Leu Ile Arg Cys Gly Tyr His Val Val Ile Gly Ser</td>
</tr>
<tr>
<td>20</td>
<td>Val Thr His His Gly Asp Ala Leu Thr Lys Thr Asn Ile Ile Phe</td>
</tr>
<tr>
<td>25</td>
<td>Val Ala Ile His Arg Glu His Tyr Thr Ser Leu Trp Asp Leu Arg</td>
</tr>
<tr>
<td>30</td>
<td>His Leu Leu Val Gly Lys Ile Leu Ile Asp Val Ser Asn Asn Met</td>
</tr>
<tr>
<td>35</td>
<td>Arg Ile Asn Gln Tyr Pro Glu Ser Asn Ala Glu Tyr Leu Ala Ser</td>
</tr>
<tr>
<td>40</td>
<td>Leu Phe Pro Asp Ser Leu Ile Val Lys Gly Phe Asn Val Val Ser</td>
</tr>
<tr>
<td>45</td>
<td>Ala Trp Ala Leu Gln Leu Gly Pro Lys Asp Ala Ser Arg Gln Val</td>
</tr>
</tbody>
</table>

155 160 165
<table>
<thead>
<tr>
<th>Tyr</th>
<th>Ile</th>
<th>Cys</th>
<th>Ser</th>
<th>Asn</th>
<th>Asn</th>
<th>Ile</th>
<th>Gln</th>
<th>Ala</th>
<th>Arg</th>
<th>Gln</th>
<th>Gln</th>
<th>Val</th>
<th>Ile</th>
<th>Glu</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>175</td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leu</th>
<th>Ala</th>
<th>Arg</th>
<th>Gln</th>
<th>Leu</th>
<th>Asn</th>
<th>Phe</th>
<th>Ile</th>
<th>Pro</th>
<th>Ile</th>
<th>Asp</th>
<th>Leu</th>
<th>Gly</th>
<th>Ser</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>185</td>
<td></td>
<td>195</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ser</th>
<th>Ser</th>
<th>Ala</th>
<th>Arg</th>
<th>Gln</th>
<th>Ile</th>
<th>Glu</th>
<th>Asn</th>
<th>Leu</th>
<th>Pro</th>
<th>Leu</th>
<th>Arg</th>
<th>Leu</th>
<th>Phe</th>
<th>Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td></td>
<td>210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leu</th>
<th>Trp</th>
<th>Arg</th>
<th>Gly</th>
<th>Pro</th>
<th>Val</th>
<th>Val</th>
<th>Ala</th>
<th>Ile</th>
<th>Ser</th>
<th>Leu</th>
<th>Ala</th>
<th>Thr</th>
<th>Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td>215</td>
<td></td>
<td>225</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phe</th>
<th>Phe</th>
<th>Leu</th>
<th>Tyr</th>
<th>Ser</th>
<th>Phe</th>
<th>Val</th>
<th>Arg</th>
<th>Asp</th>
<th>Val</th>
<th>Ile</th>
<th>His</th>
<th>Pro</th>
<th>Tyr</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td></td>
<td>240</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arg</th>
<th>Asn</th>
<th>Gln</th>
<th>Gln</th>
<th>Ser</th>
<th>Asp</th>
<th>Phe</th>
<th>Tyr</th>
<th>Lys</th>
<th>Ile</th>
<th>Pro</th>
<th>Ile</th>
<th>Glu</th>
<th>Ile</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>245</td>
<td></td>
<td>255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asn</th>
<th>Lys</th>
<th>Thr</th>
<th>Leu</th>
<th>Pro</th>
<th>Ile</th>
<th>Val</th>
<th>Ala</th>
<th>Ile</th>
<th>Thr</th>
<th>Leu</th>
<th>Leu</th>
<th>Ser</th>
<th>Leu</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td></td>
<td>270</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tyr</th>
<th>Leu</th>
<th>Ala</th>
<th>Gly</th>
<th>Leu</th>
<th>Leu</th>
<th>Ala</th>
<th>Ala</th>
<th>Tyr</th>
<th>Gln</th>
<th>Leu</th>
<th>Tyr</th>
<th>Tyr</th>
<th>Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td></td>
<td>285</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thr</th>
<th>Lys</th>
<th>Tyr</th>
<th>Arg</th>
<th>Arg</th>
<th>Pro</th>
<th>Pro</th>
<th>Trp</th>
<th>Leu</th>
<th>Glu</th>
<th>Thr</th>
<th>Trp</th>
<th>Leu</th>
<th>Gln</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td></td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cys</th>
<th>Arg</th>
<th>Lys</th>
<th>Gln</th>
<th>Leu</th>
<th>Gly</th>
<th>Leu</th>
<th>Leu</th>
<th>Ser</th>
<th>Phe</th>
<th>Phe</th>
<th>Phe</th>
<th>Ala</th>
<th>Met</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
<td></td>
<td>315</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>His</th>
<th>Val</th>
<th>Ala</th>
<th>Tyr</th>
<th>Ser</th>
<th>Leu</th>
<th>Cys</th>
<th>Leu</th>
<th>Pro</th>
<th>Met</th>
<th>Arg</th>
<th>Arg</th>
<th>Ser</th>
<th>Glu</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td>320</td>
<td></td>
<td>330</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tyr</th>
<th>Leu</th>
<th>Phe</th>
<th>Leu</th>
<th>Asn</th>
<th>Met</th>
<th>Ala</th>
<th>Tyr</th>
<th>Gln</th>
<th>Gln</th>
<th>Val</th>
<th>His</th>
<th>Ala</th>
<th>Asn</th>
<th>Ile</th>
</tr>
</thead>
<tbody>
<tr>
<td>335</td>
<td></td>
<td>345</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glu</th>
<th>Asn</th>
<th>Ser</th>
<th>Trp</th>
<th>Asn</th>
<th>Glu</th>
<th>Glu</th>
<th>Glu</th>
<th>Val</th>
<th>Trp</th>
<th>Arg</th>
<th>Ile</th>
<th>Glu</th>
<th>Met</th>
<th>Tyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td></td>
<td>360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ile</th>
<th>Ser</th>
<th>Phe</th>
<th>Gly</th>
<th>Ile</th>
<th>Met</th>
<th>Ser</th>
<th>Leu</th>
<th>Gly</th>
<th>Leu</th>
<th>Leu</th>
<th>Ser</th>
<th>Leu</th>
<th>Leu</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>365</td>
<td></td>
<td>375</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Val</th>
<th>Thr</th>
<th>Ser</th>
<th>Ile</th>
<th>Pro</th>
<th>Ser</th>
<th>Val</th>
<th>Ser</th>
<th>Asn</th>
<th>Ala</th>
<th>Leu</th>
<th>Asn</th>
<th>Trp</th>
<th>Arg</th>
<th>Glu</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td></td>
<td>390</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phe</th>
<th>Ser</th>
<th>Phe</th>
<th>Ile</th>
<th>Gln</th>
<th>Ser</th>
<th>Thr</th>
<th>Leu</th>
<th>Gly</th>
<th>Tyr</th>
<th>Val</th>
<th>Ala</th>
<th>Leu</th>
<th>Leu</th>
<th>Ile</th>
</tr>
</thead>
<tbody>
<tr>
<td>395</td>
<td></td>
<td>405</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ser</th>
<th>Thr</th>
<th>Phe</th>
<th>His</th>
<th>Val</th>
<th>Leu</th>
<th>Ile</th>
<th>Tyr</th>
<th>Gly</th>
<th>Trp</th>
<th>Lys</th>
<th>Arg</th>
<th>Ala</th>
<th>Phe</th>
<th>Glu</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td></td>
<td>420</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glu</th>
<th>Glu</th>
<th>Tyr</th>
<th>Arg</th>
<th>Phe</th>
<th>Tyr</th>
<th>Thr</th>
<th>Pro</th>
<th>Pro</th>
<th>Asn</th>
<th>Phe</th>
<th>Val</th>
<th>Leu</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>425</td>
<td></td>
<td>435</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leu</th>
<th>Val</th>
<th>Leu</th>
<th>Pro</th>
<th>Ser</th>
<th>Ile</th>
<th>Val</th>
<th>Ile</th>
<th>Leu</th>
<th>Gly</th>
<th>Lys</th>
<th>Ile</th>
<th>Ile</th>
<th>Leu</th>
<th>Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td>440</td>
<td></td>
<td>450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leu</th>
<th>Pro</th>
<th>Cys</th>
<th>Ile</th>
<th>Ser</th>
<th>Gln</th>
<th>Lys</th>
<th>Leu</th>
<th>Lys</th>
<th>Arg</th>
<th>Ile</th>
<th>Lys</th>
<th>Lys</th>
<th>Gly</th>
<th>Trp</th>
</tr>
</thead>
<tbody>
<tr>
<td>455</td>
<td></td>
<td>465</td>
</tr>
</tbody>
</table>
Glu Lys Ser Gln Phe Leu Glu Glu Gly Ile Gly Gly Thr Ile Pro

His Val Ser Pro Glu Arg Val Thr Val Met

<210> 12
<211> 1214
<212> PRT
<213> Homo sapiens

<400> 12
Met Val Val Pro Glu Lys Glu Gln Ser Trp Ile Pro Lys Ile Phe

Lys Lys Lys Thr Cys Thr Thr Phe Ile Val Asp Ser Thr Asp Pro

Gly Gly Thr Leu Cys Gln Cys Gly Arg Pro Arg Thr Ala His Pro

Ala Val Ala Met Glu Asp Ala Phe Gly Ala Ala Val Val Thr Val

Trp Asp Ser Asp Ala His Thr Thr Glu Lys Pro Thr Asp Ala Tyr

Gly Glu Leu Asp Phe Thr Gly Ala Gly Arg Lys His Ser Asn Phe

Leu Arg Leu Ser Asp Arg Thr Asp Pro Ala Ala Val Tyr Ser Leu

Val Thr Arg Thr Trp Gly Phe Arg Ala Pro Asn Leu Val Val Ser

Val Leu Gly Gly Ser Gly Gly Pro Val Leu Gln Thr Trp Leu Gln

Asp Leu Leu Arg Arg Gly Leu Val Arg Ala Ala Gln Ser Thr Gly

Ala Trp Ile Val Thr Gly Leu His Thr Gly Ile Gly Arg His

Val Gly Val Ala Val Arg Asp His Gln Met Ala Ser Thr Gly Gly

Thr Lys Val Val Ala Met Gly Val Ala Pro Trp Gly Val Val Arg

Asn Arg Asp Thr Leu Ile Asn Pro Lys Gly Ser Phe Pro Ala Arg

Tyr Arg Trp Arg Gly Asp Pro Glu Asp Gly Val Gln Phe Pro Leu

Asp Tyr Asn Tyr Ser Ala Phe Phe Leu Val Asp Asp Gly Thr His

Gly Cys Leu Gly Gly Glu Asn Arg Phe Arg Leu Arg Leu Glu Ser
<table>
<thead>
<tr>
<th></th>
<th>245</th>
<th>250</th>
<th>255</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr Ile Ser Gln Gin Lys Thr Gly Val Gly Gly Thr Gly Ile Asp</td>
<td>260</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td>Ile Pro Val Leu Leu Leu Leu Ile Asp Gly Asp Glu Lys Met Leu</td>
<td>275</td>
<td>280</td>
<td>285</td>
</tr>
<tr>
<td>Thr Arg Ile Glu Asn Ala Thr Gln Ala Gln Leu Pro Cys Leu Leu</td>
<td>290</td>
<td>295</td>
<td>300</td>
</tr>
<tr>
<td>Val Ala Gly Ser Gly Gly Ala Ala Asp Cys Leu Ala Glu Thr Leu</td>
<td>305</td>
<td>310</td>
<td>315</td>
</tr>
<tr>
<td>Glu Asp Thr Leu Ala Pro Gly Ser Gly Ala Arg Gin Gly Glu</td>
<td>320</td>
<td>325</td>
<td>330</td>
</tr>
<tr>
<td>Ala Arg Asp Arg Ile Arg Arg Phe Phe Pro Lys Gly Asp Leu Glu</td>
<td>335</td>
<td>340</td>
<td>345</td>
</tr>
<tr>
<td>Val Leu Gin Ala Gin Val Glu Arg Ile Met Thr Arg Lys Leu Glu</td>
<td>350</td>
<td>355</td>
<td>360</td>
</tr>
<tr>
<td>Leu Thr Val Tyr Ser Ser Glu Asp Gly Ser Glu Glu Phe Glu Thr</td>
<td>365</td>
<td>370</td>
<td>375</td>
</tr>
<tr>
<td>Ile Val Leu Lys Ala Leu Val Lys Ala Cys Gly Ser Ser Glu Ala</td>
<td>380</td>
<td>385</td>
<td>390</td>
</tr>
<tr>
<td>Ser Ala Tyr Leu Asp Glu Leu Arg Leu Ala Val Ala Trp Asn Arg</td>
<td>395</td>
<td>400</td>
<td>405</td>
</tr>
<tr>
<td>Val Asp Ile Ala Gin Ser Glu Leu Phe Arg Gly Asp Ile Glu Trp</td>
<td>410</td>
<td>415</td>
<td>420</td>
</tr>
<tr>
<td>Arg Ser Phe His Leu Glu Ala Ser Leu Met Asp Ala Leu Leu Asn</td>
<td>425</td>
<td>430</td>
<td>435</td>
</tr>
<tr>
<td>Asp Arg Pro Glu Phe Val Arg Leu Ile Ser His Gly Leu Ser</td>
<td>440</td>
<td>445</td>
<td>450</td>
</tr>
<tr>
<td>Leu Gly His Phe Leu Thr Pro Met Arg Leu Ala Gin Leu Tyr Ser</td>
<td>455</td>
<td>460</td>
<td>465</td>
</tr>
<tr>
<td>Ala Ala Pro Ser Asn Ser Leu Ile Arg Asn Leu Leu Asp Gin Ala</td>
<td>470</td>
<td>475</td>
<td>480</td>
</tr>
<tr>
<td>Ser His Ser Ala Gly Thr Lys Ala Pro Ala Leu Lys Gly Gly Ala</td>
<td>485</td>
<td>490</td>
<td>495</td>
</tr>
<tr>
<td>Ala Glu Leu Arg Pro Pro Asp Val Gly His Val Leu Arg Met Leu</td>
<td>500</td>
<td>505</td>
<td>510</td>
</tr>
<tr>
<td>Leu Gly Lys Met Cys Ala Pro Arg Tyr Pro Ser Gly Gly Ala Trp</td>
<td>515</td>
<td>520</td>
<td>525</td>
</tr>
<tr>
<td>Asp Pro His Pro Gly Gln Gly Phe Gly Glu Ser Met Tyr Leu Leu</td>
<td>530</td>
<td>535</td>
<td>540</td>
</tr>
<tr>
<td>Ser Asp Lys Ala Thr Ser Pro Leu Ser Leu Asp Ala Gly Leu Gly</td>
<td>545</td>
<td>550</td>
<td>555</td>
</tr>
<tr>
<td>Residues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln Ala Pro Trp Ser Asp Leu Leu Leu Trp Ala Leu Leu Leu Asn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg Ala Gln Met Ala Met Tyr Phe Trp Glu Met Gly Ser Asn Ala</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>575</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val Ser Ser Ala Leu Gly Ala Cys Leu Leu Leu Arg Val Met Ala</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>590</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg Leu Glu Pro Asp Ala Glu Ala Ala Arg Arg Lys Asp Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>605</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala Phe Lys Phe Glu Gly Met Gly Val Asp Leu Phe Gly Glu Cys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>620</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr Arg Ser Ser Glu Val Arg Ala Ala Arg Leu Leu Leu Arg Arg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>635</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys Pro Leu Trp Gly Asp Ala Thr Cys Leu Gln Leu Ala Met Gln</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>650</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala Asp Ala Arg Ala Phe Phe Ala Gln Asp Gly Val Gln Ser Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>665</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu Thr Gln Lys Trp Trp Gly Asp Met Ala Ser Thr Thr Pro Ile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>680</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trp Ala Leu Val Leu Ala Phe Phe Cys Pro Pro Leu Ile Tyr Thr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>695</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg Leu Ile Thr Phe Arg Lys Ser Glu Glu Glu Pro Thr Arg Glu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>710</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu Leu Glu Phe Asp Met Asp Ser Val Ile Asn Gly Glu Gly Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>725</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val Gly Thr Ala Asp Pro Ala Glu Lys Thr Pro Leu Gly Val Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>740</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg Gln Ser Gly Arg Pro Gly Cys Cys Gly Gly Arg Cys Gly Gly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg Arg Cys Leu Arg Arg Trp Phe His Phe Trp Gly Ala Pro Val</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>770</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr Ile Phe Met Gly Asn Val Val Ser Tyr Leu Leu Phe Leu Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>785</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu Phe Ser Arg Val Leu Leu Leu Asp Phe Gln Pro Ala Pro Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly Ser Leu Glu Leu Leu Leu Tyr Phe Trp Ala Phe Thr Leu Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>815</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys Glu Glu Leu Arg Gln Gly Leu Ser Gly Gly Gly Gly Ser Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>830</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala Ser Gly Gly Pro Gly Pro Gly His Ala Ser Leu Ser Gln Arg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>845</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EP 2 489 364 B1

1160 1165 1170
Arg Leu Lys Val Leu Glu Arg Glu Val Gln Gln Cys Ser Arg Val
1175 1180 1185
Leu Gly Trp Val Ala Glu Ala Leu Ser Arg Ser Ala Leu Leu Pro
1190 1195 1200
Pro Gly Gly Pro Pro Pro Pro Asp Leu Pro Gly Ser Lys Asp
1205 1210

