(54) CYCLIC AMINE COMPOUNDS

(57) Problems to be solved are to provide novel low-molecular compounds which exhibit calcium receptor antagonist activity, and which are highly safe and orally administrable. As a means for solving the problems, compounds having the Formula (I) or pharmaceutically acceptable salts thereof are provided.
[in the formula, the substituent groups are defined as follows. R₁ and R²a, R²b : a hydrogen atom, etc. R³: a methyl group, an ethyl group, etc. Z: a carboxy group, etc. Ar: a phenyl group, etc. A: a single bond, etc. B: a single bond, etc. n: 0 or 1. m: an integer of 0 to 6.]
The present invention relates to a compound having calcium-sensing receptor (CaSR, hereinafter simply referred to as calcium receptor) antagonistic activity.

Bone is known as a dynamic organ which achieves bone reconstruction by constantly repeating formation and resorption for morphological change of the bone itself or for maintaining calcium concentration in the blood. In normal bone, osteogenesis by osteoblasts and bone resorption by osteoclasts have an equilibrium relationship, maintaining the bone mass in a constant state. However, when the equilibrium relationship between osteogenesis and bone resorption is disrupted, metabolic bone disorders such as osteoporosis are caused (Non-Patent Documents 1 and 2).

As bone metabolism-regulating factors, many kinds of systemic hormones or local cytokines have been reported and osteogenesis and bone maintenance are managed by interaction between these factors (Non-Patent Documents 1 and 3). The occurrence of osteoporosis is widely known as an age-related change in bone tissue. However, since the onset mechanism of osteoporosis involves many aspects including reduced secretion of sexual hormones or abnormality in the receptors thereof, changes in cytokine expression in local bone, expression of an aging genes, and differentiation or impaired function of osteoclasts or osteoblasts, etc., it is difficult to understand it as a simple physiological phenomenon which occurs with aging. Primary osteoporosis is mainly divided into post-menopausal osteoporosis due to reduced secretion of estrogen, and senile osteoporosis due to aging. For the elucidation of the onset mechanism and development of a therapeutic agent therefor, progress in basic research on regulatory mechanisms in bone resorption and osteogenesis is essential.

Osteoclasts are a multinuclear cells originating from hematopoietic stem cells, and by releasing chloride ions and hydrogen ions on their side adhered to bone they acidify the cleft between the cell and the adhesive side of the bone and simultaneously secretes cathepsin K, which is an acidic protease (Non-Patent Document 4). As a result, degradation of bone matrix protein and calcium phosphate is caused, yielding calcium recruitment into the blood.

The serum calcium concentration of healthy mammals is strictly maintained at about 9-10 mg/dl (about 2.5 mM) (i.e., calcium homeostasis). Parathyroid hormone (PTH) is a hormone which plays a key role in maintaining calcium homeostasis, and when the Ca\textsuperscript{2+} concentration in the blood decreases, PTH secretion from the parathyroid is immediately promoted. In a bone, the PTH secreted accordingly recruits Ca\textsuperscript{2+} into the blood by promoting bone resorption, and in the kidneys it promotes re-uptake of Ca\textsuperscript{2+} in the distal tubules, thus functioning to increase the Ca\textsuperscript{2+} concentration in the blood.

Because it is known that PTH can increase bone mass when it is intermittently administered to a human or an animal, it has already been clinically applied as a therapeutic agent for osteoporosis. Also, according to animal tests it has been reported that both osteogenesis and bone resorption of femoral cancellous bone are promoted by continuous administration of bovine PTH (1-84) to a rat from which the thyroid/parathyroid glands had been removed, consequently leading to an actual decrease in bone mass. However, subcutaneous intermittent administration thereof did not result in promotion of bone resorption but in promotion of osteogenesis alone, leading to an increase in bone mass (Non-Patent Document 5). Furthermore, when human PTH (1-34) was intermittently administered to a rat for 15 weeks from 4 weeks post-ovariectomy, promotion of osteogenesis and inhibition of bone resorption were observed during the period from week 5 to week 10 after the start of the administration, showing an increased bone mass of about twice the bone mass of a sham operation group (Non-Patent Document 6). This report suggests that PTH not only prevents a decrease in bone mass in an osteoporosis model, but also has a bone mass recovery effect even in animals already suffering from a marked decrease in bone mass.

Although PTH preparations are therapeutic agents for osteoporosis which show a verified significant effect of lowering bone fracture rates according to clinical tests with patients suffering from post-menopausal osteoporosis, being biological preparations, they also have disadvantages. Specifically, injection has to be employed as the administration means, and therefore there is the problem that the patient may suffer from pain associated with this. Thus, the development of a pharmaceutical preparation that can intermittently raise the PTH concentration in the blood and can be orally administered has been awaited.

The calcium receptor is a G protein coupled receptor which is mainly expressed in parathyroid cells, and it regulates PTH secretion by sensing Ca\textsuperscript{2+} concentration in the blood (Non-Patent Document 7). The human calcium receptor consists of 1,078 amino acids, and it is reported that the human calcium receptor is expressed in the kidneys, thyroid C cells, the brain, bone marrow cells, etc., as well as in parathyroid gland. According to binding to Ca\textsuperscript{2+} as a ligand, the calcium receptor activates phospholipase C via coupling to G protein, causes the production of inositol triphosphate and an increase in the intracellular Ca\textsuperscript{2+} concentration and, as a result, suppresses the secretion of PTH.
(Non-Patent Document 8). Thus, it is expected that a pharmaceutical agent that inhibits activation of the calcium receptor, i.e., a pharmaceutical agent that antagonizes the calcium receptor, promotes PTH secretion from parathyroid gland cells and increases the PTH concentration in the blood of a living organism. In this regard, if the increase in blood PTH concentration is transient rather than continuous, it is expected to obtain the same bone mass-increasing effect as that provided by intermittent administration of PTH.

Meanwhile, although the following compounds are known as compounds having a cyclic amine structure (Patent Document 1), they have many other parts that are different in structure from the compounds of the invention.

CITATION LIST

PATENT DOCUMENTS

[0011]


NON-PATENT DOCUMENTS

[0012]

DISCLOSURE OF THE INVENTION

PROBLEMS TO BE SOLVED BY THE INVENTION

[0013] An object of the invention is to provide novel low-molecular compounds which exhibit antagonistic activity against the calcium receptor, and which are highly safe and orally administrable.

MEANS FOR SOLVING THE PROBLEMS

[0014] A pharmaceutical preparation which inhibits activation of the calcium receptor, i.e., the pharmaceutical preparation which antagonizes the calcium receptor, is expected to promote PTH secretion from parathyroid gland cells, thus yielding an increase in blood PTH concentration in a living organism. In this regard, if the increase in blood PTH concentration is transient rather than continuous, it is expected to obtain the same bone mass-increasing effect as that provided by intermittent administration of PTH.

The inventors of the invention studied intensively to develop a therapeutic agent having calcium receptor antagonist activity, and as a result found novel cyclic amine compounds which are highly safe, and which therefore can be administered orally, resulting in the completion of the invention.

The cyclic amine compounds of the invention are compounds having a calcium receptor antagonist activity. The expression "having calcium receptor antagonist activity" means that one or more calcium receptor activities that are induced by extracellular Ca^{2+} are inhibited.

Specifically, the invention relates to the following.

(1) A compound represented by the following Formula (I) or a pharmaceutically acceptable salt thereof.

\[ (I) \]

\[ \text{R}^{1}: \text{a hydrogen atom, a hydroxy group, a halogen atom, a C1-C6 alkyl group, a C1-C6 alkoxy group, a halogeno C1-C6 alkyl group, a halogeno C1-C6 alkoxy group, or an aryl group} \]
\[ \text{R}^{2a} \text{ and } \text{R}^{2b}: \text{identical or different from each other, a hydrogen atom, a halogen atom, a C1-C6 alkyl group, a C1-C6 alkoxy group, a halogeno C1-C6 alkyl group, a halogeno C1-C6 alkoxy group, or a cyano group} \]
\[ \text{R}^{3}: \text{a C1-C6 alkyl group or a halogeno C1-C6 alkyl group} \]
\[ \text{A: a single bond, a substituted phenylene group, or a vinylene group} \]
\[ \text{B: a single bond, an oxygen atom, or a sulfur atom} \]
\[ \text{Ar: an aryl group which is optionally substituted by a group selected from the group consisting of a halogen atom, a cyano group, a C1-C6 alkyl group, a C1-C6 alkoxy group, a halogeno C1-C6 alkyl group, and a halogeno C1-C6 alkoxy group} \]

AR: an aryl group which is optionally substituted by a group selected from the group consisting of a halogen atom, a cyano group, a C1-C6 alkyl group, a C1-C6 alkoxy group, a halogeno C1-C6 alkyl group, and a halogeno C1-C6 alkoxy group.
Preferred embodiments of the invention are given below.

(2) The compound described in (1) above or a pharmaceutically acceptable salt thereof wherein \( R^1 \) represents a hydrogen atom.

(3) The compound described in (1) or (2) above or a pharmaceutically acceptable salt thereof wherein \( R^{2a} \) and \( R^{2b} \), which are identical or different from each other, represent a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a methyl group, a methoxy group, an ethoxy group, a trifluoromethyl group, or a trifluoromethoxy group.

(4) The compound described in any one selected from (1) to (3) above or a pharmaceutically acceptable salt thereof wherein \( A \) is a single bond and \( B \) is a single bond.

(5) The compound described in any one selected from (1) to (3) above or a pharmaceutically acceptable salt thereof wherein \( A \) is a vinylene group and \( B \) is a single bond.

(6) The compound described in any one selected from (1) to (5) above or a pharmaceutically acceptable salt thereof wherein \( A \) is a phenyl group which is optionally substituted by a group selected from a methyl group, an ethyl group, a fluoro atom, and a chlorine atom.

(7) The compound described in any one selected from (1) to (6) above or a pharmaceutically acceptable salt thereof wherein \( n \) is 0 or 1.

(8) The compound described in any one selected from (1) to (7) above or a pharmaceutically acceptable salt thereof wherein \( m \) is 2, 3, or 4.

(9) The compound described in any one selected from (1) to (8) above or a pharmaceutically acceptable salt thereof wherein \( R^3 \) represents a methyl group or an ethyl group.

(10) The compound described in any one selected from (1) to (9) above or a pharmaceutically acceptable salt thereof wherein \( Z \) represents -COOH.

(11) A compound selected from the following group of compounds, or a pharmaceutically acceptable salt thereof:

\[
\begin{align*}
(2E)-3-\{(1R)-1-\{(2R)-3-\{(2S)-2-\{(3-fluoro-4-methylbenzyl)\} pyrrolidin-1-yl\}]-2-hydroxypropyl\}oxy\}ethyl\}phenyl\ prop-2-enoic acid, \\
3-\{(1R)-1-\{(2R)-3-\{(2S)-2-\{(3-fluoro-4-methylbenzyl)\} pyrrolidin-1-yl\}]-2-hydroxypropyl\}oxy\}ethyl\}propanoic acid, \\
3-\{(1R)-1-\{(2R)-3-\{(2S)-2-\{(3-fluoro-4-methylbenzyl)\} pyrrolidin-1-yl\}]-2-hydroxypropyl\}oxy\}ethyl\}6-methyl-phenylpropanoic acid, \\
3-\{(1R)-1-\{(2R)-3-\{(2S)-2-\{(3-fluoro-4-methylbenzyl)\} pyrrolidin-1-yl\}]-2-hydroxypropyl\}oxy\}ethyl\}5-methyl-phenylpropanoic acid, \\
3-\{(2R)-6-\{(1R)-1-\{(2R)-3-\{(2S)-2-\{(3-fluoro-4-methylbenzyl)\} pyrrolidin-1-yl\}]-2-hydroxypropyl\}oxy\}ethyl\}phenylpropanoic acid, \\
3-\{(3-fluoro-6-\{(1R)-1-\{(2R)-3-\{(2S)-2-\{(3-fluoro-4-methylbenzyl)\} pyrrolidin-1-yl\}]-2-hydroxypropyl\}oxy\}ethyl\}phenylpropanoic acid, \\
3-\{(4-fluoro-2-\{(1R)-1-\{(2R)-3-\{(2S)-2-\{(3-fluoro-4-methylbenzyl)\} pyrrolidin-1-yl\}]-2-hydroxypropyl\}oxy\}ethyl\}phenylpropanoic acid, \\
3-\{(2-\{(1R)-1-\{(2R)-3-\{(2S)-2-\{(3-fluoro-4-methylbenzyl)\} pyrrolidin-1-yl\}]-2-hydroxypropyl\}oxy\}ethyl\}6-(\text{trifluoromethyl})phenylpropanoic acid, \\
3-\{(2-\{(1R)-1-\{(2R)-3-\{(2S)-2-\{(3-fluoro-4-methylbenzyl)\} pyrrolidin-1-yl\}]-2-hydroxypropyl\}oxy\}ethyl\}5-(\text{trifluoromethyl})phenylpropanoic acid,
\end{align*}
\]
The compound described in any one selected from (1) to (11) or a pharmaceutically acceptable salt thereof for use as a calcium receptor antagonist.

A pharmaceutical composition which comprises the compound described in any one selected from (1) to (11) above or a pharmaceutically acceptable salt thereof as an effective component.

The pharmaceutical composition described in (13) above for use as a calcium receptor antagonist.

The pharmaceutical composition described in (15) above for use for treatment or prevention of a disorder associated with abnormal bone or mineral homeostasis.

The pharmaceutical composition described in (15) above, wherein the disorder associated with abnormal bone or mineral homeostasis is hypoparathyroidism; osteosarcoma; periodontitis; bone fracture healing; deformative arthritis; rheumatoid arthritis; Paget’s disease; humoral hypercalcemia syndrome associated with malignant tumor and bone fracture healing; or osteoporosis.

A method of improving bone metabolism which is characterized in that an effective amount of the pharmaceutical composition described in (13) above is administered to a mammal.

A method of preventing or treating osteoporosis which is characterized in that an effective amount of the pharmaceutical composition described in (13) above is administered to a mammal.

**EFFECTS OF THE INVENTION**

[0017] The compound of the invention or a pharmaceutically acceptable salt thereof functions as a calcium receptor antagonist, and therefore is effective for treatment or prevention of a disorder associated with abnormal bone or mineral homeostasis, such as hypoparathyroidism, osteosarcoma, periodontitis, bone fracture healing, deformative arthritis,
rheumatoid arthritis, Paget's disease, and humoral hypercalcemia syndrome associated with malignant tumor and bone fracture healing, and osteoporosis.

