EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 09.11.2016 Bulletin 2016/45

Application number: 10717430.2

Date of filing: 05.05.2010

Int Cl.: A61B 18/14 (2006.01) A61B 18/00 (2006.01)

International application number: PCT/US2010/033706

International publication number: WO 2010/129661 (11.11.2010 Gazette 2010/45)

IRRIGATED ABLATION CATHETER WITH MULTIPLE SEGMENTED ABLATION ELECTRODES
ABLATIONSSPÜLKATHETER MIT MEHREREN SEGMENTIERTEN ABLATIONSELEKTRODEN
CATHÉTER D’ABLATION IRRIGUÉ AVEC MULTIPLES ÉLECTRODES D’ABLATION SEGMENTÉES

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Priority: 07.05.2009 US 436977

Date of publication of application: 21.03.2012 Bulletin 2012/12

Divisional application: 16190829.8

Proprietor: St. Jude Medical, Inc.
St. Paul, MN 55117-9913 (US)

Inventors:
• HATA, Cary
 Irvine, California 92620 (US)
• TRAN, Thu Xuan
 Garden Grove, California 92840 (US)
• DE LA RAMA, Alan
 Cerritos, California 90703 (US)
• NGUYEN, Tho Hoang
 Huntington Beach, California 92646 (US)
• NARCISO, Irvin John
 Rancho Santa Margarita, California 92688 (US)
• CHEN, Peter C.
 Irvine, California 92603 (US)
• DO, Hanh Ngoc
 Garden Grove, California 92840 (US)

Representative: Kramer Barske Schmidtchen
Patentanwälte PartG mbB
European Patent Attorneys
Landsberger Strasse 300
80687 München (DE)

References cited:
US-B1-6 217 573

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

[0001] The present invention relates generally to catheter devices, and more specifically to irrigated catheter devices with multiple segmented ablation segments.

[0002] Catheters are flexible, tubular devices that are widely used by physicians performing medical procedures to gain access into interior regions of the body. Certain types of catheters are commonly referred to as irrigated catheters that deliver fluid to a target site in an interior region of the body. Such irrigated catheters may deliver various types of fluid to the patient, including, for example, medications, therapeutic fluids, and even cooling fluids for certain procedures wherein heat is generated within targeted areas of the body.

[0003] For example, ablation catheters are sometimes used to perform ablation procedures to treat certain conditions of a patient. A patient experiencing arrhythmia, for example, may benefit from ablation to prevent irregular heart beats caused by arrhythmogenic electrical signals generated in cardiac tissues. By ablating or altering cardiac tissues that generate such unintended electrical signals the irregular heart beats may be stopped. Ablation catheters are known, and may include one or more ablation electrodes supplying RF (radiofrequency) energy to targeted tissue. With the aid of sensing and mapping tools that are also known, an electrophysiologist can determine a region of tissue in the body, such as cardiac tissue, that may benefit from ablation.

[0004] Once tissue is targeted for ablation, a catheter tip having one or more ablation electrodes may be positioned over the targeted tissue. The ablation electrodes may deliver RF energy, for example, supplied from a generator, to create sufficient heat to damage the targeted tissue. By damaging and scarring the targeted tissue, aberrant electrical signal generation or transmission may be interrupted. In some instances irrigation features may be provided in ablation catheters to supply cooling fluid in the vicinity of the ablation electrodes to prevent overheating of tissue and/or the ablation electrodes. There are typically two classes of irrigated catheter devices, open and closed ablation catheters. Closed ablation catheters typically circulate a cooling fluid within the inner cavity of the ablation catheter tip. Open ablation catheters, on the other hand, use the inner cavity of the ablation catheter tip as a manifold to distribute saline solution, or other irrigation fluids known to those skilled in the art, to one or more passageways leading to an orifice. This lowers the temperature of the ablation catheter tip by bringing the outer surface of the ablation electrode in contact with the cool irrigation fluid and dilute the blood around the electrode to prevent blood coagulation.

[0005] US 6,217,573 B1 discloses an RF ablation system comprising an irrigated split tip electrode catheter, an RF generator and a signal processor, wherein the catheter comprises four orthogonally arranged electrodes at the distal tip.

[0006] US 6,010,500 A discloses a catheter device for creating linear lesions in endocardial tissue or other body tissue. The catheter includes an inner shaft telescopically received within an outer shaft. The inner shaft has one or more spaced apart electrodes along its distal section.

[0007] A fluid delivery catheter configured to allow optimal fluid distribution through each electrode by varying the diameter of catheter lumen is disclosed in WO 2008/124619 A1.

[0008] Once tissue is targeted for ablation, a catheter tip having one or more ablation electrodes may be positioned over the targeted tissue. The ablation electrodes may deliver RF energy, for example, supplied from a generator, to create sufficient heat to damage the targeted tissue. By damaging and scarring the targeted tissue, aberrant electrical signal generation or transmission may be interrupted. In some instances irrigation features may be provided in ablation catheters to supply cooling fluid in the vicinity of the ablation electrodes to prevent overheating of tissue and/or the ablation electrodes. There are typically two classes of irrigated catheter devices, open and closed ablation catheters. Closed ablation catheters typically circulate a cooling fluid within the inner cavity of the ablation catheter tip. Open ablation catheters, on the other hand, use the inner cavity of the ablation catheter tip as a manifold to distribute saline solution, or other irrigation fluids known to those skilled in the art, to one or more passageways leading to an orifice. This lowers the temperature of the ablation catheter tip by bringing the outer surface of the ablation electrode in contact with the cool irrigation fluid and dilute the blood around the electrode to prevent blood coagulation.