<210> 13
<211> 188
<212> PRT
<213> Homo sapiens

<400> 13

Met Asp Cys Arg Lys Met Ala Arg Phe Ser Tyr Ser Val Ile Trp
1 5 10 15
Ile Met Ala Ile Ser Lys Val Phe Glu Leu Gly Leu Val Ala Gly
20 25 30
Leu Gly His Gln Glu Phe Ala Arg Pro Ser Arg Gly Tyr Leu Ala
35 40 45
Phe Arg Asp Asp Ser Ile Trp Pro Gln Glu Glu Pro Ala Ile Arg
50 55 60
Pro Arg Ser Ser Gln Arg Val Pro Pro Met Gly Ile Gln His Ser
65 70 75
Lys Glu Leu Asn Arg Thr Cys Cys Leu Asn Gly Gly Thr Cys Met
80 85 90
Leu Gly Ser Phe Cys Ala Cys Pro Pro Ser Phe Tyr Gly Arg Asn
95 100 105
Cys Glu His Asp Val Arg Lys Glu Asn Cys Gly Ser Val Pro His
110 115 120
Asp Thr Trp Leu Pro Lys Lys Cys Ser Leu Cys Lys Cys Trp His
125 130 135
Gly Gln Leu Arg Cys Phe Pro Gln Ala Phe Leu Pro Gly Cys Asp
140 145 150
Gly Leu Val Met Asp Glu His Leu Val Ala Ser Arg Thr Pro Gln
155 160 165
Leu Pro Pro Ser Ala Arg Thr Thr Thr Phe Met Leu Val Gly Ile
170 175 180
Cys Leu Ser Ile Gln Ser Tyr Tyr
185
<212> PRT
<213> Homo sapien
<400> 14
Met Gly Ala Ala Gly Leu Leu Gly Val Phe Leu Ala Leu Val Ala
1 5 10 15
Pro Gly Val Leu Gly Ile Ser Cys Gly Ser Pro Pro Pro Ile Leu
20 25 30
Asn Gly Arg Ile Tyr Tyr Ser Thr Pro Ile Ala Val Gly Thr
35 40 45
Val Ile Arg Tyr Ser Cys Ser Gly Thr Phe Arg Leu Ile Gly Glu
50 55 60
Lys Ser Leu Leu Cys Ile Thr Lys Asp Lys Val Asp Gly Thr Trp
65 70 75
Asp Lys Pro Ala Pro Lys Cys Glu Tyr Phe Asn Lys Tyr Ser Ser
80 85 90
Cys Pro Glu Pro Ile Val Pro Gly Gly Tyr Lys Ile Arg Gly Ser
95 100 105
Thr Pro Tyr Arg His Gly Asp Ser Val Thr Phe Ala Cys Lys Thr
110 115 120
Asn Phe Ser Met Asn Gly Asn Lys Ser Val Trp Cys Gln Ala Asn
125 130 135
Asn Met Trp Gly Pro Thr Arg Leu Pro Thr Cys Val Ser Val Phe
140 145 150
Pro Leu Glu Cys Pro Ala Leu Pro Met Ile His Asn Gly His His
155 160 165
Thr Ser Glu Asn Val Gly Ser Ile Ala Pro Gly Leu Ser Val Thr
170 175 180
Tyr Ser Cys Glu Ser Gly Tyr Leu Leu Val Gly Glu Lys Ile Ile
185 190 195
Asn Cys Leu Ser Ser Gly Lys Trp Ser Ala Val Pro Pro Thr Cys
200 205 210
Glu Glu Ala Arg Cys Lys Ser Leu Gly Arg Phe Pro Asn Gly Lys
215 220 225
Val Lys Glu Pro Ile Leu Arg Val Gly Val Thr Ala Asn Phe
230 235 240
Phe Cys Asp Glu Gly Tyr Arg Leu Gln Gly Pro Pro Ser Ser Arg
245 250 255
Cys Val Ile Ala Gly Gln Gly Val Ala Trp Thr Lys Met Pro Val
260 265 270
Cys Glu Glu Ile Phe Cys Pro Ser Pro Pro Pro Ile Leu Asn Gly
275 280 285
Arg His Ile Gly Asn Ser Leu Ala Asn Val Ser Tyr Gly Ser Ile
290 295 300
<table>
<thead>
<tr>
<th>Residue</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Val Thr Tyr Thr Cys Asp Pro Asp Pro Glu Glu Gly Val Asn Phe</td>
</tr>
<tr>
<td>2</td>
<td>305</td>
</tr>
<tr>
<td>5</td>
<td>Ile Leu Ile Gly Glu Ser Thr Leu Arg Cys Thr Val Asp Ser Gln</td>
</tr>
<tr>
<td>6</td>
<td>320</td>
</tr>
<tr>
<td>10</td>
<td>Lys Thr Gly Thr Trp Ser Gly Pro Ala Pro Arg Cys Glu Leu Ser</td>
</tr>
<tr>
<td>11</td>
<td>335</td>
</tr>
<tr>
<td>15</td>
<td>Thr Ser Ala Val Gln Cys Pro His Pro Gln Ile Leu Arg Gly Arg</td>
</tr>
<tr>
<td>16</td>
<td>350</td>
</tr>
<tr>
<td>20</td>
<td>Met Val Ser Gly Gln Lys Asp Arg Tyr Thr Tyr Asn Asp Thr Val</td>
</tr>
<tr>
<td>21</td>
<td>365</td>
</tr>
<tr>
<td>25</td>
<td>Ile Phe Ala Cys Met Phe Gly Phe Thr Leu Lys Gly Ser Lys Gln</td>
</tr>
<tr>
<td>26</td>
<td>380</td>
</tr>
<tr>
<td>30</td>
<td>Ile Arg Cys Asn Ala Gln Gly Thr Trp Glu Pro Ser Ala Pro Val</td>
</tr>
<tr>
<td>31</td>
<td>395</td>
</tr>
<tr>
<td>35</td>
<td>Cys Glu Lys Glu Cys Gln Ala Pro Pro Asn Ile Leu Asn Gly Gln</td>
</tr>
<tr>
<td>36</td>
<td>410</td>
</tr>
<tr>
<td>40</td>
<td>Lys Glu Asp Arg His Met Val Arg Phe Asp Pro Gly Thr Ser Ile</td>
</tr>
<tr>
<td>41</td>
<td>425</td>
</tr>
<tr>
<td>45</td>
<td>Lys Tyr Ser Cys Asn Pro Gly Tyr Val Leu Val Gly Glu Glu Ser</td>
</tr>
<tr>
<td>46</td>
<td>440</td>
</tr>
<tr>
<td>50</td>
<td>Ile Gln Cys Thr Ser Glu Gly Val Trp Thr Pro Pro Val Pro Gln</td>
</tr>
<tr>
<td>51</td>
<td>455</td>
</tr>
<tr>
<td>55</td>
<td>Cys Lys Val Ala Ala Cys Glu Ala Thr Gly Arg Gln Leu Leu Thr</td>
</tr>
<tr>
<td>56</td>
<td>470</td>
</tr>
<tr>
<td>60</td>
<td>Lys Pro Gln His Gln Phe Val Arg Pro Asp Val Asn Ser Ser Cys</td>
</tr>
<tr>
<td>61</td>
<td>485</td>
</tr>
<tr>
<td>65</td>
<td>Gly Glu Gly Tyr Lys Leu Ser Gly Ser Val Tyr Gln Glu Cys Gln</td>
</tr>
<tr>
<td>66</td>
<td>500</td>
</tr>
<tr>
<td>70</td>
<td>Gly Thr Ile Pro Trp Phe Met Glu Ile Arg Leu Cys Lys Glu Ile</td>
</tr>
<tr>
<td>71</td>
<td>515</td>
</tr>
<tr>
<td>75</td>
<td>Thr Cys Pro Pro Pro Pro Val Ile Tyr Asn Gly Ala His Thr Gly</td>
</tr>
<tr>
<td>76</td>
<td>530</td>
</tr>
<tr>
<td>80</td>
<td>Ser Ser Leu Glu Asp Phe Pro Tyr Gly Thr Thr Val Thr Tyr Thr</td>
</tr>
<tr>
<td>81</td>
<td>545</td>
</tr>
<tr>
<td>85</td>
<td>Cys Asn Pro Gly Pro Glu Arg Gly Val Glu Phe Ser Leu Ile Gly</td>
</tr>
<tr>
<td>86</td>
<td>560</td>
</tr>
<tr>
<td>90</td>
<td>Glu Ser Thr Ile Arg Cys Thr Ser Asn Asp Gln Glu Arg Gly Thr</td>
</tr>
<tr>
<td>91</td>
<td>575</td>
</tr>
<tr>
<td>95</td>
<td>Trp Ser Gly Pro Ala Pro Leu Cys Lys Leu Ser Leu Leu Ala Val</td>
</tr>
<tr>
<td>96</td>
<td>590</td>
</tr>
<tr>
<td>100</td>
<td>Gln Cys Ser His Val His Ile Ala Asn Gly Tyr Lys Ile Ser Gly</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>610</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Lys Glu Ala Pro Tyr</td>
<td>Phe Tyr Asn Asp</td>
</tr>
<tr>
<td>620</td>
<td>625</td>
</tr>
<tr>
<td>Tyr Ser Gly Phe Thr Leu Lys Gly Ser</td>
<td>Ser Gln Ile Arg Cys Lys</td>
</tr>
<tr>
<td>635</td>
<td>640</td>
</tr>
<tr>
<td>Ala Asp Asn Thr Trp Asp Pro Glu Ile</td>
<td>Pro Val Cys Glu Lys Glu</td>
</tr>
<tr>
<td>650</td>
<td>655</td>
</tr>
<tr>
<td>Thr Cys Gln His Val Arg Gln Ser Leu</td>
<td>Gln Glu Leu Pro Ala Gly</td>
</tr>
<tr>
<td>665</td>
<td>670</td>
</tr>
<tr>
<td>Ser Arg Val Glu Leu Val Asn Thr Ser</td>
<td>Cys Gln Asp Gly Tyr Gln</td>
</tr>
<tr>
<td>680</td>
<td>685</td>
</tr>
<tr>
<td>Leu Thr Gly His Ala Tyr Gln Met Cys</td>
<td>Gln Asp Ala Glu Asn Gly</td>
</tr>
<tr>
<td>695</td>
<td>700</td>
</tr>
<tr>
<td>Ile Trp Phe Lys Lys Ile Pro Leu Cys</td>
<td>Lys Val Ile His Cys His</td>
</tr>
<tr>
<td>710</td>
<td>715</td>
</tr>
<tr>
<td>Pro Pro Pro Val Ile Val Asn Gly Lys</td>
<td>His Thr Gly Met Met Ala</td>
</tr>
<tr>
<td>725</td>
<td>730</td>
</tr>
<tr>
<td>Glu Asn Phe Leu Tyr Gly Asn Glu Val</td>
<td>Ser Tyr Glu Cys Asp Gln</td>
</tr>
<tr>
<td>740</td>
<td>745</td>
</tr>
<tr>
<td>Gly Phe Tyr Leu Gly Glu Lys Lys</td>
<td>Leu Gln Cys Arg Ser Asp</td>
</tr>
<tr>
<td>755</td>
<td>760</td>
</tr>
<tr>
<td>Ser Lys Gly His Gly Ser Trp Ser Gly</td>
<td>Pro Ser Pro Gln Cys Leu</td>
</tr>
<tr>
<td>770</td>
<td>775</td>
</tr>
<tr>
<td>Arg Ser Pro Pro Val Thr Arg Cys Pro</td>
<td>Asn Pro Glu Val Lys His</td>
</tr>
<tr>
<td>785</td>
<td>790</td>
</tr>
<tr>
<td>Gly Tyr Lys Leu Asn Lys Thr His Ser</td>
<td>Ala Tyr Ser His Asn Asp</td>
</tr>
<tr>
<td>800</td>
<td>805</td>
</tr>
<tr>
<td>Ile Val Tyr Val Asp Cys Asn Pro Gly</td>
<td>Phe Ile Met Asn Gly Ser</td>
</tr>
<tr>
<td>815</td>
<td>820</td>
</tr>
<tr>
<td>Arg Val Ile Arg Cys His Thr Asp</td>
<td>Thr Trp Val Pro Gly Val</td>
</tr>
<tr>
<td>830</td>
<td>835</td>
</tr>
<tr>
<td>Pro Thr Cys Ile Lys Lys Ala Phe Ile Gly Cys Pro Pro Pro Pro</td>
<td></td>
</tr>
<tr>
<td>845</td>
<td>850</td>
</tr>
<tr>
<td>Lys Thr Pro Asn Gly Asn His Thr Gly Gly Asn Ile Ala Arg Phe</td>
<td></td>
</tr>
<tr>
<td>860</td>
<td>865</td>
</tr>
<tr>
<td>Ser Pro Gly Met Ser Ile Leu Tyr Ser</td>
<td>Cys Asp Gln Gly Tyr Leu</td>
</tr>
<tr>
<td>875</td>
<td>880</td>
</tr>
<tr>
<td>Leu Val Gly Glu Ala Leu Leu Leu Cys Thr His Glu Gly Thr Trp</td>
<td></td>
</tr>
<tr>
<td>890</td>
<td>895</td>
</tr>
<tr>
<td>Ser Gln Pro Ala Pro His Cys Lys Glu Val Asn Cys Ser Ser Pro</td>
<td></td>
</tr>
<tr>
<td>905</td>
<td>910</td>
</tr>
</tbody>
</table>
Ala Asp Met Asp Gly Ile Gln Lys Gly Leu Glu Pro Arg Lys Met 920 925 930
Tyr Gln Tyr Gly Ala Val Val Thr Leu Glu Cys Glu Asp Gly Tyr 935 940 945
Met Leu Glu Gly Ser Pro Gln Ser Gln Cys Gln Ser Asp His Gln 950 955 960
Trp Asn Pro Pro Leu Ala Val Cys Arg Ser Arg Ser Leu Ala Pro 965 970 975
Val Leu Cys Gly Ile Ala Ala Gly Leu Ile Leu Leu Thr Phe Leu 980 985 990
Ile Val Ile Thr Leu Tyr Val Ile Ser Lys His Arg Glu Arg Asn 995 1000 1005
Tyr Tyr Thr AspThr Ser Gln Lys Glu Ala Phe His Leu Glu Ala 1010 1015 1020
Arg Glu Val Tyr Ser Val Asp Pro Tyr Asn Pro Ala Ser 1025 1030

<210> 15
<211> 229
<212> PRT
<213> Homo sapiens

<400> 15
Met Ala Arg Leu Ala Leu Ser Pro Val Pro Ser His Trp Met Val
1 5 10 15
Ala Leu Leu Leu Leu Ser Ala Glu Pro Val Pro Ala Ala Arg
20 25 30
Ser Glu Asp Arg Tyr Arg Asn Pro Lys Gly Ser Ala Cys Ser Arg
35 40 45
Ile Trp Gln Ser Pro Arg Phe Ile Ala Arg Lys Arg Gly Phe Thr
. 50 55 60
Val Lys Met His Cys Tyr Met Asn Ser Ala Ser Gly Asn Val Ser
65 70 75
Trp Leu Trp Lys Gln Glu Met Asp Glu Asn Pro Gln Gln Leu Lys
80 85 90
Leu Glu Lys Gly Arg Met Glu Glu Ser Gln Asn Glu Ser Leu Ala
95 100 105
Thr Leu Thr Ile Gln Gly Ile Arg Phe Glu Asp Asn Gly Ile Tyr
110 115 120
Phe Cys Gln Gln Lys Cys Asn Thr Ser Glu Val Tyr Gln Gly
125 130 135
Cys Gly Thr Glu Leu Arg Val Met Gly Phe Ser Thr Leu Ala Gln
140 145 150
Leu Lys Gln Arg Asn Thr Leu Lys Asp Gly Ile Ile Met Ile Gln
155 160 165
Thr Leu Leu Ile Ile Leu Phe Ile Ile Val Pro Ile Phe Leu Leu
170 175 180
Leu Asp Lys Asp Ser Lys Ala Gly Met Glu Glu Asp His Thr
185 190 195
Tyr Glu Gly Leu Asp Ile Asp Gln Thr Ala Thr Tyr Glu Asp Ile
. 200 205 210
Val Thr Leu Arg Thr Gly Glu Val Lys Trp Ser Val Gly Glu His
215 220 225

Pro Gly Gln Glu

<210> 16
<211> 508
<212> PRT
<213> Homo sapiens

<400> 16
Met Leu Leu Trp Ser Leu Leu Val Ile Phe Asp Ala Val Thr Glu
1 5 10 15
Gln Ala Asp Ser Leu Thr Leu Val Ala Pro Ser Ser Val Phe Glu
20 25 30
Gly Asp Ser Ile Val Leu Lys Cys Gln Gly Glu Gln Asn Trp Lys
35 40 45
Ile Gln Lys Met Ala Tyr His Lys Asp Asn Lys Glu Leu Ser Val
50 55 60
Phe Lys Lys Phe Ser Asp Phe Leu Ile Gln Ser Ala Val Leu Ser
65 70 75
Asp Ser Gly Asn Tyr Phe Cys Ser Thr Lys Gly Glu Leu Phe Leu
80 85 90
Trp Asp Lys Thr Ser Asn Ile Val Lys Ile Lys Val Gln Glu Leu
95 100 105
Phe Gln Arg Pro Val Leu Thr Ala Ser Ser Phe Gln Pro Ile Glu
110 115 120
Gly Gly Pro Val Ser Leu Lys Cys Glu Thr Arg Leu Ser Pro Gln
125 130 135
Arg Leu Asp Val Gln Leu Gln Phe Cys Phe Phe Arg Glu Asn Gln
140 145 150
Val Leu Gly Ser Gly Trp Ser Ser Ser Pro Glu Leu Gln Ile Ser
155 160 165
Ala Val Trp Ser Glu Asp Thr Gly Ser Tyr Trp Cys Lys Ala Glu
170 175 180
Thr Val Thr His Arg Ile Arg Lys Gln Ser Leu Gln Ser Gln Ile
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>185</td>
<td>His Val Glu Arg Ile Pro Ile Ser Asn Val Ser Leu Glu Ile Arg</td>
<td>190</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>215</td>
<td>Ala Pro Gly Gly Gln Val Thr Glu Gly Gln Lys Leu Ile Leu Leu</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td></td>
<td>225</td>
</tr>
<tr>
<td>230</td>
<td>Cys Ser Val Ala Gly Gly Thr Gly Asn Val Thr Phe Ser Trp Tyr</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>245</td>
<td>Arg Glu Ala Thr Gly Thr Ser Met Gly Lys Lys Thr Gln Arg Ser</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>255</td>
</tr>
<tr>
<td>260</td>
<td>Leu Ser Ala Glu Leu Glu Ile Pro Ala Val Lys Glu Ser Asp Ala</td>
<td></td>
</tr>
<tr>
<td>265</td>
<td></td>
<td>270</td>
</tr>
<tr>
<td>275</td>
<td>Gly Lys Tyr Tyr Cys Arg Ala Asp Asn Gly His Val Pro Ile Gln</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td></td>
<td>285</td>
</tr>
<tr>
<td>290</td>
<td>Ser Lys Val Val Asn Ile Pro Val Arg Ile Pro Val Ser Arg Pro</td>
<td></td>
</tr>
<tr>
<td>295</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>305</td>
<td>Val Leu Thr Leu Arg Ser Pro Gly Ala Gln Ala Ala Val Gly Asp</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td></td>
<td>315</td>
</tr>
<tr>
<td>320</td>
<td>Leu Leu Glu Leu His Cys Glu Ala Leu Arg Gly Ser Pro Pro Ile</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td></td>
<td>330</td>
</tr>
<tr>
<td>335</td>
<td>Leu Tyr Gln Phe Tyr His Glu Asp Val Thr Leu Gly Asn Ser Ser</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td></td>
<td>345</td>
</tr>
<tr>
<td>350</td>
<td>Ala Pro Ser Gly Gly Gly Ala Ser Phe Asn Leu Ser Leu Thr Ala</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>365</td>
<td>Glu His Ser Gly Asn Tyr Ser Cys Glu Ala Asn Asn Gly Leu Gly</td>
<td></td>
</tr>
<tr>
<td>370</td>
<td></td>
<td>375</td>
</tr>
<tr>
<td>380</td>
<td>Ala Gln Cys Ser Glu Ala Val Pro Val Ser Ile Ser Gly Pro Asp</td>
<td></td>
</tr>
<tr>
<td>385</td>
<td></td>
<td>390</td>
</tr>
<tr>
<td>395</td>
<td>Gly Tyr Arg Arg Asp Leu Met Thr Ala Gly Val Leu Trp Gly Leu</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td>405</td>
</tr>
<tr>
<td>410</td>
<td>Phe Gly Val Leu Gly Phe Thr Gly Val Ala Leu Leu Leu Tyr Ala</td>
<td></td>
</tr>
<tr>
<td>415</td>
<td></td>
<td>420</td>
</tr>
<tr>
<td>425</td>
<td>Leu Phe His Lys Ile Ser Gly Glu Ser Ser Ala Thr Asn Glu Pro</td>
<td></td>
</tr>
<tr>
<td>430</td>
<td></td>
<td>435</td>
</tr>
<tr>
<td>440</td>
<td>Arg Gly Ala Ser Arg Pro Asn Pro Gln Glu Phe Thr Tyr Ser Ser</td>
<td></td>
</tr>
<tr>
<td>445</td>
<td></td>
<td>450</td>
</tr>
<tr>
<td>455</td>
<td>Pro Thr Pro Asp Met Glu Glu Leu Gln Pro Val Tyr Val Asn Val</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td></td>
<td>465</td>
</tr>
<tr>
<td>470</td>
<td>Gly Ser Val Asp Val Asp Val Val Tyr Ser Gln Val Trp Ser Met</td>
<td></td>
</tr>
<tr>
<td>475</td>
<td></td>
<td>480</td>
</tr>
<tr>
<td>485</td>
<td>Gln Gln Pro Glu Ser Ser Ala Asn Ile Arg Thr Leu Leu Glu Asn</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td></td>
<td>495</td>
</tr>
</tbody>
</table>
Lys Asp Ser Gln Val Ile Tyr Ser Ser Val Lys Lys Ser

5 <210> 17
10 <211> 1255
10 <212> PRT
10 <213> Homo sapiens
10 <400> 17
Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu
1 5 10 15

Leu Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp
20 25 30

Met Lys Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met
35 40 45

Leu Arg His Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu
50 55 60

Glu Leu Thr Tyr Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln
65 70 75

Asp Ile Gln Glu Val Gln Gly Tyr Val Leu Ile Ala His Asn Gln
80 85 90

Val Arg Gln Val Pro Leu Gln Arg Leu Arg Ile Val Arg Gly Thr
95 100 105

Gln Leu Phe Glu Asp Asn Tyr Ala Leu Ala Val Leu Asp Asn Gly
110 115 120

Asp Pro Leu Asn Asn Thr Thr Pro Val Thr Gly Ala Ser Pro Gly
125 130 135

Gly Leu Arg Glu Leu Gln Leu Arg Ser Leu Thr Glu Ile Leu Lys
140 145 150

Gly Gly Val Leu Ile Gln Arg Asn Pro Gln Leu Cys Tyr Gln Asp
155 160 165

Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn Asn Gln Leu Ala
170 175 180

Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys His Pro Cys
185 190 195

Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser Ser Glu
200 205 210

Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys Ala
215 220 225

Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys
230 235 240

Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys
245 250 255
EP 2 489 364 B1

