ELECTRIC POWER TOOL

It is an object to produce a new space by the change of the construction of an auxiliary switch, thereby enabling a space within a housing to be effectively used.

In an electric tool according to the present invention, an auxiliary switch (30) has an operation portion (32) and a switch body (34) (35) switching on an off by receiving the movement of the operation portion (32), and the operation portion (32) is mounted to a left side surface, a right side surface of the housing covering a region between the motor (20) and the main switch (18), the switch body (34) (35) is accommodate within a space of the housing positioned on the left side and the right side of the main switch (18), and a space (S) is defined between the motor (20) and the main switch (18) within the housing (11) due to the spaced positioning of the left or right auxiliary switch (30).
Description

TECHNICAL FIELD

[0001] The present invention relates to an electric tool that has a housing including a tubular housing body for accommodating a motor, and a grip portion formed to protrude radially outwardly from the housing body; a trigger-type main switch disposed at a base end portion of the grip portion; and an auxiliary switch disposed adjacent to the main switch.

BACKGROUND ART

[0002] As shown in FIG. 6(A), the electric tool according to Patent Document 1 has a housing body 102 accommodating a motor 101m, a speed reduction device 101w, etc., and a trigger-type main switch 105 is disposed at a base end portion of a grip portion protruding radially outwardly from the housing body 102. And, a normal/reverse changing switch 107 for changing the rotational direction of the motor 101m is mounted at a position between the motor 101m and the main switch 105. As shown in FIG. 6(B), the normal/reverse changing switch 107 is constituted by an operation lever 108 disposed to extend through the housing body 102 in the left and right direction, and a switch body portion 109 having an arm-like movable portion 110 connected to the operation lever 108. And, it is constructed such that the operation lever 107 moves rightward as a left push portion 108x of the operation lever 108 is pushed, and the operation lever 108 moves leftward as a right push portion 108y is pushed, whereby the movable portion 110 pivots rightward or leftward to change contacts of the switch body 109.

PRIOR-ART DOCUMENTS

PATENT DOCUMENTS

SUMMARY OF THE INVENTION

PROBLEMS TO BE SOLVED BY THE INVENTION

[0004] In the normal/reverse changing switch 107 of the electric tool described above, the operation lever 108 is disposed to extend through the housing body 102 in the left and right direction. Therefore, the normal/reverse changing switch 107 exclusively occupies a space between the motor 101m and the main switch 105 within the housing body 102, and the space cannot accommodate the other components.

[0005] The present invention has been made to solve the above problem, and it is an object of the present invention to produce a new space by the change of the construction of an auxiliary switch, such as a normal/reverse changing switch, etc. thereby enabling effective use of a space within a housing.

MEANS FOR SOLVING THE PROBLEMS

[0006] The above problem can be solved by the inventions defined in the claims. The invention according to claim 1 is an electric tool comprising a housing including a tubular housing body accommodating a motor, and a grip portion formed to protrude radially outward from the housing body; a trigger-type main switch disposed at a base end portion of the grip portion; and an auxiliary switch disposed adjacent to the main switch, characterized in that the auxiliary switch has an operation portion and a switch body switch portion positioned on the outer side in the left or right direction relative to the main switch, and a space is defined between the motor and the main switch within the housing due to the spaced positioning of the left or right auxiliary switch.

[0007] According to the present invention, the operation portion of the auxiliary switch is mounted to the left side surface and/or the right side surface of the housing covering a region between the motor and the main switch, and the switch body of the auxiliary switch is accommodated within a space of the housing positioned on the outer side in the left or right direction relative to the main switch. Therefore, for example, even in the case that the auxiliary switches are provided on both of right and left sides, a space is defined on the upper side of the main switch (between the main switch and the motor) because the left and right auxiliary switches are disposed on the outer side in the left and right directions relative to the main switch and are spaced from each other. Thus, a space is defined at a region that is occupied by the auxiliary switch in the prior art.

Therefore, it is possible to accommodate parts or the like in the space, enabling effective use of the space within the housing.

In the case that the auxiliary switch is disposed on either the left side or the right side of the housing, the space is defined on the upper side of the main switch (between the main switch and the motor) and on the side where no auxiliary switch is provided.