BRIEF SUMMARY

[0009] The present invention is defined by the amended claims. Exemplary embodiments of the teachings provide an irrigated catheter ablation apparatus with multiple segmented ablation segments.

[0010] According to an aspect of the teachings, an irrigated catheter ablation apparatus comprises an elongated body having a distal end, a proximal end, and at least one fluid lumen extending longitudinally therein; and a plurality of segmented ablation electrodes on a distal portion of the elongated body. The plurality of segmented ablation electrodes are spaced from the proximal end and from the distal end of the elongated body by electrically nonconductive segments. The plurality of segmented ablation electrodes are spaced from each other longitudinally by electrically nonconductive segments. For each segmented ablation electrode that is longitudinally disposed next to one of the electrically nonconductive segments, an edge is formed between an electrode end of the segmented ablation electrode and a nonconductive segment end of the electrically nonconductive segment. A plurality of elution holes are disposed adjacent to the edges which are between the electrode ends of the seg-
mented ablation electrodes and the nonconductive segment ends of the electrically nonconductive segments. A plurality of ducts establish fluid communication between the elution holes and the at least one fluid lumen.

In some embodiments, the plurality of elution holes may be disposed in the plurality of electrically nonconductive segments. The plurality of elution holes may be disposed in the plurality of segmented ablation electrodes. The plurality of segmented ablation electrodes may include at least one of a coil ring electrode having gaps in a coil to permit fluid flow therethrough or a ring electrode having gaps cut into the ring electrode to permit fluid flow therethrough. For each of the edges, at least one of the elution holes is disposed adjacent the edge. For each of the edges, more than one of the elution holes are spaced around a circumference adjacent the edge.

In specific embodiments, a tip electrode is disposed at the distal end of the elongated body. The tip electrode has a proximal end which meets a nonconductive segment end of one of the electrically nonconductive segments at a tip electrode edge. At least one tip electrode edge elution hole is disposed adjacent to the tip electrode edge and being in fluid communication with the at least one fluid lumen. The tip electrode may be an ablation tip electrode. The at least one tip electrode edge elution hole is disposed in the tip electrode. At least some of the ducts are substantially perpendicular to the at least one fluid lumen. The distal portion of the elongated body includes a material which is preformed into a substantially closed loop having the plurality of longitudinally spaced segmented ablation electrodes and the electrically nonconductive segments.

In some embodiments, one or more conducting wires coupled with and supplying RF energy to the plurality of segmented ablation electrodes, the RF energy being one of unipolar RF energy or bipolar RF energy. One or more conducting wires are coupled with the plurality of segmented ablation electrodes. An energy source supplies energy via the one or more conducting wires to the plurality of segmented ablation electrodes. A controller is configured to control the energy source to supply energy to the plurality of segmented ablation electrodes in one of an independent manner, a sequential manner, or a simultaneous manner.

In specific embodiments, a plurality of temperature sensors are disposed on and in contact with the plurality of segmented ablation electrodes at the electrode ends. The temperature sensors each substantially abut the edge between one of the electrode ends of the segmented ablation electrodes and one of the nonconductive segment ends of the electrically nonconductive segments. In another embodiment, each of a plurality of temperature sensors is disposed on and in contact with a respective segmented ablation electrode at a location situated between the electrode ends. A controller is configured to control the energy source to supply energy to the plurality of segmented ablation electrodes based on signals received from the plurality of temperature sensors so as to control temperatures of the plurality of segmented ablation electrodes.

In some embodiments, the distal portion of the elongated body includes a material which is preformed into a substantially closed loop having the plurality of longitudinally spaced segmented ablation electrodes and the electrically nonconductive segments. The substantially closed loop is placed around at least one vessel ostium in a chamber of a patient to ablate the tissue on a chamber wall of the chamber around the at least one vessel ostium. The at least one vessel ostium comprises at least one pulmonary vein. The substantially closed loop may be placed within a vessel of a patient to denervate nerves within and around a vessel wall of the vessel. Denervation is defined herein as partially or totally blocking nerve conduction. Denervation may be achieved by stimulating, or overstimulating, or ablating the nerves. The vessel comprises a renal artery or a renal vein.

These and other features and advantages of the present teachings will become apparent to those of ordinary skill in the art in view of the following detailed description of the specific embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an elevational view of a distal portion of an irrigated ablation catheter according to an embodiment of the present teachings (showing not all features of the claims).

FIG. 2 is an elevational view of a distal portion of an irrigated ablation catheter according to an embodiment of the present teachings (showing not all features of the claims).

FIG. 3 is an elevational view of a distal portion of an irrigated ablation catheter according to an embodiment of the present teachings (showing not all features of the claims).

FIG. 4 is an elevational view of a distal portion of an irrigated ablation catheter according to an embodiment of the present teachings.