BEST MODE FOR CARRYING OUT THE INVENTION

[0018] The invention will be described hereinbelow.

Preferred examples of the compounds having the Formula (I) include those having the combination of substituent groups as follows.

R1 represents a hydrogen atom,
R2a and R2b, identical or different from each other, represent a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a methyl group, a methoxy group, an ethoxy group, a trifluoromethyl group, or a trifluoromethoxy group,
R3 represents a methyl group or ethyl group,
A represents a single bond or a vinylene group,
B represents a single bond,
Ar represents a phenyl group which is optionally substituted by a group selected from a methyl group, a fluorine atom, and a chlorine atom,
Z represents -COOH,
n is 0 or 1, and m is 2, 3, or 4.

More preferred examples of the compound having Formula (I) include the compounds that are described in the Examples.

A "halogen atom" refers to a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, for example, and it is preferably a fluorine atom or a chlorine atom.

A "C1-C6 alkyl group" refers to a linear or branched alkyl group having 1 to 6 carbon atoms, and it is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, or a t-butyl group, more preferably a methyl group.

A "C1-C6 alkoxy group" refers to a group in which an oxygen atom is bonded to the above-mentioned "C1-C6 alkyl group", and it is preferably a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, or a t-butoxy group, more preferably a methoxy group.

A "C1-C6 halogenated alkyl group" refers to a group in which a halogen atom is substituted on the above-mentioned "C1-C6 alkyl group".

A "C1-C6 halogenated alkoxy group" refers to a group in which a halogen atom is substituted on the above-mentioned "C1-C6 alkoxy group".

The "treatment" means treating or improving a disorder or a symptom, or inhibiting a symptom.

A "pharmaceutically acceptable salt thereof" refers to a salt which can be used as a pharmaceutical agent. The compound of the invention can be converted to a base salt or an acid salt by reacting it with a base or an acid when the compound has an acidic group or a basic group, and these salts are therefore referred to.

Examples of a pharmaceutically acceptable "base salt" of the compound of the invention preferably include salts of an alkali metal such as sodium salt, potassium salt, and lithium salt; salts of an alkaline earth metal such as magnesium salt and calcium salt; salts of an organic base such as N-methylmorpholine salt, triethylamine salt, tributylamine salt, diisopropyl ethylamine salt, dicyclohexylamine salt, N-methylpiperydine salt, pyridine salt, 4-pyrrolidinopyridine salt, and a picoline salt, or salts of an amino acid such as glycine salt, lysine salt, arginine salt, ornithine salt, glutamic acid salt, and asparaginic acid salt. Preferably, it is a salt of an alkali metal.

Preferred examples of the pharmaceutically acceptable "acid salt" of the compound of the invention include salts of a hydrogen halide acid such as hydrogen fluoride salt, hydrogen chloride salt, hydrogen bromide acid salt, and hydrogen iodide salt, salts of an inorganic acid such as nitrate salt, perchlorate salt, sulfate salt, or phosphate salt; lower alkane sulfonate salts such as methanesulfonate salt, trifluoromethanesulfonate salt, or ethanesulfonate salt; salts of an organic acid such as acetate salt, malate salt, fumarate salt, succinate salt, citrate salt, ascorbate salt, tartarate salt, oxalate salt, or maleate salt; and, salts of an amino acid such as glycine salt, lysine salt, arginine salt, ornithine salt, glutamic acid salt, and asparaginic acid salt. Most preferably, it is a salt of a hydrogen halide acid.

The compound or pharmaceutically acceptable salt thereof of the invention may be added with adsorption water or become a hydrate by incorporating water molecules by being left in the atmosphere or by recrystallization, and such hydrates as well as solvates and crystal polymorphs are also included in the invention.

The compound, a salt thereof, or a solvate of the compound or salt of the invention may have various isomers such as a geometric isomer such as cis form, and trans form, or an optical isomer such as a tautomer, or a d form, and a l form, etc., depending on type and combination of the substituent groups. Unless specifically limited, the compounds of the invention include all isomers, stereoisomers, and mixtures of isomers and stereoisomers in any ratio. The mixtures of isomers can be resolved by resolution means that are well known in the art.
The compound of the invention includes labeled compounds, i.e., a compound in which one or more atoms of the compound of the invention is substituted with an isotope (for example, $^2$H, $^3$H, $^{13}$C, $^{14}$C, and $^{35}$S, etc.). The invention includes pharmaceutically acceptable prodrugs of the compound of the invention. By pharmaceutically acceptable prodrug is meant a compound having a group which can be converted to an amino group, a hydroxy group, or a carboxy group, etc. of the compound of the invention by hydrolysis or under physiological conditions. Examples of groups which form such prodrugs include those described in Prog. Med., Vol. 5, pages 2157-2161, 1985 or "Development of Drugs", Molecular Design (Hirokawa Shoten, 1990), Vol. 7, pages 163-198. Specific examples of prodrugs include, when an amino group is present in the compound of the invention, a compound in which the amino group is acylated, alkylated, or phosphorylated (e.g., a compound in which the amino group is eicosanoylated, alanylated, or pentylinocarbonylated, (5-methyl-2-oxo-1,3-dioxolen-4-yl)methoxycarbonylated, tetrahydrofuranylated, pyrrolidinylmethylated, pyvaloyloxymethylated, or tert-butylated, etc.), etc. When a hydroxy group is present in the compound of the invention, examples include a compound in which the hydroxy group is acylated, alkylated, phosphorylated, or borated (e.g., a compound in which the hydroxy group is acetylated, palmitoylated, propanoylated, pivaloylated, succinylated, fumaroylated, alanylated, or dimethylaminomethyl carbonylated, etc.), etc. Further, when a carboxy group is present in the compound of the invention, examples include a compound in which the carboxy group is esterified or amidated (e.g., a compound in which the carboxy group is ethyl esterified, phenyl esterified, carboxymethyl esterified, dimethylaminomethyl esterified, pivaloyloxymethyl esterified, ethoxycarbonyloxyethyl esterified, amidated, or methyl amidated, etc.), etc.

Further, the invention includes compounds in which a functional group of the compound of the invention is substituted with a so-called equivalent group. Examples of so-called equivalent groups include those described in The Practice of Medicinal Chemistry (Camille Georges Wermuth, Academic Press, 1996), for example. In particular, equivalent groups to a carboxy group are described at pages 215-217 of The Practice of Medicinal Chemistry.

(Production process)

The compound of the invention can be produced by applying various well-known synthetic methods according to the characteristics that are based on the main skeleton or type of substituent group of the compound. Examples of well-known methods include those described in "ORGANIC FUNCTIONAL GROUP PREPARATIONS", 2nd edition, ACADEMIC PRESS, INC., 1989 or "Comprehensive Organic Transformations", VCH Publishers Inc., 1989.

In such case, depending on the type of functional group, it may be effective in terms of production techniques to protect the functional group with an appropriate protecting group during a raw material to intermediate step or to substitute the functional group with a group which can be easily converted.

Examples of functional groups include an amino group, a hydroxy group, and a carboxy group, etc., and protecting groups thereof include those described in "Protective groups in Organic Synthesis", written by T. W. Greene and P.G. Wuts, 3rd edition, (1999). Depending on the reaction conditions, they can be appropriately selected and used. According to these methods, the protecting group is introduced, the reaction is carried out, and if necessary, the protecting group is removed or converted to a desired group to obtain a desired compound.

Further, a prodrug of the compound of the invention can be produced by introducing a certain group during a raw material to intermediate step, in the same way as the protecting group described above, or by carrying out the reaction using the obtained compound of the invention. The reaction can be carried out by applying methods well known to a person skilled in the art based on typical esterification, amidation, dehydration, or hydrogenation, etc.

Hereinbelow, processes for production of the compounds of the invention will be explained. However, the production process is not limited to the following processes.

Process A is a method to produce the compound (a-7).

Process A
[0020] In the formula, R1, Ar, and n have the same meanings as above and PGa represents a protecting group for an amino group.

Step A-1:

This step is a condensation reaction between carboxylic acid and hydroxylamine, i.e., a step of producing the compound (a-2) from the compound (a-1).

Step A-2:

This step is a step of producing the compound (a-3), i.e., a ketone, by reacting the compound (a-2) with a Grignard reagent. Step A-3 is a step of reducing the compound (a-3) to obtain the compound (a-4).

Step A-4 to Step A-6 are steps of producing the compound (a-7) from the compound (a-4). Barton-McCombie reaction included in Step A-4 and Step A-5 are performed according to the method described in J. Org. Chem. 1986, 51, 5294-5299 by Mulzer et al.

Step A-6 is performed by deprotecting the protecting group according to the method described in Protective groups in Organic Synthesis (3rd edition, 1999).

Further, the compound (a-7) can be also synthesized according to Process B.
[0028] [in the formula, R₁, Ar, n, and PGa have the same meanings as above, and Ph represents a phenyl group.]

Step B-1:

[0029] This step is a step of producing the compound (b-2) by phosphoesterification of the compound (b-1).

Step B-2:

[0030] This step is a step of producing the compound (a-3) by using a Grignard reagent, similar to Step A-2 described above.

Step B-3:

[0031] This step is a step of producing the compound (a-6) by carrying out benzylolation of the ketone of the compound (a-3).

Step B-4:

[0032] This step is performed by deprotecting the protecting group according to the method described in Protective groups in Organic Synthesis (3rd edition, 1999), similar to Step A-6 described above.

[0033] Step B-1 to Step B-4 are performed according to the methods described in the reaction example shown at page 16 of WO 2004/106295 and Bioorg. Med. Chem. Lett. 2005, 15, 1225-1228 by Yang et al.

[0034] Process C is a method to produce the compound (c-10) of the invention.

Process C

[0035]
[0036] [in the formula, R1, R3, Ar, m, and n have the same meanings as above, R2 has the same meaning as R2a or R2b above, PGc represents a protecting group for a carboxy group, and L1 and L2 represent a leaving group for the substitution reaction.]

Step C-1:

This step is a step of producing the compound (c-2) using the compound (c-1), i.e., substituted benzoic acid, and N,O-dimethylhydroxylamine hydrochloride salt, and it is performed according to the method described in Tetrahedron 1999, 55, 13159-13170 by Kunishima et. al.

Step C-2:

This step can be performed in the same manner as Step A-2 above, and it is a step of producing the compound (c-3) from the compound (c-2). Further, after obtaining the compound (c-4) by reducing the compound (c-3) in Step C-3, the compound (c-6) is produced by reacting the compound (c-4) and the compound (c-5) in Step C-4. More specifically, Step C-2 is performed according to Step 2 of Example 23 that is described at page 40 of WO 02/14259.

Step C-3 is performed according to Step 1 of Example 21 that is described at page 66 of WO 02/14259. Step C-4 is performed according to Step 2 of Example 1 that is described at page 50 of WO 02/14259. More specifically, Step C-5 is performed according to Step 2 of Example 1 that is described at page 67 of WO 04/106280. Step C-6 is performed based on Step 4 of Example 1 that is described at page 68 of WO 04/106280. Step C-7 is performed according to Step 5 of Example 1 that is described at page 68 of WO 04/106280.

Step C-5 to Step C-7 are steps of producing the compound (c-10) from the compound (c-6) by using the compounds (c-7) and (a-7), and it is performed according to the reaction example that is described at page 61 of WO 04/106280. More specifically, Step C-5 is performed according to Step 2 of Example 1 that is described at page 67 of WO 04/106280. Step C-6 is performed based on Step 4 of Example 1 that is described at page 68 of WO 04/106280. Step C-7 is performed according to Step 5 of Example 1 that is described at page 68 of WO 04/106280.

[0037] Process D is a method to produce the compound (d-2) of the invention.
Process D

[0042] [in the formula, R₁, R₂, R₃, Ar, m, n, and PGc have the same meanings as above.]

Step D-1:

[0044] This step is a step of producing the compound (d-1) by reducing the compound (c-9), and it is performed according to of Example 2 that is described at page 16 of WO 2005/077886.

Step D-2:

[0045] This step is a step of producing the compound (d-2) by hydrolyzing the compound (d-1), and it is performed in the same manner as Step C-7 above.

[0046] Process E is a method to produce the compound (e-2).

Process E

[0047] [in the formula, Ar has the same meanings as above and PGh represents a protecting group for a hydroxy group.]

[0048] [in the formula, Ar has the same meanings as above and PGh represents a protecting group for a hydroxy group.]
Step E-1:

[0049] This step is a step of producing the compound (e-2) by deprotecting the protecting group for the hydroxy group of the compound (e-1) by a normal process.

[0050] Process F is a method to produce the compound (c-3)', which is a production intermediate of the compound of the invention.

Process F

[0051]

[0052] [in the formula, R^3, L^1, and PG have the same meanings as above and R^2 represents a C1-C6 alkyl group or a halogeno C1-C6 alkyl group.]

Step F-1:

[0053] This step is a step of producing the compound (f-2) by deprotecting the protecting group for the hydroxy group of the compound (f-1).

Step F-2:

[0054] This step is a step of producing the compound (c-3)' by reacting the hydroxy group of the compound (f-2) with an alkylating reagent.

[0055] Process G is a method to produce the compound (c-1), which is a production intermediate of the compound of the invention.

Process G

[0056]

[0057] [in the formula, R^2, L^1, and PG have the same meanings as above.]

Step G-1:

[0058] This step is a step of producing the compound (g-2) by carrying out a CO insertion reaction of the compound (g-1) in the presence of a palladium catalyst.
Step G-2:

[0059] This step is a step of producing the compound (g-3) by converting the amino group of the compound (g-2) to a leaving group.

Step G-3:

[0060] This step is a step of producing the compound (c-1) by deprotecting the protecting group for the carboxy group of the compound (g-3).

[0061] Process H is a method to produce the compound (c-3)', which is a production intermediate of the compound of the invention.

Process H

[0062]

[0063] [in the formula, R^2, L^1, and PGc have the same meanings as above and X represents a halogen group.]

Step H-1:

[0064] This step is a step of producing the compound (h-2) by reacting the compound (h-1) with an organo tin compound in the presence of a palladium catalyst.

Step H-2:

[0065] This step is a step of producing the compound (c-3)'' by carrying out the same reaction as Step G-2 above.

[0066] Process I is a method to produce the compound (c-3), which is a production intermediate of the compound of the invention.

Process I

[0067]
[0068] [in the formula, R2, R3, and L1 have the same meanings as above.]

Step I-1:

[0069] This step is a step of producing the compound (i-1) by reducing the carboxy group of the compound (c-1).

Step I-2:

[0070] This step is a step of producing the compound (i-2) by oxidizing the hydroxy group of the compound (i-1) to an aldehyde.