[0008] The invention according to claim 2 is characterized in that the auxiliary switch is a switch for changing the rotational direction of the motor. The invention according to claim 3 is characterized in that a fan is disposed within the space between the motor and the main switch within the housing.
An electric tool according to a first embodiment

[0011] An electric tool according to a first embodiment will be hereinafter described with reference to FIGS. 1 to 5. The electric tool according to this example is a rotary impact tool (impact driver) (hereinafter called "electric tool") driven by a DC motor as a power source. Here, forward, rearward, leftward, rightward, upward and downward in the figures correspond to forward, rearward, leftward, rightward, upward and downward with respect to the electric tool.

ADVANTAGE OF THE INVENTION

[0009] According to the present invention, a new space is produced by the change of the construction of the auxiliary switch, so that the space within a housing can be effectively used.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] [Fig. 1] A vertical sectional view of an electric tool according to a first embodiment of the present invention.
[Fig. 2] A sectional view taken along arrow II-II.
[Fig. 3] An enlarged view of a portion of figure III in FIG. 2.
[Fig. 4] An enlarged view of a portion of an electric tool according to an alternative embodiment.
[Fig. 5] Enlarged views of portions of electric tools according to alternative embodiments (Fig. A) (Fig. B).
[Fig. 6] A vertical sectional view showing an auxiliary switch of a conventional electric tool (Fig. A) and a horizontal sectional view showing a portion of the auxiliary switch (sectional view taken along arrow B-B in Fig. A) (Fig. B).

MODE FOR CARRYING OUT THE INVENTION

(First Embodiment)

[0012] As shown in FIG. 1, a housing 11 of an electric tool 10 of the present embodiment is constituted by a tubular housing body 12 and a grip portion 15 formed to protrude from a lateral portion (lower portion as viewed in FIG. 1) of the housing body 12. Within the housing body 12, a DC motor 20, a planetary gear mechanism 24, a spindle 25, an impact force generating mechanism 26 and an anvil 27 are coaxially accommodated in this order from the rear side. The DC motor 20 is a drive source of the electric tool 10, and the rotation of the DC motor 20 is transmitted to the spindle 25 after being reduced by the planetary gear mechanism 24. And, the rotational force of the spindle 25 is converted into a rotary impact force by the impact force generating mechanism 26 having a hammer 26h, a compression spring 26b, etc., and is then transmitted to the anvil 27. The anvil 27 is a portion rotating about an axis by receiving the rotary impact force and is supported by a bearing 12j mounted to the front end of the housing body 12, so that the anvil 27 can rotate about an axis but cannot move in an axial direction.

A chuck portion 27t is disposed at the front portion of the anvil 27 for mounting an end tool, such as a driver bit, socket bit, etc. (not shown).

[0013] The grip portion 15 of the housing 11 is a portion grasped by a user during the use of the electric tool 10 and is constituted by a grip part 15h and a lower end part 15p. The grip part 15h is disposed at a based end portion of a grip part 18, and is provided with a control shaft portion 18s constructed such that a contact is switched on and off by the pulling operation of the trigger portion 18t operable to be pulled by fingers of the user and includes a switch body portion 18s constructed such that a contact is switched on and off by the pulling operation of the trigger portion 18t and that a resistance value varies according to the pulling amount of the trigger portion 18t. An output signal of the main switch 18 is inputted to a controller 29 accommodated within a lower portion of the grip part 15h. The main switch 18 is disposed at a base end portion of the grip part 15h. The switch body portion 18s is operable to be pulled by fingers of the user and includes a switch body portion 18s constructed such that a contact is switched on and off by the pulling operation of the trigger portion 18t and that a resistance value varies according to the pulling amount of the trigger portion 18t. An output signal of the main switch 18 is inputted to a controller 29 accommodated within a lower portion of the grip part 15h. The controller 29 is constituted by a microcomputer, etc., mounted to a base plate, and controls a drive element (not shown) of the DC motor 20 based on the signal from the main switch 18.

The lower end part 15p of the grip portion 15 is constituted to be enlarged from the grip part 15h mainly in a direction forwardly on the lower side, and a battery pack connecting portion 16 is formed to have a relatively small diameter for enabling the user to easily grasp it, and a trigger-type main switch 18 is disposed at a based end portion of the grip part 15h. The main switch 18 includes a trigger portion 18t operable to be pulled by fingers of the user and includes a switch body portion 18s constructed such that a contact is switched on and off by the pulling operation of the trigger portion 18t.

