EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 08.10.2014 Bulletin 2014/41

Application number: 10725647.1

Date of filing: 28.05.2010

International application number: PCT/EP2010/057458

IMAGING METHOD AND USE THEREOF

BILDGEBUNGSVERFAHREN UND SEINE ANWENDUNG

PROCÉDÉ D'IMAGERIE ET SON UTILISATION

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Priority: 28.05.2009 GB 0909128

Date of publication of application: 04.04.2012 Bulletin 2012/14

Proprietor: Riethmüller, Christoph 48147 Münster (DE)

Inventor: Riethmüller, Christoph 48147 Münster (DE)

Representative: Schlief, Thomas P. Patentanwälte Canzler & Bergmeier Friedrich-Ebert-Straße 84 85055 Ingolstadt (DE)

References cited:
US-B1- 6 357 285

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

FIELD OF THE INVENTION

[0001] The present invention relates to a method based on atomic force microscopy and the use thereof on biological surfaces.

BACKGROUND OF THE INVENTION

[0002] Several imaging methods are known for diagnostic purposes, including the use of radioisotopes or x-ray imaging. Besides these methods, diagnostic imaging is performed on biopsies of tissues or liquids from the living body to determine the existence or cause of a disease. In the last decade imaging systems were developed using cell cultures of cells taken from a patient, in order to detect markers that are correlated to diseases. These systems are mostly based on the coupling of biological samples to defined epitopes wherein the biological samples are labelled with a dye, preferably a fluorescent dye.

[0003] Pharmacological testing and low throughput screening assays are also increasingly based on mammalian cell culture (High content screening, HCS). As compared to biochemical affinity tests used in molecular high-throughput screening (HTS), these HCS-bioassays offer the smallest living unit for detecting adverse effects on a least damage level. Thus, they can help to avoid stressing animals with pharmaceutical lead compounds. Usually, also in cell based assays, the readout is a biochemical one like DNA-, RNA- and protein-chips or immunocytochemistry or sometimes electrophysiological studies. Hence, investigation of cells under physiological buffer conditions is performed on biopsies of tissues or liquids from the living body to determine the existence or cause of a disease. In the last decade imaging systems were developed using cell cultures of cells taken from a patient, in order to detect markers that are correlated to diseases. These systems are mostly based on the coupling of biological samples to defined epitopes wherein the biological samples are labelled with a dye, preferably a fluorescent dye.

[0004] Atomic force microscopy (AFM) was invented two decades ago and became a versatile tool for biological studies on single biomolecules, aggregates, viruses, cells or tissues. The method bridges the gap between the nm-resolution technique of electron microscopy (EM) and the μ-scale optical microscopy (OM). As such, it combines the advantages of high resolution and the ability to investigate cells under physiological buffer conditions. At the same time, no disadvantageous sample drying or coating as necessary for EM or chromophore labelling as in fluorescence microscopy (FM) are needed. Additionally, local mechanical properties of the sample can be obtained (Riethmüller C., Schaffer T.E., Kienberger F., Stracke W. and Oberleithner H.; 2007; Ultramicroscopy 107:895-901; Rotsch C. and Radmacher M.; 2000; Biophys. J. 78:520-535). Hence, investigation of biological specimens very close to physiological conditions is possible with only a minimum of procedure-derived artefacts.

SUMMARY OF THE INVENTION

[0009] Coming from this state of the art, it is an object of the present invention to provide a method for determining and quantifying the topographical elements of biological surfaces.

[0010] The invention provides a method for determining and quantifying the topographical elements of biological surfaces.
The present invention provides a method to determine the local deviational volume (LDV) of defined subcellular structures or combinations thereof or specific patterns of such structures.

It is intended that the calibrated sample comprises data of cell surface marker, topographical or morphological structures. The data of the calibrated or standard sample are obtained preferably by the optical identification of cell surface marker or morphological structures. Specific patterns are used for the generation of a classification set or a classification matrix that is related to one or more diseases. It is also possible that the data of the calibrated sample are obtained by analysing the interaction of biochemical marker with topographical or morphological structures.