FIG. 5 is an elevational view of a distal portion of an irrigated ablation catheter according to an embodiment of the present teachings.

FIG. 6 is an elevational view of a distal portion of an irrigated ablation catheter according to an embodiment of the present teachings.

FIG. 7 is an elevational view of a distal portion of an irrigated ablation catheter according to an embodiment of the present teachings.

FIG. 8 is a transverse sectional view of a distal portion of an irrigated ablation catheter according to an embodiment of the present teachings.

FIG. 9 is a longitudinal sectional view of a distal portion of an irrigated ablation catheter according to an embodiment of the present teachings.
FIG. 10 is a longitudinal sectional view of a distal portion of an irrigated ablation catheter showing a temperature sensor located at an edge of an electrode according to an embodiment of the present teachings.

FIG. 11 is a perspective view of a distal portion of an irrigated ablation catheter having a preformed loop shape.

FIG. 12 is an elevational view of an irrigated ablation catheter showing a handle for manipulating the shape of a distal portion of the catheter.

FIG. 13 is another elevational view of the irrigated ablation catheter of FIG. 12.

FIG. 14 is a system installation diagram of an RF ablation system with an irrigated ablation catheter.

FIG. 15 is a block diagram of the RF ablation system of FIG. 14.

FIG. 16 is a flow diagram of the software program for the RF ablation system of FIG. 14.

FIG. 17 shows schematic diagrams of ablation patterns around at least one vessel ostium.

DETAILED DESCRIPTION

[0018] In the following detailed description, reference is made to the accompanying drawings which form a part of the disclosure, and in which are shown by way of illustration, and not of limitation, exemplary embodiments by which the teachings may be practiced. In the drawings, like numerals describe substantially similar components throughout the several views. Further, it should be noted that while the detailed description provides various exemplary embodiments, as described below and as illustrated in the drawings, the present teachings are not limited to the embodiments described and illustrated herein, but can extend to other embodiments, as would be known or as would become known to those skilled in the art. Reference in the specification to "one embodiment", "this embodiment", or "these embodiments" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the teachings, and the appearances of these phrases in various places in the specification are not necessarily all referring to the same embodiment. Additionally, in the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present teachings. However, it will be apparent to one of ordinary skill in the art that these specific details may not all be needed to practice the present teachings. In other circumstances, well-known structures, materials, circuits, processes and interfaces have not been described in detail, and/or may be illustrated in block diagram form, so as to not unnecessarily obscure the present teachings.

[0019] In the following description, relative orientation and placement terminology, such as the terms horizontal, vertical, left, right, top and bottom, is used. It will be appreciated that these terms refer to relative directions and placement in a two dimensional layout with respect to a given orientation of the layout. For a different orientation of the layout, different relative orientation and placement terms may be used to describe the same objects or operations.

[0020] Exemplary embodiments, as will be described in greater detail below, provide apparatuses for ablation or denervation using an irrigated catheter device with multiple segmented ablation segments.

[0021] FIG. 1 is an elevational view of a distal portion of an irrigated ablation catheter 10 according to an embodiment of the present teachings. The catheter 10 has an elongated body with a proximal end 124 (see FIG. 12), a distal end 12, and at least one fluid lumen 13 extending longitudinally therein. A tip electrode 14 is disposed at the distal end 12. The tip electrode 14 may be an ablation tip electrode. The tip electrode 14 has irrigation holes 15 which are in fluid communication with the fluid lumen 13. In the distal portion, a plurality of segmented ablation electrodes 16 are spaced from the proximal end and the distal end 12 by electrically nonconductive segments 18, and they are spaced from each other longitudinally by electrically nonconductive segments 18. The electrically nonconductive segments 18 may be made of a thermoplastic material. The segmented ablation electrodes 16 may be solid rings of a conductive material such as platinum, which are pressure fitted about the elongated body. For each segmented ablation electrode 16 that is longitudinally disposed next to one of the electrically nonconductive segments 18, an edge 20 is formed between an electrode end of the segmented ablation electrode 16 and a nonconductive segment end of the electrically nonconductive segment 18. A plurality of elution holes 22 are disposed adjacent to the edges 20. As used herein, "adjacent" to the edge 20 means very near or substantially abutting the edge 20, such that the distance between a specific elution hole 22 and the edge 20 to which it is "adjacent" is at least an order of magnitude smaller than the distance between that elution hole 22 and the next edge 20 or the distal end 12 or the proximal end of the elongated body. A plurality of ducts 24 establish fluid communication between the elution holes 22 and the fluid lumen 13. The tip electrode 14 has a proximal end which meets a nonconductive segment end of one of the electrically nonconductive segments 18 at a tip electrode edge 30. It is advantageous to be able to ablate with multiple irrigated electrodes 16 and tip electrode 14 to reduce the time needed to produce the ablation line on the tissue as compared to moving or dragging an ablation tip along the tissue.

[0022] In FIG. 1, the elution holes 22 are disposed in the electrically nonconductive segments 18. For each of the edges 20, at least one of the elution holes 22 is disposed adjacent the edge 20. In FIG. 1, multiple (e.g., four) elution holes 22 are spaced around a circumference adjacent the edge 20. The ducts 24 may be substantially perpendicular to the fluid lumen 13, as seen in FIG. 1. In alternative embodiments, the plurality of elution holes are
disposed in the segmented ablation electrodes 16 or in both the segmented ablation electrodes 16 and the electrically nonconductive segments 18.