Leu His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala
260 265 270

Leu Val Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro
275 280 285

Glu Gly Arg Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro
290 295 300

Tyr Asn Tyr Leu Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys
305 310 315

Pro Leu His Asn Gln Glu Val Thr Ala Glu Asp Gly Thr Gln Arg
320 325 330

Cys Glu Lys Cys Ser Lys Pro Cys Ala Arg Val Cys Tyr Gly Leu
335 340 345

Gly Met Glu His Leu Arg Glu Val Arg Ala Val Thr Ser Ala Asn
350 355 360

Ile Gln Glu Phe Ala Gly Cys Lys Lys Ile Phe Gly Ser Leu Ala
365 370 375

Phe Leu Pro Glu Ser Phe Asp Gly Asp Pro Ala Ser Asn Thr Ala
380 385 390

Pro Leu Gln Pro Glu Gln Leu Gln Val Phe Glu Thr Leu Glu Glu
395 400 405

Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro Asp Ser Leu Pro
410 415 420

Asp Leu Ser Val Phe Gln Asn Leu Gln Val Ile Arg Gly Arg Ile
425 430 435

Leu His Asn Gly Ala Tyr Ser Leu Thr Leu Gln Gly Leu Gly Ile
440 445 450

Ser Trp Leu Gly Leu Arg Ser Leu Arg Glu Leu Gly Ser Gly Leu
455 460 465

Ala Leu Ile His His Asn Thr His Leu Cys Phe Val His Thr Val
470 475 480

Pro Trp Asp Gln Leu Phe Arg Asn Pro His Glu Ala Leu Leu His
485 490 495

Thr Ala Asn Arg Pro Glu Asp Glu Cys Val Gly Glu Gly Leu Ala
500 505 510

Cys His Gln Leu Cys Ala Arg Gly His Cys Trp Gly Pro Gly Pro
515 520 525

Thr Gln Cys Val Asn Cys Ser Gln Phe Leu Arg Gly Gln Glu Cys
530 535 540

Val Glu Glu Cys Arg Val Leu Gln Gly Leu Pro Arg Glu Tyr Val
545 550 555

Asn Ala Arg His Cys Leu Pro Cys His Pro Glu Cys Gln Pro Gln
<table>
<thead>
<tr>
<th></th>
<th>560</th>
<th>565</th>
<th>570</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asn Gly Ser Val Thr Cys Phe Gly Pro Glu Ala Asp Gln Cys Val</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala Cys Ala His Tyr Lys Asp Pro Pro Phe Cys Val Ala Arg Cys</td>
<td>575</td>
<td>580</td>
<td>585</td>
</tr>
<tr>
<td>Pro Ser Gly Val Lys Pro Asp Leu Ser Tyr Met Pro Ile Trp Lys</td>
<td>590</td>
<td>595</td>
<td>600</td>
</tr>
<tr>
<td>Phe Pro Asp Glu Glu Gly Ala Cys Gln Pro Cys Pro Ile Asn Cys</td>
<td>605</td>
<td>610</td>
<td>615</td>
</tr>
<tr>
<td>Thr His Ser Cys Val Asp Leu Asp Asp Lys Gly Cys Pro Ala Gln</td>
<td>620</td>
<td>625</td>
<td>630</td>
</tr>
<tr>
<td>Gln Arg Ala Ser Pro Leu Thr Ser Ile Ser Ala Val Val Gly</td>
<td>635</td>
<td>640</td>
<td>645</td>
</tr>
<tr>
<td>Ile Leu Leu Val Val Val Leu Gly Val Val Phe Gly Ile Leu Ile</td>
<td>650</td>
<td>655</td>
<td>660</td>
</tr>
<tr>
<td>Lys Arg Arg Gln Glu Lys Ile Arg Lys Tyr Thr Met Arg Arg Leu</td>
<td>665</td>
<td>670</td>
<td>675</td>
</tr>
<tr>
<td>Leu Gln Glu Thr Glu Leu Val Glu Pro Leu Thr Pro Ser Gly Ala</td>
<td>680</td>
<td>685</td>
<td>690</td>
</tr>
<tr>
<td>Met Pro Asn Gln Ala Gln Met Arg Ile Lys Lys Glu Thr Glu Leu</td>
<td>695</td>
<td>700</td>
<td>705</td>
</tr>
<tr>
<td>Arg Lys Val Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Phe</td>
<td>710</td>
<td>715</td>
<td>720</td>
</tr>
<tr>
<td>Lys Gly Ile Trp Ile Pro Asp Gly Glu Asn Val Lys Ile Pro Val</td>
<td>725</td>
<td>730</td>
<td>735</td>
</tr>
<tr>
<td>Ala Ile Lys Val Leu Arg Glu Asn Thr Ser Pro Lys Ala Asn Lys</td>
<td>740</td>
<td>745</td>
<td>750</td>
</tr>
<tr>
<td>Glu Ile Leu Asp Glu Ala Tyr Val Met Ala Gly Val Gly Ser Pro</td>
<td>755</td>
<td>760</td>
<td>765</td>
</tr>
<tr>
<td>Tyr Val Ser Arg Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln</td>
<td>770</td>
<td>775</td>
<td>780</td>
</tr>
<tr>
<td>Leu Val Thr Gln Leu Met Pro Tyr Gly Cys Leu Leu Asp His Val</td>
<td>785</td>
<td>790</td>
<td>795</td>
</tr>
<tr>
<td>Arg Glu Asn Arg Gly Arg Leu Gly Ser Gln Asp Leu Leu Asn Trp</td>
<td>800</td>
<td>805</td>
<td>810</td>
</tr>
<tr>
<td>Cys Met Gln Ile Ala Lys Gly Met Ser Tyr Leu Glu Asp Val Arg</td>
<td>815</td>
<td>820</td>
<td>825</td>
</tr>
<tr>
<td>Leu Val His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Lys Ser</td>
<td>830</td>
<td>835</td>
<td>840</td>
</tr>
<tr>
<td>Pro Asn His Val Lys Ile Thr Asp Phe Gly Leu Ala Arg Leu Leu</td>
<td>845</td>
<td>850</td>
<td>855</td>
</tr>
<tr>
<td>Pro Asn His Val Lys Ile Thr Asp Phe Gly Leu Ala Arg Leu Leu</td>
<td>860</td>
<td>865</td>
<td>870</td>
</tr>
</tbody>
</table>
Asp Ile Asp Glu Thr Glu Tyr His Ala Asp Gly Gly Lys Val Pro
875 880 885
Ile Lys Trp Met Ala Leu Glu Ser Ile Leu Arg Arg Arg Phe Thr
890 895 900
His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Val Trp Glu Leu
905 910 915
Met Thr Phe Gly Ala Lys Pro Tyr Asp Gly Ile Pro Ala Arg Glu
920 925 930
Ile Pro Asp Leu Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro Pro
935 940 945
Ile Cys Thr Ile Asp Val Tyr Met Ile Met Val Lys Cys Trp Met
950 955 960
Ile Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu Leu Val Ser Glu
965 970 975
Phe Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Val Val Ile Gln
980 985 990
Asn Glu Asp Leu Gly Pro Ala Ser Pro Leu Asp Ser Thr Phe Tyr
995 1000 1005
Arg Ser Leu Leu Glu Asp Asp Met Gly Asp Leu Val Asp Ala
1010 1015 1020
Glu Glu Tyr Leu Val Pro Gln Gln Gly Phe Phe Cys Pro Asp Pro
1025 1030 1035
Ala Pro Gly Ala Gly Gly Met Val His His Arg His Arg Ser Ser
1040 1045 1050
Ser Thr Arg Ser Gly Gly Asp Leu Thr Leu Gly Leu Glu Pro
1055 1060 1065
Ser Glu Glu Glu Ala Pro Arg Ser Pro Leu Ala Pro Ser Glu Gly
1070 1075 1080
Ala Gly Ser Asp Val Phe Asp Gly Asp Leu Gly Met Gly Ala Ala
1085 1090 1095
Lys Gly Leu Gln Ser Leu Pro Thr His Asp Pro Ser Leu Gln
1100 1105 1110
Arg Tyr Ser Glu Asp Pro Thr Val Pro Leu Pro Ser Glu Thr Asp
1115 1120 1125
Gly Tyr Val Ala Pro Leu Thr Cys Ser Pro Gln Pro Glu Tyr Val
1130 1135 1140
Asn Gln Pro Asp Val Arg Pro Gln Pro Pro Ser Pro Arg Glu Gly
1145 1150 1155
Pro Leu Pro Ala Ala Arg Pro Ala Gly Ala Thr Leu Glu Arg Pro
1160 1165 1170
Lys Thr Leu Ser Pro Gly Lys Asn Gly Val Val Lys Asp Val Phe
1175 1180 1185
Ala Phe Gly Gly Ala Val Glu Asn Pro Glu Tyr Leu Thr Pro Gln
1190 1195 1200
Gly Gly Ala Ala Pro Gln Pro His Pro Pro Pro Ala Phe Ser Pro
1205 1210 1215
Ala Phe Asp Asn Leu Tyr Tyr Trp Asp Gln Asp Pro Pro Glu Arg
1220 1225 1230
Gly Ala Pro Pro Ser Thr Phe Lys Gly Thr Pro Thr Ala Glu Asn
1235 1240 1245
Pro Glu Tyr Leu Gly Leu Asp Val Pro Val
1250 1255

<210> 18
<211> 344
<212> PRT
<213> Homo sapiens

<400> 18
Met Gly Pro Pro Ser Ala Pro Pro Cys Arg Leu His Val Pro Trp
 1 5 10 15
Lys Glu Val Leu Leu Thr Ala Ser Leu Leu Thr Phe Trp Asn Pro
 20 25 30
Pro Thr Thr Ala Lys Leu Thr Ile Glu Ser Thr Pro Phe Asn Val
 35 40 45
Ala Glu Gly Lys Glu Val Leu Leu Leu Ala His Asn Leu Pro Gln
 50 55 60
Asn Arg Ile Gly Tyr Ser Trp Tyr Lys Gly Glu Arg Val Asp Gly
 65 70 75
Asn Ser Leu Ile Val Gly Tyr Val Ile Gly Thr Gln Gln Ala Thr
 80 85 90
Pro Gly Pro Ala Tyr Ser Gly Arg Glu Thr Ile Tyr Pro Asn Ala
 95 100 105
Ser Leu Leu Ile Gln Asn Val Thr Gln Asn Asp Thr Gly Phe Tyr
 110 115 120
Thr Leu Gln Val Ile Lys Ser Asp Leu Val Asn Glu Glu Ala Thr
 125 130 135
Gly Gln Phe His Val Tyr Pro Glu Leu Pro Lys Pro Ser Ile Ser
 140 145 150
Ser Asn Asn Ser Asn Pro Val Glu Asp Lys Asp Ala Val Ala Phe
 155 160 165
Thr Cys Glu Pro Glu Val Gln Asn Thr Thr Tyr Leu Trp Trp Val
 170 175 180
Asn Gly Gln Ser Leu Pro Val Ser Pro Arg Leu Gln Leu Ser Asn
Gly Asn Met Thr Leu Thr Leu Leu Ser Val Lys Arg Asn Asp Ala
200 205 210
Gly Ser Tyr Glu Cys Glu Ile Gln Asn Pro Ala Ser Ala Asn Arg
215 220 225
Ser Asp Pro Val Thr Leu Asn Val Leu Tyr Gly Pro Asp Val Pro
230 235 240
Thr Ile Ser Pro Ser Lys Ala Asn Tyr Arg Pro Gly Glu Asn Leu
245 250 255
Asn Leu Ser Cys His Ala Ala Ser Asn Pro Pro Ala Gln Tyr Ser
260 265 270
Trp Phe Ile Asn Gly Thr Phe Gln Gln Ser Thr Gln Glu Leu Phe
275 280 285
Ile Pro Asn Ile Thr Val Asn Ser Gly Ser Tyr Met Cys Gln
290 295 300
Ala His Asn Ser Ala Thr Gly Leu Asn Arg Thr Thr Val Thr Met
305 310 315
Ile Thr Val Ser Gly Ser Ala Pro Val Leu Ser Ala Val Ala Thr
320 325 330
Val Gly Ile Thr Ile Gly Val Leu Ala Arg Val Ala Leu Ile
335 340

<210> 19
<211> 411
<212> PRT
<213> Homo sapiens

<400> 19
Met Trp Ser Gly Trp Trp Leu Trp Pro Leu Val Ala Val Cys Thr
1 5 10 15

Ala Asp Phe Phe Arg Asp Glu Ala Glu Arg Ile Met Arg Asp Ser
20 25 30

Pro Val Ile Asp Gly His Asn Asp Leu Pro Trp Gln Leu Leu Asp
35 40 45

Met Phe Asn Asn Arg Leu Gln Asp Glu Arg Ala Asn Leu Thr Thr
50 55 60

Leu Ala Gly Thr His Thr Asn Ile Pro Lys Leu Arg Ala Gly Phe
65 70 75

Val Gly Gly Gln Phe Trp Ser Val Tyr Thr Pro Cys Asp Thr Gln
80 85 90

Asn Lys Asp Ala Val Arg Arg Thr Leu Glu Gln Met Asp Val Val
95 100 105

His Arg Met Cys Arg Met Tyr Pro Glu Thr Phe Leu Tyr Val Thr
110 115 120
Ser Ser Ala Gly Ile Arg Gln Ala Phe Arg Glu Gly Lys Val Ala
125 130 135
Ser Leu Ile Gly Val Glu Gly Gly His Ser Ile Asp Ser Ser Leu
140 145 150
Gly Val Leu Arg Ala Leu Tyr Gln Leu Gly Met Arg Tyr Leu Thr
155 160 165
Leu Thr His Ser Cys Asn Thr Pro Trp Ala Asp Asn Trp Leu Val
170 175 180
Asp Thr Gly Asp Ser Glu Pro Gln Ser Gln Gly Leu Ser Pro Phe
185 190 195
Gly Gln Arg Val Val Lys Glu Leu Asn Arg Leu Gly Val Leu Ile
200 205 210
Asp Leu Ala His Val Ser Val Ala Thr Met Lys Ala Thr Leu Gln
215 220 225
Leu Ser Arg Ala Pro Val Ile Phe Ser His Ser Ser Ala Tyr Ser
230 235 240
Val Cys Ala Ser Arg Arg Asn Val Pro Asp Asp Val Leu Arg Leu
245 250 255
Val Lys Gln Thr Asp Ser Leu Val Met Val Asn Phe Tyr Asn Asn
260 265 270
Tyr Ile Ser Cys Thr Asn Lys Ala Asn Leu Ser Gln Val Ala Asp
275 280 285
His Leu Asp His Ile Lys Glu Val Ala Gly Ala Arg Ala Val Gly
290 295 300
Phe Gly Gly Asp Phe Asp Gly Val Pro Arg Val Pro Glu Gly Leu
305 310 315
Glu Asp Val Ser Lys Tyr Pro Asp Leu Ile Ala Glu Leu Leu Arg
320 325 330
Arg Asn Trp Thr Glu Ala Glu Val Lys Gly Ala Leu Ala Asp Asn
335 340 345
Leu Leu Arg Val Phe Glu Ala Val Glu Gln Ala Ser Asn Leu Thr
350 355 360
Gln Ala Pro Glu Glu Pro Ile Pro Leu Asp Gln Leu Gly Gly
365 370 375
Ser Cys Arg Thr His Tyr Gly Tyr Ser Ser Gly Ala Ser Ser Leu
380 385 390
His Arg His Trp Gly Leu Leu Leu Ala Ser Leu Ala Pro Leu Val
395 400 405
Leu Cys Leu Ser Leu Leu
410
Met Arg Ala Pro Gly Arg Pro Ala Leu Arg Pro Leu Pro Leu Pro
1 5 10 15
Pro Leu Leu Leu Leu Leu Leu Ala Ala Pro Trp Gly Arg Ala Val
20 25 30
Pro Cys Val Ser Gly Gly Leu Pro Lys Pro Ala Asn Ile Thr Phe
35 40 45
Leu Ser Ile Asn Met Lys Asn Val Leu Gln Trp Thr Pro Pro Glu
50 55 60
Gly Leu Gln Gly Val Lys Val Thr Tyr Thr Val Gln Tyr Phe Ile
65 70 75
Tyr Gly Gln Lys Trp Leu Asn Lys Ser Glu Cys Arg Asn Ile
80 85 90
Asn Arg Thr Tyr Cys Asp Leu Ser Ala Glu Thr Ser Asp Tyr Glu
95 100 105
His Gln Tyr Tyr Ala Lys Val Lys Ala Ile Trp Gly Thr Lys Cys
110 115 120
Ser Lys Trp Ala Glu Ser Gly Arg Phe Tyr Pro Phe Leu Glu Thr
125 130 135
Gln Ile Gly Pro Pro Glu Val Ala Leu Thr Thr Asp Glu Lys Ser
140 145 150
Ile Ser Val Val Leu Thr Ala Pro Glu Lys Trp Lys Arg Asn Pro
155 160 165
Glu Asp Leu Pro Val Ser Met Gln Gln Ile Tyr Ser Asn Leu Lys
170 175 180
Tyr Asn Val Ser Val Leu Asn Thr Lys Ser Asn Arg Thr Trp Ser
185 190 195
Gln Cys Val Thr Asn His Thr Leu Val Leu Thr Trp Leu Glu Pro
200 205 210
Asn Thr Leu Tyr Cys Val His Val Glu Ser Phe Val Pro Gly Pro
215 220 225
Pro Arg Arg Ala Gln Pro Ser Glu Lys Gln Cys Ala Arg Thr Leu
230 235 240
Lys Asp Gln Ser Ser Glu Phe Lys Ala Lys Ile Ile Phe Trp Tyr
245 250 255
Val Leu Pro Ile Ser Ile Thr Val Phe Leu Phe Ser Val Met Gly
260 265 270
Tyr Ser Ile Tyr Arg Tyr Ile His Val Gly Lys Glu Lys His Pro
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Asn</td>
<td>Leu</td>
<td>Ile</td>
<td>Leu</td>
<td>Ile</td>
</tr>
<tr>
<td>Phe</td>
<td>Val</td>
<td>Pro</td>
<td>Ala</td>
<td>Glu</td>
<td>Lys</td>
</tr>
<tr>
<td>Ile</td>
<td>Ser</td>
<td>Asp</td>
<td>Ser</td>
<td>Lys</td>
<td>Ile</td>
</tr>
<tr>
<td>His</td>
<td>Ser</td>
<td>His</td>
<td>Gln</td>
<td>Asp</td>
<td>Met</td>
</tr>
<tr>
<td>Lys</td>
<td>Ser</td>
<td>Ser</td>
<td>Leu</td>
<td>Asn</td>
<td>Asp</td>
</tr>
<tr>
<td>Pro</td>
<td>Asp</td>
<td>Phe</td>
<td>Lys</td>
<td>Glu</td>
<td>Glu</td>
</tr>
<tr>
<td>Arg</td>
<td>Pro</td>
<td>Pro</td>
<td>Gln</td>
<td>Glu</td>
<td>Glu</td>
</tr>
<tr>
<td>Gly</td>
<td>Tyr</td>
<td>Ala</td>
<td>Ser</td>
<td>Leu</td>
<td>Met</td>
</tr>
<tr>
<td>Glu</td>
<td>Val</td>
<td>Tyr</td>
<td>Gln</td>
<td>Lys</td>
<td>His</td>
</tr>
<tr>
<td>Thr</td>
<td>Gly</td>
<td>Thr</td>
<td>Ser</td>
<td>Phe</td>
<td>Thr</td>
</tr>
<tr>
<td>Gln</td>
<td>Gln</td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td>Thr</td>
<td>Ile</td>
<td>Pro</td>
<td>Asp</td>
<td>Lys</td>
<td>Thr</td>
</tr>
<tr>
<td>Val</td>
<td>Tyr</td>
<td>Gln</td>
<td>Tyr</td>
<td>Asp</td>
<td>Val</td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td>Thr</td>
<td>Asp</td>
<td>Ile</td>
<td>Cys</td>
</tr>
<tr>
<td>Ala</td>
<td>Gly</td>
<td>Pro</td>
<td>Glu</td>
<td>Glu</td>
<td>Gln</td>
</tr>
<tr>
<td>Leu</td>
<td>Gln</td>
<td>Glu</td>
<td>Val</td>
<td>Ser</td>
<td>Thr</td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Leu</td>
<td>Val</td>
<td>Leu</td>
<td>Gln</td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Leu</td>
<td>Val</td>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td>Pro</td>
<td>Gln</td>
<td>Leu</td>
<td>Gln</td>
<td>Tyr</td>
<td>Ser</td>
</tr>
<tr>
<td>Ser</td>
<td>Glu</td>
<td>Gly</td>
<td>Pro</td>
<td>Glu</td>
<td>Glu</td>
</tr>
<tr>
<td>Pro</td>
<td>Ser</td>
<td>Thr</td>
<td>Thr</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>Asp</td>
<td>Trp</td>
<td>Asp</td>
<td>Gln</td>
<td>Thr</td>
<td>Gly</td>
</tr>
<tr>
<td>Arg</td>
<td>Leu</td>
<td>Cys</td>
<td>Ile</td>
<td>Pro</td>
<td>Ser</td>
</tr>
<tr>
<td>Ser</td>
<td>Phe</td>
<td>Asp</td>
<td>Gln</td>
<td>Asp</td>
<td>Ser</td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Gly</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>Arg</td>
<td>Leu</td>
<td>Tyr</td>
<td>Gln</td>
<td>Asp</td>
<td>Pro</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Arg</td>
<td>Pro</td>
<td>Gly</td>
<td>Glu</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Asp</td>
<td>Arg</td>
<td>Pro</td>
<td>Gly</td>
</tr>
<tr>
<td>Phe</td>
<td>Met</td>
<td>Gly</td>
<td>Trp</td>
<td>Gly</td>
<td>Leu</td>
</tr>
<tr>
<td>Val</td>
<td>Tyr</td>
<td>Gln</td>
<td>Met</td>
<td>Glu</td>
<td>Asn</td>
</tr>
</tbody>
</table>