Step 1-3:

[0071] This step is a step of producing the compound (i-3) by reacting the compound (i-2) with a Grignard reagent.

Step I-4:

[0072] This step is a step of producing the compound (c-3) by oxidizing the hydroxy group of the compound (i-3) to a ketone.

[0073] Process J is a method to produce the compound (c-4)', which is a production intermediate of the compound of the invention.

Process J

[0074]

[0075] [in the formula, R2 and L1 have the same meanings as above.]

Step J-1:

[0076] This step is a step of producing the compound (c-4)' by reacting the aldehyde group of the compound (i-2) with an organo zinc reagent.

[0077] Process K is a method to produce the compound (d-1), which is a production intermediate of the compound of the invention.

Process K

[0078]
[0079] [in the formula, R\(^1\), R\(^2\), R\(^3\), Ar, PGc, m, and n have the same meanings as above.]

Step K-1:

[0080] This step is a method of producing the compound (k-1) by reducing the compound (c-8) in the same manner as Step D-1 described above.

Step K-2:

[0081] This step is a method of producing the compound (d-1) by reacting the compound (k-1) and the compound (a-7) in the same manner as Step C-6 described above.

[0082] Process L is a method to produce the compound (1-4) of the invention.

Process L

[0083]

[0084] [in the formula, R\(^1\), R\(^2\), R\(^3\), Ar, L\(^1\), m, and n have the same meanings as above, E represents a carboxy group or a group equivalent to a carboxy group, and PG represents a protecting group for a carboxy group or a group equivalent to a carboxy group.]

Step L-1:

[0085] This step is a step of producing the compound (1-2) by reacting the compound (c-6) and the compound (1-1), and it can be performed by the same method as Step C-5 described above.
Step L-2:

[0086] This step is a step of producing the compound (1-3) by reacting the compound (1-2) and the compound (a-7), and it can be performed by the same method as Step C-6 described above.

Step L-3:

[0087] This step is a step of producing the compound (1-4) by deprotecting the protecting group of the compound (1-3), and it can be performed by the same method as Step C-7 described above.

[0088] Process M is a method to produce the compound (m-2) of the invention.

Process M

[0089]

\[
\begin{align*}
\text{Step M-1:} & \\
\text{Step M-2:} & \\
\end{align*}
\]

[0090] [in the formula, R^1, R^2, R^3, Ar, m, n, E, and PG have the same meanings as above.]

Step M-1:

[0091] This step is a step of producing the compound (m-1) from the compound (1-3), and it can be performed according to the same method as Step D-1.

Step M-2:

[0092] This step is a step of producing the compound (m-2) from the compound (m-1), and it can be performed according to the same method as Step D-2.

[0093] Process N is a method to produce the compound (n-4), which is a production intermediate of the compound of the invention.

Process N

[0094]
[0095] [in the formula, R₁, R₂, R₃, Ar, m, n, PGc, PGh, and X have the same meanings as above, and Alkyl represents a C1-C6 alkyl group.]

Step N-1:

[0096] This step is a step of producing the compound (n-1) by protecting the secondary hydroxy group of the compound (d-1).

Step N-2 and Step N-3:

[0097] This step is a step for stepwise alkylation of the compound (n-1), i.e., a step to produce the compound (n-3).

Step N-4:

[0098] This step is a step of producing the compound (n-4) by deprotecting the protecting group for the secondary hydroxy group of the compound (n-3).

[0099] Process O is a method to produce the compound (o-5), which is a production intermediate of the compound of the invention.

Process O

[0100]
[0101] [in the formula, R₁, R², R³, Ar, m, n, and PGh have the same meanings as above.]

Step O-1:

[0102] This step is a method of producing the compound (o-1) by reacting the compound (c-6) and the compound (a-7), and it can be performed according to the same method as Step C-6.

Step O-2:

[0103] This step is a method of producing the compound (o-2) by protecting the secondary hydroxy group of the compound (o-1), and it can be performed according to the same method as Step N-1.

Step O-3:

[0104] This step is a step of producing the compound (o-3) by reacting the compound (o-2) with an organotin compound in the presence of a palladium catalyst.

Step O-4:

[0105] This step is a step of producing the compound (o-4) via introduction of a primary hydroxy group by carrying out a hydroboration-oxidation reaction of the compound (o-3).

Step O-5:

[0106] This step is a step of producing the compound (o-5) via introduction of a carboxy group by carrying out an etherification reaction of the primary hydroxy group of the compound (o-4).

[0107] The compound of the invention produced according to the methods described above can be isolated or purified
according to well-known methods, for example, extraction, precipitation, distillation, chromatography, fractional recrystallization, and recrystallization, etc.

[0108] Further, when the compound having Formula (I) of the invention or an intermediate during the production process has a chiral carbon, optical isomers are present. The optical isomers can be isolated and purified into individual isomers according to general methods like fractional recrystallization (salt resolution) which involves recrystallization with an appropriate salt or column chromatography, etc. Examples of literature for referring to methods of resolving optical isomers from racemates include "Enantiomers, Racemates and Resolution, John Wiley And Sons, Inc." by J. Jacques, etc.

[0109] When the compound or pharmaceutically acceptable salt thereof of the invention is administered to a mammal (in particular, a human), oral or parenteral administration can be used, either systemically or topically.

[0110] The pharmaceutical composition of the invention can be produced according to various methods for producing preparations that are generally used, after selecting the form which is suitable for the administration method.

[0111] Examples of forms of orally administered pharmaceutical composition include a tablet, a pill, a powder, a granule, a capsule, a liquid, a suspension, an emulsion, a syrup, and an elixir, etc. Preparation of the pharmaceuticals in such forms can be carried out according to typical methods, if necessary, using an additive that is appropriately selected from an excipient, a binding agent, a disintegrant, a lubricant, a swelling agent, a swelling aid, a coating agent, a plasticizer, a stabilizer, a preservative, an anti-oxidant, a coloring agent, a dissolving agent, a suspending agent, an emulsifying agent, a sweetening agent, a preserving agent, a buffering agent, a diluting agent, and a wetting agent, etc which are normally used as additives.

[0112] Examples of parenteral pharmaceutical compositions include an injection solution, an ointment, a gel, a cream, a wet agent, a patch, a propellant agent, an inhalation agent, a spraying agent, an eye drop, a nasal drop, a suppository, and an inhalation agent, etc. Preparation of the pharmaceuticals in such forms can be carried out according to typical methods, if necessary, using an additive that is appropriately selected from a stabilizer, a preservative, a dissolving agent, a moisturizing agent, a preserving agent, an anti-oxidant, a flavoring agent, a gelling agent, a neutralizing agent, a dissolving agent, a buffering agent, an isotonicity agent, a surface active agent, a coloring agent, a buffering agent, a thickening agent, a wetting agent, a filler, an absorption promoter, a suspending agent, and a binding agent, etc which are normally used as additives.

[0113] The dose of the compound having Formula (I) or a pharmaceutically acceptable salt thereof varies depending on symptoms, age, body weight, and on the type and dosage of a pharmaceutical agent which is administered in combination, etc. However, in general, oral or parenteral administration can be used, either systemically or topically, once or several times per day within the range of 0.001 mg to 1000 mg per dose for an adult (with a body weight of about 60 kg) in terms of the compound having Formula (I), or continuous intravenous administration within the range of 1 hour to 24 hours per day is preferable.

[0114] Further, if necessary, the pharmaceutical composition of the invention can be used in combination with other effective components within a range which does not impair the effect of the invention.

[0115] The invention includes a method of preventing and/or treating the disorders described above which is characterized in that the compound of the invention or a pharmaceutically acceptable salt thereof is administered.

[0116] Still further, the invention includes the use of the compound of the invention or a pharmaceutically acceptable salt thereof for producing the pharmaceutical composition described above.

Formulation example 1 (powders)

[0117] A powder is obtained by mixing 5 g of the compound of the invention, 895 g of lactose, and 100 g of corn starch using a blender.

Formulation example 2 (granules)

[0118] 5 g of the compound of the invention, 865 g of lactose, and 100 g of low-substituted hydroxypropyl cellulose are mixed, added with 300 g of 10% aqueous solution of hydroxypropyl cellulose, and kneaded. The mixture is granulated using an extrusion granulator and dried to obtain granules.

Formulation example 3 (tablets)

[0119] 5 g of the compound of the invention, 90 g of lactose, 34 g of corn starch, 20 g of crystalline cellulose, and 1 g of magnesium stearate are mixed using a blender, and tabletted with a tabletteting machine to obtain tablets.
Evaluation of inhibitory activity on calcium-sensing receptor (CaSR) using intracellular calcium increase as an indicator

By using CHO cells which have been transformed to stably express a human calcium-sensing receptor (CaSR) (CHO/hCaSR), CaSR antagonist activity was evaluated while the degree of inhibition of intracellular calcium increase by a test compound induced by increasing extracellular calcium concentration is taken as an indicator.

The preparation which is prepared by adding CHO/hCaSR to F12 medium (manufactured by Invitrogen) containing 10% fetal bovine serum to have $2 \times 10^5$ cells/mL was applied to a 384-well in an amount of 50 $\mu$L/well, and then incubated overnight in a CO$_2$ incubator. The culture supernatant was completely removed, the assay buffer (20 mM HEPES, HBSS (Ca and Mg free) containing 2.5 mM probenecid, pH 7.4) containing Calcium 3 (manufactured by Molecular Devices), i.e., a fluorescent intracellular calcium indicator, was added thereto in an amount of 25 $\mu$L/well, and the mixture was maintained for 1 hour in a CO$_2$ incubator. Meanwhile, Calcium 3 was prepared according to the protocol enclosed in FLIPR Calcium 3 Assay Kit (manufactured by Molecular Devices). From the data obtained, the difference between the fluorescence intensity before the addition of CaCl$_2$ solution and the maximum fluorescence intensity after the addition of CaCl$_2$ solution was calculated, and the 50% inhibition concentration (IC$_{50}$) of the test compound was obtained.

According to the present test, the compounds shown in Examples 1, 2, 3, 4, 6, 8, 9, 13, 14, 15, 18, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 34, 38, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, and 178 exhibited an inhibitory activity IC$_{50}$ of 1.6 $\mu$g/mL or less.

Evaluation of PTH secretion promoting activity in a rat

A 10 to 14-week old female F344 rat (Charles River Japan, Inc.) fasted overnight was anesthetized using ether, and blood serum before the administration was prepared by drawing blood from the jugular vein of the animal. Subsequently, the test compound was orally administered at a dose of 3 mg/5 mL/kg using a solvent (0.5% aqueous methyl cellulose solution containing 5% DMA). Blood was drawn from the jugular vein under ether anesthesia at 5, 15, 30, 60, 120, and 240 minutes after the administration of the test compound, and the blood serum was prepared. The blood serum PTH concentration was measured using rat Intact PTH ELISA kit (manufactured by Immutopics, Inc.).

According to the present test, the compounds shown in Examples 2, 3, 4, 6, 8, 9, 13, 14, 15, 18, 19, 21, 22, 23, 26, 27, 29, 34, 44, 45, 46, 47, 53, 54, 55, 57, 63, 64, 65, 69, 78, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 114, 115, 116, 118, 119, 120, 126, 127, 128, 129, 130, 132, 133, 136, 144, 145, 149, 150, 152, 156, 159, 162, 163, 165, 166, 167, 168, 169, 171, 173, 174, 176, and 177 increased the blood serum PTH concentration from 100 pg/mL or less at 0 minute to 400 pg/mL or more at 15 minutes, and after 240 minutes it reduced the concentration to 150 pg/mL or less.

<table>
<thead>
<tr>
<th>Test compound</th>
<th>Blood Serum PTH (1-84) Concentration (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 minute</td>
</tr>
<tr>
<td>Example 9</td>
<td>87.9±25.5</td>
</tr>
<tr>
<td>Example 14</td>
<td>53.3±4.4</td>
</tr>
</tbody>
</table>
EP 2 374 794 A1

TABLE 2

<table>
<thead>
<tr>
<th>Test compound</th>
<th>Blood Serum PTH (1-84) Concentration (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After 60 minutes</td>
</tr>
<tr>
<td>Example 9</td>
<td>49.1 ± 16.9</td>
</tr>
<tr>
<td>Example 14</td>
<td>41.8 ± 5.8</td>
</tr>
</tbody>
</table>

[0129] Mean ± S.D., n = 3

EXAMPLES

Example 1

(2E)-3-2-((1R)-1-(((2S)-2-3-(Fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy)ethyl)phenyl)prop-2-enoic acid

(1a) Tert-butyl (2S)-2-(3-fluoro-4-methylbenzoyl)pyrrolidine-1-carboxylate

[0130] To a solution of tert-butyl (2S)-2-[methoxy(methyl)carbamoyl]pyrrolidine-1-carboxylate (2.35 g, 9.10 mmol) in tetrahydrofuran (10 mL), 0.5 M solution of bromo(3-fluoro-4-methylphenyl)magnesium in tetrahydrofuran (20 mL, 10 mmol) was added dropwise under an argon atmosphere and ice cooling. Upon the completion of the dropwise addition, the mixture was stirred for 16 hours at room temperature, and then added with saturated aqueous citrate solution (40 mL). The mixture obtained was extracted with ethyl acetate (30 mL × 3) and the organic layers were combined, washed with saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 6/4) to give the title compound as a brown oily substance (1.35 g, yield 48%).

(1b) Tert-butyl (2S)-2-[3-fluoro-4-methylphenyl](hydroxy)methyl)pyrrolidine-1-carboxylate

[0131] To a solution of tert-butyl (2S)-2-(3-fluoro-4-methylphenyl)pyrrolidine-1-carboxylate (1.35 g, 4.38 mmol), which had been obtained in Example 1(1a), in methanol (5 mL), sodium borohydride (0.20 g, 5.23 mmol) was added under ice cooling, and stirred at room temperature for 0.5 hours. Water (20 mL) was added to the reaction solution, which was then extracted with ethyl acetate (20 mL × 3). After that, the organic layers were combined, washed with saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 3/1) to give the title compound as an orange oily substance (1.30 g, yield 96%).