According to the invention the cell surface marker comprises topographical or morphological structures like protrusions, depressions or other morphological structures or combinations thereof or specific patterns of such structures.

It is intended that the method according to the invention is used to produce a map of topographical elements or for in vivo and in vitro mapping and quantifying of cell surface marker, topographical or morphological structures on cell surfaces or surfaces of cell junctions.

The method according to the invention is intended for the detection of specific cell surface marker, topographical or morphological structures related to diseases, wherein the diseases are chosen from the group of tumour, cardio-vascular, nephritic, fibrotic, inflammatory, arteriosclerotic or auto-immune diseases. It is obvious for a person skilled in the art that the present invention is not limited to the listed diseases but also applicable to any disease that is accompanied with topographical or morphological changes of the cell surface.

The method according to the invention is further intended for determining cell surface marker, topographical or morphological structures as diagnostic marker or monitoring changes of cell surface marker, topographical or morphological structures in the prophylaxis, diagnosis, therapy, follow-up and/or aftercare of a therapy in any of the diseases mentioned above. Besides this the method is suitable and intended for determining cellular mechanical or contractile forces.

The method according to the invention may be used in the production or screening of a drug for the treatment of any of the diseases mentioned above comprising pharmaceutical compositions, antibodies, proteins, peptides, nucleic acids or chemicals, but is not limited to this substances.

The method according to the invention is also intended for a cell-culture based classification system in diagnosis. Specific patterns of topographical or morphological structures will be related to disease induced changes of the cell surface, so that changes of the cell surface can be used for the identification of specific disease patterns. Additionally it is possible to determine the local extension of a disease, if cell samples from different parts of the body are used as template for the method according to the invention.

The present invention provides a method to determine the local deviational volume (LDV) of defined...
subcellular structures irrespective of their biochemical characterisation while disregarding the lack of knowledge about their exact cellular function. The LDV shall define a nanoscale excursion in z-direction (height) over an expected mask in the xy-plane, no matter whether they are circular or not and whether they are positive or negative in z. They use a fuzzy definition of patterning elements. Then, the local protruding or depressed volume as compared to the mean surface level is evaluated. The new method bases on the observation that the surface texture changes within a nanometer range in z (height), when cells are growing, developing, differentiating or are being stressed or undergo a transformation. Moreover, their physiological function sometimes correlates to the LDV in some respect.

The type of stimulus leads to distinct alterations in target cell models. Some examples are:

a. Collecting duct epithelial cells not only show protruding borders, but also central cilia, that indicate the degree of differentiation within the cell preparation.
b. Virtually all endothelial cells form stress fibers, when challenged, resulting in a markedly structured cytoskeleton, the quantitation of which would give a stress factor.
c. Kidney tubule cells react to an increased intracellular tension via reinforcement of their junctions (unpublished). The LDV at the cell border can be taken as a measure for a cell layer’s reactance against stress.
d. Endothelial cells are key to the control of leukocyte invasion into an inflamed tissue. The process of transmigration is not completely understood, but the endothelial role has been underestimated.

Recently, we found, that the endothelial cell softens underneath the leukocyte to let it pass through (unpublished). To initiate this step, the endothelium prepares by altering its LDV at putative sites of transmigration. Quantification of this LDV can be used to give a (pro-)inflammatory index.

When quantitated, the above listed alterations can be used for determination of a cell’s status in various kinds of cellular disease models up to the development of diagnostic assays. One advantage of this method is its applicability to cells on biomaterials, which are not cut out and subjected to AFM contact imaging in HEPES buffered solution at room temperature (20 °C). Images were taken with a Bioscope (Nanoscope IIIa Controller, Digital Instruments, CA, Santa Barbara, USA) using gold-coated MLCT-AJUNM tips (spring constant 0.01 N/m) in contact mode.