<210> 21
<211> 911
<212> PRT
<213> Homo sapiens

<400> 21
<table>
<thead>
<tr>
<th></th>
<th>Met</th>
<th>Ala</th>
<th>Gln</th>
<th>Leu</th>
<th>Phe</th>
<th>Leu</th>
<th>Pro</th>
<th>Leu</th>
<th>Leu</th>
<th>Ala</th>
<th>Ala</th>
<th>Leu</th>
<th>Val</th>
<th>Leu</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gln</td>
<td>Ala</td>
<td>Pro</td>
<td>Ala</td>
<td>Ala</td>
<td>Leu</td>
<td>Ala</td>
<td>Asp</td>
<td>Val</td>
<td>Leu</td>
<td>Glu</td>
<td>Gly</td>
<td>Asp</td>
<td>Ala</td>
<td>Ser</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>Glu</td>
<td>Asp</td>
<td>Arg</td>
<td>Ala</td>
<td>Phe</td>
<td>Val</td>
<td>Arg</td>
<td>Ile</td>
<td>Ala</td>
<td>Gly</td>
<td>Asp</td>
<td>Ala</td>
<td>Pro</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Gln</td>
<td>Gly</td>
<td>Val</td>
<td>Leu</td>
<td>Gly</td>
<td>Gly</td>
<td>Ala</td>
<td>Leu</td>
<td>Thr</td>
<td>Ile</td>
<td>Pro</td>
<td>Cys</td>
<td>His</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Tyr</td>
<td>Leu</td>
<td>Arg</td>
<td>Pro</td>
<td>Pro</td>
<td>Pro</td>
<td>Ser</td>
<td>Arg</td>
<td>Arg</td>
<td>Ala</td>
<td>Val</td>
<td>Leu</td>
<td>Gly</td>
<td>Ser</td>
<td>Pro</td>
</tr>
<tr>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arg</td>
<td>Val</td>
<td>Lys</td>
<td>Trp</td>
<td>Thr</td>
<td>Phe</td>
<td>Leu</td>
<td>Ser</td>
<td>Arg</td>
<td>Gly</td>
<td>Arg</td>
<td>Glu</td>
<td>Ala</td>
<td>Glu</td>
<td>Val</td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Leu</td>
<td>Val</td>
<td>Ala</td>
<td>Arg</td>
<td>Gly</td>
<td>Val</td>
<td>Arg</td>
<td>Val</td>
<td>Lys</td>
<td>Val</td>
<td>Asn</td>
<td>Glu</td>
<td>Ala</td>
<td>Tyr</td>
<td>Arg</td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Phe</td>
<td>Arg</td>
<td>Val</td>
<td>Ala</td>
<td>Leu</td>
<td>Pro</td>
<td>Ala</td>
<td>Tyr</td>
<td>Pro</td>
<td>Ala</td>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
<td>Asp</td>
<td>Val</td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ser</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
<td>Ser</td>
<td>Glu</td>
<td>Leu</td>
<td>Arg</td>
<td>Pro</td>
<td>Asn</td>
<td>Asp</td>
<td>Ser</td>
<td>Gly</td>
<td>Ile</td>
<td>Tyr</td>
</tr>
<tr>
<td>125</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Arg</td>
<td>Cys</td>
<td>Glu</td>
<td>Val</td>
<td>Gln</td>
<td>His</td>
<td>Gly</td>
<td>Ile</td>
<td>Asp</td>
<td>Asp</td>
<td>Ser</td>
<td>Ser</td>
<td>Asp</td>
<td>Ala</td>
<td>Val</td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Glu</td>
<td>Val</td>
<td>Lys</td>
<td>Val</td>
<td>Lys</td>
<td>Gly</td>
<td>Val</td>
<td>Val</td>
<td>Phe</td>
<td>Leu</td>
<td>Tyr</td>
<td>Arg</td>
<td>Glu</td>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td>155</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Ala</td>
<td>Arg</td>
<td>Tyr</td>
<td>Ala</td>
<td>Phe</td>
<td>Ser</td>
<td>Phe</td>
<td>Ser</td>
<td>Gly</td>
<td>Ala</td>
<td>Gln</td>
<td>Glu</td>
<td>Ala</td>
<td>Cys</td>
<td>Ala</td>
</tr>
<tr>
<td>170</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Arg</td>
<td>Ile</td>
<td>Gly</td>
<td>Ala</td>
<td>His</td>
<td>Ile</td>
<td>Ala</td>
<td>Thr</td>
<td>Pro</td>
<td>Glu</td>
<td>Gln</td>
<td>Leu</td>
<td>Tyr</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>185</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Tyr</td>
<td>Leu</td>
<td>Gly</td>
<td>Gly</td>
<td>Tyr</td>
<td>Glu</td>
<td>Gln</td>
<td>Cys</td>
<td>Asp</td>
<td>Ala</td>
<td>Gly</td>
<td>Trp</td>
<td>Leu</td>
<td>Ser</td>
<td>Asp</td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gln</td>
<td>Thr</td>
<td>Val</td>
<td>Arg</td>
<td>Tyr</td>
<td>Pro</td>
<td>Ile</td>
<td>Gln</td>
<td>Thr</td>
<td>Pro</td>
<td>Arg</td>
<td>Glu</td>
<td>Ala</td>
<td>Cys</td>
<td>Tyr</td>
</tr>
<tr>
<td>215</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gly</td>
<td>Asp</td>
<td>Met</td>
<td>Asp</td>
<td>Gly</td>
<td>Phe</td>
<td>Pro</td>
<td>Gly</td>
<td>Val</td>
<td>Arg</td>
<td>Asn</td>
<td>Tyr</td>
<td>Gly</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Asp</td>
<td>Pro</td>
<td>Asp</td>
<td>Leu</td>
<td>Tyr</td>
<td>Asp</td>
<td>Val</td>
<td>Tyr</td>
<td>Cys</td>
<td>Tyr</td>
<td>Ala</td>
<td>Glu</td>
<td>Asp</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asn</td>
<td>Gly</td>
<td>Glu</td>
<td>Leu</td>
<td>Phe</td>
<td>Leu</td>
<td>Gly</td>
<td>Asp</td>
<td>Pro</td>
<td>Pro</td>
<td>Glu</td>
<td>Lys</td>
<td>Leu</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>260</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glu</td>
<td>Glu</td>
<td>Ala</td>
<td>Arg</td>
<td>Ala</td>
<td>Tyr</td>
<td>Cys</td>
<td>Glu</td>
<td>Glu</td>
<td>Arg</td>
<td>Gly</td>
<td>Ala</td>
<td>Glu</td>
<td>Ile</td>
<td>Ala</td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Thr</td>
<td>Thr</td>
<td>Gly</td>
<td>Gln</td>
<td>Leu</td>
<td>Tyr</td>
<td>Ala</td>
<td>Ala</td>
<td>Trp</td>
<td>Asp</td>
<td>Gly</td>
<td>Gly</td>
<td>Leu</td>
<td>Asp</td>
<td>His</td>
</tr>
<tr>
<td>290</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

226
<table>
<thead>
<tr>
<th></th>
<th>Cys Ser Pro Gly</th>
<th>Trp Leu Ala Asp Gly</th>
<th>Ser Val Arg Tyr Pro Ile</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>Val Thr Pro Ser</td>
<td>Glu Arg Cys Gly Gly</td>
<td>Gly Leu Pro Gly Val Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>Thr Leu Phe Leu</td>
<td>Phe Pro Asn Gln Thr</td>
<td>Gly Phe Pro Asn Lys His</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>Ser Arg Phe Asn</td>
<td>Val Tyr Cys Phe Arg</td>
<td>Asp Ser Ala Gln Pro Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>Ala Ile Pro Glu</td>
<td>Ala Ser Asn Pro Ala</td>
<td>Ser Asn Pro Ala Ser Asp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>Gly Leu Glu Ala</td>
<td>Ile Val Thr Val Thr</td>
<td>Glu Thr Leu Glu Glu Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>Gln Leu Pro Gln</td>
<td>Glu Ala Thr Glu Ser</td>
<td>Glu Ser Arg Gly Ala Ile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>Tyr Ser Ile Pro</td>
<td>Ile Met Glu Asp Gly</td>
<td>Gly Gly Gly Ser Ser Thr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>Pro Glu Asp Pro</td>
<td>Ala Glu Ala Pro Arg</td>
<td>Thr Leu Leu Glu Phe Glu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>435</td>
<td>Thr Gln Ser Met</td>
<td>Val Pro Pro Thr Gly</td>
<td>Phe Ser Glu Glu Glu Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>Lys Ala Leu Glu</td>
<td>Glu Glu Glu Lys Tyr</td>
<td>Glu Asp Glu Glu Glu Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>465</td>
<td>Glu Glu Glu Glu</td>
<td>Glu Glu Glu Val</td>
<td>Glu Asp Glu Ala Leu Trp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>Ala Trp Pro Ser</td>
<td>Ser Leu Ser Ser Pro</td>
<td>Gly Pro Glu Ala Ser Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>Pro Thr Glu Pro</td>
<td>Ala Ala Gln Glu Lys</td>
<td>Ser Leu Ser Gln Ala Pro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>Ala Arg Ala Val</td>
<td>Leu Gln Pro Gly Ala</td>
<td>Ser Pro Leu Pro Asp Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>Glu Ser Glu Ala</td>
<td>Ser Arg Pro Pro Arg</td>
<td>Val His Gly Pro Pro Thr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>Glu Thr Leu Pro</td>
<td>Thr Pro Arg Glu Arg</td>
<td>Asn Leu Ala Ser Pro Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>555</td>
<td>Pro Ser Thr Leu</td>
<td>Val Ala Arg Glu Val</td>
<td>Gly Glu Ala Thr Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>Gly Pro Glu Leu</td>
<td>Ser Gly Val Pro Arg</td>
<td>Gly Glu Ser Glu Glu Thr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>585</td>
<td>Gly Ser Ser Glu</td>
<td>Gly Ala Pro Ser Leu</td>
<td>Pro Ala Thr Arg Ala</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>Pro Glu Gly Thr</td>
<td>Arg Glu Leu Glu Ala</td>
<td>Pro Ser Glu Asp Asn Ser</td>
</tr>
</tbody>
</table>
Gly Arg Thr Ala Pro Ala Gly Thr Ser Val Gln Ala Gln Pro Val
Leu Pro Thr Asp Ser Ala Ser Arg Gly Val Ala Val Val Pro
Ala Ser Gly Asp Cys Val Pro Ser Pro Cys His Asn Gly Gly Thr
Cys Leu Glu Glu Glu Glu Gly Val Arg Cys Leu Cys Leu Pro Gly
Tyr Gly Gly Asp Leu Cys Asp Val Gly Leu Arg Phe Cys Asn Pro
Gly Trp Asp Ala Phe Gln Gly Ala Cys Tyr Lys His Phe Ser Thr
Arg Arg Ser Trp Glu Glu Ala Glu Thr Gln Cys Arg Met Tyr Gly
Ala His Leu Ala Ser Ile Ser Thr Pro Glu Glu Gln Asp Phe Ile
Asn Asn Arg Tyr Arg Glu Tyr Gln Trp Ile Gly Leu Asn Asp Arg
Thr Ile Glu Gly Asp Phe Leu Trp Ser Asp Gly Val Pro Leu Leu
Tyr Glu Asn Trp Asn Pro Gly Gln Pro Asp Ser Tyr Phe Leu Ser
Gly Glu Asn Cys Val Val Met Val Trp His Asp Gln Gly Gln Trp
Ser Asp Val Pro Cys Asn Tyr His Leu Ser Tyr Thr Cys Lys Met
Gly Leu Val Ser Cys Gly Pro Pro Pro Glu Leu Pro Leu Ala Gln
Val Phe Gly Arg Pro Arg Leu Arg Tyr Glu Val Asp Thr Val Leu
Arg Tyr Arg Cys Arg Glu Gly Leu Ala Gln Arg Asn Leu Pro Leu
Ile Arg Cys Gln Glu Asn Gly Arg Trp Glu Ala Pro Gln Ile Ser
Cys Val Pro Arg Pro Ala Arg Ala Leu His Pro Glu Gly Asp
Pro Glu Gly Arg Glu Gly Arg Leu Leu Gly Arg Trp Lys Ala Leu
Leu Ile Pro Pro Ser Ser Pro Met Pro Gly Pro
<210> 22
<211> 987
<212> PRT
<213> Homo sapiens

5

<400> 22
EP 2 489 364 B1

Met Ala Leu Arg Arg Leu Gly Ala Ala Leu Leu Leu Leu Pro Leu
1 5 10 15

Leu Ala Ala Val Glu Glu Thr Leu Met Asp Ser Thr Thr Ala Thr
20 25 30

Ala Glu Leu Gly Trp Met Val His Pro Pro Ser Gly Trp Glu Glu
35 40 45

Val Ser Gly Tyr Asp Glu Asn Met Asn Thr Ile Arg Thr Tyr Glu
50 55 60

Val Cys Asn Val Phe Glu Ser Ser Glu Asn Asn Trp Leu Arg Thr
65 70 75

Lys Phe Ile Arg Arg Gly Ala His Arg Ile His Val Glu Met
80 85 90

Lys Phe Ser Val Arg Asp Cys Ser Ser Ile Pro Ser Val Pro Gly
95 100 105

Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Tyr Glu Ala Asp Phe
110 115 120

Asp Ser Ala Thr Lys Thr Phe Pro Asn Trp Met Glu Asn Pro Trp
125 130 135

Val Lys Val Asp Thr Ile Ala Ala Asp Glu Ser Phe Ser Gln Val
140 145 150

Asp Leu Gly Gly Arg Val Met Lys Ile Asn Thr Glu Val Arg Ser
155 160 165

Phe Gly Pro Val Ser Arg Ser Gly Phe Tyr Leu Ala Phe Glu Asp
170 175 180

Tyr Gly Gly Cys Met Ser Leu Ile Ala Val Arg Val Phe Tyr Arg
185 190 195

Lys Cys Pro Arg Ile Ile Gln Asn Gly Ala Ile Phe Gln Glu Thr
200 205 210

Leu Ser Gly Ala Glu Ser Thr Ser Leu Val Ala Ala Arg Gly Ser
215 220 225

Cys Ile Ala Asn Ala Glu Glu Val Asp Val Pro Ile Lys Leu Tyr
230 235 240

Cys Asn Gly Asp Gly Glu Trp Leu Val Pro Ile Gly Arg Cys Met
245 250 255

Cys Lys Ala Gly Phe Glu Ala Val Glu Asn Gly Thr Val Cys Arg
260 265 270
Gly Cys Pro Ser Gly Thr Phe Lys Ala Asn Gln Gly Asp Glu Ala 275 280 285
Cys Thr His Cys Pro Ile Asn Ser Arg Thr Thr Ser Glu Gly Ala 290 295 300
Thr Asn Cys Val Cys Arg Asn Gly Tyr Tyr Arg Ala Asp Leu Asp 305 310 315
Pro Leu Asp Met Pro Cys Thr Thr Ile Pro Ser Ala Pro Gln Ala 320 325 330
Val Ile Ser Val Asn Glu Thr Ser Leu Met Leu Glu Trp Thr 335 340 345
Pro Pro Arg Asp Ser Gly Gly Arg Glu Asp Leu Val Tyr Asn Ile 350 355 360
Ile Cys Lys Ser Cys Gly Ser Gly Arg Gly Ala Cys Thr Arg Cys 365 370 375
Gly Asp Asn Val Gln Tyr Ala Pro Arg Gln Leu Gly Leu Thr Glu 380 385 390
Pro Arg Ile Tyr Ile Ser Asp Leu Leu Ala His Thr Gln Tyr Thr 395 400 405
Phe Glu Ile Gln Ala Val Asn Gly Val Thr Asp Gln Ser Pro Phe 410 415 420
Ser Pro Gln Phe Ala Ser Val Asn Ile Thr Thr Asn Gln Ala Ala 425 430 435
Pro Ser Ala Val Ser Ile Met His Gln Val Ser Arg Thr Val Asp 440 445 450
Ser Ile Thr Leu Ser Trp Ser Gln Pro Asp Gln Pro Asn Gly Val 455 460 465
Ile Leu Asp Tyr Glu Leu Gln Tyr Tyr Glu Lys Glu Leu Ser Glu 470 475 480
Tyr Asn Ala Thr Ala Ile Lys Ser Pro Thr Asn Thr Val Thr Val 485 490 495
Gln Gly Leu Lys Ala Gly Ala Ile Tyr Val Phe Gln Val Arg Ala 500 505 510
Arg Thr Val Ala Gly Tyr Gly Arg Tyr Ser Gly Lys Met Tyr Phe 515 520 525
Gln Thr Met Thr Glu Ala Glu Tyr Gln Thr Ser Ile Gln Glu Lys 530 535 540
Leu Pro Leu Ile Ile Gly Ser Ser Ala Ala Gly Leu Val Phe Leu 545 550 555
Ile Ala Val Val Ile Ala Ile Val Cys Asn Arg Arg Arg Gly 560 565 570
Phe Glu Arg Ala Asp Ser Glu Tyr Thr Asp Lys Leu Gln His Tyr
Arg Asn Pro Asn Ser Leu Lys Ala Met Ala Pro Leu Ser Ser Gly 890 895 900
Ile Asn Leu Pro Leu Leu Asp Arg Thr Ile Pro Asp Tyr Thr Ser 905 910 915
Phe Asn Thr Val Asp Glu Trp Leu Glu Ala Ile Lys Met Gly Gln 920 925 930
Tyr Lys Glu Ser Phe Ala Asn Ala Gly Phe Thr Ser Phe Asp Val 935 940 945
Val Ser Gln Met Met Met Glu Ile Leu Arg Val Gly Val Thr 950 955 960
Leu Ala Gly His Gln Lys Lys Ile Leu Asn Ser Ile Gln Val Met 965 970 975
Arg Ala Gln Met Asn Gln Ile Gln Ser Val Glu Val 980 985