(1c) Tert-butyl (2S)-2-3-(3-fluoro-4-methylphenyl)[1H-imidazol-1-yl carbonothioyl]oxy)methyl]pyrrolidine-1-carboxylate

[0132] Tert-butyl (2S)-2-[3-(3-fluoro-4-methylphenyl)(hydroxy)methyl]pyrrolidine-1-carboxylate (1.30 g, 4.19 mmol), which had been obtained in Example 1(1b), 1,1′-thiocarbonyldiimidazole (1.12 g, 6.28 mmol), and 4-((dimethylamino) pyridine (0.05 g, 0.42 mmol) were dissolved in tetrahydrofuran (8.4 mL) and stirred with heating under reflux for 16 hours. The reaction solution was cooled to room temperature. Water (20 mL) was added to the reaction solution, which was then extracted with ethyl acetate (20 mL × 3). After that, the organic layers were combined, washed with saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane/ethyl acetate = 3/1) to give the title compound as a yellow wax like substance (0.83 g, yield 47%).

(1d) Tert-butyl (2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidine-1-carboxylate

[0133] Tert-butyl (2S)-2-[3-(3-fluoro-4-methylphenyl)[1H-imidazol-1-yl carbonothioyl]oxy)methyl]pyrrolidine-1-carboxylate (0.83 g, 1.98 mmol), which had been obtained in Example 1(1c), and a solution of tributyl tin hydride (1.73 g, 5.94 mmol) and 2,2′-azobis(isobutyronitrile) (0.07 g, 0.40 mmol) in toluene (4 mL) were stirred with heating under reflux for 6 hours. The reaction solution was cooled to room temperature. Water (20 mL) was added to the reaction solution, which was then extracted with ethyl acetate (20 mL × 3). After that, the organic layers were combined, washed with saturated...
brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane/ethyl acetate = 4/1) to give the title compound as a colorless oily substance (0.33 g, yield 57%).

(1e) (2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidine

[0134] A solution of tert-butyl (2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidine-1-carboxylate (0.95 g, 3.24 mmol), which had been obtained in Example 1(1d), in methylene chloride (9 mL) was added with trifluoroacetic acid (2.40 mL, 32.3 mmol), and stirred at room temperature for 2 hours. The reaction solution was concentrated under reduced pressure. The residue was added with saturated aqueous sodium hydrogen carbonate solution (20 mL) and extracted with methylene chloride (20 mL × 3). After that, the organic layers were dried over sodium sulfate. The solvent was distilled off under reduced pressure to give the title compound as a yellow oily substance (0.44 g, yield 71%).

(1f) Methyl (2E)-3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}prop-2-enoate

[0135] A mixture of methyl (2E)-3-{2-[(1R)-1-(2R)-oxiran-2-yl methoxy]ethyl}phenyl}prop-2-enoate (237 mg, 0.90 mmol) described in WO 2004/106280, (2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidine (167 mg, 0.86 mmol), which had been obtained in Example 1(1e), and lithium perchlorate (55 mg, 0.52 mmol) in toluene (9 mL) was stirred at room temperature for 16 hours. Water (10 mL) was added to the reaction solution, which was then extracted with ethyl acetate (10 mL × 3). After that, the organic layers were combined, washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate) to give the title compound as a yellow oily substance (238 mg, yield 61%).

(1g) (2E)-3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}prop-2-enoic acid

[0136] 2 N aqueous sodium hydroxide solution (0.36 mL, 0.72 mmol) was added to a solution of methyl (2E)-3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}prop-2-enoate (111 mg, 0.24 mmol), which had been obtained in Example 1(1f), in mixture of tetrahydrofuran (0.72 mL) and methanol (0.72 mL), and stirred at room temperature for 16 hours. The reaction solution was concentrated under reduced pressure. The residue was added with water (10 mL), subsequently with 1 N aqueous hydrogen chloride solution (0.72 mL), and extracted with ethyl acetate (10 mL × 2). After that, the organic layers were combined, washed with saturated brine, and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to give the title compound as a white amorphous substance (71 mg, yield 67%).

Example 2

3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}propanoic acid

(2a) Methyl 3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl} propanoate

[0137] A solution of methyl (2E)-3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}prop-2-enoate (127 mg, 0.28 mmol), which had been obtained in Example 1(1f), in ethanol (2.8 mL) was added with 10% palladium-carbon (wet, 50 wt%, 63 mg), and hydrogenated under atmospheric pressure for 3 hours. The reaction solution was filtered through Celite and washed with ethanol. The solvent was distilled off under reduced pressure to give the title compound as a colorless oily substance (115 mg, yield 90%).

(2b) 3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}propanoic acid

[0138] By using methyl 3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}propanoate which had been obtained in Example 2(2a), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as a yellow amorphous substance (yield 68%).
Example 3

3-{2-[(1R)-1-((2R)-3-[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy}ethyl]-6-methyl[phenyl]propanoic acid

(3a) (1R)-1-(2-Bromo-3-methylphenyl)ethanol (+)-B-chlorodiisopropinocampheylborane (8.46 g, 26.4 mmol) was dissolved in tetrahydrofuran (150 mL), cooled to -20°C, slowly added dropwise with a solution of 1-(2-bromo-3-methylphenyl)ethanolone (4.30 g, 20.3 mmol) described in U.S. Patent Application Publication No. 2007/167506 A1 in tetrahydrofuran (50 mL), and stirred for 18 hours. The reaction solution was added with diethanolamine (6.38 g, 60.8 mmol), cooled to room temperature, and stirred at room temperature for 3 hours. The reaction solution was concentrated under reduced pressure and added with n-hexane (100 mL). The precipitated solids were filtered off and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane/ethyl acetate = 4/1) to give the title compound as a white solid (4.30 g, yield 99%, 95.6%ee).

(3b) (2R)-2-[[[(1R)-1-(2-Bromo-3-methylphenyl)ethoxy]methyl]oxirane

(1R)-1-(2-bromo-3-methylphenyl)ethanol (2.00 g, 9.30 mmol) obtained in Example 3(3a) and (R)-glycidyl 3-nitrobenzene sulfonic acid (3.13 g, 12.1 mmol) were dissolved in N,N-dimethyl formamide (45 mL), added with sodium hydride (608 mg, content 55%, 14.0 mmol), and stirred at room temperature for 2 hours. The reaction solution was added with water and extracted with ethyl acetate. After that, the organic layer was washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane/ethyl acetate = 4/1) to give the title compound as a colorless oily substance (1.51 g, yield 60%).

(3c) Ethyl (2E)-3-(2-methyl-6-[(1R)-1-[(2R)-oxiran-2-yl methoxy]ethyl]phenyl)prop-2-enoate

(2R)-2-[[[(1R)-1-(2-Bromo-3-methylphenyl)ethoxy]methyl]oxirane (1505 mg, 5.57 mmol), which had been obtained in Example 3(3b), ethyl prop-2-enoate (910 µL, 8.36 mmol), palladium acetate (II) (126 mg, 0.56 mmol), tris(2-methylphenyl)phosphine (170 mg, 0.56 mmol), and potassium carbonate (1537 mg, 11.1 mmol) were suspended in a mixed solvent (27.5 mL) of propionitrile-water (2 : 1), and stirred with heating under reflux for 5 hours. The reaction solution was cooled to room temperature, filtered by using Millicup-LH, and washed with ethyl acetate. The organic layer was washed with water and saturated brine, and then dried over anhydrous magnesium sulfate. After that, the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane/ethyl acetate = 4/1) to give the title compound as a pale yellow oily substance (1025 mg, yield 63%).

(3d) Ethyl (2E)-3-[(1R)-1-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-6-methyl[phenyl]prop-2-enoate

(3e) Ethyl 3-[(1R)-1-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-6-methyl[phenyl]propanoate

(3f) 3-{2-[(1R)-1-[(2R)-3-[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-6-methyl[phenyl]propanoic acid

(3g) By using ethyl 3-[(1R)-1-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-6-methyl[phenyl]propanoate which had been obtained in Example 3(3e), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as a white amorphous substance (yield 76%).
Example 4

3-{2-[(1R)-1-[(2R)-3-[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-5-methylphenyl}propanoic acid

(4a) (1R)-1-[(2-Bromo-4-methylphenyl)ethanol]

[0145] By using 1-[(2-bromo-9-methylphenyl)ethanone (3.47 g, 16.4 mmol) described in WO 2001/049649, the reaction was carried out in the same manner as the method described in Example 3(3a) to give the title compound as a colorless oily substance (yield 99%, 95.3% ee).

(4b) (2R)-2-[[[(1R)-1-[(2-Bromo-4-methylphenyl]ethoxy]methyl]oxirane

[0146] By using (1R)-1-[(2-bromo-4-methylphenyl)ethanol which had been obtained in Example 4(4a), the reaction was carried out in the same manner as the method described in Example 3(3b) to give the title compound as a colorless oily substance (yield 57%).

(4c) Ethyl (2E)-3-[(3-methyl-6-[(1R)-1-[(2R)-oxiran-2-yl methoxy]ethyl]phenyl]prop-2-enoate

[0147] By using (2R)-2-[[[(1R)-1-[(2-bromo-4-methylphenyl]ethoxy]methyl]oxirane which had been obtained in Example 4(4b), the reaction was carried out in the same manner as the method described in Example 3(3c) to give the title compound as a pale yellow oily substance (yield 51%).

(4d) Ethyl (2E)-3-{2-[(1R)-1-[(2R)-3-[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-5-methylphenyl}prop-2-enoate

[0148] By using ethyl (2E)-3-[(3-methyl-6-[(1R)-1-[(2R)-oxiran-2-yl methoxy]ethyl]phenyl]prop-2-enoate which had been obtained in Example 4(4c), the reaction was carried out in the same manner as the method described in Example 1(1f) to give the title compound (quantitative) as a colorless oily substance.

(4e) Ethyl 3-{2-[(1R)-1-[(2R)-3-[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-5-methylphenyl}propanoate

[0149] By using ethyl (2E)-3-{2-[(1R)-1-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl]pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-5-methylphenyl}prop-2-enoate which had been obtained in Example 4(4d), the reaction was carried out in the same manner as the method described in Example 2(2a) to give the title compound as a colorless oily substance (yield 73%).

(4f) 3-{2-[(1R)-1-[(2R)-3-[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-5-methylphenyl}propanoic acid

[0150] By using ethyl 3-{2-[(1R)-1-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl]pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-5-methylphenyl}propanoate which had been obtained in Example 4(4e), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as a white amorphous substance (yield 91%).

Example 5

3-{2-[(1R)-1-[(2R)-3-[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-4-methylphenyl}propanoic acid

(5a) (1R)-1-[(2-Bromo-5-methylphenyl)ethanol]

[0151] By using 1-(2-bromo-5-methylphenyl)ethanone described in J. Org. Chem. 1960, 25, 1016-1020, the reaction was carried out in the same manner as the method described in Example 3(3a) to give the title compound as a colorless oily substance (yield 96%, 95.4% ee).
(5b) (2R)-2-[(1R)-1-(2-bromo-5-methylphenyl)ethoxy]methyl]oxirane

[0152] By using (1R)-1-(2-bromo-5-methylphenyl)ethanol which had been obtained in Example 5(5a), the reaction was carried out in the same manner as the method described in Example 3(3b) to give the title compound as a colorless oily substance (yield 66%).

(5c) Ethyl (2E)-3-(9-methyl-2-[(1R)-1-(2R)-oxiran-2-yl methoxy]ethyl)phenyl]prop-2-enoate

[0153] By using (2R)-2-[(1R)-1-(2-bromo-5-methylphenyl)ethoxy]methyl]oxirane which had been obtained in Example 5(5b), the reaction was carried out in the same manner as the method described in Example 3(3c) to give the title compound as a pale yellow oily substance (yield 78%).

(5d) Ethyl (2E)-3-[(1R)-1-[(2R)-3-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-4-methylphenyl]propa-2-enoate

[0154] By using (2E)-3-(4-methyl-2-[(1R)-1-(2R)-oxiran-2-yl methoxy]ethyl)phenyl]prop-2-enoate which had been obtained in Example 5(5c), the reaction was carried out in the same manner as the method described in Example 1(1f) to give the title compound as a pale yellow oily substance (yield 84%).

(5e) Ethyl 3-[(1R)-1-[(2R)-3-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-4-methylphenyl]propanoate

[0155] By using ethyl (2E)-3-[(2R)-1-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-4-methylphenyl]prop-2-enoate which had been obtained in Example 5(5d), the reaction was carried out in the same manner as the method described in Example 2(2a) to give the title compound as a colorless oily substance (yield 92%).

(5f) 3-[(1R)-1-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-9-methylphenyl]propanoic acid

[0156] By using ethyl 3-[(1R)-1-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-4-methylphenyl]propanoate which had been obtained in Example 5(5e), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as a white amorphous substance (yield 92%).

Example 6

3-[(2-Fluoro-6-[(1R)-1-[(2R)-3-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-phenyl]propanoic acid

(6a) (1R)-1-(2-Bromo-3-fluorophenyl)ethanol

[0157] By using 1-(2-bromo-3-fluorophenyl)ethanone described in Tetrahedron Lett. 1995, 36, 881-884, the reaction was carried out in the same manner as the method described in Example 3(3a) to give the title compound as a colorless oily substance (yield 99%, 96.3%ee).

(6b) (2R)-2-[(1R)-1-(2-Bromo-3-fluorophenyl)ethoxy]methyl]oxirane

[0158] By using (1R)-1-(2-bromo-3-fluorophenyl)ethanol which had been obtained in Example 6(6a), the reaction was carried out in the same manner as the method described in Example 3(3b) to give the title compound as a colorless oily substance (yield 55%).

(6c) Ethyl (2E)-3-(2-fluoro-6-[(1R)-1-[(2R)-oxiran-2-yl methoxy]ethyl]phenyl]prop-2-enoate

[0159] By using (2R)-2-[(1R)-1-(2-bromo-3-fluorophenyl)ethoxy]methyl]oxirane which had been obtained in Example 6(6b), the reaction was carried out in the same manner as the method described in Example 3(3c) to give the title compound as a pale yellow oily substance (yield 85%).
(6d) Ethyl (2E)-3-(2-fluoro-6-[(1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy)ethyl]phenyl)prop-2-enoate

[0160] By using ethyl (2E)-3-(2-fluoro-6-[(1R)-1-[(2R)-oxiran-2-yl methoxy]ethyl]phenyl)prop-2-enoate which had been obtained in Example 6(6c), the reaction was carried out in the same manner as the method described in Example 1(1f) to give the title compound as a pale yellow oily substance (yield 82%).

(6e) Ethyl 3-(2-fluoro-6-[(1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy)ethyl]phenyl)propanoate

[0161] By using ethyl (2E)-3-(2-fluoro-6-[(1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy)ethyl]phenyl)prop-2-enoate which had been obtained in Example 6(6d), the reaction was carried out in the same manner as the method described in Example 2(2a) to give the title compound as a colorless oily substance (yield 93%).