AFM

To obtain maximal resolution in z-height, the AFM was mounted on a specially designed construction for minimising the ambient mechanical noise. To isolate the setup well from vibration, it was put on an air cushioned table, which in turn bears a platform being suspended on rubber strings. Moreover, the whole construction was shielded by a foam-coated acoustic hood. Additionally, careful grounding of metal parts was performed to reduce electrical noise. Parameters in the software were always optimised for lowest noise and least artefact generation. The noise of the instrumentation using conditions as stated below was measured on atomically flat mica to yield < 0.5 nm of mean roughness. The force exerted on the sample was kept below 5 nN, the scan rates were 0.5-10 Hz/line and digital resolution usually
was from 128² to 1024² pixels.

[0035] Images were processed using the Nanoscope software, version 5.12b48 which is supplied by the manufacturer (Digital Instruments). Image analysis and presentation was performed with the software SPIP (Scanning probe image processor V 3.3.9, Image Metrology, Lyngby, Denmark).

[0036] Force-volume imaging: To obtain the Young’s Modulus (YM) quantifying the stiffness of the samples, 64*64 arrays of force-distance curves were recorded in “force volume” mode which records the deflection of the cantilever (in nm) as a function of piezo elongation (z-distance in nm). Piezo z travel speed was kept below 10 μm/s. In order to reconstruct the respective maps for height and Young’s Modulus (YM), raw data were processed with a routine written for the software “Igor Pro” based on the Hertz’ model of elasticity as described in previous studies by M. Radmacher et al. (Science; 1992; 257:1900).

[0037] The following examples were performed by using the method according to the invention:

1. Determination of a “stress factor”

[0038] Virtually all cells react to stress when challenged, resulting in a markedly structured cytoskeleton, the quantitation of which would give a “stress factor”.

Cell isolation and cultivation:

[0039] Cells are cultivated along standard biological protocols applicable for growth of the specific cells. Livings cells are extremely soft - especially at 37 °C when the cellular surface basically is a fluid, as well as the cytosol. Hence, upon minute mechanical loads, they readily deform until a harder structure becomes detectable, which represent polymeric actin bundles. These fibers are quickly reorganized by cells upon physiological or noxious stimuli. The mediators of this pro-fibrotic signalling may be among cytokines, interleukins, growth factors, (peptide) hormones etc. Due to the altered mechanical characteristics, physiological function of the cells may be inhibited, eventually leading to a pathophysiolog-ical cellular state.

Results

[0040] Through morphometrical analysis by the method according to the invention, the amount of fiber-formation can be quantified. Moreover, stiffness measurements (mechanical quantification via determination of Young’s Modulus) can give the sum of local effects.

[0041] Cellular fibers have been investigated so far by fluorescence microscopy, which usually requires fixed samples and does not yield quantitative results. The latter method has the disadvantage of a high fluorescence background due to monomeric GFP-actin. Additionally, it requires optically transparent media, preferably glass to grow the cells on.

2. Determination of cell differentiation

[0042] Collecting duct epithelial cells exhibit protruding borders, when being highly differentiated. Moreover, also central cilia develop, that can indicate the degree of differentiation within the cell preparation.

Cell isolation and cultivation:

[0043] Inner medulla collecting duct (IMCD) epithelial cells were prepared as follows: Briefly, the inner medullas of deceased Wistar rats were removed, cut into small pieces and digested in PBS (Biochrom, Berlin, Germany) containing 0.2% hyaluronidase (Sigma, Germany) and 0.2% collagenase type CLS-II (Sigma, Germany) at 37 °C for 90 min. The cells were seeded on glass cover slips coated with collagen type IV (Becton-Dickinson, Heidelberg, Germany) at a density of approximately 10⁵ cells/cm² and cultivated in Dulbecco’s modified Eagle’s medium (DMEM) containing penicillin 100 IU/ml and streptomycin 100 μg/ml and streptomycin 100 μg/ml, 0.2% glutamine, 1 % non-essential amino acids. The osmolarity was adjusted to 600 mosmol/l by the addition of 100 mM NaCl and 100 mM urea. To maintain AQP2 expression 10 μM di-butryl-cAMP was added. The cells were cultured for 5-7 days and the dbcAMP was removed 14-18 h prior to the experiments.