<210> 23
<211> 282
<212> PRT
<213> Homo sapiens

<400> 23
Met Ala Ser Leu Gly Gln Ile Leu Phe Trp Ser Ile Ile Ser Ile
 5 10 15
Ile Ile Ile Leu Ala Gly Ala Ile Ala Leu Ile Ile Gly Phe Gly
 20 25 30
Ile Ser Gly Arg His Ser Ile Thr Val Thr Thr Val Ala Ser Ala
 35 40 45
Gly Asn Ile Gly Glu Asp Gly Ile Leu Ser Cys Thr Phe Glu Pro
 50 55 60
Asp Ile Lys Leu Ser Asp Ile Val Ile Gln Trp Leu Lys Glu Gly
 65 70 75
Val Leu Gly Leu Val His Glu Phe Lys Glu Gly Lys Asp Glu Leu
 80 85 90
Ser Glu Gln Asp Glu Met Phe Arg Gly Arg Thr Ala Val Phe Ala
 95 100 105
Asp Gln Val Ile Val Gly Asn Ala Ser Leu Arg Leu Lys Asn Val
 110 115 120
Gln Leu Thr Asp Ala Gly Thr Tyr Lys Cys Tyr Ile Ile Thr Ser
 125 130 135
Lys Gly Lys Lys Asn Ala Asn Leu Glu Tyr Lys Thr Gly Ala Phe
 140 145 150
Ser Met Pro Glu Val Asn Val Asp Tyr Asn Ala Ser Ser Glu Thr
 155 160 165
Leu Arg Cys Glu Ala Pro Arg Trp Phe Pro Gln Pro Thr Val Val
 170 175 180
Trp Ala Ser Gln Val Asp Gln Gly Ala Asn Phe Ser Glu Val Ser
 185 190 195
Asn Thr Ser Phe Glu Leu Asn Ser Glu Asn Val Thr Met Lys Val
 200 205 210
Val Ser Val Leu Tyr Asn Val Thr Ile Asn Asn Thr Tyr Ser Cys
 215 220 225
Met Ile Glu Asn Asp Ile Ala Lys Ala Thr Gly Asp Ile Lys Val
 230 235 240
Thr Glu Ser Glu Ile Lys Arg Arg Ser His Leu Gln Leu Leu Asn
 245 250 255
Ser Lys Ala Ser Leu Cys Val Ser Ser Phe Phe Ala Ile Ser Trp
 260 265 270
Ala Leu Leu Pro Leu Ser Pro Tyr Leu Met Leu Lys
 275 280
<210> 24
<211> 123
<212> PRT
<213> Homo sapiens

<400> 24

<table>
<thead>
<tr>
<th>Met</th>
<th>Lys</th>
<th>Ala</th>
<th>Val</th>
<th>Leu</th>
<th>Leu</th>
<th>Ala</th>
<th>Leu</th>
<th>Leu</th>
<th>Met</th>
<th>Ala</th>
<th>Gly</th>
<th>Leu</th>
<th>Ala</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Gln Pro Gly Thr Ala Leu Leu Cys Tyr Ser Cys Lys Ala Gln Val
20 25 30

Ser Asn Glu Asp Cys Leu Gln Val Glu Asn Cys Thr Gln Leu Gly
35 40 45

Glu Gln Cys Trp Thr Ala Arg Ile Arg Ala Val Gly Leu Leu Thr
50 55 60

Val Ile Ser Lys Gly Cys Ser Leu Asn Cys Val Asp Asp Ser Gln
65 70 75

Asp Tyr Tyr Val Gly Lys Asn Ile Thr Cys Cys Asp Thr Asp
80 85 90

Leu Cys Asn Ala Ser Gly Ala His Ala Leu Gln Pro Ala Ala Ala
95 100 105

Ile Leu Ala Leu Leu Pro Ala Leu Gly Leu Leu Leu Trp Gly Pro
110 115 120

Gly Gln Leu
Met Pro Gly Ala Ala Ala Ala Ala Ala Ala Ala Ala Met
1 5 10 15

Leu Pro Ala Gln Glu Ala Ala Lys Leu Tyr His Thr Asn Tyr Val
20 25 30

Arg Asn Ser Arg Ala Ile Gly Val Leu Trp Ala Ile Phe Thr Ile
35 40 45

Cys Phe Ala Ile Val Asn Val Val Cys Phe Ile Gln Pro Tyr Trp
50 55 60

Ile Gly Asp Gly Val Asp Thr Pro Gln Ala Gly Tyr Phe Gly Leu
65 70 75

Phe His Tyr Cys Ile Gly Asn Gly Phe Ser Arg Glu Leu Thr Cys
80 85 90

Arg Gly Ser Phe Thr Asp Phe Ser Thr Leu Pro Ser Gly Ala Phe
95 100 105

Lys Ala Ala Ser Phe Phe Ile Gly Leu Ser Met Met Leu Ile Ile
110 115 120

 Ala Cys Ile Ile Cys Phe Thr Leu Phe Phe Phe Cys Asn Thr Ala
125 130 135

Thr Val Tyr Lys Ile Cys Ala Trp Met Gln Leu Thr Ser Ala Ala
140 145 150

Cys Leu Val Leu Gly Cys Met Ile Phe Pro Asp Gly Trp Asp Ser
155 160 165

Asp Glu Val Lys Arg Met Cys Gly Glu Lys Thr Asp Lys Tyr Thr
170 175 180

Leu Gly Ala Cys Ser Val Arg Trp Ala Tyr Ile Leu Ala Ile Ile
185 190 195

Gly Ile Leu Asp Ala Leu Ile Leu Ser Phe Leu Ala Phe Val Leu
200 205 210

Gly Asn Arg Gln Asp Ser Leu Met Ala Glu Glu Leu Lys Ala Glu
215 220 225

Asn Lys Val Leu Leu Ser Gln Tyr Ser Leu Glu
230 235

<210> 26
<211> 184
<212> PRT
<213> Homo sapiens

<400> 26
EP 2 489 364 B1

Met Arg Arg Gly Pro Arg Ser Leu Arg Gly Arg Asp Ala Pro Ala
1 5 10 15

Pro Thr Pro Cys Val Pro Ala Glu Cys Phe Asp Leu Leu Val Arg
20 25 30

His Cys Val Ala Cys Gly Leu Leu Arg Thr Pro Arg Pro Lys Pro
35 40 45

Ala Gly Ala Ser Ser Pro Ala Pro Arg Thr Ala Leu Gln Pro Gln
50 55 60

Glu Ser Val Gly Ala Gly Ala Gly Glu Ala Ala Leu Pro Leu Pro
65 70 75

Gly Leu Leu Phe Gly Ala Pro Ala Leu Leu Gly Leu Ala Leu Val
80 85 90

Leu Ala Leu Val Leu Val Gly Leu Val Ser Trp Arg Arg Arg Gln
95 100 105

Arg Arg Leu Arg Gly Ala Ser Ser Ala Glu Ala Pro Asp Gly Asp
110 115 120

Lys Asp Ala Pro Glu Pro Leu Asp Lys Val Ile Ile Leu Ser Pro
125 130 135

Gly Ile Ser Asp Ala Thr Ala Pro Ala Trp Pro Pro Pro Gly Glu
140 145 150

Asp Pro Gly Thr Thr Pro Pro Gly His Ser Val Pro Val Pro Ala
155 160 165

Thr Glu Leu Gly Ser Thr Glu Leu Val Thr Thr Lys Thr Ala Gly
170 175 180

Pro Glu Gln Gln

<210> 27
<211> 847
<212> PRT
<213> Homo sapiens

<400> 27
<table>
<thead>
<tr>
<th></th>
<th>Met</th>
<th>His</th>
<th>Leu</th>
<th>Leu</th>
<th>Gly</th>
<th>Pro</th>
<th>Trp</th>
<th>Leu</th>
<th>Leu</th>
<th>Leu</th>
<th>Leu</th>
<th>Val</th>
<th>Leu</th>
<th>Glu</th>
<th>Tyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Leu</td>
<td>Ala</td>
<td>Phe</td>
<td>Ser</td>
<td>Asp</td>
<td>Ser</td>
<td>Ser</td>
<td>Lys</td>
<td>Trp</td>
<td>Val</td>
<td>Phe</td>
<td>Glu</td>
<td>His</td>
<td>Pro</td>
<td>Glu</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Thr</td>
<td>Leu</td>
<td>Tyr</td>
<td>Ala</td>
<td>Trp</td>
<td>Glu</td>
<td>Gly</td>
<td>Ala</td>
<td>Cys</td>
<td>Val</td>
<td>Trp</td>
<td>Ile</td>
<td>Pro</td>
<td>Cys</td>
<td>Thr</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Tyr</td>
<td>Arg</td>
<td>Ala</td>
<td>Leu</td>
<td>Asp</td>
<td>Gly</td>
<td>Asp</td>
<td>Leu</td>
<td>Glu</td>
<td>Ser</td>
<td>Phe</td>
<td>Ile</td>
<td>Leu</td>
<td>Phe</td>
<td>His</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Asn</td>
<td>Pro</td>
<td>Glu</td>
<td>Tyr</td>
<td>Asn</td>
<td>Lys</td>
<td>Asn</td>
<td>Thr</td>
<td>Ser</td>
<td>Lys</td>
<td>Phe</td>
<td>Asp</td>
<td>Gly</td>
<td>Thr</td>
<td>Arg</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Leu</td>
<td>Tyr</td>
<td>Glu</td>
<td>Ser</td>
<td>Thr</td>
<td>Lys</td>
<td>Asp</td>
<td>Gly</td>
<td>Lys</td>
<td>Val</td>
<td>Pro</td>
<td>Ser</td>
<td>Glu</td>
<td>Gln</td>
<td>Lys</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Arg</td>
<td>Val</td>
<td>Gln</td>
<td>Phe</td>
<td>Leu</td>
<td>Gly</td>
<td>Asp</td>
<td>Lys</td>
<td>Asn</td>
<td>Lys</td>
<td>Asn</td>
<td>Cys</td>
<td>Thr</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
</tr>
</tbody>
</table>
Ile His Pro Val His Leu Asn Asp Ser Gly Gln Leu Gly Leu Arg
 110 115 120
Met Glu Ser Lys Thr Glu Lys Trp Met Glu Arg Ile His Leu Asn
 125 130 135
Val Ser Glu Arg Pro Phe Pro Pro His Ile Gln Leu Pro Pro Glu
 140 145 150
Ile Gln Glu Ser Gln Glu Val Thr Leu Thr Cys Leu Leu Asn Phe
 155 160 165
Ser Cys Tyr Gly Tyr Pro Ile Gln Leu Gln Trp Leu Leu Glu Gly
 170 175 180
Val Pro Met Arg Glu Ala Ala Val Thr Ser Thr Ser Leu Thr Ile
 185 190 195
Lys Ser Val Phe Thr Arg Ser Glu Leu Lys Phe Ser Pro Gln Trp
 200 205 210
Ser His His Gly Lys Ile Val Thr Cys Gln Leu Gln Asp Ala Asp
 215 220 225
Gly Lys Phe Leu Ser Asn Asp Thr Val Gln Leu Asn Val Lys His
 230 235 240
Thr Pro Lys Leu Glu Ile Lys Val Thr Pro Ser Asp Ala Ile Val
 245 250 255
Arg Glu Gly Asp Ser Val Thr Met Thr Cys Glu Val Ser Ser Ser
 260 265 270
Asn Pro Glu Tyr Thr Thr Val Ser Trp Leu Lys Asp Gly Thr Ser
 275 280 285
Leu Lys Lys Gln Asn Thr Phe Thr Leu Asn Leu Arg Glu Val Thr
 290 295 300
Lys Asp Gln Ser Gly Lys Tyr Cys Cys Gln Val Ser Asn Asp Val
 305 310 315
Gly Pro Gly Arg Ser Glu Glu Val Phe Leu Gln Val Gln Tyr Ala
 320 325 330
Pro Glu Pro Ser Thr Val Gln Ile Leu His Ser Pro Ala Val Glu
 335 340 345
Gly Ser Gln Val Glu Phe Leu Cys Met Ser Leu Ala Asn Pro Leu
 350 355 360
Pro Thr Asn Tyr Thr Trp Tyr His Asn Gly Lys Glu Met Gln Gly
 365 370 375
Arg Thr Glu Glu Lys Val His Ile Pro Lys Ile Leu Pro Trp His
 380 385 390
Ala Gly Thr Tyr Ser Cys Val Ala Glu Asn Ile Leu Gly Thr Gly
 395 400 405
Gln Arg Gly Pro Gly Ala Glu Leu Asp Val Gln Tyr Pro Pro Lys

239
EP 2 489 364 B1

410 415 420
Lys Val Thr Thr Val Ile Gln Asn Pro Met Pro Ile Arg Glu Gly 430 435
 425
Asp Thr Val Thr Val Leu Ser Cys Asn Tyr Asn Ser Ser Asn Pro Ser 440 450
 445
Val Thr Arg Tyr Glu Trp Lys Pro His Gly Ala Trp Glu Glu Pro 455 460 465
 455
Ser Leu Gly Val Leu Lys Ile Gln Asn Val Gly Trp Asp Asn Thr 470 475 480
 470
Thr Ile Ala Cys Ala Arg Cys Asn Ser Trp Cys Ser Trp Ala Ser 485 490 495
 485
Pro Val Ala Leu Asn Val Glu Tyr Ala Pro Arg Asp Val Arg Val 500 505 510
 500
Arg Lys Ile Lys Pro Leu Ser Glu Ile His Ser Gly Asn Ser Val 515 520 525
 515
Ser Leu Gln Cys Asp Phe Ser Ser Ser His Pro Lys Glu Val Gln 530 535 540
 530
Phe Phe Trp Glu Lys Asn Gly Arg Leu Leu Gly Lys Glu Ser Gln 545 550 555
 545
Leu Asn Phe Asp Ser Ile Ser Pro Glu Asp Ala Gly Ser Tyr Ser 560 565 570
 560
Cys Trp Val Asn Asn Ser Ile Gly Gln Thr Ala Ser Lys Ala Trp 575 580 585
 575
Thr Leu Glu Val Leu Tyr Ala Pro Arg Arg Leu Arg Val Ser Met 590 595 600
 590
Ser Pro Gly Asp Glu Val Met Glu Gly Lys Ser Ala Thr Leu Thr 605 610 615
 605
Cys Glu Ser Asp Ala Asn Pro Pro Val Ser His Tyr Thr Trp Phe 620 625 630
 620
Asp Trp Asn Asn Gln Ser Leu Pro His Ser Gln Lys Leu Arg 635 640 645
 635
Leu Glu Pro Val Lys Val Gln His Ser Gly Ala Tyr Trp Cys Gln 650 655 660
 650
Gly Thr Asn Ser Val Gly Lys Gly Arg Ser Pro Leu Ser Thr Leu 665 670 675
 665
Thr Val Tyr Tyr Ser Pro Glu Thr Ile Gly Arg Arg Val Ala Val 680 685 690
 680
Gly Leu Gly Ser Cys Leu Ala Ile Leu Ile Leu Ala Ile Cys Gly 695 700 705
 695
Leu Lys Leu Gln Arg Arg Trp Lys Arg Thr Gln Ser Gln Gln Gly 710 715 720
 710
Leu Gln Glu Asn Ser Ser Gly Gln Ser Phe Phe Val Arg Asn Lys
725 730 735
Lys Val Arg Arg Ala Pro Leu Ser Glu Gly Pro His Ser Leu Gly
740 745 750
Cys Tyr Asn Pro Met Met Glu Asp Gly Ile Ser Tyr Thr Thr Leu
755 760 765
Arg Phe Pro Glu Met Asn Ile Pro Arg Thr Gly Asp Ala Glu Ser
770 775 780
Ser Glu Met Gln Arg Pro Pro Arg Thr Cys Asp Asp Thr Val Thr
785 790 795
Tyr Ser Ala Leu His Lys Arg Gln Val Gly Asp Tyr Glu Asn Val
800 805 810
Ile Pro Asp Phe Pro Glu Asp Glu Gly Ile His Tyr Ser Glu Leu
815 820 825
Ile Gln Phe Gly Val Gly Glu Arg Pro Gln Ala Gln Glu Asn Val
830 835 840
Asp Tyr Val Ile Leu Lys His
845

<210> 28
<211> 226
<212> PRT
<213> Homo sapiens

<400> 28
EP 2 489 364 B1

Met Pro Gly Gly Pro Gly Val Leu Gln Ala Leu Pro Ala Thr Ile
1 5 10 15

Phe Leu Leu Phe Leu Leu Ser Ala Val Tyr Leu Gly Pro Gly Cys
5 20 25 . 30

Gln Ala Leu Trp Met His Lys Val Pro Ala Ser Leu Met Val Ser
10 35 40 45

Leu Gly Glu Asp Ala His Phe Gln Cys Pro His Asn Ser Ser Asn
15 50 55 60

Asn Ala Asn Val Thr Trp Trp Arg Val Leu His Gly Asn Tyr Thr
20 65 70 75

Trp Pro Pro Glu Phe Leu Gly Pro Gly Glu Asp Pro Asn Gly Thr
25 80 85 90

Leu Ile Ile Gln Asn Val Asn Lys Ser His Gly Gly Ile Tyr Val
30 95 100 105

Cys Arg Val Gln Glu Gly Asn Glu Ser Tyr Gln Gln Ser Cys Gly
35 110 115 120

Thr Tyr Leu Arg Val Arg Gln Pro Pro Pro Arg Pro Phe Leu Asp
40 125 130 135

Met Gly Glu Gly Thr Lys Asn Arg Ile Ile Thr Ala Glu Gly Ile
45 140 145 150

Ile Leu Leu Phe Cys Ala Val Val Pro Gly Thr Leu Leu Leu Phe
50 155 160 165

Arg Lys Arg Trp Gln Asn Glu Lys Leu Gly Leu Asp Ala Gly Asp
55 170 175 180

Glu Tyr Glu Asp Glu Asn Leu Tyr Glu Gly Leu Asn Leu Asp Asp
60 185 190 195

Cys Ser Met Tyr Glu Asp Ile Ser Arg Gly Leu Gln Gly Thr Tyr
65 200 205 210

Gln Asp Val Gly Ser Leu Asn Ile Gly Asp Val Gln Leu Glu Lys
70 215 220 225

Pro

<210> 29
<211> 372
<212> PRT
<213> Homo sapiens

<400> 29
Met Asn Tyr Pro Leu Thr Leu Glu Met Asp Leu Glu Asn Leu Glu 1 5 10 15
Asp Leu Phe Trp Glu Leu Asp Arg Leu Asp Asn Tyr Asn Asp Thr 20 25 30
Ser Leu Val Glu Asn His Leu Cys Pro Ala Thr Glu Gly Pro Leu 35 40 45
Met Ala Ser Phe Lys Ala Val Phe Val Pro Val Ala Tyr Ser Leu 50 55 60
Ile Phe Leu Leu Gly Val Ile Gly Asn Val Leu Val Leu Val Ile 65 70 75
Leu Glu Arg His Arg Gln Thr Arg Ser Ser Thr Glu Thr Phe Leu 80 85 90
Phe His Leu Ala Val Ala Asp Leu Leu Val Phe Ile Leu Pro 95 100 105
Phe Ala Val Ala Glu Gly Ser Val Gly Trp Val Leu Gly Thr Phe 110 115 120
Leu Cys Lys Thr Val Ile Ala Leu His Lys Val Asn Phe Tyr Cys 125 130 135
Ser Ser Leu Leu Ala Cys Ile Ala Val Asp Arg Tyr Leu Ala 140 145 150
Ile Val His Ala Val His Ala Tyr Arg His Arg Arg Leu Leu Ser 155 160 165
Ile His Ile Thr Cys Gly Thr Ile Trp Leu Val Gly Phe Leu Leu
<table>
<thead>
<tr>
<th>170</th>
<th>175</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala Leu Pro Glu Ile Leu Phe Ala Lys Val Ser Gln Gly His</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>190</td>
<td>195</td>
</tr>
<tr>
<td>Asn Asn Ser Leu Pro Arg Cys Thr Phe Ser Gln Glu Asn Gln Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>205</td>
<td>210</td>
</tr>
<tr>
<td>Glu Thr His Ala Trp Phe Thr Ser Arg Phe Leu Tyr His Val Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>220</td>
<td>225</td>
</tr>
<tr>
<td>Gly Phe Leu Leu Pro Met Leu Val Met Gly Trp Cys Tyr Val Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>235</td>
<td>240</td>
</tr>
<tr>
<td>Val Val His Arg Leu Arg Gln Ala Gln Arg Arg Pro Gln Arg Gln</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>Lys Ala Val Arg Val Ala Ile Leu Val Thr Ser Ile Phe Phe Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td>Cys Trp Ser Pro Tyr His Ile Val Ile Phe Leu Asp Thr Leu Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td>285</td>
</tr>
<tr>
<td>Arg Leu Lys Ala Val Asp Asn Thr Cys Lys Leu Asn Gly Ser Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td>300</td>
</tr>
<tr>
<td>Pro Val Ala Ile Thr Met Cys Glu Phe Leu Gly Leu Ala His Cys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td>315</td>
</tr>
<tr>
<td>Cys Leu Asn Pro Met Leu Tyr Thr Phe Ala Gly Val Lys Phe Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>325</td>
<td>330</td>
</tr>
<tr>
<td>Ser Asp Leu Ser Arg Leu Leu Thr Lys Leu Gly Cys Thr Gly Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>340</td>
<td>345</td>
</tr>
<tr>
<td>Ala Ser Leu Cys Gln Leu Phe Pro Ser Trp Arg Arg Ser Ser Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>355</td>
<td>360</td>
</tr>
<tr>
<td>Ser Glu Ser Glu Asn Ala Thr Ser Leu Thr Thr Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>370</td>
<td></td>
</tr>
</tbody>
</table>
Met Gly Ser Gly Trp Val Pro Trp Val Val Ala Leu Leu Val Val
Leu Thr Arg Leu Asp Ser Ser Met Thr Glu Gly Thr Asp Ser Pro
Glu Asp Phe Val Ile Gln Ala Lys Ala Asp Cys Tyr Phe Thr Asn
Gly Thr Glu Lys Val Gln Phe Val Val Arg Phe Ile Phe Asn Leu
Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Met Phe Val Ala
Leu Thr Lys Leu Gly Gln Pro Asp Ala Glu Gln Trp Asn Ser Arg
Leu Asp Leu Leu Glu Arg Ser Arg Gln Ala Val Asp Gly Val Cys
Arg His Asn Tyr Arg Leu Gly Ala Pro Phe Thr Val Gly Arg Lys
Val Gln Pro Glu Val Thr Val Tyr Pro Glu Arg Thr Pro Leu Leu
His Gln His Asn Leu Leu His Cys Ser Val Thr Gly Phe Tyr Pro
Gly Asp Ile Lys Ile Lys Trp Phe Leu Asn Gly Gln Glu Glu Arg
Ala Gly Val Met Ser Thr Gly Pro Ile Arg Asn Gly Asp Trp Thr
Phe Gln Thr Val Val Met Leu Glu Met Thr Pro Glu Leu Gly His
Val Tyr Thr Cys Leu Val Asp His Ser Ser Leu Leu Ser Pro Val
Ser Val Glu Trp Arg Ala Gln Ser Glu Tyr Ser Trp Arg Lys Met
Leu Ser Gly Ile Ala Ala Phe Leu Leu Gly Leu Ile Phe Leu Leu
Val Gly Ile Val Ile Gln Leu Arg Ala Gln Lys Gly Tyr Val Arg
Thr Gln Met Ser Gly Asn Glu Val Ser Arg Ala Val Leu Leu Pro
Gln Ser Cys
Homo sapiens