[0023] FIG. 2 shows a distal portion of another irrigated ablation catheter 28 which is similar to the catheter 10 of FIG. 1. In FIG. 2, the tip electrode 29 has a proximal end which meets a nonconductive segment end of one of the electrically nonconductive segments 18 at a tip electrode edge 30. At least one tip electrode edge elution hole 32 may be disposed adjacent to the tip electrode edge 30 and is in fluid communication with the fluid lumen 13 (see FIG. 1). In FIG. 2, the tip electrode edge elution holes 32 are spaced around a circumference adjacent the tip electrode edge 30, and are disposed in the tip electrode 29. In alternative embodiments, the tip electrode edge elution holes 32 may be disposed in the electrically nonconductive segment 18.

[0024] FIG. 3 shows a distal portion of another irrigated ablation catheter 36 which is similar to the catheter 10 of FIG. 1 but does not have a tip electrode at the distal end 12.

[0025] FIG. 4 shows a distal portion of another irrigated ablation catheter 40 which is similar to the catheter 10 of FIG. 1. A tip electrode 14 is disposed at the distal end 12 and has irrigation holes 15. The segmented ablation electrodes in FIG. 4 are coil ring electrodes 42 which are spaced from the proximal end and the distal end 12 by electrically nonconductive segments 44, and the electrodes 42 are spaced from each other longitudinally by electrically nonconductive segments 44. An edge 46 is formed between an electrode end of the segmented ablation electrode 42 and a nonconductive segment end of the electrically nonconductive segment 44. The plurality of elution holes are disposed in the coil ring electrodes 42, which have gaps in the coil to allow fluid to flow out. For example, elution holes in fluid communication with the fluid lumen 13 via the ducts 24 (see FIG. 1) are provided in a portion of the elongated body underneath the coil ring electrodes 42, and the fluid flows through the elution holes and the gaps in the coil.

[0026] FIG. 5 shows a distal portion of another irrigated ablation catheter 50 which is similar to the catheter 40 of FIG. 4. In FIG. 5, the tip electrode 52 has a proximal end which meets a nonconductive segment end of one of the electrically nonconductive segments 44 at a tip electrode edge 54. At least one tip electrode edge elution hole 56 is disposed adjacent to the tip electrode edge 54 and is in fluid communication with the fluid lumen 13 (see FIG. 1). In FIG. 5, the tip electrode edge elution holes 56 are spaced around a circumference adjacent the tip electrode edge 54, and are disposed in the tip electrode 52. In alternative embodiments, the tip electrode edge elution holes 56 may be disposed in the electrically nonconductive segment 44.

[0027] FIG. 6 shows a distal portion of another irrigated ablation catheter 58 which is similar to the catheter 40 of FIG. 4 but does not have a tip electrode at the distal end 12.

[0028] FIG. 7 shows a distal portion of another irrigated ablation catheter 60 which is similar to the catheter 58 of FIG. 6 but has a tip electrode 61 at the distal end 12. Instead of the coil ring electrodes 42, the catheter 60 includes flexible ring electrodes 62 having gaps cut into a cylindrical sheet to allow fluid to flow out. One of the flexible ring electrodes 62 also forms the tip electrode 61. For example, elution holes in fluid communication with the fluid lumen 13 via the ducts 24 (see FIG. 1) are provided in a portion of the elongated body underneath the flexible ring electrodes 62, and the fluid flows through the elution holes and the gaps in the electrodes 62. The gaps may be laser cut into the cylindrical sheets of the electrodes 62. The flexible ring electrodes 62 are spaced from the proximal end of the elongated body by an electrically nonconductive segment 64, and the electrodes 62 are spaced from each other longitudinally by electrically nonconductive segments 64. An edge 66 is formed between an electrode end of the segmented ablation electrode 62 and a nonconductive segment end of the electrically nonconductive segment 64.

[0029] In FIG. 7, the gaps are elongated gaps in a corrugated pattern. As used herein, an elongated gap preferably has a length that is at least about 3 times the width of the gap, more preferably at least about 5 times, and most preferably at least about 10 times. A variety of gap patterns are possible. The gaps may be linear or curvilinear instead of corrugated. The gaps may be spiral gaps that extend in a helical pattern in the longitudinal direction or transverse gaps that are spaced from each other in the longitudinal direction. A transverse gap may extend less than 360 degrees or may extend the full 360 degrees. For a transverse gap that extends the full 360 degrees, some type of additional supporting structure is required to connect the severed pieces together. For example, a biasing element such as an inner coil may be provided within the elongated body. Examples of flexible ring electrodes with elongated gaps can be found, for example, in US2008/0294158 and WO/2008/147599.