(6f) 3-(2-Fluoro-6-[(1R)-1-((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy)ethyl]phenyl)propanoic acid

[0162] By using ethyl 3-(2-fluoro-6-[(1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy)ethyl]phenyl)propanoate which had been obtained in Example 6(6e), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as a white amorphous substance (yield 94%).

Example 7

3-(3-Fluoro-6-[(1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy)ethyl]phenyl)propanoic acid

(7a) (1R)-1-(2-Bromo-4-fluorophenyl)ethanol

[0163] By using 1-(2-bromo-4-fluorophenyl)ethanone described in WO 2008/025509, the reaction was carried out in the same manner as the method described in Example 3(3a) to give the title compound as a colorless oily substance (yield 99%, 95.6% ee).

(7b) 2R)-2-1[(1R)-1-(2-Bromo-4-fluorophenyl)ethoxy]methyl]oxirane

[0164] By using (1R)-1-(2-bromo-4-fluorophenyl)ethanol which had been obtained in Example 7(7a), the reaction was carried out in the same manner as the method described in Example 3(3b) to give the title compound as a colorless oily substance (yield 58%).

(7c) Ethyl (2E)-3-(3-fluoro-6-[(1R)-1-[(2R)-oxiran-2-yl methoxy]ethyl]phenyl)prop-2-enoate

[0165] By using (2R)-2-1[(1R)-1-(2-bromo-4-fluorophenyl)ethoxy]methyl]oxirane which had been obtained in Example 7(7b), the reaction was carried out in the same manner as the method described in Example 3(3c) to give the title compound as a pale yellow oily substance (yield 78%).

(7d) Ethyl (2E)-3-(3-fluoro-6-[(1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy)ethyl]phenyl)prop-2-enoate

[0166] By using ethyl (2E)-3-(3-fluoro-6-[(1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy)ethyl]phenyl)prop-2-enoate which had been obtained in Example 7(7c), the reaction was carried out in the same manner as the method described in Example 1(1f) to give the title compound as a colorless oily substance (yield 76%).

(7e) Ethyl 3-(3-fluoro-6-[(1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy)ethyl]phenyl)propanoate

[0167] By using ethyl (2E)-3-(3-fluoro-6-[(1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy)ethyl]phenyl)prop-2-enoate which had been obtained in Example 7(7d), the reaction was carried out in the same manner as the method described in Example 2(2a) to give the title compound as a colorless oily substance (yield...
92%).

(7) 3-(3-Fluoro-6-[(1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl)oxy]ethyl]phenyl) propanoic acid

[0168] By using ethyl 3-(3-fluoro-6-[(1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl)oxy]ethyl]phenyl)propanoate which had been obtained in Example 7(7e), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as a white amorphous substance (yield 91%).

Example 8

3-(4-Fluoro-2-(((2S)-2-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy)ethyl)phenyl)propanoic acid

(8a) (1R)-1-(2-Bromo-5-fluorophenyl)ethanol

[0169] By using 1-(2-bromo-5-fluorophenyl)ethanone, the reaction was carried out in the same manner as the method described in Example 3(3a) to give the title compound as a colorless oily substance (yield 96%, 95.7%ee).

(8b) (2R)-2-[[1(R)-1-(2-Bromo-5-fluorophenyl)ethoxy]methyl]oxirane

[0170] By using (1R)-1-(2-bromo-5-fluorophenyl)ethanol which had been obtained in Example 8(8a), the reaction was carried out in the same manner as the method described in Example 3(3b) to give the title compound as a colorless oily substance (yield 77%).

(8c) Ethyl (2E)-3-(4-fluoro-2-((1R)-2-[(2R)-oxiran-2-yl methoxy]ethyl)phenyl)prop-2-enoate

[0171] By using (2R)-2-[[1(R)-7-(2-bromo-5-fluorophenyl)ethoxy]methyl]oxirane which had been obtained in Example 8(8b), the reaction was carried out in the same manner as the method described in Example 3(3c) to give the title compound as a pale yellow oily substance (yield 54%).

(8d) Ethyl (2E)-3-(4-fluoro-2-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl)oxy)ethyl]phenyl)prop-2-enoate

[0172] By using ethyl (2E)-3-(4-fluoro-2-((1R)-1-[(2R)-oxiran-2-yl methoxylethyl]phenyl)prop-2-enoate which had been obtained in Example 8(8c), the reaction was carried out in the same manner as the method described in Example 1(1f) to give the title compound as a pale yellow oily substance (yield 83%).

(8e) Ethyl 3-(4-fluoro-2-((1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl)oxy)ethyl]phenyl)propanoate

[0173] By using ethyl (2E)-3-(4-fluoro-2-((1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl)oxy)ethyl]phenyl)prop-2-enoate which had been obtained in Example 8(8d), the reaction was carried out in the same manner as the method described in Example 2(2a) to give the title compound as a colorless oily substance (yield 78%).

(8f) 3-(4-Fluoro-2-((1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrroladin-1-yl]-2-hydroxypropyl)oxy)ethyl]phenyl)propanoic acid

[0174] By using ethyl 3-(4-fluoro-2-((1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl)oxy)ethyl]phenyl)propanoate which had been obtained in Example 8(8e), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as a white solid (yield 96%).
Example 9

3-{2-[(1R)-1-][(2R)-3-[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy}ethyl-6-(trifluoromethyl)phenyl)propanoic acid

(9a) 1-[2-Bromo-3-(trifluoromethyl)phenyl]ethanone

[0175] A mixture solution of 2-bromo-3-(trifluoromethyl)benzoic acid (2.50 g, 9.29 mmol), N, O-dimethylhydroxylamine hydrochloride (1.18 g, 12.1 mmol), N-methylmorpholine (2.1 mL, 18.6 mmol), and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (3.78 g, 12.1 mmol) in acetonitrile (45 mL) was stirred at room temperature for 18 hours. The reaction solution was concentrated under reduced pressure. The resulting residue was added with 1 N aqueous hydrochloride solution and extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane/ethyl acetate = 4/1) to give the title compound as a colorless oily substance (1.27 g, yield 44%).

(9b) (1R)-1-[2-Bromo-3-(trifluoromethyl)phenyl]ethanol

[0176] By using 1-[2-bromo-3-(trifluoromethyl)phenyl]ethanone which had been obtained in Example 9(9a), the reaction was carried out in the same manner as the method described in Example 3(3a) to give the title compound as a colorless oily substance (yield 99%, 97.5%ee).

(9c) (2R)-2-[(1R)-1-[2-Bromo-3-(trifluoromethyl)phenyl]ethoxy]methyl)oxirane

[0177] By using (1R)-1-[2-bromo-3-(trifluoromethyl)phenyl]ethanol which had been obtained in Example 9(9b), the reaction was carried out in the same manner as the method described in Example 3(3b) to give the title compound as a colorless oily substance (yield 55%).

(9d) Ethyl (2E)-3-[2-[(1R)-1-[(2R)-oxiran-2-yl methoxy]ethyl]-6-(trifluoromethyl)phenyl)prop-2-enoate

[0178] By using (2R)-2-[(1R)-1-[2-bromo-3-(trifluoromethyl)phenyl]ethoxy]methyl)oxirane which had been obtained in Example 9(9c), the reaction was carried out in the same manner as the method described in Example 3(3c) to give the title compound as a pale yellow oily substance (yield 25%).

(9e) Ethyl (2E)-3-[2-[(1R)-1-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-6-(trifluoromethyl)phenyl)prop-2-enoate

[0179] By using ethyl (2E)-3-[2-[(1R)-1-[(2R)-oxiran-2-yl methoxy]ethyl]-6-(trifluoromethyl)phenyl]prop-2-enoate which had been obtained in Example 9(9d), the reaction was carried out in the same manner as the method described in Example 1(1f) to give the title compound as a colorless oily substance (yield 91%).

(9f) Ethyl 3-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-6-(trifluoromethyl)phenyl)propanoate

[0180] By using ethyl (2E)-3-[(2R)-1-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-6-(trifluoromethyl)phenyl]prop-2-enoate which had been obtained in Example 9(9e), the reaction was carried out in the same manner as the method described in Example 2(2a) to give the title compound as a colorless oily substance (yield 88%).

(9g) 3-[2-[(1R)-1-[(2R)-3-[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-6-(trifluoromethyl)phenyl)propanoic acid

[0181] By using ethyl 3-[(2R)-1-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl]-6-(trifluoromethyl)phenyl)propanoate which had been obtained in Example 9(9f), the reaction was carried out in...
the same manner as the method described in Example 1(1g) to give the title compound as a white solid (yield 56%).

Example 10

3-{2-[(1R)-1-{[(2R)-3-{[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]2-hydroxypropyl}oxy]ethyl}-5-(trifluoromethyl)phenyl}propanoic acid

(10a) 1-[2-Bromo-4-(trifluoromethyl)phenyl]ethanone

[0182] By using 2-bromo-4-(trifluoromethyl)benzoic acid, the reaction was carried out in the same manner as the method described in Example 9(9a) to give the title compound as a colorless oily substance (yield 84%).

(10b) (1R)-1-[2-Bromo-4-(trifluoromethyl)phenyl]ethanol

[0183] By using 1-[2-bromo-4-(trifluoromethyl)phenyl]ethanol which had been obtained in Example 10(10a), the reaction was carried out in the same manner as the method described in Example 3(3a) to give the title compound as a colorless oily substance (yield 99%, 94.7%ee).

(10c) (2R)-2-{{(1R)-1-[2-Bromo-4-(trifluoromethyl)phenyl]ethoxy}methyl}oxirane

[0184] By using (1R)-1-[2-bromo-4-(trifluoromethyl)phenyl]ethanol which had been obtained in Example 10(10b), the reaction was carried out in the same manner as the method described in Example 3(3b) to give the title compound as a colorless oily substance (yield 70%).

(10d) Ethyl (2E)-3-{{(1R)-1-[(2R)-oxiran-2-yl methoxy]ethyl}-5-(trifluoromethyl)phenyl}prop-2-enoate

[0185] By using (2R)-2-{{(1R)-1-[2-bromo-4-(trifluoromethyl)phenyl]ethoxy}methyl}oxirane which had been obtained in Example 10(10c), the reaction was carried out in the same manner as the method described in Example 3(3c) to give the title compound as a colorless oily substance (yield 83%).

(10e) Ethyl (2E)-3-{{(1R)-1-[(2R)-3-{(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]2-hydroxypropyl}oxy]ethyl}-5-(trifluoromethyl)phenyl]prop-2-enoate

[0186] By using ethyl (2E)-3-{{(1R)-1-[(2R)-oxiran-2-yl methoxy]ethyl}-5-(trifluoromethyl)phenyl}prop-2-enoate which had been obtained in Example 10(10d), the reaction was carried out in the same manner as the method described in Example 1(1f) to give the title compound as a colorless oily substance (yield 89%).

(10f) Ethyl 3-{{(1R)-1-[(2R)-3-{(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]2-hydroxypropyl}oxy]ethyl}-5-(trifluoromethyl)phenyl]propanoate

[0187] By using ethyl (2E)-3-{{(1R)-1-[(2R)-3-{(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]2-hydroxypropyl}oxy]ethyl}-5-(trifluoromethyl)phenyl]prop-2-enoate which had been obtained in Example 10(10e), the reaction was carried out in the same manner as the method described in Example 2(2a) to give the title compound as a colorless oily substance (yield 99%).

(10g) 3-{{(1R)-1-[(2R)-3-{(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]2-hydroxypropyl}oxy]ethyl}-5-(trifluoromethyl)phenyl]propanoic acid

[0188] By using ethyl 3-{{(1R)-1-[(2R)-3-{(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]2-hydroxypropyl}oxy]ethyl}-5-(trifluoromethyl)phenyl]propanoate which had been obtained in Example 10(10f), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as a white amorphous substance (yield 99%).
Example 11

3-4-[[1R]-1-((((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy)ethyl]phenyl)propanoic acid

(11a) (2R)-2-[[1R]-1-(4-bromo phenyl)ethoxy][methyl]oxirane

[0189] By using (1R)-1-(4-bromo phenyl)ethanol, the reaction was carried out in the same manner as the method described in Example 3(3b) to give the title compound as a pale yellow oily substance (yield 35%).

(11b) (2R)-1-[(1R)-1-(4-bromo phenyl)ethoxy]-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]propan-2-ol

[0190] By using (2R)-2-[[1R]-1-(4-bromo phenyl)ethoxy][methyl]oxirane which had been obtained in Example 11(1a), the reaction was carried out in the same manner as the method described in Example 1(1f) to give the title compound as a pale yellow oily substance (yield 70%).

(11c) Ethyl (2E)-3-[(1R)-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy)ethyl]phenyl)prop-2-enoate

[0191] By using (2R)-1-[(1R)-1-(4-bromo phenyl)ethoxy]-3-[(2S)-2-(3-fluoro-9-methylbenzyl)pyrrolidin-1-yl]propan-2-ol which had been obtained in Example 11(1b), the reaction was carried out in the same manner as the method described in Example 3(3c) to give the title compound as a pale brown oily substance (yield 76%).

(11d) Ethyl 3-4-[[1R]-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy)ethyl]phenyl]propanoate

[0192] By using ethyl (2E)-3-4-[[1R]-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy)ethyl]phenyl)prop-2-enoate which had been obtained in Example 11(11c), the reaction was carried out in the same manner as the method described in Example 2(2a) to give the title compound as a pale yellow oily substance. The resulting compound was used for the next step without further purification.

(11e) 3-4-[[1R]-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy)ethyl]phenyl]propanoic acid

[0193] By using ethyl 3-4-[[1R]-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy)ethyl]phenyl)propanoate which had been obtained in Example 11(11d), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as a pale brown amorphous substance (two step yield 72%).

Example 12

4-2-[[1R]-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy)ethyl]phenyl]butanoic acid

(12a) Methyl (3E)-4-2-[[1R]-1-[(2R)-oxiran-2-yl methoxy]ethyl]phenyl]but-3-enoate

[0194] By using (2R)-2-2-[[1R]-1-(2-bromo phenyl)ethoxy][methyl]oxirane (257 mg, 1.00 mmol) described in WO 2004/094362 and methylbut-3-enoate, the reaction was carried out in the same manner as the method described in Example 3(3c) to give the title compound as a yellow oily substance (yield 65%).