Results

[0044] AFM-images obtained with the method according to the invention of IMCD cells demonstrated for the first time, that cell border structures do not necessarily invaginate, but can protrude up to 300 nm above the level of the cell body. The local deviational volume (LDV) correlates to the degree of tissue differentiation. The latter can be estimated from the regularity of the hexagonal lattice of cells. Another indicator is the existence of central humps, measuring around 1 μm (including tip convolution) in diameter and 0.5 up to 2 μm in height. These can only be interpreted as central cilia, flow sensors of the cells, which preferentially appear on very well developed regions. These structures can be taken to indicate the degree of differentiation, both through their height and LDV.

3. Determination of cell tension

[0045] Kidney tubule cells respond to an elevated intracellular tension via reinforcement of their junctions. Subsequently they form a seam, the LDV of which can be taken as an indirect measure for reactance to stress.

Cell isolation and cultivation

[0046] The epithelial cell line NRK-52E (being cloned
from a mixture of normal rat kidney cells) was received from the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ, Braunschweig, Germany). Cells were propagated and cultured in Dulbecco’s Minimum Essential Medium (DMEM) containing 4.5 g/l D-glucose and 3.7 g/l NaHCO₃ (Biochrom, Berlin, Germany) supplemented with 10% fetal calf serum (PAA, Linz, Austria), 2 mM L-glutamin (Biochrom, Berlin, Germany) as well as 100 μg/ml Penicillin and 100 μg/ml Streptomycin (Biochrom). Cells were routinely passaged once a week (1:10). All cell cultures were maintained at 37 °C in a humidified atmosphere of 5 % CO₂ - 95 % air. Cells were seeded into 6- and 12-well plates containing 15 mm or 24 mm coverslips which were partially gold-covered (50 nm) for AFM experiments. Cells were grown to confluence on all substrates used and the cell culture medium was exchanged 24 h prior to any experiment.

Results

[0047] Control cells appear like typical epithelial cells do; they form a cobblestone-like layer with high nuclear regions, decorated by microvilli and separated by furred-type cell borders. After stimulation with cytokine for at least 30 h, they not only develop stress fibers and elongate in shape, but they also form punctuate cell borders. These borders eventually protrude above cytosolic level up to 300 nm. This effect is accompanied by an increase in overall cell stiffness of 70 %. The protrusions obviously are a counter-regulatory response of the cells to elevated intracellular tension. A quantification of the LDV gives a measure for the degree of transdifferentiation from an epithelial to a mesenchymal state. This measure has been proven sensitive to force-inhibiting agents and hence can report on the tensional status of a cell culture and its physiological barrier function.

4. Determination of inflammatory status

[0048] Endothelial cells are key to the control of leukocytes invading an inflamed tissue. The process of transmigration (diapedesis) is not completely understood, but the endothelial role has been underestimated. The inventors were able to demonstrate that the endothelial cytoskeleton softens underneath the leukocyte to let it pass through (unpublished data). To initiate this step, the endothelium prepares itself by altering its LDV at putative sites of transmigration. Quantification of LDV in these regions would give an estimate of a proinflammatory index.

Cell isolation and cultivation

[0049] Human umbilical cords were obtained from normal births. Endothelial cells (HUVEC) were prepared as described. Briefly, veins were treated with collagenase and grown on gelatine coated culture flasks in a humidified chamber at 37 °C, 5 % CO₂ in M199 Medium (Gibco, purchased through Invitrogen, Karlsruhe, Germany) containing penicilline/streptomycine, heparin and 10 % freshly isolated human serum. 10 h prior to imaging, they were stimulated with proinflammatory cytokines, which can also recruit from the group of interleukins, hormones, growth factors asf.

Results

[0050] After having developed a special kind of AFM-manipulation method ("nano-surgery") to specifically remove firmly adhering leukocytes (Riethmüller 2008, see above), the inventors found the border of the interaction-site decorated with filopodia-like protrusions. These protrusions grasp for the leukocyte to engulf it. They are mechanically softer than the cytosol and measure 150 nm in height and up to 2 μm in length. These finger-like protrusions are propelled from endothelial surface, thereby proving the essential role of endothelial cells in diapedesis. Therefore, quantitation of these morphological structures could give at hand a readout parameter for the transmigratory capacity (permissivity) of an endothelial cell culture. This could help to estimate the pro- or anti-inflammatory potential of pharmaceutical compounds in cell based assays.