[0030] FIG. 8 is a transverse sectional view of a distal portion of an irrigated ablation catheter, which may be any of the catheters shown in FIGS. 1-7. FIG. 8 shows four ducts 24 connected to the fluid lumen 13. Additional lumens are provided for conducting wires 70 for supplying energy to the electrodes, one or more preshaping wires 72 made of a material such as Nitinol to provide a preformed shape for the distal portion of the catheter, one or more activation wires 74 for manipulating the distal portion (e.g., bidirectional bending and/or loop size adjusting), and a plurality of temperature sensor lines 76. The multiple lumens can be formed within a single extruded tubing to separate the fluid lumen 13 from the other lumens that house the various components described above.

[0031] FIG. 9 is a longitudinal sectional view of a distal portion of an irrigated ablation catheter showing the fluid lumen 13, conducting wires 70, preshaping wires 72, activation wires 74, and temperature sensor lines 76.
FIG. 10 is a longitudinal sectional view of a distal portion of an irrigated ablation catheter showing temperature sensors 80 located at edges 102, 104 of an electrode 100. For clarity, elution holes and corresponding ducts are omitted in FIG. 10. The edges 102, 104 are where the electrode 100 abuts the underlying, electrically nonconductive support body 106. The temperature sensors 80 are disposed on and in contact with the segmented ablation electrode 100 at the electrode ends substantially abutting the edges 102, 104. For RF ablation, RF current densities are high at the edges 102, 104, because the electrically conductivity is discontinuous at the edges 102, 104. The resulting rise in current density at the electrode edges 102, 104 generates localized regions of increased power density and hence regions of higher temperatures. Therefore, temperature sensing and irrigation fluid cooling at the edges 102, 104 are desirable. In another embodiment, where a single temperature sensor 80 is used for an ablation electrode 100, the single temperature sensor 80 is disposed on and in contact with the ablation electrode 100 at a location situated between the edges 102 and 104. A temperature sensor may also be provided at the tip electrode (14, 29, 52, 61) adjacent the tip electrode edge (30, 54, 66) in the catheter (10, 28, 40, 50, 60) of FIG. 1, FIG. 2, FIG. 4, FIG. 5, or FIG. 7.

FIG. 11 is a perspective view of a distal portion of an irrigated ablation catheter having a preformed loop shape. For example, the one or more reshaping wires 72 includes a material such as Nitinol so that the distal portion is preformed into a substantially closed loop with the distal tip 110 having a plurality of longitudinally spaced segmented ablation electrodes 112 and electrically nonconductive segments 114.

FIGS. 12 and 13 are elevational views of an irrigated ablation catheter 120 showing a handle 122 connected to a proximal end 124 of the elongated body 125 for manipulating the shape of a distal portion of the catheter 120 near the distal end 126. In FIG. 12, the distal portion of the catheter 120 includes a loop 128 having segmented ablation electrodes (see FIG. 11). The handle 122 includes a first roller 130 for changing the size of the loop 128, and a second set of rollers or sliders 132 for bidirectional bending of the elongated body 125.

FIG. 14 is a system installation diagram of an RF ablation system with an irrigated ablation catheter. The system includes a catheter 201 with multiple electrodes, a connecting cable 202, an RF generator 203, an EKG connecting cable 204, and a DIP (Dispersive Indifferent Patch) electrode device 205 that is connected to the RF generator 203 through the connecting cable 202. Each of the insulated temperature wires and the conducting wires of the catheter 201 are secured to a connector 207 contact pin of the catheter 201. Therefore, the measured temperature data from each of the multiple electrodes is relayed to a control mechanism located in the CPU board 214 (FIG. 15) of the RF generator 203. In the meantime, the RF energy output is delivered through each of the conducting wires to a respective individual electrode on the catheter 201. The control mechanism of the CPU board 214 also controls the operation of an irrigation pump 215 which is used to pump irrigation fluid to the irrigated catheter 201.

The EKG connecting cable 204 is used to transmit the intracardiac electrical signal to an external EKG monitor 220 (FIG. 15) to display the intracardiac electrical signal sensed and returned by each of the electrodes 206. At the back panel of the RF generator 203, there are a power supply port 209, a data output port 210, and a pump port 199. An optional footswitch 211 is also provided for the user's convenience. Either the footswitch 211 or a button 238 on the front panel of the RF generator 203 can be used to start and stop the RF energy delivery.
The RF energy may be unipolar RF energy or bipolar RF energy depending on the configuration. The control mechanism or controller on the CPU board 214 of the RF generator 203 is configured to control the energy source to supply energy to the plurality of segmented ablation electrodes in an independent manner (control energy to each electrode independently), a sequential manner (control energy to the electrodes in a preset sequence), or a simultaneous manner (control energy to the electrodes simultaneously). The controller may be configured to control the energy source to supply energy to the segmented ablation electrodes based on signals received from the temperature sensors so as to control temperatures of the segmented ablation electrodes. Controlling the temperatures of the electrodes by regulating the supply of energy to the electrodes is also described, for instance, in U.S. Patent No. 6,346,104.