(12b) Methyl (3E)-4-2-[[1R]-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy)ethyl]phenyl]but-3-enoate

[0195] By using methyl (3E)-4-2-[[1R]-1-2-yl oxiran-2-yl methoxy][ethyl]phenyl]but-3-enoate which had been obtained in Example 12(12a), the reaction was carried out in the same manner as the method described in Example 1(1f) to give the title compound as a pale brown oily substance (yield 74%).
(12c) Methyl 4-{2-[(1R)-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy]ethyl}phenyl}butanoate

[0196] By using methyl (3E)-4-((2R)-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy]ethyl)phenyl]but-3-enoate which had been obtained in Example 12(12b), the reaction was carried out in the same manner as the method described in Example 2(2a) to give the title compound as a colorless oily substance (yield 79%).

(12d) 4-((2R)-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy]ethyl)phenyl]butanoic acid

[0197] By using methyl 4-((2R)-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy]ethyl)phenyl]butanoate which had been obtained in Example 12(12c), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as a colorless amorphous substance (yield 93%).

Example 13

5-((2R)-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy]ethyl)phenyl]pentanoic acid

(13a) Ethyl (4E)-5-((2R)-1-(((2R)-oxiran-2-yl methoxy)ethyl)phenyl]pent-4-enoate

[0198] By using (2R)-2-((1R)-1-((2R)-2-bromophenyl)ethoxy)methyl]oxirane described in WO 2004/094362 and ethyl pent-4-enoate, the reaction was carried out in the same manner as the method described in Example 3(3c) to give the title compound as a colorless oily substance (yield 82%).

(13b) Ethyl (4E)-5-((2R)-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy]ethyl)phenyl]pent-4-enoate

[0199] By using ethyl (4E)-5-((2R)-1-(((2R)-oxiran-2-yl methoxy)ethyl)phenyl]pent-4-enoate which had been obtained in Example 13(13a), the reaction was carried out in the same manner as the method described in Example 1(1f) to give the title compound as a pale brown oily substance (yield 85%).

(13c) Ethyl 5-((2R)-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy]ethyl)phenyl]pentanoate

[0200] By using ethyl (4E)-5-((2R)-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy]ethyl)phenyl]pent-4-enoate which had been obtained in Example 13(13b), the reaction was carried out in the same manner as the method described in Example 2(2a) to give the title compound as a colorless oily substance (yield 61%).

(13d) 5-((2R)-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy]ethyl)phenyl]pentanoic acid

[0201] By using ethyl (4E)-5-((2R)-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy]ethyl)phenyl]pentanoate which had been obtained in Example 13(13c), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as a colorless amorphous substance (yield 95%).

Example 14

3-((2R)-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)azetidin-1-yl)-2-hydroxypropyl)oxy]ethyl)phenyl]propanoic acid

(14a) Tert-butyl (2S)-2-((3-fluoro-4-methylphenyl]carbonyl)azetidine-1-carboxylate

[0202] By using tert-butyl (2S)-2-((methoxy(methyl)carbamoyl]azetidine-1-carboxylate described in Eur. J. Med. Chem. 2000, 35, 979-988, the reaction was carried out in the same manner as the method described in Example 1(1a) to give the title compound as a pale yellow oily substance (yield 87%).
EP 2 374 794 A1

(14b) Tert-butyl (2S)-2-[(3-fluoro-4-methylphenyl)(hydroxy)methyl]azetidine-1-carboxylate

[0203] By using tert-butyl (2S)-2-[(3-fluoro-4-methylphenyl)carbonyl]azetidine-1-carboxylate which had been obtained in Example 14(14a), the reaction was carried out in the same manner as the method described in Example 1(1b) to give the title compound, i.e., diastereomer A (yield 79%) and diastereomer B (yield 16%) each as a colorless oily substance.

(14c) Tert-butyl (2S)-2-[(3-fluoro-4-methylphenyl)[(1H-imidazol-1-yl carbonothioyl]oxy)methyl]azetidine-1-carboxylate

[0204] By using tert-butyl (2S)-2-[(3-fluoro-4-methylphenyl)(hydroxy)methyl]azetidine-1-carboxylate (diastereomer A) which had been obtained in Example 14(14b), the reaction was carried out in the same manner as the method described in Example 1(1c) to give the title compound as a colorless amorphous substance (yield 92%).

(14d) Tert-butyl (2R)-2-(3-fluoro-4-methylbenzyl)azetidine-1-carboxylate

[0205] By using tert-butyl (2S)-2-[(3-fluoro-4-methylphenyl)[(1H-imidazol-1-yl carbonothioyl]oxy)methyl]azetidine-1-carboxylate which had been obtained in Example 14(14c), the reaction was carried out in the same manner as the method described in Example 1(1d) to give the title compound as a colorless oily substance (yield 86%).

(14e) (2R)-2-(3-Fluoro-4-methylbenzyl)azetidine

[0206] By using tert-butyl (2R)-2-(3-fluoro-4-methylbenzyl)azetidine-1-carboxylate which had been obtained in Example 14(14d), the reaction was carried out in the same manner as the method described in Example 1(1e) to give the title compound as a pale brown solid (yield 93%).

(14f) Ethyl (2E)-3-[(1R)-1-[(2R)-oxiran-2-yl methoxy]ethyl]phenyl]prop-2-enoate

[0207] By using (2R)-2-[(1R)-1-(2-bromophenylethoxy)methyl]oxirane described in WO 2004/094362, the reaction was carried out in the same manner as the method described in Example 3(3c) to give the title compound as a yellow oily substance (yield 95%).

(14g) Ethyl (2E)-3-[(1R)-1-[(2R)-3-[(2R)-2-(3-trifluoro-4-methylbenzyl)azetidin-1-yl]-2-hydroxypropyl]oxy]ethyl]phenyl]prop-2-enoate

[0208] By using ethyl (2E)-3-[(1R)-1-[(2R)-oxiran-2-yl methoxy]ethyl]phenyl]prop-2-enoate which had been obtained in Example 14(14f) and (2R)-2-(3-fluoro-4-methylbenzyl)azetidine which had been obtained in Example 14(14e), the reaction was carried out in the same manner as the method described in Example 1(1f) to give the title compound as a pale yellow oily substance (yield 31%).

(14h) Ethyl 3-[(1R)-1-[(2R)-2-(3-fluoro-4-methylbenzyl)azetidin-1-yl]-2-hydroxypropyl]oxy]ethyl]phenyl]propanoate

[0209] By using ethyl (2E)-3-[(1R)-1-[(2R)-3-[(2R)-2-(3-trifluoro-4-methylbenzyl)azetidin-1-yl]-2-hydroxypropyl]oxy]ethyl]phenyl]prop-2-enoate which had been obtained in Example 14(14g), the reaction was carried out in the same manner as the method described in Example 2(2a) to give the title compound as a colorless oily substance (yield 59%).

(14i) 3-[(1R)-1-[(2R)-2-(3-Fluoro-4-methylbenzyl)azetidin-1-yl]-2-hydroxypropyl]oxy]ethyl]phenyl]propanoic acid

[0209] By using ethyl 3-[(1R)-1-[(2R)-3-[(2R)-2-(3-fluoro-4-methylbenzyl)azetidin-1-yl]-2-hydroxypropyl]oxy]ethyl]phenyl]propanoate which had been obtained in Example 14(14h), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as a pale yellow amorphous substance (yield 96%).
Example 15

5-{2-[(1R)-1-[((2R)-3-[(2R)-2-(3-Fluoro-4-methylbenzyl)azetidin-1-yl]-2-hydroxypropyl]oxy]ethyl]phenyl}pentanoic acid

(15a) Ethyl (4E)-5-{2-[(1R)-1-[((2R)-3-[(2R)-2-(3-fluoro-4-methylbenzyl)azetidin-1-yl]-2-hydroxypropyl]oxy]ethyl]phenyl}pent-4-enoate

[0211] By using ethyl (4E)-5-{2-[(1R)-1-[(2R)-oxiran-2-yl methoxy]ethyl]phenyl}pent-4-enoate which had been obtained in Example 13(13a) and (2R)-2-(3-fluoro-4-methylbenzyl)azetidine which had been obtained in Example 14(14e), the reaction was carried out in the same manner as the method described in Example 1(1f) to give the title compound as a colorless oily substance (yield 46%).

(15b) Ethyl 5-2-[(1R)-1-[((2R)-3-[(2R)-2-(3-fluoro-4-methylbenzyl)azetidin-1-yl]-2-hydroxypropyl]oxy]ethyl]phenyl}pentanoate

[0212] By using ethyl (4E)-5-{2-[(1R)-1-[((2R)-3-[(2R)-2-(3-fluoro-4-methylbenzyl)azetidin-1-yl]-2-hydroxypropyl]oxy]ethyl]phenyl}pent-4-enoate which had been obtained in Example 15(15a), the reaction was carried out in the same manner as the method described in Example 2(2a) to give the title compound as a colorless oily substance (yield 91%).

(15c) 5-2-[(1R)-1-[((2R)-3-[(2R)-2-(3-Fluoro-4-methylbenzyl)azetidin-1-yl]-2-hydroxypropyl]oxy]ethyl]phenyl}pentanoic acid

[0213] By using ethyl 5-2-[(1R)-1-[((2R)-3-[(2R)-2-(3-fluoro-4-methylbenzyl)azetidin-1-yl]-2-hydroxypropyl]oxy]ethyl]phenyl}pentanoate which had been obtained in Example 15(15b), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as a colorless amorphous substance (yield 96%).

[0214] The structures and physicochemical data of the compounds that are described in Examples 1 to 15 are given below.

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Structure</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(1a)</td>
<td><img src="image1" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) δ: 1.27 (5.4H, s), 1.46 (3.6H, s), 1.84-1.99 (3H, m), 2.23-2.38 (4H, m), 3.42-3.72 (2H, m), 5.09-5.15 (0.6H, m), 5.22-5.29 (0.4H, m), 7.24-7.31 (1H, m), 7.58-7.68 (2H, m).</td>
</tr>
<tr>
<td>1(1b)</td>
<td><img src="image2" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) δ: 1.48 (9H, s), 1.53-1.81 (4H, m), 2.22 (3H, s), 3.30-3.33 (1H, m), 3.39-3.46 (1H, m), 4.00 (1H, td, J = 8.2, 3.8 Hz), 4.44 (1H, d, J = 7.8 Hz), 5.89 (1H, s), 6.92-7.11 (3H, m).</td>
</tr>
<tr>
<td>1(1c)</td>
<td><img src="image3" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) δ: 1.40 (6.3H, s), 1.52 (2.7H, s), 1.70-1.72 (1H, m), 1.87-1.89 (3H, m), 2.27 (3H, s), 3.05-3.07 (0.3H, m), 3.26-3.28 (0.7H, m), 3.40-3.41 (1H, m), 4.36-4.38 (0.3H, m), 4.56-4.58 (0.7H, m), 6.23 (0.7H, d, J = 8.8 Hz), 6.66-6.68 (0.3H, m), 7.01-7.15 (4H, m), 7.69 (0.3H, s), 7.78 (0.7H, s), 8.41 (0.3H, s), 8.48 (0.7H, s).</td>
</tr>
<tr>
<td>Example No.</td>
<td>Structure</td>
<td>Data</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>1(1d)</td>
<td><img src="image1.png" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.48 (9H, s), 1.61-1.77 (4H, m), 2.24 (3H, s), 2.46-2.52 (1H, m), 3.00-3.10 (1H, m), 3.30-3.34 (2H, m), 3.91-4.00 (1H, m), 6.83-6.87 (2H, m), 7.06-7.08 (1H, m).</td>
</tr>
<tr>
<td>1(1e)</td>
<td><img src="image2.png" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.35-1.39 (1H, m), 1.67-1.88 (3H, m), 2.23 (3H, s), 2.70 (2H, d, $J = 6.8$ Hz), 2.81-2.84 (1H, m), 3.01-3.04 (1H, m), 3.16-3.23 (1H, m), 6.85-6.88 (2H, m), 7.07-7.09 (1H, m).</td>
</tr>
<tr>
<td>1(1f)</td>
<td><img src="image3.png" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.44-1.50 (1H, m), 1.47 (3H, d, $J = 6.4$ Hz), 1.63-1.75 (3H, m), 2.24 (3H, s), 2.40-2.45 (3H, m), 2.71-2.74 (1H, m), 2.86-2.92 (2H, m), 3.08-3.10 (1H, m), 3.34-3.37 (2H, m), 3.80 (3H, s), 3.85-3.91 (1H, m), 4.83 (1H, q, $J = 6.6$ Hz), 6.34 (1H, d, $J = 16.1$ Hz), 6.81-6.83 (2H, m), 7.04-7.06 (1H, m), 7.30 (1H, td, $J = 7.7$, 1.4 Hz), 7.40 (1H, td, $J = 7.7$, 1.4 Hz), 7.46 (1H, dd, $J = 7.7$, 1.4 Hz), 7.55 (1H, d, $J = 7.7$ Hz), 8.14 (1H, d, $J = 16.1$ Hz).</td>
</tr>
<tr>
<td>1(1g)</td>
<td><img src="image4.png" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.48 (3H, d, $J = 6.4$ Hz), 1.76-2.08 (4H, m), 2.22 (3H, s), 2.93-3.01 (3H, m), 3.31-3.40 (4H, m), 3.53 (1H, dd, $J = 9.4$, 5.3 Hz), 3.83 (1H, quint, $J = 5.3$ Hz), 4.29-4.31 (1H, m), 4.83 (1H, q, $J = 6.4$ Hz), 6.40 (1H, d, $J = 15.6$ Hz), 6.89-6.91 (2H, m), 7.09-7.11 (1H, m), 7.29-7.33 (3H, m), 7.57 (1H, d, $J = 6.9$ Hz), 7.98 (1H, d, $J = 15.6$ Hz).</td>
</tr>
<tr>
<td>2(2a)</td>
<td><img src="image5.png" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.40-1.51 (1H, m), 1.46 (3H, d, $J = 6.4$ Hz), 1.61-1.72 (3H, m), 2.23 (3H, s), 2.34-2.46 (3H, m), 2.61-2.63 (2H, m), 2.66-2.69 (1H, m), 2.83 (1H, dd, $J = 12.4$, 6.0 Hz), 2.91 (1H, dd, $J = 12.4$, 4.1 Hz), 2.99-3.04 (1H, m), 2.99 (2H, t, $J = 8.3$ Hz), 3.29 (1H, dd, $J = 9.4$, 6.7 Hz), 3.37 (1H, dd, $J = 9.4$, 3.9 Hz), 3.69 (3H, s), 3.85-3.86 (1H, m), 4.77 (1H, q, $J = 6.4$ Hz), 6.81-6.82 (2H, m), 7.04-7.06 (1H, m), 7.1 8.7.24 (3H, m), 7.44 (1H, d, $J = 7.8$ Hz).</td>
</tr>
<tr>
<td>2(2b)</td>
<td><img src="image6.png" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.41 (3H, d, $J = 6.4$ Hz), 1.71-1.86 (4H, m), 2.23 (3H, s), 2.47-2.96 (6H, m), 3.06-3.14 (2H, m), 3.23-3.28 (2H, m), 3.38-3.57 (3H, m), 4.09-4.12 (1H, m), 4.99 (1H, q, $J = 6.4$ Hz), 6.85-6.87 (2H, m), 7.08-7.10 (1H, m), 7.20-7.24 (3H, m), 7.37-7.38 (1H, m).</td>
</tr>
</tbody>
</table>
(continued)

3(a)  
1H-NMR (CDCl₃) δ: 1.49 (3H, d, J=6.3 Hz), 1.97 (1H, br s), 2.42 (3H, s), 5.29-5.32 (1H, m), 7.16 (1H, d, J = 7.2 Hz), 7.24 (1H, t, J = 7.2 Hz), 7.42 (1H, d, J = 7.2 Hz).