[0051] The figures show

Fig. 1 A) Height profiles on epithelial cell surface under fluid buffer conditions as described in example 3). A representative profile of control (left) and stimulated (right) sample is shown. A typical protrusion of 150 nm in height and 1.5 μm diameter is marked by triangles (right). B) Size distribution of the local deviational volume (LDV) derived from specific surface structures. Histograms showing LDV of membrane protrusions are given in control or cytokine-stimulated of epithelial cells from kidney in culture. The most probable LDV value shifts from 0.6 to 1.9 μm³ upon three days of cytokine treatment.

Fig. 2 Pharmacological intervention as quantified via Specific LDV. In a cellular model of inflammation, the LDV values are quantitated and divided by cell border length to yield the Specific LDV independent of cell size. Inhibition of the cytokine-induced signalling reduced the Specific LDV almost down to control values.

Claims

1. Method for determining and quantifying the topographical elements of biological surfaces using data received by atomic force microscopy, comprising the steps of...
a. Preparing in vitro a single cell, cellular monolayer or tissue section;
b. Predefining a mask in xy-plane for subcellular structures of said single cell, cellular monolayer or tissue section;
c. Determining the local deviational volume (LDV) of said subcellular structures in said predefined mask in xy-plane, wherein the local deviational volume is defined as a nanoscale excursion in z-direction over said predefined mask in xy-plane, wherein the local protruding, positive or depressed, negative volume as compared to the mean surface level of said predefined mask is evaluated;
d. Normalizing the positive or negative volume within the area of said predefined mask;
e. Quantifying the local deviational volume;
f. Analysing the data by comparing them with characteristic topographical elements of a calibrated sample;
g. Evaluating the quantified structural elements to obtain parameter sets.

2. Method according to claim 1, wherein the analysed area is less than the surface of one cell, wherein the cell is preferably an analysed eukaryotic, more preferably a mammalian cell.

3. Method according to claim 1 or 2, wherein cell surface areas overlap to assemble them to a larger area.

4. Method according to any of the preceding claims 1 to 3, wherein a neuronal network is used for the evaluation of the data, wherein the neural network comprises at least three layers.

5. Method according to any of the preceding claims 1 to 4, wherein the subdivided part of the cell comprises a length of preferably 2 to 20 \(\mu \text{m} \).

6. Method according to any of the preceding claims 1 to 5, wherein the subdivided part of the cell comprises a deviational volume in the range of 0.2 to 20 \(\mu \text{m} \) in xy-axis and <500 nm in z-axis.

7. Method according to any of the preceding claims, wherein the calibrated sample comprises data of cell surface marker, topographical or morphological structures.

8. Method according to any of the preceding claims, wherein the cell surface marker, topographical or morphological structures comprise protrusions, depressions or other morphological structures or combinations thereof or specific patterns of such structures.

9. Method according to any of the preceding claims, wherein the parameter sets are used to produce a map of topographical elements.

10. Use of a method according to any of the claims 1 to 9 for in vivo and in vitro mapping and quantifying of cell surface marker, topographical or morphological structures on cell surfaces or surfaces of cell junctions.

11. Use of a method according to any of the claims 1 to 9 for the detection of specific cell surface marker, topographical or morphological structures related to diseases, wherein the diseases are chosen from the group of tumour, cardiovascular, nephritic, fibrotic, inflammatory, arteriosclerotic or auto-immune diseases.

12. Use of a method according to any of the claims 1 to 9 for:
 - determining cell surface marker as diagnostic marker; or
 - determining topographical structures as diagnostic marker; or
 - determining morphological structures as diagnostic marker; or
 - determining cellular mechanical forces; or
 - determining contractile forces; or
 - a cell-culture based classification system in diagnosis.

13. Use of a method according to any of the claims 1 to 9 for monitoring changes of cell surface marker, topographical or morphological structures in the prophylaxis, diagnosis, therapy, follow-up and/or aftercare of a therapy in any of the diseases of claim 11.