FIG. 16 is a flow diagram of the software program for the RF ablation system of FIG. 14. The major steps in the software program include: "Set ablation mode" block 222, "Set parameters" block 224, "Turn pump on" block 226, "Start ablation" block 228, "Is temp within limit?" block 230 and "Ablate until time is up" block 232. The ablation mode 222 includes one of the modes: a simultaneous mode, a sequential mode, a random-order mode, or a combination of the above. The "Set parameters" block 224 includes setting the power limit, the temperature limit, the impedance limit, and the time limit. The power limit 224 is initially set at a relatively low value for safety reasons. An example would be to set the initial power limit at 15 watts. The power limit can be raised in appropriate increments until a final power limit of the RF generator is reached. One example for the final power limit would be 150 watts. The temperature limit is set for a range, which is appropriate for the ablative lesion. One example would be to set the ablation temperature limit as 67.5°C ± 2.5°C. The "time is up" is a predetermined time duration for ablating any of the electrodes. One example would be to set the time limit for electrode no. 1 as 30 seconds. More details of operating the system can be found in U.S. Patent No. 5,954,719. When the pump is turned on (block 226), the pump flow rate is set to low. When the ablation is started (block 228), the pump flow rate is automatically changed to high. When the ablation is complete, the pump flow rate is automatically changed to low.

The RF energy may be unipolar RF energy or bipolar RF energy depending on the configuration. The control mechanism or controller on the CPU board 214 of the RF generator 203 is configured to control the energy source to supply energy to the plurality of segmented ablation electrodes in an independent manner (control energy to each electrode independently), a sequential manner (control energy to the electrodes in a preset sequence), or a simultaneous manner (control energy to the electrodes simultaneously). The controller may be configured to control the energy source to supply energy to the segmented ablation electrodes based on signals received from the temperature sensors so as to control temperatures of the segmented ablation electrodes. Controlling the temperatures of the electrodes by regulating the supply of energy to the electrodes is also described, for instance, in U.S. Patent No. 6,346,104.

FIG. 16 is a flow diagram of the software program for the RF ablation system of FIG. 14. The major steps in the software program include: "Set ablation mode" block 222, "Set parameters" block 224, "Turn pump on" block 226, "Start ablation" block 228, "Is temp within limit?" block 230 and "Ablate until time is up" block 232. The ablation mode 222 includes one of the modes: a simultaneous mode, a sequential mode, a random-order mode, or a combination of the above. The "Set parameters" block 224 includes setting the power limit, the temperature limit, the impedance limit, and the time limit. The power limit 224 is initially set at a relatively low value for safety reasons. An example would be to set the initial power limit at 15 watts. The power limit can be raised in appropriate increments until a final power limit of the RF generator is reached. One example for the final power limit would be 150 watts. The temperature limit is set for a range, which is appropriate for the ablative lesion. One example would be to set the ablation temperature limit as 67.5°C ± 2.5°C. The "time is up" is a predetermined time duration for ablating any of the electrodes. One example would be to set the time limit for electrode no. 1 as 30 seconds. More details of operating the system can be found in U.S. Patent No. 5,954,719. When the pump is turned on (block 226), the pump flow rate is set to low. When the ablation is started (block 228), the pump flow rate is automatically changed to high. When the ablation is complete, the pump flow rate is automatically changed to low.
end (124) and from the distal end (12) of the elongated body (125) by electrically nonconductive segments (18; 44; 64; 106; 114), the plurality of segmented ablation electrodes (42) being spaced from each other longitudinally by electrically nonconductive segments (18; 44; 64; 106; 114), such that for each segmented ablation electrode (42) that is longitudinally disposed next to one of the electrically nonconductive segments (18; 44; 64; 106; 114), an edge (20; 46) is formed between an electrode end of the segmented ablation electrode (42) and a nonconductive segment end of the electrically nonconductive segment (18; 44; 64; 106; 114); a plurality of elution holes (22) underneath the flexible ring electrodes (62) or coil ring electrodes (42); and a plurality of ducts (24) establishing fluid communication between the elution holes (22) and the at least one fluid lumen (13); the coil ring electrodes have gaps in a coil to permit fluid flow therethrough or the ring electrodes have gaps cut into the ring electrodes to permit fluid flow therethrough.

2. The irrigated catheter ablation apparatus (10; 28; 36; 40; 50; 58; 60; 120; 201) of claim 1, wherein either the gaps of the flexible ring electrode are transverse gaps that are spaced from each other in the longitudinal direction or the gaps of the flexible ring electrode are spiral gaps that extend in a helical pattern in the longitudinal direction.

3. The irrigated catheter ablation apparatus (10; 28; 36; 40; 58; 60; 120; 201) of claim 2, wherein a transverse gap extends less than 360 degrees or full 360 degrees.

4. The irrigated catheter ablation apparatus (10; 28; 36; 40; 58; 60; 120; 201) of claim 3, wherein, if a transverse gap extends the full 360 degrees, then the apparatus further comprises a biasing element provided within the elongated body (125) to connect the severed pieces of the flexible ring electrode.

5. The irrigated catheter ablation apparatus (10; 28; 36; 40; 58; 60; 120; 201) of claim 1, wherein the segmented ablation electrode is a flexible ring electrode (62) comprising at least one elongated gap in a corrugated pattern.

6. The irrigated catheter ablation apparatus (10; 28; 36; 40; 58; 60; 120; 201) of claim 5, wherein the at least one elongated gap has a length that is at least 3 times the width of the gap.

7. The irrigated catheter ablation apparatus (10; 28; 36; 40; 58; 60; 120; 201) of claim 5, wherein the at least one elongated gap is linear or curvilinear instead of corrugated.