3(3b)  
1H-NMR (CDCl₃) δ: 1.43 (3H, d, J=6.3 Hz), 2.42 (3H, s), 2.55 (1H, dd, J=4.9, 2.7 Hz), 2.76 (1H, t, J = 4.9 Hz), 3.14-3.15 (1H, m), 3.30 (1H, dd, J = 11.3, 5.9 Hz), 3.59 (1H, dd, J = 11.3, 3.3 Hz), 4.97 (1H, q, J =6.3 Hz), 7.16 (1H, d, J =7.6 Hz), 7.24 (1H, t, J = 7.6 Hz), 7.34 (1H, d, J = 7.6 Hz).

3(3c)  
1H-NMR (CDCl₃) δ: 1.35 (3H, t, J = 7.2 Hz), 1.42 (3H, d, J = 6.3 Hz), 2.32 (3H, s), 2.50 (1H, dd, J = 4.6 Hz), 3.11-3.12 (1H, m), 3.30 (1H, dd, J = 11.2, 6.0 Hz), 3.59 (1H, dd, J = 11.2, 3.2 Hz), 4.97 (1H, q, J = 6.3 Hz), 5.96 (1H, d, J = 16.4 Hz), 7.14 (1H, d, J = 7.6 Hz), 7.27 (1H, m), 7.38 (1H, d, J = 7.6 Hz), 7.85 (1H, d, J = 16.4 Hz).

[Table 5]

3(3d)  
1H-NMR (CDCl₃) δ: 1.35 (3H, t, J = 7.2 Hz), 1.42 (3H, d, J = 6.3 Hz), 1.62-1.75 (4H, m), 2.22 (3H, s), 1.22 (3H, s), 2.34-2.44 (3H, m), 2.65-2.68 (1H, m), 2.80 (1H, dd, J = 12.5, 5.9 Hz), 2.89 (1H, dd, J = 12.5, 3.4 Hz), 3.01-3.04 (1H, m), 3.21 (1H, dd, J = 11.2, 6.0 Hz), 3.59 (1H, dd, J = 11.2, 3.2 Hz), 4.29 (2H, q, J = 7.2 Hz), 4.74 (1H, q, J = 6.3 Hz), 5.96 (1H, d, J = 16.4 Hz), 7.14 (1H, d, J = 7.6 Hz), 7.26-7.28 (3H, m), 7.37 (1H, d, J = 7.6 Hz), 7.86 (1H, d, J = 16.1 Hz).

3(3e)  
1H-NMR (CDCl₃) δ: 1.27 (3H, t, J = 7.2 Hz), 1.45 (3H, d, J = 6.3 Hz), 1.68-1.69 (4H, m), 2.23 (3H, s), 2.34 (3H, s), 2.42-2.48 (5H, m), 2.67-2.69 (1H, m), 2.82 (1H, dd, J = 12.5, 5.9 Hz), 2.90 (1H, dd, J = 12.5, 4.4 Hz), 2.94-3.06 (3H, m), 3.28 (1H, dd, J = 9.3, 6.3 Hz), 3.36 (1H, dd, J = 9.3, 3.9 Hz), 3.84-3.85 (1H, m), 4.18 (2H, q, J = 7.2 Hz), 4.76 (1H, q, J = 6.3 Hz), 6.80-6.82 (2H, m), 7.04-7.08 (2H, m), 7.17 (1H, t, J = 7.6 Hz), 7.31 (1H, d, J = 7.6 Hz).

3(3f)  
1H-NMR (CDCl₃) δ: 1.40 (3H, d, J = 6.1 Hz), 1.79-2.04 (4H, m), 2.22 (3H, s), 2.34 (3H, s), 2.42-2.45 (2H, m), 2.79-2.82 (2H, m), 2.96-2.99 (3H, m), 3.16-3.19 (1H, m), 3.27-3.30 (3H, m), 3.41-3.44 (1H, m), 3.70-3.72 (1H, m), 4.24-4.27 (1H, m), 4.92-4.94 (1H, m), 6.87-6.89 (2H, m), 7.06-7.11 (3H, m), 7.22-7.24 (1H, m).

4(4a)  
1H-NMR (CDCl₃) δ: 1.47 (3H, d, J = 6.2 Hz), 1.93-1.96 (1H, m), 2.32 (3H, s), 5.20-5.22 (1H, m), 7.15 (1H, d, J = 7.3 Hz), 7.35 (1H, s), 7.46 (1H, d, J = 7.8 Hz).
| 4(4b) | \( ^1\text{H-NMR (CDCl}_3 \) δ: 1.42 (3H, d, \( J = 6.3 \text{ Hz} \)), 2.31 (3H, s), 2.55 (1H, dd, \( J = 5.1, 2.7 \text{ Hz} \)), 2.75-2.77 (1H, m), 3.12-3.14 (1H, m), 3.31 (1H, dd, \( J = 11.2, 5.9 \text{ Hz} \)), 3.56 (1H, dd, \( J = 11.2, 3.3 \text{ Hz} \)), 4.86 (1H, q, \( J = 6.3 \text{ Hz} \)), 7.15 (1H, d, \( J = 8.1 \text{ Hz} \)), 7.35-7.37 (2H, m). | ![4(4b)](image) |
| 4(4c) | \( ^1\text{H-NMR (CDCl}_3 \) δ: 1.34 (3H, t, \( J = 7.2 \text{ Hz} \)), 1.44 (3H, d, \( J = 6.6 \text{ Hz} \)), 2.35 (3H, s), 2.52 (1H, dd, \( J = 5.0, 2.6 \text{ Hz} \)), 2.75-2.76 (1H, m), 3.13-3.14 (1H, m), 3.27 (1H, dd, \( J = 11.2, 5.9 \text{ Hz} \)), 3.56 (1H, dd, \( J = 11.2, 3.2 \text{ Hz} \)), 4.27 (2H, q, \( J = 7.2 \text{ Hz} \)), 4.85 (1H, d, \( J = 6.6 \text{ Hz} \)), 6.32 (1H, d, \( J = 15.6 \text{ Hz} \)), 7.20-7.23 (1H, m), 7.36-7.37 (2H, m), 8.07 (1H, d, \( J = 15.6 \text{ Hz} \)). | ![4(4c)](image) |

**Table 6**

| 4(4d) | \( ^1\text{H-NMR (CDCl}_3 \) δ: 1.25 (3H, t, \( J = 7.1 \text{ Hz} \)), 1.44 (3H, d, \( J = 6.3 \text{ Hz} \)), 1.64-1.71 (4H, m), 2.22 (3H, s), 2.35 (3H, s), 2.37-2.46 (3H, m), 2.64-2.72 (1H, m), 2.82 (1H, dd, \( J = 12.6, 6.0 \text{ Hz} \)), 2.88-2.90 (1H, m), 3.02-3.04 (1H, m), 3.31 (1H, dd, \( J = 9.5, 6.5 \text{ Hz} \)), 3.38 (1H, dd, \( J = 9.5, 3.9 \text{ Hz} \)), 3.81 (2H, q, \( J = 7.2 \text{ Hz} \)), 4.27 (1H, d, \( J = 6.3 \text{ Hz} \)), 6.33 (1H, d, \( J = 15.9 \text{ Hz} \)), 6.80-6.82 (2H, m), 7.03 (1H, t, \( J = 7.6 \text{ Hz} \)), 7.21 (1H, d, \( J = 7.6 \text{ Hz} \)), 7.34-7.36 (2H, m), 8.10 (1H, d, \( J = 15.9 \text{ Hz} \)). | ![4(4d)](image) |

| 4(4e) | \( ^1\text{H-NMR (CDCl}_3 \) δ: 1.39 (3H, d, \( J = 6.6 \text{ Hz} \)), 2.23 (3H, s), 2.30 (3H, d, \( J = 6.6 \text{ Hz} \)), 2.30 (3H, s), 2.64-2.97 (11H, m), 3.22-3.28 (2H, m), 3.46-3.48 (3H, m), 4.01-4.03 (1H, m), 4.99-5.01 (1H, m), 6.84-6.86 (2H, m), 7.02-7.09 (3H, m), 7.24-7.28 (1H, m). | ![4(4e)](image) |

| 4(4f) | \( ^1\text{H-NMR (CDCl}_3 \) δ: 1.30 (3H, d, \( J = 6.6 \text{ Hz} \)), 1.42 (3H, d, \( J = 6.3 \text{ Hz} \)), 1.64-1.72 (4H, m), 2.22 (3H, s), 2.31 (3H, s), 2.37-2.40 (3H, m), 2.56-2.59 (2H, m), 2.66-2.68 (1H, m), 2.82 (1H, dd, \( J = 12.4, 5.9 \text{ Hz} \)), 2.90 (1H, dd, \( J = 12.4, 4.1 \text{ Hz} \)), 2.95 (2H, t, \( J = 8.2 \text{ Hz} \)), 3.02-3.05 (1H, m), 3.28 (1H, dd, \( J = 9.5, 6.6 \text{ Hz} \)), 3.36 (1H, dd, \( J = 9.5, 4.1 \text{ Hz} \)), 3.80-3.86 (1H, m), 4.14 (2H, q, \( J = 7.1 \text{ Hz} \)), 4.73 (1H, d, \( J = 6.3 \text{ Hz} \)), 6.80-6.81 (2H, m), 6.97 (1H, s), 7.04-7.06 (2H, m), 7.32 (1H, d, \( J = 7.8 \text{ Hz} \)). | ![4(4f)](image) |

| 5(5a) | \( ^1\text{H-NMR (CDCl}_3 \) δ: 1.48 (3H, d, \( J = 6.4 \text{ Hz} \)), 1.94-1.97 (1H, m), 2.33 (3H, s), 5.19-5.22 (1H, m), 6.94 (1H, d, \( J = 8.3 \text{ Hz} \)), 7.38-7.39 (2H, m). | ![5(5a)](image) |

| 5(5b) | \( ^1\text{H-NMR (CDCl}_3 \) δ: 1.42 (3H, d, \( J = 6.3 \text{ Hz} \)), 2.32 (3H, s), 2.55-2.57 (1H, m), 2.77 (1H, t, \( J = 4.5 \text{ Hz} \)), 3.14-3.15 (1H, m), 3.31 (1H, dd, \( J = 11.2, 5.9 \text{ Hz} \)), 3.60 (1H, dd, \( J = 11.2, 3.2 \text{ Hz} \)), 4.86 (1H, q, \( J = 6.3 \text{ Hz} \)), 6.94 (1H, dd, \( J = 8.1, 2.2 \text{ Hz} \)), 7.31 (1H, d, \( J = 2.2 \text{ Hz} \)), 7.38 (1H, d, \( J = 8 \text{ Hz} \)). | ![5(5b)](image) |
5(5c) 1H-NMR (CDCl₃) δ: 1.34 (3H, t, J = 7.1 Hz), 1.45 (3H, d, J = 6.3 Hz), 2.38 (3H, s), 2.52-2.54 (1H, m), 2.76 (1H, t, J = 4.6 Hz), 3.13-3.17 (1H, m), 3.28 (1H, dd, J = 11.2, 6.2 Hz), 3.58 (1H, dd, J = 11.2, 3.1 Hz), 4.27 (2H, q, J = 7.1 Hz), 4.86 (1H, q, J = 6.2 Hz), 6.30 (1H, d, J = 15.9 Hz), 7.10 (1H, d, J = 7.8 Hz), 7.29 (1H, s), 7.45 (1H, d, J = 7.8 Hz), 8.06 (1H, d, J = 15.9 Hz).

5(5d) 1H-NMR (CDCl₃) δ: 1.33 (3H, t, J = 7.2 Hz), 1.46 (3H, d, J = 6.6 Hz), 1.69-1.70 (4H, m), 2.22 (3H, s), 2.33-2.47 (6H, m), 2.67-2.69 (1H, m), 2.80-2.94 (2H, m), 3.04-3.05 (1H, m), 3.33 (1H, dd, J = 9.6, 6.0 Hz), 3.40 (1H, dd, J = 9.6, 4.0 Hz), 3.85-3.86 (1H, m), 4.26 (2H, q, J = 7.2 Hz), 4.81 (1H, q, J = 6.6 Hz), 6.31 (1H, d, J = 16.1 Hz), 6.80-6.82 (2H, m), 7.04 (1H, t, J = 8.0 Hz), 7.10 (1H, d, J = 6.8 Hz), 7.26-7.27 (2H, m), 7.47 (1H, d, J = 8.0 Hz), 8.1 (1H, d, J = 15.9 Hz).

Table 7

5(5e) 1H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 7.2 Hz), 1.45 (3H, d, J = 6.5 Hz), 1.68-1.69 (4H, m), 2.22 (3H, s), 2.32-2.33 (3H, s), 2.38-2.44 (3H, m), 2.55-2.56 (2H, m), 2.66-2.69 (1H, m), 2.83 (1H, dd, J = 12.5, 5.9 Hz), 2.89-2.97 (3H, m), 3.03-3.05 (1H, m), 3.29 (1H, dd, J = 9.5, 6.6 Hz), 3.37 (1H, dd, J = 9.5, 3.9 Hz), 3.85-3.86 (1H, m), 4.14 (2H, q, J = 7.2 Hz), 4.73 (1H, q, J = 6.5 Hz), 6.80-6.82 (2H, m), 7.00-7.06 (3H, m), 7.24 (1H, s).