Met Gly Glu Ala Gly Cys Lys Gly Leu Cys Leu Ser Leu Phe Asp
1 5 10 15
Tyr Lys Thr Glu Lys Tyr Val Ile Ala Lys Asn Lys Lys Val Gly
20 25 30
Leu Leu Tyr Arg Leu Leu Gln Ala Ser Ile Leu Ala Tyr Leu Val
35 40 45
Val Trp Val Phe Leu Ile Lys Lys Gly Tyr Gln Asp Val Asp Thr
50 55 60
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser Leu Gln Ser Ala Val Ile Thr Lys Val Lys Gly Val Ala Phe</td>
<td>1-75</td>
</tr>
<tr>
<td>Thr Asn Thr Ser Asp Leu Gly Gln Arg Ile Trp Asp Val Ala Asp</td>
<td>76-130</td>
</tr>
<tr>
<td>Tyr Val Ile Pro Ala Gln Gly Glu Asn Val Phe Phe Val Val Thr</td>
<td>131-195</td>
</tr>
<tr>
<td>Asn Leu Ile Val Thr Pro Asn Gln Arg Gln Asn Val Cys Ala Glu</td>
<td>196-260</td>
</tr>
<tr>
<td>Asn Glu Gly Ile Pro Asp Gly Ala Cys Ser Lys Asp Ser Asp Cys</td>
<td>261-325</td>
</tr>
<tr>
<td>His Ala Gly Glu Ala Val Thr Ala Gly Asn Gly Val Lys Thr Gly</td>
<td>326-390</td>
</tr>
<tr>
<td>Arg Cys Leu Arg Arg Glu Asn Leu Ala Arg Gly Thr Cys Glu Ile</td>
<td>391-455</td>
</tr>
<tr>
<td>Phe Ala Trp Cys Pro Leu Glu Thr Ser Ser Arg Pro Glu Glu Pro</td>
<td>456-520</td>
</tr>
<tr>
<td>Phe Leu Lys Glu Ala Glu Asp Phe Thr Ile Phe Ile Lys Asn His</td>
<td>521-585</td>
</tr>
<tr>
<td>Ile Arg Phe Pro Lys Phe Asn Phe Ser Lys Ser Asn Val Met Asp</td>
<td>586-650</td>
</tr>
<tr>
<td>Val Lys Asp Arg Ser Phe Leu Lys Ser Cys His Phe Gly Pro Lys</td>
<td>651-715</td>
</tr>
<tr>
<td>Asn His Tyr Cys Pro Ile Phe Arg Leu Gly Ser Val Ile Arg Trp</td>
<td>716-780</td>
</tr>
<tr>
<td>Ala Gly Ser Asp Phe Gln Asp Ile Ala Leu Glu Gly Gly Val Ile</td>
<td>781-845</td>
</tr>
<tr>
<td>Gly Ile Asn Ile Glu Trp Asn Cys Asp Leu Asp Lys Ala Ala Ser</td>
<td>846-910</td>
</tr>
<tr>
<td>Glu Cys His Pro His Tyr Ser Phe Ser Arg Leu Asp Asn Lys Leu</td>
<td>911-975</td>
</tr>
<tr>
<td>Ser Lys Ser Val Ser Ser Gly Tyr Asn Phe Arg Phe Ala Arg Tyr</td>
<td>976-1040</td>
</tr>
<tr>
<td>Tyr Arg Asp Ala Ala Gly Val Glu Phe Arg Thr Leu Met Lys Ala</td>
<td>1041-1105</td>
</tr>
<tr>
<td>Tyr Gly Ile Arg Phe Asp Val Met Val Asn Gly Lys Gly Ala Phe</td>
<td>1106-1170</td>
</tr>
<tr>
<td>Phe Cys Asp Leu Val Leu Ile Tyr Leu Ile Lys Lys Arg Glu Phe</td>
<td>1171-1235</td>
</tr>
<tr>
<td>Tyr Arg Asp Lys Tyr Glu Glu Val Arg Gly Leu Glu Asp Ser</td>
<td>1236-1300</td>
</tr>
<tr>
<td>Ser Gln Glu Ala Glu Asp Glu Ala Ser Gly Leu Gly Leu Ser Glu</td>
<td>1301-1365</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>365</td>
<td>370</td>
</tr>
<tr>
<td>Gln</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Glu</td>
</tr>
<tr>
<td>380</td>
<td>385</td>
</tr>
<tr>
<td>Glu</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>Ser</td>
</tr>
<tr>
<td>395</td>
<td>400</td>
</tr>
<tr>
<td>Lys</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
</tr>
<tr>
<td>410</td>
<td>415</td>
</tr>
</tbody>
</table>

Ser Thr

<210> 32
<211> 359
<212> PRT
<213> Homo sapiens

<400> 32
EP 2 489 364 B1

Met Ala Glu Ala Ile Thr Tyr Ala Asp Leu Arg Phe Val Lys Ala
1 5 10 15

Pro Leu Lys Lys Ser Ile Ser Ser Arg Leu Gly Gln Asp Pro Gly
5 20 25 30

Ala Asp Asp Gly Glu Ile Thr Tyr Glu Asn Val Gln Val Pro
10 35 40 45

Ala Val Leu Gly Val Pro Ser Ser Leu Ala Ser Ser Val Leu Gly
15 50 55 60

Asp Lys Ala Ala Val Lys Ser Glu Gln Pro Thr Ala Ser Trp Arg
20 65 70 75

Asp Val Thr Ser Pro Ala Val Gly Arg Ile Leu Pro Cys Arg Thr
25 80 85 90

Thr Cys Leu Arg Tyr Leu Leu Leu Gly Leu Leu Thr Cys Leu
30 90 100 105

Leu Leu Gly Val Thr Ala Ile Cys Leu Gly Val Arg Tyr Leu Gln
35 110 115 120

Val Ser Gln Gln Leu Gln Gln Thr Asn Arg Val Leu Glu Val Thr
40 125 130 135

Asn Ser Ser Leu Arg Gln Gln Leu Arg Leu Lys Ile Thr Gln Leu
45 140 145 150

Gly Gln Ser Ala Glu Asp Leu Gln Gly Ser Arg Arg Glu Leu Ala
50 155 160 165

Gln Ser Gln Glu Ala Leu Gln Val Glu Gln Arg Ala His Gln Ala
55 170 175 180

Ala Glu Gly Gln Leu Gln Ala Cys Gln Ala Asp Arg Gln Lys Thr
60 185 190 195

Lys Glu Thr Leu Gin Ser Glu Glu Gln Gin Arg Arg Ala Leu Glu
65 200 205 210

249
Gln Lys Leu Ser Asn Met Glu Asn Arg Leu Lys Pro Phe Phe Thr
215 220 225

Cys Gly Ser Ala Asp Thr Cys Cys Pro Ser Gly Trp Ile Met His
230 235 240

Gln Lys Ser Cys Phe Tyr Ile Ser Leu Thr Ser Lys Asn Trp Gln
245 250 255

Glu Ser Gln Lys Gln Cys Glu Thr Leu Ser Ser Lys Leu Ala Thr
260 265 270

Phe Ser Glu Ile Tyr Pro Gln Ser His Ser Tyr Tyr Phe Leu Asn
275 280 285

Ser Leu Leu Pro Asn Gly Gly Ser Gly Asn Ser Tyr Trp Thr Gly
290 295 300

Leu Ser Ser Asn Lys Asp Trp Lys Leu Thr Asp Asp Thr Gln Arg
305 310 315

Thr Arg Thr Tyr Ala Gln Ser Ser Lys Cys Asn Lys Val His Lys
320 325 330

Thr Trp Ser Trp Trp Thr Leu Glu Ser Glu Ser Cys Arg Ser Ser
335 340 345

Leu Pro Tyr Ile Cys Glu Met Thr Ala Phe Arg Phe Pro Asp
350 355

<210> 33
<211> 661
<212> PRT
<213> Homo sapiens

<400> 33

250
Met Ala Phe Asp Val Ser Cys Phe Phe Trp Val Val Leu Phe Ser
 1 5 10 15

Ala Gly Cys Lys Val Ile Thr Ser Trp Asp Gln Met Cys Ile Glu
 20 25 30

Lys Glu Ala Asn Lys Thr Tyr Asn Cys Glu Asn Leu Gly Leu Ser
 35 40 45

Glu Ile Pro Asp Thr Leu Pro Asn Thr Thr Glu Phe Leu Glu Phe
 50 55 60

Ser Phe Asn Phe Leu Pro Thr Ile His Asn Arg Thr Phe Ser Arg
 65 70 75

Leu Met Asn Leu Thr Phe Leu Asp Leu Thr Arg Cys Gln Ile Asn
 80 85 90

Trp Ile His Glu Asp Thr Phe Gln Ser His His Gln Leu Ser Thr
 95 100 105

Leu Val Leu Thr Gly Asn Pro Leu Ile Phe Met Ala Glu Thr Ser
 110 115 120

251
Leu Asn Gly Pro Lys Ser Leu Lys His Leu Phe Leu Ile Gln Thr 125 130 135
Gly Ile Ser Asn Leu Glu Phe Ile Pro Val His Asn Leu Glu Asn 140 145 150
Leu Glu Ser Leu Tyr Leu Gly Ser Asn His Ile Ser Ser Ile Lys 155 160 165
Phe Pro Lys Asp Phe Pro Ala Arg Asn Leu Lys Val Leu Asp Phe 170 175 180
Gln Asn Asn Ala Ile His Tyr Ile Ser Arg Glu Asp Met Arg Ser 185 190 195
Leu Glu Gln Ala Ile Asn Leu Ser Leu Asn Phe Asn Gly Asn Asn 200 205 210
Val Lys Gly Ile Glu Leu Gly Ala Phe Asp Ser Thr Val Phe Gln 215 220 225
Ser Leu Asn Phe Gly Gly Thr Pro Asn Leu Ser Val Ile Phe Asn 230 235 240
Gly Leu Glu Asn Ser Thr Thr Gln Ser Leu Trp Leu Gly Thr Phe 245 250 255
Glu Asp Ile Asp Glu Asp Ile Ser Ser Ala Met Leu Lys Gly 260 265 270
Leu Cys Glu Met Ser Val Glu Ser Leu Asn Leu Gln Glu His Arg 275 280 285
Phe Ser Asp Ile Ser Ser Thr Thr Phe Gln Cys Phe Thr Gln Leu 290 295 300
Gln Glu Leu Asp Leu Thr Ala Thr His Leu Lys Gly Leu Pro Ser 305 310 315
Gly Met Lys Gly Leu Asn Leu Leu Lys Lys Leu Val Leu Ser Val 320 325 330
Asn His Phe Asp Glu Leu Cys Gln Ile Ser Ala Ala Asn Phe Pro 335 340 345
Ser Leu Thr His Leu Tyr Ile Arg Gly Asn Val Lys Lys Leu His 350 355 360
Leu Gly Val Gly Cys Leu Glu Lys Leu Gly Asn Leu Gln Thr Leu 365 370 375
Asp Leu Ser His Asn Asp Ile Glu Ala Ser Asp Cys Cys Ser Leu 380 385 390
Gln Leu Lys Asn Leu Ser His Leu Gln Thr Leu Asn Leu Ser His 395 400 405
Asn Glu Pro Leu Gly Leu Gln Ser Gln Ala Phe Lys Glu Cys Pro 410 415 420
Gln Leu Glu Leu Leu Asp Leu Ala Phe Thr Arg Leu His Ile Asn
EP 2 489 364 B1

425 430 435
Ala Pro Gln Ser Pro Phe Gln Asn Leu His Phe Leu Gln Val Leu
440 445 450

Asn Leu Thr Tyr Cys Phe Leu Asp Thr Ser Asn Gln His Leu Leu
455 460 465

Ala Gly Leu Pro Val Leu Arg His Leu Asn Leu Lys Gly Asn His
470 475 480

Phe Gln Asp Gly Thr Ile Thr Lys Thr Asn Leu Leu Gln Thr Val
485 490 495

Gly Ser Leu Glu Val Leu Ile Leu Ser Ser Cys Gly Leu Leu Ser
500 505 510

Ile Asp Gln Gln Ala Phe His Ser Leu Gly Lys Met Ser His Val
515 520 525

Asp Leu Ser His Asn Ser Leu Thr Cys Asp Ser Ile Asp Ser Leu
530 535 540

Ser His Leu Lys Gly Ile Tyr Leu Asn Leu Ala Ala Asn Ser Ile
545 550 555

Asn Ile Ile Ser Pro Arg Leu Leu Pro Ile Leu Ser Gln Gln Ser
560 565 570

Thr Ile Asn Leu Ser His Asn Pro Leu Asp Cys Thr Cys Ser Asn
575 580 585

Ile His Phe Leu Thr Trp Tyr Lys Glu Asn Leu His Lys Leu Glu
590 595 600

Gly Ser Glu Glu Thr Thr Cys Ala Asn Pro Pro Ser Leu Arg Gly
605 610 615

Val Lys Leu Ser Asp Val Lys Leu Ser Cys Gly Ile Thr Ala Ile
620 625 630

Gly Ile Phe Phe Leu Ile Val Phe Leu Leu Leu Ala Ile Leu
635 640 645

Leu Phe Phe Ala Val Lys Tyr Leu Leu Arg Trp Lys Tyr Gln His
650 655 660

Ile

<210> 34
<211> 429
<212> PRT
<213> Sarcophaga bullata

<400> 34
EP 2 489 364 B1

Met Leu Pro Arg Leu Leu Leu Leu Ile Cys Ala Pro Leu Cys Glu
 1 5 10 15

Pro Ala Glu Leu Phe Leu Ile Ala Ser Pro Ser His Pro Thr Glu
 20 25 30
EP 2 489 364 B1

Gly Ser Pro Val Thr Leu Thr Cys Lys Met Pro Phe Leu Gln Ser
35 40

Ser Asp Ala Gln Phe Gln Phe Cys Phe Phe Arg Asp Thr Arg Ala
50 55 60

Leu Gly Pro Gly Trp Ser Ser Ser Pro Lys Leu Gln Ile Ala Ala
65 70

Met Trp Lys Glu Asp Thr Gly Ser Tyr Trp Cys Glu Ala Gln Thr
80 85 90

Met Ala Ser Lys Val Leu Arg Ser Arg Arg Ser Gln Ile Asn Val
95 100 105

His Arg Val Pro Val Ala Asp Val Ser Leu Glu Thr Gln Pro Pro
110 115 120

Gly Gly Gln Val Met Glu Gly Asp Arg Leu Val Leu Ile Cys Ser
125 130 135

Val Ala Met Gly Thr Gly Asp Ile Thr Phe Leu Trp Tyr Lys Gly
140 145 150

 Ala Val Gly Leu Asn Leu Gln Ser Lys Thr Gln Arg Ser Leu Thr
155 160 165

Ala Glu Tyr Glu Ile Pro Ser Val Arg Glu Ser Asp Ala Glu Gln
170 175 180

Tyr Tyr Cys Val Ala Glu Asn Gly Tyr Gly Pro Ser Pro Ser Gly
185 190 195

Leu Val Ser Ile Thr Val Arg Ile Pro Val Ser Arg Pro Ile Leu
200 205 210

Met Leu Arg Ala Pro Arg Ala Gln Ala Ala Val Glu Asp Val Leu
215 220 225

Glu Leu His Cys Glu Ala Leu Arg Gly Ser Pro Pro Ile Leu Tyr
230 235 240

Trp Phe Tyr His Glu Asp Ile Thr Leu Gly Ser Arg Ser Ala Pro
245 250 255

Ser Gly Gly Gly Ala Ser Phe Asn Leu Ser Leu Thr Glu Glu His
260 265 270

Ser Gly Asn Tyr Ser Cys Glu Ala Asn Asn Gly Leu Gly Ala Gln
275 280 285

Arg Ser Glu Ala Val Thr Leu Asn Phe Thr Val Pro Thr Gly Ala
290 295 300

Arg Ser Asn His Leu Thr Ser Gly Val Ile Glu Gly Leu Leu Ser
305 310 315

Thr Leu Gly Pro Ala Thr Val Ala Leu Leu Phe Cys Tyr Gly Leu
320 325 330
Lys Arg Lys Ile Gly Arg Arg Ser Ala Arg Asp Pro Leu Arg Ser
335 340 345
Leu Pro Ser Pro Leu Pro Gln Glu Phe Thr Tyr Leu Asn Ser Pro
350 355 360
Thr Pro Gly Gln Leu Gln Pro Ile Tyr Glu Asn Val Asn Val Val
365 370 375
Ser Gly Asp Glu Val Tyr Ser Leu Ala Tyr Tyr Asn Gln Pro Glu
380 385 390
Gln Glu Ser Val Ala Ala Glu Thr Leu Gly Thr His Met Glu Asp
395 400 405
Lys Val Ser Leu Asp Ile Tyr Ser Arg Leu Arg Lys Ala Asn Ile
410 415 420
Thr Asp Val Asp Tyr Glu Asp Ala Met
425
Met Leu Leu Trp Val Ile Leu Leu Val Leu Ala Pro Val Ser Gly
 1 5 10 15
Gln Phe Ala Arg Thr Pro Arg Pro Ile Ile Phe Leu Gln Pro Pro
 20 25 25 30
Trp Thr Thr Val Phe Gln Gly Glu Arg Val Thr Leu Thr Cys Lys
 35 40 40 45
Gly Phe Arg Phe Tyr Ser Pro Gln Lys Thr Lys Trp Tyr His Arg
 50 55 55 60
Tyr Leu Gly Lys Glu Ile Leu Arg Glu Thr Pro Asp Asn Ile Leu
 65 70 70 75
Glu Val Gln Glu Ser Gly Glu Tyr Arg Cys Gln Ala Gln Gly Ser
 80 85 85 90
Pro Leu Ser Ser Pro Val His Leu Asp Phe Ser Ser Ala Ser Leu
 95 100 100 105
Ile Leu Gln Ala Pro Leu Ser Val Phe Glu Gly Asp Ser Val Val
110 115 115 120
Leu Arg Cys Arg Ala Lys Ala Glu Val Thr Leu Asn Asn Thr Ile
125 130 130 135
Tyr Lys Asn Asp Asn Val Leu Ala Phe Leu Asn Lys Arg Thr Asp
140 145 145 150
Phe His Ile Pro His Ala Cys Leu Lys Asp Asn Gly Ala Tyr Arg
155 160 160 165
Cys Thr Gly Tyr Lys Glu Ser Cys Cys Pro Val Ser Ser Asn Thr