8. The irrigated catheter ablation apparatus (10; 28; 36; 40; 58; 60; 120; 201) of claim 1, further comprising:

 one or more conducting wires (70) coupled with and supplying RF energy to the plurality of segmented ablation electrodes, the RF energy being one of unipolar RF energy or bipolar RF energy.

9. The irrigated catheter ablation apparatus (10; 28; 36; 40; 58; 60; 120; 201) of claim 1, further comprising:

 a plurality of temperature sensors (80) disposed on and in contact with the plurality of segmented ablation electrodes at the electrode ends, the temperature sensors (80) each substantially abutting an edge (20; 46; 66; 102; 104) between one of the electrode ends of the segmented ablation electrodes and one of the nonconductive segment ends of the electrically nonconductive segments.

10. The irrigated catheter ablation apparatus (10; 28; 36; 40; 58; 60; 120; 201) of claim 1, further comprising:

 a plurality of temperature sensors (80) disposed on and in contact with the plurality of segmented ablation electrodes at the electrode ends, the temperature sensors (80) each substantially abutting an edge (20; 46; 66; 102; 104) between one of the electrode ends of the segmented ablation electrodes and one of the nonconductive segment ends of the electrically nonconductive segments.

Patentansprüche

1. Ablationsspülkathetervorrichtung (10; 28; 36; 40; 50; 60; 120; 201) mit einem länglichen Körper (125), der ein distales Ende (12), ein proximales Ende (124) und zumindest ein Fluidlumen (13), das sich darin in Längsrichtung erstreckt, aufweist, einer Mehrzahl von segmentierten Ablationselektroden (42) auf einem distalen Teil des länglichen Körpers (125), wobei die Mehrzahl der segmentierten Ablationselektroden (42) durch eine Mehrzahl von flexiblen Ringelektroden (62) oder einer Mehrzahl von Spulenringelektroden (42) ausgebildet ist, und von dem proximalen Ende (124) und von dem dis-
8. Ablationsspülkathetervorrichtung (10; 28; 36; 40; 50; 60; 120; 201) nach Anspruch 1, die weiter ein oder mehrere Leitungsdrähte (70) aufweist, die mit der Mehrzahl der segmentierten Ablationselektroden verbunden sind und HF-Energie an diese zu führen, wobei die HF-Energie eine unipolare HF Energie oder eine bipolare HF-Energie ist.

9. Ablationsspülkathetervorrichtung (10; 28; 36; 40; 50; 60; 120; 201) nach Anspruch 1, die weiter ein oder mehrere Leitungsdrähte (70) aufweist, die mit der Mehrzahl der segmentierten Ablationselektroden verbunden sind, eine Energiequelle (203), die Energie über den einen oder den mehreren Leitungsdrähten (70) an die Mehrzahl der segmentierten Ablationselektroden zuführt, und eine Steuerung, die dazu konfiguriert ist, die Energiezufuhr der Energiequelle (203) an die Mehrzahl der segmentierten Ablationselektroden in einer von einer unabhängigen Art, einer sequentiellen Art oder einer simultanen Art zu steuern.

10. Ablationsspülkathetervorrichtung (10; 28; 36; 40; 50; 60; 120; 201) nach Anspruch 1, die weiter eine Mehrzahl von Temperatursensoren (80) aufweist, die auf und in Kontakt mit der Mehrzahl der segmentierten Ablationselektroden an den Elektrodenenden angeordnet sind, wobei jeder der Temperatursensoren (80) im Wesentlichen an eine Kante (20; 46; 66; 102; 104) zwischen einem von den Elektrodenenden der segmentierten Ablationselektroden und einem von den nichtleitenden Segmentenden der elektrisch nichtleitenden Segmente stößt.

Revendications

1. Appareil d’ablation à cathéter irrigué (10 ; 28 ; 36 ; 40 ; 50 ; 60 ; 120 ; 201) comprenant :

 1. un corps allongé (125) ayant une extrémité distale (12), une extrémité proximale (124) et au moins une lumière de fluide (13) s’étendant longitudinalement à l’intérieur ;
 2. une pluralité d’électrodes d’ablation segmentées (42) sur une partie distale du corps allongé (125), la pluralité d’électrodes d’ablation segmentées (42) étant formée d’une pluralité d’électrodes annulaires flexibles (62) ou d’une pluralité d’électrodes annulaires à bobine (42) et étant espacées de l’extrémité proximale (124) et de l’extrémité distale (12) du corps allongé (125) par des segments non conducteurs électriquement (18 ; 44 ; 64 ; 106 ; 114), la pluralité d’électrodes d’ablation segmentées (42) étant
espacées les unes des autres longitudinalement par des segments non conducteurs électriquement (18 ; 44 ; 64 ; 106 ; 114), de telle sorte que pour chaque électrode d’ablation segmentée (42) qui est disposée longitudinalement près de l’un des segments non conducteurs électriquement (18 ; 44 ; 64 ; 106 ; 114), un bord (20 ; 46) est formé entre une extrémité d’électrode de l’électrode d’ablation segmentée (42) et une extrémité de segment non conducteur du segment non conducteur électriquement (18 ; 44 ; 64 ; 106 ; 114);

une pluralité de trous d’élation (22) en dessous des électrodes annulaires flexibles (62) ou des électrodes annulaires à bobine (42) ; et

une pluralité de conduits (24) établissant une communication fluidique entre les trous d’élation (22) et l’au moins une lumière de fluide (13) ; les électrodes annulaires à bobine présentent des espaces dans une bobine pour permettre au fluide de traverser ou les électrodes annulaires présentent des espaces découps dans les électrodes annulaires pour permettre au fluide de traverser.