An output signal of the main switch 18 is inputted to a controller 29 accommodated within a lower portion of the grip part 15h. The controller 29 is constituted by a microcomputer, etc., mounted to a base plate, and controls a drive element (not shown) of the DC motor 20 based on the signal from the main switch 18. The battery pack connecting portion 16 for connecting a battery pack 19 is disposed at a lower end portion of the lower end part 15p. The battery pack connecting portion 16 is formed like an inverted recess having an inverted U-shape in cross section and is constituted such that a fitting portion (not shown) of the battery pack 19 is fitted into the battery pack connecting portion 15 as it is slid from the front side toward the rear side.
<Regarding Normal/Reverse Changing Switch 30>

[0014] As shown in FIGS. 1 and 2, normal/reverse changing switches 30 are mounted to the housing 11 at a boundary position between the housing body 12 and the grip portion 15. The normal/reverse changing switches 30 are switches for changing the rotational direction of the DC motor 20 and are constituted, for example, by a normal rotation switch 30a positioned on the left side and a reverse rotation switch 30b positioned on the right side. Signals from the normal rotation switch 30a and the reverse rotation switch 30b are inputted to the controller 29. Thus, the controller 29 enables the DC motor 20 to rotate in the normal direction when the normal rotation switch 30 positioned on the left side is operated to be pushed, and the controller 29 enables the DC motor 20 to rotate in the reverse direction when the reverse rotation switch 30b positioned on the right side is operated to be pushed.

Here, the normal rotation switch 30a and the reverse rotation switch 30b are the same in construction, and therefore, the following explanation will be made by referring to the normal rotation switch 30a and the reverse rotation switch 30b as left and right normal/reverse changing switches 30, respectively.

[0015] As shown in an enlarged view of FIG. 3, the normal/reverse changing switch 30 is constituted by an operation button 32 operated to be pushed, and a switch body 34 and 35, in which a contact is switched on and off by receiving the movement of the operation button 32. As shown in FIGS. 1 and 2, the operation buttons 32 are mounted to the left side surface and the right side surface of the housing 11, which cover a region between the DC motor 20 and the trigger-type main switch 18. In addition, as shown in FIG. 3, the operation buttons 32 are constituted so as to be able to be pushed into inside of the housing 11 by a given distance and so as to be positioned on the outer side relative to the main switch 18 even in the state that the operation buttons 32 have been pushed by a maximum distance. Thus, the operation buttons 32 of the left and right normal/reverse changing switches 30 are positioned on the outer side relative to the main switch 18. Further, the switch bodies 34 and 35 of the left and right normal/reverse changing switches 30 are positioned on the lower side of their respective operation buttons 32 and on the outer side relative to the main switch 18.

Therefore, on the upper side of the trigger-type main switch 18, i.e., between the main switch 18 and the DC motor 20, a space S is defined due to separation of the left and right normal/reverse changing switch 30. And, a fan 40 having a built-in motor for driving a fan body 41 is accommodated within the space S, and an end tool drive motor (DC motor 20) and a motor drive control circuit (FET, etc.) are cooled by the fan 40.

Thus, the normal/reverse changing switch 30 corresponds to an auxiliary switch of the present invention, and the operation button 32 corresponds to an operation portion for the auxiliary switch.

<Advantages of Electric tool 10 of The Present Embodiment>

[0016] According to the electric tool 10 of this example, the operation buttons 32 of the normal/reverse changing switches 30 are disposed at the left and right surfaces of the housing 11 covering the region between the DC motor 20 and the main switch 18. In addition, the switch bodies 34 and 35 of the normal/reverse changing switches 30 are positioned on the outer side in the left and right directions relative to the main switch 18. In this way, because the normal/reverse changing switches 30 are positioned on the outer side in the left and right directions relative to the main switch 18, the space S is defined in a region that was occupied by the normal/reverse changing switch in a known art. Therefore, it is possible to accommodate the fan 40, etc. within the space S, enabling effective use of the space within the housing 11.

<Alternative Embodiments>

[0017] The present invention may not be limited to the above embodiment and may be modified within a range that does not depart from the gist of the present invention. For example, although an example of accommodating the fan 40 within the space S on the upper side (between the main switch 18 and the DC motor 20) has been described in the above embodiment, it is possible to accommodate within the space S a line filter 50 serving as a noise inhibiting member as shown in FIG. 4. It is also possible to accommodate a capacitor for inhibiting noise, etc.