<table>
<thead>
<tr>
<th>170</th>
<th>175</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val Lys Ile Gln Val Gln Glu Pro Phe</td>
<td>Thr Arg Pro Val Leu Arg</td>
<td>185</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala Ser Ser Phe Gln Pro Ile Ser Gly</td>
<td>Asn Pro Val Thr Leu Thr</td>
<td>200</td>
</tr>
<tr>
<td>205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys Glu Thr Gln Leu Ser Leu Glu Arg</td>
<td>Ser Asp Val Pro Leu Arg</td>
<td>215</td>
</tr>
<tr>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe Arg Phe Phe Arg Asp Asp Gln Thr</td>
<td>Leu Gly Leu Gly Trp Ser</td>
<td>230</td>
</tr>
<tr>
<td>235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu Ser Pro Asn Phe Gln Ile Thr Ala</td>
<td>Met Trp Ser Lys Asp Ser</td>
<td>245</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly Phe Tyr Trp Cys Lys Ala Ala Thr</td>
<td>Met Pro His Ser Val Ile</td>
<td>260</td>
</tr>
<tr>
<td>265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser Asp Ser Pro Arg Ser Trp Ile Gln</td>
<td>Val Gln Ile Pro Ala Ser</td>
<td>275</td>
</tr>
<tr>
<td>280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>His Pro Val Leu Thr Leu Ser Pro Glu</td>
<td>Lys Ala Leu Asn Phe Glu</td>
<td>290</td>
</tr>
<tr>
<td>295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly Thr Lys Val Thr Leu His Cys Glu</td>
<td>Thr Gln Glu Asp Ser Leu</td>
<td>305</td>
</tr>
<tr>
<td>310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg Thr Leu Tyr Arg Phe Tyr His Glu</td>
<td>Gly Val Pro Leu Arg His</td>
<td>320</td>
</tr>
<tr>
<td>325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys Ser Val Arg Cys Glu Arg Gly Ala</td>
<td>Ser Ile Ser Phe Ser Leu</td>
<td>335</td>
</tr>
<tr>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr Thr Glu Asn Ser Gly Asn Tyr Tyr</td>
<td>Cys Thr Ala Asp Asn Gly</td>
<td>350</td>
</tr>
<tr>
<td>355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu Gly Ala Lys Pro Ser Lys Ala Val</td>
<td>Ser Leu Ser Val Thr Val</td>
<td>365</td>
</tr>
<tr>
<td>370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro Val Ser His Pro Val Leu Asn Leu</td>
<td>Ser Ser Pro Glu Asp Leu</td>
<td>380</td>
</tr>
<tr>
<td>385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile Phe Glu Gly Ala Lys Val Thr Leu</td>
<td>His Cys Glu Ala Gln Arg</td>
<td>395</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly Ser Leu Pro Ile Leu Tyr Glu Phe</td>
<td>His His Glu Asp Ala Ala</td>
<td>410</td>
</tr>
<tr>
<td>415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu Glu Arg Arg Ser Ala Asn Ser Ala Gly Gly Val Ala Ile Ser</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe Ser Leu Thr Ala Glu His Ser Gly Asn Tyr Tyr Cys Thr Ala</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp Asn Gly Phe Gly Pro Gln Arg Ser Lys Ala Val Ser Leu Ser</td>
<td>455</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile Thr Val Pro Val Ser His Pro Val Leu Thr Leu Ser Ser Ala</td>
<td>470</td>
<td></td>
</tr>
<tr>
<td>475</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

258
<table>
<thead>
<tr>
<th>Glu Ala Leu Thr</th>
<th>Phe Glu Gly Ala Thr Val Thr Leu His Cys Glu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>485</td>
</tr>
<tr>
<td>Val Gln Arg Gly</td>
<td>Ser Pro Gln Ile Leu Tyr Gln Phe Tyr His Glu</td>
</tr>
<tr>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Asp Met Pro Leu</td>
<td>Trp Ser Ser Ser Thr Pro Ser Val Gly Arg Val</td>
</tr>
<tr>
<td></td>
<td>515</td>
</tr>
<tr>
<td>Ser Phe Ser Phe</td>
<td>Ser Leu Thr Glu Gly His Ser Gly Asn Tyr Tyr</td>
</tr>
<tr>
<td></td>
<td>530</td>
</tr>
<tr>
<td>Cys Thr Ala Asp</td>
<td>Asn Gly Phe Gly Pro Gln Arg Ser Glu Val Val</td>
</tr>
<tr>
<td></td>
<td>545</td>
</tr>
<tr>
<td>Ser Leu Phe Val</td>
<td>Thr Val Pro Val Ser Arg Pro Ile Leu Thr Leu</td>
</tr>
<tr>
<td></td>
<td>560</td>
</tr>
<tr>
<td>Arg Val Pro Arg</td>
<td>Ala Gln Ala Val Val Gly Asp Leu Leu Glu Leu</td>
</tr>
<tr>
<td></td>
<td>575</td>
</tr>
<tr>
<td>His Cys Glu Ala</td>
<td>Pro Arg Gly Ser Pro Pro Ile Leu Tyr Trp Phe</td>
</tr>
<tr>
<td></td>
<td>590</td>
</tr>
<tr>
<td>Tyr His Glu Asp</td>
<td>Val Thr Leu Gly Ser Ser Ser Ala Pro Ser Gly</td>
</tr>
<tr>
<td></td>
<td>605</td>
</tr>
<tr>
<td>Gly Glu Ala Ser</td>
<td>Phe Asn Leu Ser Leu Thr Ala Glu His Ser Gly</td>
</tr>
<tr>
<td></td>
<td>620</td>
</tr>
<tr>
<td>Asn Tyr Ser Cys</td>
<td>Glu Ala Asn Asn Gly Leu Val Ala Gln His Ser</td>
</tr>
<tr>
<td></td>
<td>635</td>
</tr>
<tr>
<td>Asp Thr Ile Ser</td>
<td>Leu Ser Val Ile Val Pro Val Ser Arg Pro Ile</td>
</tr>
<tr>
<td></td>
<td>650</td>
</tr>
<tr>
<td>Leu Thr Phe Arg</td>
<td>Ala Pro Arg Ala Gln Ala Val Val Gly Asp Leu</td>
</tr>
<tr>
<td></td>
<td>665</td>
</tr>
<tr>
<td>Leu Glu Leu His</td>
<td>Cys Glu Ala Leu Arg Gly Ser Ser Pro Ile Leu</td>
</tr>
<tr>
<td></td>
<td>680</td>
</tr>
<tr>
<td>Tyr Trp Phe Tyr</td>
<td>His Glu Asp Val Thr Leu Gly Lys Ile Ser Ala</td>
</tr>
<tr>
<td></td>
<td>695</td>
</tr>
<tr>
<td>Pro Ser Gly Gly</td>
<td>Gly Ala Ser Phe Asn Leu Ser Leu Thr Thr Glu</td>
</tr>
<tr>
<td></td>
<td>710</td>
</tr>
<tr>
<td>His Ser Gly Ile</td>
<td>Tyr Ser Cys Glu Ala Asp Asn Gly Pro Glu Ala</td>
</tr>
<tr>
<td></td>
<td>725</td>
</tr>
<tr>
<td>Gln Arg Ser Glu</td>
<td>Met Val Thr Leu Lys Val Ala Val Pro Val Ser</td>
</tr>
<tr>
<td></td>
<td>740</td>
</tr>
<tr>
<td>Arg Pro Val Leu</td>
<td>Thr Leu Arg Ala Pro Gly Thr His Ala Ala Val</td>
</tr>
<tr>
<td></td>
<td>755</td>
</tr>
<tr>
<td>Gly Asp Leu Leu</td>
<td>Glu Leu His Cys Glu Ala Leu Arg Gly Ser Pro</td>
</tr>
<tr>
<td></td>
<td>770</td>
</tr>
</tbody>
</table>
EP 2 489 364 B1

Leu Ile Leu Tyr Arg Phe Phe His Glu Asp Val Thr Leu Gly Asn 785 790 795
Arg Ser Ser Pro Ser Gly Gly Ala Ser Leu Asn Leu Ser Leu Thr 800 805 810
Ala Glu His Ser Gly Asn Tyr Ser Cys Glu Ala Asp Asn Gly Leu 815 820 825
Gly Ala Gln Arg Ser Glu Thr Val Thr Leu Tyr Ile Thr Gly Leu 830 835 840
Thr Ala Asn Arg Ser Gly Pro Phe Ala Thr Gly Val Ala Gly Gly 845 850 855
Leu Leu Ser Ile Ala Glu Leu Ala Ala Gly Ala Leu Leu Leu Tyr 860 865 870
Cys Trp Leu Ser Arg Lys Ala Gly Arg Lys Pro Ala Ser Asp Pro 875 880 885
Ala Arg Ser Pro Pro Asp Ser Asp Ser Gln Glu Pro Thr Tyr His 890 895 900
Asn Val Pro Ala Trp Glu Glu Leu Gln Pro Val Tyr Thr Asn Ala 905 910 915
Asn Pro Arg Gly Glu Asn Val Tyr Ser Glu Val Arg Ile Ile 920 925 930
Gln Glu Lys Lys Lys His Ala Val Ala Ser Asp Pro Arg His Leu 935 940 945
Arg Asn Lys Gly Ser Pro Ile Ile Tyr Ser Glu Val Lys Val Ala 950 955 960
Ser Thr Pro Val Ser Gly Ser Leu Phe Leu Ala Ser Ser Ala Pro 965 970 975
His Arg

Claims

1. An antibody-drug conjugate having the formula:

```
Ab -R^17-C(O)\_D\_F
```

or a pharmaceutically acceptable salt or solvate thereof, wherein

Ab is an antibody,
R^{17} is C_{1}-C_{10} alkylen-, -C_{3}-C_{8} carbocyclo-, -O-(C_{1}-C_{8} alkyl)-, -arylene-, -C_{1}-C_{10} alkylen-arylene-, -arylene-
C₁₋C₁₀ alkylene-, -C₁₋C₁₀ alkylene-(C₃₋C₈ carbocyclo)-, -(C₃₋C₈ carbocyclo)-C₁₋C₁₀ alkylene-, -C₃₋C₈ heterocyclo-, -C₁₋C₁₀ alkylene-(C₃₋C₈ heterocyclo)-, -(C₃₋C₈ heterocyclo)-C₁₋C₁₀ alkylene-, -(CH₂CH₂O)ᵣ⁻, or -(CH₂CH₂O)ᵣ⁻-CH₂⁻; and r is an integer ranging from 1 to 10;
p ranges from 1 to about 20, and
D_F is a Drug Unit having the formula:

wherein, independently at each location:

R² is selected from H and C₁₋C₈ alkyl;
R³ is selected from H, C₁₋C₈ alkyl, C₃₋C₈ carbocycle, aryl, C₁₋C₈ alkyl-aryl, C₁₋C₈ alkyl-(C₃₋C₈ carbocycle), C₃₋C₈ heterocycle, and C₁₋C₈ alkyl-(C₃₋C₈ heterocycle);
R⁴ is selected from H, C₁₋C₈ alkyl, C₃₋C₈ carbocycle, aryl, C₁₋C₈ alkyl-aryl, C₁₋C₈ alkyl-(C₃₋C₈ carbocycle), C₃₋C₈ heterocycle, and C₁₋C₈ alkyl-(C₃₋C₈ heterocycle);
R⁵ is selected from H and methyl;
or:
R⁴ and R⁵ jointly form a carbocyclic ring and have the formula -(CRᵃRᵇ)ₙ⁻, wherein Ra and Rb are independently selected from H, C₁₋C₈ alkyl, and C₃₋C₈ carbocycle, and n is selected from 2, 3, 4, 5 and 6;
R⁶ is selected from H and C₁₋C₈ alkyl;
R⁷ is selected from H, C₁₋C₈ alkyl, C₃₋C₈ carbocycle, aryl, C₁₋C₈ alkyl-aryl, C₁₋C₈ alkyl-(C₃₋C₈ carbocycle), C₃₋C₈ heterocycle, and C₁₋C₈ alkyl-(C₃₋C₈ heterocycle);
each R⁸ is independently selected from H, OH, C₁₋C₈ alkyl, C₃₋C₈ carbocycle, and O-(C₁₋C₈ alkyl);
R⁹ is selected from H and C₁₋C₈ alkyl;
R¹⁰ is selected from aryl and C₃₋C₈ heterocycle;
Z is O, S, NH, or NR¹₂, wherein R¹₂ is C₁₋C₈ alkyl;
R¹¹ is selected from -H, C₁₋C₂₀ alkyl, aryl, -C₃₋C₈ heterocycle, -(R¹³O)ᵣ⁻CH(R¹⁵)₁₂⁻ or -(R¹³O)ᵣ⁻-CH(R¹⁵)₁₂⁻; m is an integer ranging from 1 to 1000;
R¹³ is C₂₋C₈ alkyl;
R¹⁴ is H or C₁₋C₈ alkyl;
each occurrence of R¹⁵ is independently H, COOH, -(CH₂)ₙ⁻N(R¹₆)₁₂⁻, -(CH₂)ₙ⁻SO₃H, or -(CH₂)ₙ⁻SO₃-C₁₋C₈ alkyl;
each occurrence of R¹₆ is independently H, C₁₋C₈ alkyl, or -(CH₂)ₙ⁻COOH; and
n is an integer ranging from 0 to 6.

2. The antibody-drug conjugate compound of claim 1 having the formula:
3. The antibody-drug conjugate compound of any of the preceding claims wherein \(D_F \) has the structure:

![Chemical Structure Image]

or

![Chemical Structure Image]

or a pharmaceutically acceptable salt or solvate thereof.

4. An antibody-drug conjugate according to any one of the preceding claims, or a pharmaceutically acceptable salt or solvate thereof, wherein \(p \) ranges from about 3 to about 5.

5. An antibody-drug conjugate according to any one of the preceding claims, or a pharmaceutically acceptable salt or solvate thereof, wherein the antibody is an antibody fragment.

6. An antibody-drug conjugate according to any one of the preceding claims, or a pharmaceutically acceptable salt or solvate thereof, wherein the antibody is a monoclonal antibody.

7. An antibody-drug conjugate according to any one of the preceding claims, or a pharmaceutically acceptable salt or solvate thereof, wherein the antibody binds to a cancer cell antigen which is on the surface of a cancer cell.
8. A pharmaceutical composition comprising an effective amount of antibody-drug conjugate according to any one of the preceding claims, or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier or vehicle.

9. A composition for treating cancer comprising an amount of the antibody-drug conjugate according to any one of the preceding claims, or a pharmaceutically acceptable salt or solvate thereof, said amount being effective to treat cancer.

10. An antibody-drug conjugate according to any one of the preceding claims, or a pharmaceutically acceptable salt or solvate thereof, for use in a method of treating cancer.

11. An antibody drug conjugate according to claim 10 for use in the treatment of cancer, further comprising treatment with an additional anticancer agent.

Patentansprüche

1. Antikörper-Arzneimittel-Konjugat der Formel:

 ![Chemical Structure](image)

 oder ein pharmazeutisch annehmbares Salz oder Solvat davon, worin

 Ab ein Antikörper ist,

 R17 C$_{1}$-C$_{10}$-Alkyl-, -C$_{3}$-C$_{8}$-Carbocyclo-, -O-(C$_{1}$-C$_{8}$-Alkyl)-, -Arylen-, -C$_{1}$-C$_{10}$-Alkylenarylen-, -Arylen-C$_{1}$-C$_{10}$-alkylen-, -C$_{1}$-C$_{10}$-Alkylen-(C$_{3}$-C$_{8}$-carbocyclo)-, -(C$_{3}$-C$_{8}$-Carbocyclo)-C$_{1}$-C$_{10}$-alkylen-, -C$_{1}$-C$_{8}$-Heterocyclo-, -C$_{1}$-C$_{10}$-Alkylen-(C$_{3}$-C$_{8}$-heterocyclo)-, -(C$_{3}$-C$_{8}$-Heterocyclo)-C$_{1}$-C$_{10}$-alkylen-, -(CH$_{3}$CH$_{2}$O)$_{r}$- oder -(CH$_{2}$CH$_{2}$O)$_{r}$-CH$_{2}$- ist; und r eine ganze Zahl von 1 bis 10 ist;

 p im Bereich von 1 bis etwa 20 liegt, und

 D$_{F}$ eine Arzneimitteleinheit ist, die der folgenden Formel entspricht:

 ![Chemical Structure](image)

 worin, unabhängig an jeder Position:

 R2 ausgewählt ist aus H und C$_{1}$-C$_{8}$-Alkyl,

 R3 ausgewählt ist aus H, C$_{1}$-C$_{8}$-Alkyl, C$_{3}$-C$_{8}$-Carbocyclyl, Aryl, C$_{1}$-C$_{8}$-Alkylnaryl, C$_{1}$-C$_{8}$-Alkyl-(C$_{3}$-C$_{8}$-carbocyclyl), C$_{3}$-C$_{8}$-Heterocyclyl und C$_{1}$-C$_{8}$-Alkyl-(C$_{3}$-C$_{8}$-heterocyclyl), R4 ausgewählt ist aus H, C$_{1}$-C$_{8}$-Alkyl, C$_{3}$-C$_{8}$-Carbocyclyl, Aryl, C$_{1}$-C$_{8}$-Alkylnaryl, C$_{1}$-C$_{8}$-Alkyl-(C$_{3}$-C$_{8}$-carbocyclyl), C$_{3}$-C$_{8}$-Heterocyclyl und C$_{1}$-C$_{8}$-Alkyl-(C$_{3}$-C$_{8}$-heterocyclyl); R5 ausgewählt ist aus H und Methyl:

 oder:

 R4 und R5 gemeinsam einen carbozyklischen Ring bilden und der Formel -(CR6R8)$_{n}$-entsprechen, worin

 R6 und R8 unabhängig ausgewählt sind aus H, C$_{1}$-C$_{8}$-Alkyl und C$_{3}$-C$_{8}$-Carbocyclyl und n ausgewählt ist aus 2, 3, 4, 5 und 6;
R5 ausgewählt ist aus H und C\textsubscript{1}-C\textsubscript{8}-Alkyl;
R7 ausgewählt ist aus H, C\textsubscript{1}-C\textsubscript{8}-Alkyl, C\textsubscript{3}-C\textsubscript{8}-Carbocycl, Aryl, C\textsubscript{1}-C\textsubscript{8}-Alkylary, C\textsubscript{1}-C\textsubscript{8}-Alkyl-(C\textsubscript{3}-C\textsubscript{8}-carbocycl), C\textsubscript{3}-C\textsubscript{8}-Heterocycl und C\textsubscript{1}-C\textsubscript{8}-Alkyl-(C\textsubscript{3}-C\textsubscript{8}-heterocycl), die R8 jeweils unabhängig ausgewählt sind aus H, OH, C\textsubscript{1}-C\textsubscript{8}-Alkyl, C\textsubscript{3}-C\textsubscript{8}-Carbocycl und O-(C\textsubscript{1}-C\textsubscript{8}-Alkyl);
R9 ausgewählt ist aus H und C\textsubscript{1}-C\textsubscript{8}-Alkyl,
R10 ausgewählt ist aus Aryl und C\textsubscript{3}-C\textsubscript{8}-Heterocycl,
Z, O, S, NH oder NR\textsubscript{12} ist, worin R\textsubscript{12} C\textsubscript{1}-C\textsubscript{8}-Alkyl ist;
R11 ausgewählt ist aus -H, C\textsubscript{1}-C\textsubscript{20}-Alkyl, Aryl, -C\textsubscript{3}-C\textsubscript{8}-Heterocycl, -(R13O)m-R14 und -(R13O)m-CH(R15)\textsubscript{2};
m eine ganze Zahl von 1 bis 1000 ist;
R13 = C\textsubscript{2}-C\textsubscript{8}-Alkyl ist;
R14 = H oder C\textsubscript{1}-C\textsubscript{8}-Alkyl ist;
die R15 jeweils unabhängig H, COOH, -(CH\textsubscript{2})\textsubscript{n}N(R16)\textsubscript{2}, -(CH\textsubscript{2})\textsubscript{n}SO\textsubscript{2}H oder -(CH\textsubscript{2})\textsubscript{n}SO\textsubscript{3}C\textsubscript{1}-C\textsubscript{8}-Alkyl sind;
die R16 jeweils unabhängig H, C\textsubscript{1}-C\textsubscript{8}-Alkyl oder -(CH\textsubscript{2})\textsubscript{n}COOH sind; und
n eine ganze Zahl von 0 bis 6 ist.