2. Appareil d’ablation à cathéter irrigué (10 ; 28 ; 36 ; 40 ; 50 ; 58 ; 60 ; 120 ; 201) selon la revendication 1, dans lequel les espaces de l’électrode annulaire flexible sont des espaces transversaux qui sont espacés les uns des autres dans la direction longitudinale ou les espaces de l’électrode annulaire flexible sont des espaces en spirale qui s’étendent selon un motif hélicoïdal dans la direction longitudinale.

3. Appareil d’ablation à cathéter irrigué (10 ; 28 ; 36 ; 40 ; 50 ; 58 ; 60 ; 120 ; 201) selon la revendication 2, dans lequel un espace transversal s’étend sur moins de 360 degrés ou complètement sur 360 degrés.

4. Appareil d’ablation à cathéter irrigué (10 ; 28 ; 36 ; 40 ; 50 ; 58 ; 60 ; 120 ; 201) selon la revendication 3, dans lequel si un espace transversal s’étend complètement sur 360 degrés, alors l’appareil comprend en outre un élément de sollicitation prévu à l’intérieur du corps allongé (125) pour relier les pièces sectionnées de l’électrode annulaire flexible.

5. Appareil d’ablation à cathéter irrigué (10 ; 28 ; 36 ; 40 ; 50 ; 58 ; 60 ; 120 ; 201) selon la revendication 1, dans lequel l’électrode d’ablation segmentée est une électrode annulaire flexible (62) comprenant au moins un espace allongé selon un motif ondulé.

6. Appareil d’ablation à cathéter irrigué (10 ; 28 ; 36 ; 40 ; 50 ; 58 ; 60 ; 120 ; 201) selon la revendication 5, dans lequel l’au moins un espace allongé présente une longueur qui est égale à au moins 3 fois la largeur de l’espace.

7. Appareil d’ablation à cathéter irrigué (10 ; 28 ; 36 ; 40 ; 50 ; 58 ; 60 ; 120 ; 201) selon la revendication 5, dans lequel l’au moins un espace allongé est linéaire ou curvilinéaire au lieu d’être ondulé.

8. Appareil d’ablation à cathéter irrigué (10 ; 28 ; 36 ; 40 ; 50 ; 58 ; 60 ; 120 ; 201) selon la revendication 1, comprenant en outre :

un ou plusieurs fils conducteurs (70) couplés avec et fournissant de l’énergie RF à la pluralité d’électrodes d’ablation segmentées, l’énergie RF étant l’une d’une énergie RF unipolaire ou d’une énergie RF bipolaire.

9. Appareil d’ablation à cathéter irrigué (10 ; 28 ; 36 ; 40 ; 50 ; 58 ; 60 ; 120 ; 201) selon la revendication 1, comprenant en outre :

un ou plusieurs fils conducteurs (70) couplés à la pluralité d’électrodes d’ablation segmentées ; une source d’énergie (203) fournissant de l’énergie via le(s) fil(s) conducteur(s) (70) à la pluralité d’électrodes d’ablation segmentées ; et un contrôleur configuré pour commander la source d’énergie (203) pour qu’elle fournisse de l’énergie à la pluralité d’électrodes d’ablation segmentées selon l’une d’une manière indépendante, d’une manière séquentielle ou d’une manière simultanée.

10. Appareil d’ablation à cathéter irrigué (10 ; 28 ; 36 ; 40 ; 50 ; 58 ; 60 ; 120 ; 201) selon la revendication 1, comprenant en outre :

une pluralité de capteurs de température (80) disposés sur et en contact avec la pluralité d’électrodes d’ablation segmentées au niveau des extrémités d’électrodes, les capteurs de température (80) venant chacun sensiblement en butée contre un bord (20 ; 46 ; 66 ; 102 ; 104) entre l’une des extrémités d’électrodes des électrodes d’ablation segmentées et l’une des extrémités de segments non conducteurs des segments non conducteurs électriquement.
Power on

Set ablation mode

Set parameters:
- Power limit
- Temperature
- Impedance
- Time

Turn pump on
Set pump flow rate to low

Start ablation
Pump flow rate is automatically changed to high

Is temp within limit?

Ablate until time is up?

Ablation is complete
Pump flow rate is automatically changed to low

Stop ablation and cool-off

Re-set power limit

Is temp lower than limit?

Is temp higher than limit?

FIG. 16
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 6217573 B1 [0005]
- US 6010500 A [0006]
- WO 2008124619 A1 [0007]
- US 20080294158 A [0029]
- WO 2008147599 A [0029]
- US 5954719 A [0038]
- US 6346104 B [0039]
- US 6325797 B [0040]

Non-patent literature cited in the description