14. Use of a method according to any of the claims 1 to 9 in the production or screening of a drug for the treatment of any of the diseases of claim 11 comprising pharmaceutical compositions, antibodies, proteins, peptides, nucleic acids or chemicals.

15. Use of a method according to claims 1 to 9, wherein the predefined mask in xy-plane for the determination of the LDV is determined by optical methods, comprising phase contrast, fluorescence or Raman microscopy.

Patentansprüche

1. Methode zur Bestimmung und Quantifizierung von topographischen Elementen auf biologischen Oberflächen unter Verwendung von mit Rasterkraftmikroskopie (AFM) erhalten Daten, beinhaltend die Schritte:
a. In-vitro-Präparation einer Einzelzelle, eines Zellmonolayers oder eines Gewebestückes;
b. Vorauswahl einer Maske in xy-Ebene für subzelluläre Strukturen auf besagter/m Einzelzelle, Zellmonolayer oder Gewebestück;
c. Bestimmung des lokalen Abweichungsvolumens (LDV) besagter subzellulärer Strukturen in besagter vorausgewählter Maske in xy-Ebene, wobei das lokale Abweichungsvolumen (LDV) sich über die nanoskalige Auslenkung in z-Richtung über besagter vorgewählter Maske in der xy-Ebene definiert, wobei das lokal vorstehende, positive oder lokal vertiefte, negative Volumen im Vergleich zum mittleren Oberflächenniveau der vorgewählten Maske ausgewertet wird;
d. Normierung des positiven oder negativen Volumens innerhalb der Fläche der besagten, vorgewählten Maske;
e. Quantifizierung des lokalen Abweichungsvolumens;
f. Analyse der Daten durch Vergleich mit charakteristischen topographischen Elementen einer kalibrierten Probe;
g. Auswertung der quantifizierten Strukturelemente, um Parametersätze zu erhalten.

2. Methode gemäß Anspruch 1, wobei das untersuchte Areal kleiner ist als die Oberfläche einer Zelle, wobei die Zelle vorzugsweise eine analysierte eukaryotische Zelle ist, vorzugsweise eine Säugerzelle.

3. Methode gemäß Anspruch 1 oder 2, wobei Zelloberflächenareale überlappen, um sie zu einem größeren Areal zu kombinieren.

4. Methode gemäß einem der vorangegangenen Ansprüche 1 bis 3, wobei ein Neuronales Netz verwendet wird, um die Daten auszuwerten, wobei das Neuronale Netz mindestens drei Schichten umfasst.

5. Methode gemäß einem der vorangegangenen Ansprüche 1 bis 4, wobei der segmentierte Teil der Zelle vorzugsweise 2-20 μm Länge aufweist.

6. Methode gemäß einem der vorangegangenen Ansprüche 1 bis 5, wobei der segmentierte Teil der Zelle ein Abweichungsvolumen von 0,2 bis 20 μm Ausdehnung in der xy-Ebene und bis zu 500 nm Höheauslenkung (in z-Richtung) beinhaltet.

7. Methode gemäß einem der vorangegangenen Ansprüche, wobei die kalibrierte Probe Daten über Zelloberflächenmarker, topographische oder morphologische Strukturen beinhaltet.

8. Methode gemäß einem der vorangegangenen Ansprüche, wobei die Zelloberflächenmarker, die topographischen oder die morphologischen Strukturen Aufwerfungen oder Vertiefungen oder andere morphologische Strukturen oder Kombinationen daraus oder spezifische Muster solcher Strukturen umfassen.

9. Methode gemäß einem der vorangegangenen Ansprüche, wobei die Parametersätze verwendet werden um die topographischen Elemente zu kartieren.

12. Verwendung einer Methode nach einem der Ansprüche 1 bis 9:
- zur Bestimmung eines Zelloberflächenmarkers als diagnostischem Marker, oder
- zur Bestimmung von topographischen Strukturen als diagnostischem Marker, oder
- zur Bestimmung von morphologischen Strukturen als diagnostischem Marker, oder
- zur Bestimmung von zellmechanischen Kräften; oder
- zur Bestimmung von kontraktilen Kräften; oder
- für ein Zellkultur-basiertes Klassifikationssystem zur Diagnose.