2. Antikörper-Arzneimittel-Konjugat nach Anspruch 1 der Formel:

![Chemical Structure](attachment:image.png)

oder ein pharmazeutisch annehmbares Salz oder Solvat davon.

3. Antikörper-Arzneimittel-Konjugat-Verbindung nach einem der vorangegangenen Ansprüche, worin \(D_F \) folgende Struktur aufweist:

![Chemical Structure](attachment:image.png)
oder ein pharmazeutisch annehmbares Salz oder Solvat davon.

5. Antikörper-Arzneimittel-Konjugat nach einem der vorangegangenen Ansprüche oder ein pharmazeutisch annehmbares Salz oder Solvat davon, worin der Antikörper ein Antikörperfragment ist.

6. Antikörper-Arzneimittel-Konjugat nach einem der vorangegangenen Ansprüche oder ein pharmazeutisch annehmbares Salz oder Solvat davon, worin der Antikörper ein monoklonaler Antikörper ist.

7. Antikörper-Arzneimittel-Konjugat nach einem der vorangegangenen Ansprüche oder ein pharmazeutisch annehmbares Salz oder Solvat davon, worin der Antikörper an ein Krebszellenantigen, das sich auf der Oberfläche einer Krebszelle befindet, bindet.

8. Pharmazeutische Komposition, die eine wirksame Menge eines Antikörper-Arzneimittel-Konjugats nach einem der vorangegangenen Ansprüche oder eines pharmazeutisch annehmbaren Salzes oder Solvats davon und einen pharmazeutisch annehmbaren Träger oder Vehikel umfasst.

10. Antikörper-Arzneimittel-Konjugat nach einem der vorangegangenen Ansprüche oder ein pharmazeutisch annehmbares Salz oder Solvat davon zur Verwendung in einem Verfahren zur Behandlung von Krebs.

Revendications

1. Conjugué anticorps-médicament de formule :
ou un sel pharmaceutiquement acceptable ou un solvate d’un tel conjugué,

formule dans laquelle

Ab est un anticorps,

R¹⁷ est un alkyle en C₁ à C₁₀, carbocycle en C₃ à C₈, -O-alkyle en C₁ à C₈, arylène, (alkyle en C₁ à C₁₀)-arylène, arylène-alkyle en C₁ à C₁₀, (alkyle en C₂ à C₁₀)-carbocycle en C₃ à C₈, (carbocycle en C₃ à C₈)-arylène en C₁ à C₁₀, hétérocycle en C₃ à C₈, (alkyle en C₁ à C₁₀)-hétérocycle en C₃ à C₈, (hétérocycle en C₃ à C₈)-arylène en C₁ à C₁₀, -(CH₂CH₂)ᵣ ou -(CH₂CH₂O)ᵣ-CH₂-, et r est un entier allant de 1 à 10 ;
p est situé dans la plage allant de 1 à environ 20 ; et

Dᵢ est un motif médicament de formule :

\[
R² est choisi parmi H et alkyle en C₁ à C₈ ;
R³ est choisi parmi H, alkyle en C₁ à C₈, carbocycle en C₃ à C₈, aryle, (alkyle en C₁ à C₈)-arylène, (alkyle en C₁ à C₈)-carbocycle en C₃ à C₈, hétérocycle en C₃ à C₈, et (alkyle en C₁ à C₈)-hétérocycle en C₃ à C₈ ;
R⁴ est choisi parmi H, alkyle en C₁ à C₈, carbocycle en C₃ à C₈, aryle, (alkyle en C₁ à C₈)-arylène, (alkyle en C₁ à C₈)-carbocycle en C₃ à C₈, hétérocycle en C₃ à C₈, et (alkyle en C₁ à C₈)-hétérocycle en C₃ à C₈ ;
R⁵ est choisi parmi H et méthyle ;
\]

ou :

R⁴ et R⁵ forment ensemble un carbocycle et sont de formule -\{(CRᵃRᵇ)ᵣ\}, où Rᵃ et Rᵇ sont indépendamment choisis parmi H, alkyle en C₁ à C₈ et carbocycle en C₃ à C₈, et n est choisi parmi 2, 3, 4, 5 et 6 ;
R⁶ est choisi parmi H et alkyle en C₁ à C₈ ;
R⁷ est choisi parmi H, alkyle en C₁ à C₈, carbocycle en C₃ à C₈, aryle, (alkyle en C₁ à C₈)-arylène, (alkyle en C₁ à C₈)-carbocycle en C₃ à C₈, hétérocycle en C₃ à C₈, et (alkyle en C₁ à C₈)-hétérocycle en C₃ à C₈ ;
chaque R⁸ est indépendamment choisi parmi H, OH, alkyle en C₁ à C₈, carbocycle en C₃ à C₈, et O-alkyle en C₁ à C₈ ;
R⁹ est choisi parmi H et alkyle en C₁ à C₈ ;
R¹⁰ est choisi parmi H et alkyle en C₁ à C₈ ;
Z est O, S, NH ou NR₁₂, où R₁₂ est un alkyle en C₁ à C₈ ;
R¹¹ est choisi parmi -H, alkyle en C₁ à C₂₀, aryle, hétérocycle en C₃ à C₈, -(R¹³O)ᵣ-R¹⁴ et -(R¹₃O)ᵣ-CH(R¹₅)₂ ;
m est un entier situé dans la plage allant de 1 à 1000 ;
R¹₃ est un alkyle en C₂ à C₈ ;
R¹₄ est H ou un alkyle en C₁ à C₈ ;
chaque occurrence de R¹₅ est indépendamment H, COOH, -(CH₂)ᵣ-N(R¹₆)₂, -(CH₂)ᵣ-SO₃H, ou -(CH₂)ᵣ-SO₃-alkyle en C₁ à C₈ ;
chaque occurrence de \(R^{16} \) est indépendamment \(H \), alkyle en C\(_1\) à C\(_8\), ou -(CH\(_2\))\(_n\)-COOH ; et
\(n \) est un entier situé dans la plage allant de 0 à 6.

2. Composé conjugué anticorps-médicament selon la revendication 1, de formule

\[
\begin{align*}
& \text{Ab} \quad \text{(S-Me)} \\
& \text{p} \\
& \text{DF}
\end{align*}
\]

ou un sel pharmaceutiquement acceptable ou un solvate d’un tel conjugué.

3. Composé conjugué anticorps-médicament selon l’une quelconque des revendications précédentes, dans lequel DF a la structure :

\[
\begin{align*}
& \text{DF} \\
& \text{DF} \\
& \text{DF}
\end{align*}
\]

ou
ou un sel pharmaceutiquement acceptable ou un solvate d’un tel conjugué.

4. Conjugé anticorps-médicament selon l’une quelconque des revendications précédentes, un sel pharmaceutiquement acceptable ou un solvate d’un tel conjugué, dans lequel p est situé dans la plage allant d’environ 3 à environ 5.

5. Conjugé anticorps-médicament selon l’une quelconque des revendications précédentes, un sel pharmaceutiquement acceptable ou un solvate d’un tel conjugué, dans lequel l’anticorps est un fragment d’anticorps.

6. Conjugé anticorps-médicament selon l’une quelconque des revendications précédentes, un sel pharmaceutiquement acceptable ou un solvate d’un tel conjugué, dans lequel l’anticorps est un anticorps monoclonal.

7. Conjugé anticorps-médicament selon l’une quelconque des revendications précédentes, un sel pharmaceutiquement acceptable ou un solvate d’un tel conjugué, dans lequel l’anticorps se lie à un antigène de cellule cancéreuse qui est sur la surface d’une cellule cancéreuse.

8. Composition pharmaceutique comprenant une quantité efficace d’un conjugué anticorps-médicament selon l’une quelconque des revendications précédentes, ou d’un sel pharmaceutiquement acceptable ou d’un solvate d’un tel conjugué et un véhicule ou support pharmaceutiquement acceptable.

10. Conjugé anticorps-médicament selon l’une quelconque des revendications précédentes, ou un sel pharmaceutiquement acceptable ou un solvate d’un tel conjugué, pour utilisation dans une méthode de traitement d’un cancer.

11. Conjugé anticorps-médicament selon la revendication 10 pour utilisation dans le traitement d’un cancer, comprenant en outre un traitement avec un agent anticancéreux additionnel.
FIGURE 3a
Efficacy of mAb-mc-MMAF in L2987 Lung Carcinoma

Figure 3b

Graph showing mean tumor volume (mm³) vs. days post tumor implant. The graph includes lines representing untreated and treated groups with different treatment schedules and doses.

Schedule q4dx4
a

\(c\text{AC10-mcMMAF}\)

\[
\text{% of Untreated} \quad \begin{array}{c}
\text{Concentration (ng/mL)} \\
0.0001 & 0.001 & 0.01 & 0.1 & 1 & 10 & 100 & 1000
\end{array}
\]

\(\square \text{ Karpas 299}\)
\(\triangle \text{ L428}\)

\text{FIGURE 4a}

b

\(c\text{AC10-vcMMAF}\)

\[
\text{% of Untreated} \quad \begin{array}{c}
\text{Concentration (ng/mL)} \\
0.0001 & 0.001 & 0.01 & 0.1 & 1 & 10 & 100 & 1000
\end{array}
\]

\(\square \text{ Karpas 299}\)
\(\triangle \text{ L428}\)

\text{FIGURE 4b}
a) Activity of cBR96-mcMMAF

- H3396
- L2987

b) Activity of cBR96-vcMMAF

- H3396
- L2987
FIGURE 6a

- **c1F6-mcMMAF**
- % of Untreated vs. Concentration (ng/mL)
- Data points for Caki-1 and 786-O

FIGURE 6b

- **c1F6-vcMMAF**
- % of Untreated vs. Concentration (ng/mL)
- Data points for Caki-1 and 786-O
MCF-7 cells

- H-MC-vc-PAB-MMAF [cys] 3.8 drug/Ab
- H-MC-(Me)vc-PAB-MMAF [cys] 3.9 drug/Ab
- H-MC-MMAF [cys] 4.1 drug/Ab

Figure 9
Figure 10

MDA-MB-468 cells

- H-MC-vc-PAB-MMAE [cys] 4.1 drug/Ab
- H-MC-vc-PAB-MMAE [cys] 3.3 drug/Ab
- H-MC-vc-PAB-MMAF [cys] 3.7 drug/Ab
H-MC-vc-PAB-MMAE in Cynomolgus monkeys

Figure 12
Figure 13

- **Vehicle**
- **Trastuzumab-MC-vc-PAB-MMAE (1250 ug/m²)**
- **Trastuzumab-MC-vc-PAB-MMAF (555 ug/m²)**

The graph shows the mean tumor volume over days for different treatments. The y-axis represents the mean tumor volume (mm²), and the x-axis represents days from 0 to 50.
Figure 14

- Vehicle
- Trastuzumab-MC-MMAE 660 µg/m²
- Trastuzumab-MC-vc-PAB-MMAE 1250 µg/m²

Mean Tumor Volume (mm³)

Day

RX
Change in Body Weight

- Vehicle Control
- 2105 μg/m² H-MC-MMAF
- 2105 μg/m² H-MC-MMAF 3 wk
- 3158 μg/m² H-MC-MMAF
- 4210 μg/m² H-MC-MMAF

Figure 19
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4975278 A [0005]
- EP 1391213 A [0005]
- US 4970198 A [0006]
- US 5079333 A [0006]
- US 5585089 A [0006] [0231]
- US 5606040 A [0006]
- US 5693762 A [0006]
- US 5739116 A [0006]
- US 5767285 A [0006]
- US 5773001 A [0006]
- US 5635483 A [0007] [0201] [0384]
- US 5663149 A [0008]
- US 5677171 A [0011] [0345]
- US 5738168 A [0012]
- US 5183884 A [0013]
- US 5480968 A [0013]
- EP 599274 A [0013]
- US 5780588 A [0201] [0384]
- US 5821337 A [0014] [0015] [0044] [0056] [0577] [0600]
- US 4816567 A [0027] [0028] [0231] [0288] [0297] [0299]
- US 5641696 A [0039]
- US 5500362 A [0044]
- EP 400497 A [0054]
- WO 9311161 A [0054]
- WO 9321319 A [0056]
- WO 9845479 A [0070]
- WO 4933294 A [0070]
- WO 9845478 A [0070]
- WO 9843960 A [0070]
- WO 9738983 A, Warner Lambert [0077]
- WO 9906378 A, Warner Lambert [0077]
- WO 9906396 A, Warner Lambert [0077]
• WO 2004031238 A [0248]
• WO 200260317 A [0248]
• JP 05003790 B [0248]
• WO 9946284 A [0248]
• US 2004005320 A [0248]
• WO 2003029262 A [0248]
• WO 200302717 A [0248]
• WO 200222153 A [0248]
• US 2002042366 A [0248]
• WO 200146261 A [0248]
• WO 200146232 A [0248]
• WO 9837193 A [0248]
• US 2003186372 A [0248]
• US 2003186373 A [0248]
• US 2003191131 A [0248]
• US 2003191122 A [0248]
• US 2003191126 A [0248]
• US 2003191121 A [0248]
• US 2003191129 A [0248]
• US 2003191130 A [0248]
• US 2003191128 A [0248]
• US 2003191125 A [0248]
• WO 200202634 A [0248]
• WO 200053216 A [0248]
• WO 2004055576 A [0248]
• WO 2004020583 A [0248]
• WO 2003044529 A [0248]
• US 20040101899 A [0248]
• WO 2003104399 A [0248]
• WO 2004000221 A [0248]
• US 2003165504 A [0248]
• US 2003065143 A [0248]
• WO 200210187 A [0248]
• WO 200194641 A [0248]
• WO 200202624 A [0248]
• US 2002034749 A [0248]
• WO 200202587 A [0248]
• WO 200140269 A [0248]
• WO 200036107 A [0248]
• WO 2004053079 A [0248]
• WO 2003004989 A [0248]
• WO 0116318 A [0248]
• US 2004018553 A [0248]
• WO 200281646 A [0248]
• WO 200140309 A [0248]
• US 2001055751 A [0248]
• WO 200302752 A [0248]
• WO 9851805 A [0248]
• WO 9851824 A [0248]
• WO 9840043 A [0248]
• WO 2003000842 A [0248]
• WO 2003023013 A [0248]
• US 2003194704 A [0248]
• WO 2004058309 A [0248]
• WO 2004011611 A [0248]
• WO 2003045422 A [0248]
• WO 2003104294 A [0248]
• WO 2003035846 A [0248]
• WO 200294852 A [0248]
• WO 200238766 A [0248]
• WO 200224909 A [0248]
• US 2003157113 A [0248]
• WO 2003072036 A [0248]
• WO 2003088808 A [0248]
• US 20030228319 A [0248]
• WO 9958658 A [0248]
• WO 9207574 A [0248]
• WO 2004015426 A [0248]
• US 2003105292 A [0248]
• US 6555339 B [0248]
• US 200172830 A [0248]
• WO 200022129 A [0248]
• WO 9928468 A [0248]
• US 5440021 A [0248]
• WO 9428931 A [0248]
• WO 9217497 A [0248]
• US 6153408 A [0248]
• US 5976551 A [0248]
• US 6011146 A [0248]
• WO 2004047749 A [0248]
• WO 2003072035 A [0248]
• WO 200222660 A [0248]
• WO 2003093444 A [0248]
• WO 2003029277 A [0248]
• WO 2004042346 A [0248]
• WO 2003026493 A [0248]
• WO 200075655 A [0248]
• US 2002193567 A [0248]
• US 9707198 A [0248]
• WO 2003083047 A [0248]
• WO 9744452 A [0248]
• WO 200012130 A [0248]
• WO 04045516 A [0249]
• WO 03000113 A [0249]
• WO 02016429 A [0249]
• WO 0216581 A [0249]
• WO 03024392 A [0249]
• WO 04016225 A [0249]
• WO 0140309 A [0249]
• US 520842 P [0249]
• US 8605807 A [0263]
• WO 8901036 A [0263]
• US 5122646 A [0263]
• WO 4694778 A [0265]
• US 5591669 A [0304]
• US 5589369 A [0304]
• US 5545807 A [0304]
• US 5565332 A [0305]
• US 5573905 A [0305]
• US 5567610 A [0305]
• US 5229275 A [0305]
• US 338366 A [0305]
• US 9316185 A [0306]
• US 5571894 A [0306]
• US 5587458 A [0306]
• US 5641870 A [0306]
Non-patent literature cited in the description

- BALDWIN et al. Lancet, 15 March 1986, 603-05 [0005]
- Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review. THORPE et al. Monoclonal Antibodies '84: Biological And Clinical Applications. 1985, 475-506 [0005]
- Drugs of the Future, 2000, vol. 25 (7), 866 [0006]
- SCHAEFER et al. Oncogene, 1997, vol. 15, 1385-1394 [0011] [0039] [0344] [0599]
• KOHLER et al. Nature, 1975, vol. 256, 495 [0027] [0288]
• SAVAGE et al. J. Biol. Chem., vol. 247, 7612-7621 [0038]
• HARRARI et al. Oncogene, 1999, vol. 18, 2681-89 [0038]
• HOLMES et al. Science, 1992, vol. 256, 1205-1210 [0039] [0597]
• PELES et al. Cell, 1992, vol. 69, 205-216 [0039]
• CAPEL et al. Immunomethods, 1994, vol. 4, 25-34 [0045]
• KABAT et al. Sequences of Proteins of Immunological Interest. National Institutes of Health, 1991 [0047] [0303]
• CHOTHIA; LESK. J. Mol. Biol., 1987, vol. 196, 901-917 [0048]
• PLÜCKTHUN. The Pharmacology of Monoclonal Antibodies. Springer-Verlag, 1994, vol. 113, 269-315 [0053]
• PAQUETTE, LEO A. Principles of Modern Heterocyclic Chemistry. W.A. Benjamin, 1968 [0098]
• KÖHLER; MILSTEIN. Nature, 1975, vol. 256, 495-497 [0222]
• KOZBOR et al. Immunology Today, 1983, vol. 4, 72 [0222] [0262]
• COLE et al. Monoclonal Antibodies and Cancer Therapy. Alan R. Liss, Inc, 1985, 77-96 [0222] [0262]
• KOZBOR et al. Immunology Today, 1983, vol. 4, 72-79 [0223]
• OLSSON et al. Meth. Enzymol., 1982, vol. 92, 3-16 [0223]
• TRAUNECKER et al. EMBO J., 1991, vol. 10, 3655-3659 [0224] [0308]
• RODRIGUES et al. J. of Immunology, 1993, vol. 151, 6954-6961 [0227]
• KABAT et al. J. of Immunology, 1980, vol. 125 (3), 961-969 [0229]
• BIRD. Science, 1988, vol. 242, 423-42 [0230] [0265]
• WOOD et al. Science, 1985, vol. 229, 1202-1207 [0231]
• VERAHOEYAN et al. Science, 1988, vol. 239, 1534 [0231]
• JESPERS et al. Biotechnology, 1994, vol. 12, 899-903 [0233]
• Oncogene, 1997, vol. 14 (11), 1377-1382 [0248]
• NAGASET. et al. DNA Res., 2000, vol. 7 (2), 143-150 [0248]
• VERHOEYEN et al. Science, 1988, vol. 239, 1534-1536 [0299]
• BRUGGERMANN et al. Year in Immuno., 1993, vol. 7, 33 [0304]
• GRIFFITH et al. EMBO J., 1993, vol. 12, 725-734 [0305]
• BRENNA et al. Science, 1985, vol. 229, 81 [0306]
• CUNNINGHAM ; WELLS. Science, 1989, vol. 244, 1081-1085 [0316]
• WRIGHT ; MORRISON. TibTECH, 1997, vol. 15, 26-32 [0324]
• WITTWE ; HOWARD. Biochem., 1990, vol. 29, 4175-4180 [0324]
• WYSS ; WAGNER. Current Opin. Biotech., 1996, vol. 7, 409-416 [0324]
• CREE et al. AntiCancer Drugs, 1995, vol. 6, 398-404 [0349]
• Handbook of Experimental Pharmacology. Springer-Verlag, vol. 110 [0357]
• NEUBERGER ; WILLIAMS. Nucleic Acids Res., 1988, vol. 16, 6713 [0362]
• PETTIT, G.R. et al. Synthesis, vol. 1 (996), 719-725
• GILON, C. et al. Tetrahedron, 1967, vol. 23 (11), 4441-4447
• GOODSON. Medical Applications of Controlled Release. 1984, vol. 2, 115-138
• SUGARMAN et al. Science, 1985, vol. 230, 943-945