Further, in the case of the electric tool 10 of the present embodiment, the DC motor 20 can rotate in the normal direction by pushing the left normal/reverse changing switch 30 and the DC motor can rotate in the reverse direction by pushing the right normal/reverse changing switch 30. However, the normal/reverse changing switch 30 may be positioned, for example, only on the left side, and may be switched such the normal rotation is enabled by one push, the reverse rotation is enabled by a once again push, and the normal rotation is enabled by a further push.

Further, as shown in FIG. 5(A), it may be possible to provide a normal rotation display 61 and a reverse rotation display 62 at the rear end position of the housing body 12 in order that the normal rotation display 61 is lit when the controller 29 has changed the rotational direction of the DC motor 20 to the normal rotational direction based on the signals from the normal/reverse changing switches 30, and the reverse rotation display 62 is lit when the controller 29 has changed to the reverse rotational direction. Here, it is possible to dispose the normal rota-
tion display 61 and the reverse rotation display 62 at the lower end part 15p of the grip portion 15 as shown in FIG. 5(B).

Further, it may be possible to dispose the normal/reverse changing switch 30 on the left side and to dispose an auxiliary switch having the same construction on the right side in order to turn on and off an illumination light by the auxiliary switch. Thus, it may be possible to turn on by one push, turn off by a once again push, and turn on by a further push. Further, it may be possible to change the rotational seed of the DC motor 20 in a multistage by the auxiliary switch.

Furthermore, although an impact driver has been exemplified as the electric tool 10, it is possible to apply the present invention to a screwdriver, etc.

DESCRIPTION OF REFERENCE NUMERALS

11 housing
12 housing body
15 grip portion
18 main switch
20 DC motor
29 controller
30 normal/reverse changing switch (auxiliary switch)
32 operation button (operation portion)
34, 35 switch body
40 = fan
50 line filter (noise inhibiting member)
61 normal rotation display
62 reverse rotation display
S space

Claims

1. An electric tool comprising a housing including a tubular housing body accommodating a motor, and a grip portion formed to protrude radially outward from the housing body; a trigger-type main switch disposed at a base end portion of the grip portion; and an auxiliary switch disposed adjacent to the main switch, characterized in that:

- the auxiliary switch has an operation portion and a switch body switching on and off by receiving the movement of the operation portion;
- the operation portion of the auxiliary switch is mounted to a left side surface and/or a right side surface of the housing covering a region between the motor and the main switch;
- the switch body of the auxiliary switch is accommodated within a space of the housing positioned on the outer side in the left or right direction relative to the main switch; and
- a space is defined between the motor and the main switch within the housing due to the spaced positioning of the left or right auxiliary switch.

2. The electric tool as defined in claim 1, characterized in that the auxiliary switch is a switch for changing the rotational direction of the motor.

3. The electric tool as defined in claim 1 or 2, characterized in that a fan is disposed within the space between the motor and the main switch within the housing.

4. The electric tool as defined in claim 1 or 2, characterized in that a noise inhibiting member is disposed within the space defined between the motor and the main switch within the housing.

5. The electric tool as defined in any one of claims 1 to 4, characterized in that there are provided:

- a controller for controlling the motor based on a signal from the auxiliary switch; and
- a display that is lit when the controller operates based on the signal from the auxiliary switch.
FIG. 6

(A) 101m 102 101w

(B) 107 102 108 110 108x

REARWARD

FORWARD

LEFTWARD

REARWARD

FORWARD

RIGHTWARD
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
B25F5/00 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B25F5/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2010
Kokai Jitsuyo Shinan Koho 1971-2010 Toroku Jitsuyo Shinan Koho 1994-2010

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P,X A</td>
<td>JP 2009-248290 A (Hitachi Koki Co., Ltd.), 29 October 2009 (29.10.2009), paragraphs [0029], [0036], [0039], fig. 1 to 3 (Family: none)</td>
<td>1-2,5 3-4</td>
</tr>
<tr>
<td>A</td>
<td>JP 11-114856 A (Ryobi Ltd.), 27 April 1999 (27.04.1999), (Family: none)</td>
<td>1-5</td>
</tr>
</tbody>
</table>

☑ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means of publication prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "K" document member of the same patent family

Date of the actual completion of the international search 24 February, 2010 (24.02.10)
Date of mailing of the international search report 09 March, 2010 (09.03.10)

Name and mailing address of the ISA/Authorized officer
Japanese Patent Office
Facsimile No. Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description