15. Verwendung einer Methode nach einem der Ansprüche 1 bis 9, wobei die vorgewählte Maske in der xy-
EBENE ZUR BESTIMMUNG DES LDV DURCH OPTISCHE VERFAHREN BESTIMMT WIRD, DIE PHASENKONTRAST, FLUORESCENZ- ODER RAMAN-MIKROSKOPIE VERFAHREN UMFASSEN.

REVENDICATIONS

1. MÉTHODE POUR DÉTERMINER ET MESURER DES ÉLÉMENTS TOPOGRAPHIQUES DES SURFACES BIOLOGIQUES EN UTILISANT LES DONNÉES ISSUES À L'AIDE DE MICROSCOPIE À FORCE ATOMIQUE (AFM) CONTENANT LES ÉTAPES SUIVANTES:
 a) Préparer in vitro une cellule unique, une couche cellulaire mono ou parties des tissus;
 b) Préétablir un masque en xy-plan pour des structures sous-cellulaires se référant à la cellule unique, à la couche cellulaire mono ou aux parties de tissus;
 c) Déterminer le volume déviant local (LDV) de la structure sous-cellulaire mentionnée dont le masque prédéfini en xy-plan, où le volume local protubérant positif ou approfondi négatif est exploité en comparaison au portée de niveau du masque prédéfini;
 d) Normaliser le volume positif ou négatif dans le terrain du masque prététabli;
 e) Analyser les données, en les comparant avec les éléments caractéristiques topographiques d'un exemple calibré.
 f) Évaluer les éléments structuraux quantifiés pour acquérir des séries de paramètres.

2. MÉTHODE CONFORME À LA REVENDICATION 1, DANS LEQUEL LE Terrain ANALYSÉ EST INFÉRIEUR À LA SURFACE D'UNE CELLULE, CETTE CELLULE ANALYSEÉE EST EUCAROYTE ET PRÉFÉRALEMENT CELLE D'UNE MAMMIFÈRE.

3. MÉTHODE CONFORME À LA REVENDICATION 1 OU 2, QUAND LES TERRAINS DE LA SURFACE CELLULAIRE SE SUPERPOSENT POUR LES RASSEMBLER À UN TERRAIN PLUS LARGE.

4. MÉTHODE SELON L'UNE DES REVENDICATIONS PRÉCÉDENTES 1 À 3, OÙ LE RéSEAU NEURONAL EST UTILISÉ POUR L'ÉVALUATION DE CES DONNÉES, DONC LE RéSEAU NEURONAL CONTIENT AU MOINS TROIS COUCHES.

5. MÉTHODE SELON L'UNE DES REVENDICATIONS 1 À 4, OÙ LA PARTIE SUBDIVISÉ DE LA CELLULE EST CONSTITUÉ D'UNE LONGUEUR PRÉFÉRABLE ENTRE 2 ET 20 µM.

6. MÉTHODE SELON L'UNE DES REVENDICATIONS PRÉCÉDENTES 1 À 5, OÙ LA PARTIE SUBDIVISÉ DE LA CELLULE EST CONSTITUÉ D'UN VOLUME DÉVIANT D'UN PÉRIMÈTRE DE 0,2 JUSQU'À 20 µM EN AXE XY ET < 500 NM EN AXE Z.

7. MÉTHODE SELON L'UNE DES REVENDICATIONS PRÉCÉDENTES, OÙ LES EXEMPLAIRES CALIBRÉS CONTIENNENT DES DONNÉES SUR LE MARQUEUR DE LA SURFACE CELLULAIRE, DES STRUCTURES TOPOGRAPHIQUES OU MORPHOLOGIQUES.

8. MÉTHODE SELON L'UNE DES REVENDICATIONS PRÉCÉDENTES, OÙ LE MARQUEUR DE LA SURFACE CELLULAIRE, LES STRUCTURES TOPOGRAPHIQUES OU MORPHOLOGIQUES, CONTIENNENT DES ÉLEVATIONS, DES APPROFONDISSEMENTS OU D'AUTRES STRUCTURES MORPHOLOGIQUES OU DES COMBINAISONS DE CEUX-CI OU DES TEXTURES SPÉCIFIQUES DE CES STRUCTURES.

9. MÉTHODE SELON L'UNE DES REVENDICATIONS PRÉCÉDENTES, DONT LES SÉRIES DE PARAMÈTRE SONT UTILISÉES POUR LA PRODUCTION D'UNE CARTE D'ÉLÉMENTS TOPOGRAPHIQUES.

10. L'UTILISATION D'UNE MÉTHODE SELON L'UNE DES REVENDICATIONS 1 À 9 POUR IN VIVO OU IN VITRO CARTOGRAPHIER ET QUANTIFIER LES MARQUEURS DE LA SURFACE CELLULAIRE, DES STRUCTURES TOPOGRAPHIQUES OU MORPHOLOGIQUES SUR LES SURFACES CELLULAIRES OU SUR LES SURFACES DES JONCIONS CELLULAIRES.

11. L'UTILISATION D'UNE MÉTHODE SELON L'UNE DES REVENDICATIONS 1 À 9 POUR DÉTECTER DES MARQUEURS DE LA SURFACE CELLULAIRE SPÉCIFIQUES, TOPOGRAPHIQUES OU MORPHOLOGIQUES RELIÉS AUX MALADIES, DONC LES MALADIES SONT CHOISIES DU GROUPE DE TUMEUR, CARIOVASCULAIRE, NÉPHRITIQUE, FIBROTIQUE, INFLAMMATOIRE, ARTÉRIESCLÉROTIQUE OU DES MALADIES D'AUTO-IMMUNITAIRES.

12. L'UTILISATION D'UNE MÉTHODE SELON L'UNE DES REVENDICATIONS 1 À 9 POUR:
 - déterminer le marqueur de la surface cellulaire comme marqueur diagnostique; ou
 - déterminer les structures topographiques comme marqueur diagnostique; ou
 - déterminer les structures morphologiques comme marqueur diagnostique; ou
 - déterminer les forces cellulaires mécaniques; ou
 - déterminer les forces de contractions, ou
 - un système de classification base sur une culture de cellules dans le diagnostic.

13. L'UTILISATION D'UNE MÉTHODE SELON L'UNE DES REVENDICATIONS 1 À 9 POUR CONTRÔLER LES CHANGEMENTS DU MARQUEUR DE LA SURFACE CELLULAIRE TOPOGRAPHIQUES OU MORPHOLOGIQUES EN PROPHYLAXIE, EN DIAGNOSTIC, EN THÉRAPIE, EN TRAITEMENT SUIVI OU SURVEILLANCE DES CONVALESCENTS D'UNE THÉRAPIE À L'ÉGARD DE TOUTES MALADIES DE LA REVENDICATION 11.

14. L'UTILISATION D'UNE MÉTHODE SELON L'UNE DES REVENDICATIONS 1 À 9 POUR LA PRODUCTION OU LE SCREENING D'UN MÉDICAMENT POUR LE TRAITEMENT DE TOUTES LES MALA-
dies mentionnées dans la revendication 11, y compris les compositions des mixtures pharmaceutiques, des anticorps, des protéines, des peptides, des acides nucléiques ou chimiques.

15. Utilisation d’une méthode conforme aux revendications 1 à 9 dont le masque préétablie pour la détermination du LDV est déterminé par des méthodes optiques y compris le contraste des phases, la fluorescence ou la microscopie Raman.
Fig. 1

A

Control

Cytokine-stimulated

B

Probability [%]

0 2 4 6 8 10 12 14

Local Deviational Volume LDV [cubic-micrometers]

Control

Stimulated
Fig. 2
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 6357285 B1 [0006]

Non-patent literature cited in the description

• ROTSCH C.; RADMACHER M. Biophys. J., 2000, vol. 78, 520-535 [0004]
• HAGA H.; SASAKI J.; KATAYAMA K.; ITO E.; USHIKI T.; SAMBONGI T. Ultramicroscopy, 2000, vol. 82, 253-258 [0008]