5(5f) 1H-NMR (CDCl₃) δ: 1.40 (3H, d, J = 6.1 Hz), 1.75-1.85 (4H, m), 2.22 (3H, s), 2.34 (3H, s), 2.42-2.45 (2H, m), 2.79-2.82 (2H, m), 2.96-2.99 (3H, m), 3.16-3.17 (1H, m), 3.27-3.30 (1H, m), 3.41-3.44 (1H, m), 3.70-3.72 (1H, m), 4.24-4.27 (1H, m), 4.92-4.94 (1H, m), 6.87-6.89 (2H, m), 7.06-7.11 (3H, m), 7.22-7.24 (1H, m).

6(6a) 1H-NMR (CDCl₃) δ: 1.49 (3H, d, J = 6.3 Hz), 4.06-4.11 (1H, m), 5.26-5.28 (1H, m), 7.03-7.05 (1H, m), 7.31-7.33 (1H, m), 7.40 (1H, d, J = 7.8 Hz).

6(6b) 1H-NMR (CDCl₃) δ: 1.43 (3H, d, J = 6.3 Hz), 2.56-2.57 (1H, m), 2.77-2.78 (1H, m), 3.13-3.17 (1H, m), 3.31 (1H, dd, J = 11.2, 6.0 Hz), 3.61 (1H, dd, J = 11.2, 3.2 Hz), 4.92 (1H, dd, J = 6.3 Hz), 7.02-7.06 (1H, m), 7.29-7.33 (2H, m).

6(6c) 1H-NMR (CDCl₃) δ: 1.35 (3H, t, J = 7.2 Hz), 1.46 (3H, d, J = 6.3 Hz), 2.54 (3H, dd, J = 5.1, 2.7 Hz), 2.77 (1H, dd, J = 4.6 Hz), 3.13-3.16 (1H, m), 3.28 (1H, dd, J = 11.2, 9.9 Hz), 3.60 (1H, dd, J = 11.2, 3.2 Hz), 4.82 (2H, q, J = 7.2 Hz), 4.86 (1H, dd, J = 6.3 Hz), 6.51 (1H, dd, J = 16.1, 1.6 Hz), 7.00-7.06 (1H, m), 7.31-7.35 (2H, m), 7.80 (1H, d, J = 16.1 Hz).
(continued)

| 6(6d) | 1H-NMR (CDCl$_3$) $\delta$: 1.34 (3H, t, $J = 7.2$ Hz), 1.46 (3H, d, $J = 6.6$ Hz), 1.69-1.70 (4H, m), 2.22 (3H, s), 2.33-2.41 (2H, m), 2.45 (1H, dd, $J = 12.6, 7.1$ Hz), 2.67-2.70 (1H, m), 2.83 (1H, dd, $J = 12.6, 6.0$ Hz), 2.89 (1H, dd, $J = 13.1, 4.4$ Hz), 3.03-3.05 (1H, m), 3.22 (1H, dd, $J = 9.4, 3.9$ Hz), 3.84-3.85 (1H, m), 4.28 (2H, q, $J = 7.2$ Hz), 4.82 (1H, q, $J = 6.6$ Hz), 6.53 (1H, dd, $J = 16.0, 1.8$ Hz), 6.8-6.82 (2H, m), 7.02-7.05 (2H, m), 7.31-7.34 (2H, m), 7.85 (1H, d, $J = 16.0$ Hz).

| 6(6e) | 1H-NMR (CDCl$_3$) $\delta$: 1.23 (3H, t, $J = 7.2$ Hz), 1.45 (3H, d, $J = 6.4$ Hz), 1.68-1.69 (4H, m), 2.22 (3H, s), 2.36-2.43 (3H, m), 2.54-2.57 (2H, m), 2.67-2.70 (1H, m), 2.82 (1H, dd, $J = 12.4, 6.0$ Hz), 2.98-3.02 (3H, m), 3.30 (1H, dd, $J = 9.4, 6.4$ Hz), 3.37 (1H, dd, $J = 9.4, 4.1$ Hz), 3.84-3.85 (1H, m), 4.15 (2H, q, $J = 7.2$ Hz), 4.77 (1H, q, $J = 6.4$ Hz), 6.80-6.81 (1H, m), 6.82 (1H, s), 6.93-6.96 (1H, m), 7.05 (1H, t, $J = 8.0$ Hz), 7.22-7.23 (2H, m).

| 6(6f) | 1H-NMR (CDCl$_3$) $\delta$: 1.38 (3H, d, $J = 6.4$ Hz), 1.65-1.95 (4H, m), 2.23 (3H, s), 2.56-2.67 (3H, m), 2.77 (1H, t, $J = 4.6$ Hz), 3.14 (1H, dt, $J = 9.3, 3.2$ Hz), 3.25-3.28 (1H, m), 3.59 (1H, dd, $J = 11.2, 3.2$ Hz), 4.85 (1H, q, $J = 6.3$ Hz), 7.47 (1H, dd, $J = 8.5, 5.9$ Hz), 8.03 (1H, d, $J = 15.6$ Hz).

| 7(7a) | 1H-NMR (CDCl$_3$) $\delta$: 1.47-1.48 (3H, m), 1.95-1.97 (1H, m), 5.21-5.23 (1H, m), 7.06-7.08 (1H, m), 7.26-7.28 (1H, m), 7.57-7.60 (1H, m).

| 7(7b) | 1H-NMR (CDCl$_3$) $\delta$: 1.41 (3H, t, $J = 6.4$ Hz), 2.56 (1H, dd, $J = 4.3, 3.2$ Hz), 2.77 (1H, t, $J = 4.6$ Hz), 3.12-3.14 (1H, m), 3.30 (1H, dd, $J = 11.2, 5.9$ Hz), 3.58 (1H, dd, $J = 11.2, 3.2$ Hz), 4.86 (1H, q, $J = 6.4$ Hz), 7.06-7.08 (1H, m), 7.26-7.28 (1H, m), 7.48 (1H, dd, $J = 8.7, 6.2$ Hz).

| 7(7c) | 1H-NMR (CDCl$_3$) $\delta$: 1.35 (3H, t, $J = 7.1$ Hz), 1.44 (3H, d, $J = 6.3$ Hz), 2.54 (1H, dd, $J = 4.6, 2.7$ Hz), 2.77 (1H, t, $J = 4.6$ Hz), 3.14 (1H, dt, $J = 9.3, 3.2$ Hz), 3.25-3.28 (1H, m), 3.59 (1H, dd, $J = 11.2, 3.2$ Hz), 4.85 (2H, q, $J = 7.1$ Hz), 4.85 (1H, q, $J = 6.3$ Hz), 6.31 (1H, d, $J = 15.6$ Hz), 7.09 (1H, dd, $J = 8.5, 2.7$ Hz), 7.21 (1H, dd, $J = 9.8, 2.7$ Hz), 7.47 (1H, dd, $J = 8.5, 5.9$ Hz), 8.03 (1H, d, $J = 15.6$ Hz).

| 7(7d) | 1H-NMR (CDCl$_3$) $\delta$: 1.34 (3H, t, $J = 7.1$ Hz), 1.44-1.46 (4H, m), 1.69-1.70 (3H, m), 2.22 (3H, s), 2.38-2.42 (3H, m), 2.68-2.70 (1H, m), 2.62-2.89 (2H, m), 3.02-3.05 (1H, m), 3.25-3.37 (2H, m), 3.83-3.84 (1H, m), 4.27 (2H, q, $J = 7.1$ Hz), 4.80 (1H, q, $J = 6.5$ Hz), 6.32 (1H, d, $J = 15.6$ Hz), 6.80-6.81 (2H, m), 7.03-7.11 (2H, m), 7.23 (1H, dd, $J = 9.9, 2.6$ Hz), 7.44 (1H, dd, $J = 8.8, 5.9$ Hz), 8.06 (1H, d, $J = 15.6$ Hz).
**Table 9**

7(7f) \( \delta \): 1.39 (3H, d, \( J = 6.3 \) Hz), 1.73-1.90 (4H, m), 2.56 (1H, dd, \( J = 12.8, 4.4 \) Hz), 3.69 (1H, dd, \( J = 12.8, 3.7 \) Hz), 3.85 (1H, m, \( J = 12.8, 4.4 \) Hz), 3.34 (1H, dd, \( J = 9.4, 3.7 \) Hz), 3.85-3.87 (1H, m, \( J = 9.4, 3.7 \) Hz), 4.27 (2H, q, \( J = 7.2 \) Hz), 4.83 (1H, d, \( J = 6.4 \) Hz), 6.29 (1H, d, \( J = 15.6 \) Hz), 6.81-6.82 (2H, m), 6.97-6.99 (1H, m), 7.05 (1H, t, \( J = 8.0 \) Hz), 7.20 (1H, dd, \( J = 9.9, 2.5 \) Hz), 7.54 (1H, dd, \( J = 8.7, 5.5 \) Hz), 7.99 (1H, d, \( J = 15.6 \) Hz).
8(8e)  
\[\text{1H-NMR (CDCl}_3\text{)} \delta: 1.24 (3H, t, J = 7.2 Hz), 1.43 (3H, d, J = 6.4 Hz), 1.69-1.70 (4H, m), 2.23 (3H, s), 2.36-2.44 (3H, m), 2.55-2.59 (2H, m), 2.68-2.71 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.88-2.95 (3H, m), 3.03-3.05 (1H, m), 3.29 (1H, dd, J = 9.4, 6.4 Hz), 3.37 (1H, dd, J = 9.4, 3.9 Hz), 3.84-3.87 (1H, m), 4.13 (2H, q, J = 7.2 Hz), 4.73-4.74 (1H, m), 6.81-6.82 (2H, m), 6.88-6.90 (1H, m), 7.04-7.06 (1H, m), 7.10-7.17 (2H, m).\]

[0222]

8(8f)  
\[\text{1H-NMR (CDCl}_3\text{)} \delta: 1.38 (3H, d, J = 6.4 Hz), 1.89-1.91 (4H, m), 2.23 (3H, s), 2.53-2.56 (2H, m), 2.72-2.91 (4H, m), 3.01-3.03 (1H, m), 3.15-3.17 (1H, m), 3.24-3.28 (2H, m), 3.36 (1H, dd, J = 10.8, 5.7 Hz), 3.45 (1H, dd, J = 10.8, 6.0 Hz), 3.59-3.61 (1H, m), 4.12-4.14 (1H, m), 4.90-4.95 (1H, m), 6.86-6.89 (3H, m), 7.04-7.12 (2H, m), 7.18 (1H, dd, J = 8.5, 5.7 Hz).\]

9(9a)  
\[\text{1H-NMR (CDCl}_3\text{)} \delta: 2.63 (3H, s), 7.43-7.51 (2H, m), 7.76 (1H, dd, J = 7.6, 1.7 Hz).\]

9(9b)  
\[\text{1H-NMR (CDCl}_3\text{)} \delta: 1.50 (3H, d, J = 7.2 Hz), 4.06-4.07 (1H, m), 5.39-5.41 (1H, m), 7.46 (1H, t, J = 7.8 Hz), 7.63 (1H, d, J = 7.8 Hz), 7.83 (1H, d, J = 7.8 Hz).\]

9(9c)  
\[\text{1H-NMR (CDCl}_3\text{)} \delta: 1.45 (3H, d, J = 6.3 Hz), 2.59 (1H, dd, J = 4.6, 2.7 Hz), 2.78 (1H, t, J = 4.6 Hz), 3.13-3.16 (1H, m), 3.32 (1H, dd, J = 11.2, 5.9 Hz), 3.60 (1H, dd, J = 11.2, 2.9 Hz), 5.04 (1H, q, J = 6.3 Hz), 7.45 (1H, t, J = 7.7 Hz), 7.63 (1H, d, J = 7.7 Hz), 7.72 (1H, d, J = 7.7 Hz).\]

9(9d)  
\[\text{1H-NMR (CDCl}_3\text{)} \delta: 1.35 (3H, t, J = 7.2 Hz), 1.42 (3H, d, J = 6.4 Hz), 2.52 (1H, dd, J = 4.9, 2.7 Hz), 2.76 (1H, dd, J = 4.9, 4.1 Hz), 3.09-3.11 (1H, m), 3.20 (1H, dd, J = 11.2, 6.1 Hz), 3.53 (1H, dd, J = 11.2, 2.9 Hz), 4.29 (2H, q, J = 7.2 Hz), 4.75 (1H, q, J = 6.4 Hz), 5.99 (1H, d, J = 16.3 Hz), 7.48 (1H, t, J = 7.8 Hz), 7.63 (1H, d, J = 7.8 Hz), 7.76 (1H, d, J = 7.8 Hz), 7.87 (1H, d, J = 16.3 Hz).\]
(continued)

| 9(9e) | 1H-NMR (CDCl₃): δ: 1.33-1.37 (3H, m), 1.41-1.42 (3H, m), 1.68-1.70 (4H, m), 2.23 (3H, s), 2.38-2.40 (3H, m), 2.68-2.71 (1H, m), 2.77-2.80 (H, m), 2.87-2.90 (1H, m), 3.01-3.04 (1H, m), 3.26-3.28 (2H, m), 3.60-3.83 (1H, m), 4.29-4.31 (2H, m), 4.69-4.72 (1H, m), 6.00 (1H, d, J = 16.0 Hz), 6.80-6.82 (2H, m), 7.04-7.07 (1H, m), 7.48-7.50 (1H, m), 7.64 (1H, d, J = 7.8 Hz), 7.75 (1H, d, J = 7.3 Hz), 7.88 (1H, d, J = 16.0 Hz). |
| 9(9f) | 1H-NMR (CDCl₃): δ: 1.29 (3H, t, J = 7.3 Hz), 1.47 (3H, d, J = 6.4 Hz), 1.69-1.71 (4H, m), 2.23 (3H, s), 2.38-2.42 (3H, m), 2.53-2.55 (2H, m), 2.69-2.71 (1H, m), 2.81 (1H, d, J = 11.9, 5.0 Hz), 2.89 (1H, d, J = 13.3 Hz), 3.06-3.13 (3H, m), 3.31-3.32 (2H, m), 3.82-3.84 (1H, m), 4.19 (2H, q, J = 6.4 Hz), 6.80-6.82 (2H, m), 7.05 (1H, t, J = 7.8 Hz), 7.38 (1H, t, J = 7.8 Hz), 7.59 (1H, d, J = 7.8 Hz), 7.71 (1H, d, J = 7.8 Hz). |
| 9(9g) | 1H-NMR (CDCl₃): δ: 1.42 (3H, d, J = 6.1 Hz), 1.85-1.98 (4H, m), 2.23 (3H, s), 2.53-2.55 (3H, m), 2.88-3.16 (4H, m), 3.31-3.37 (3H, m), 3.45-3.48 (2H, m), 3.76-3.78 (1H, m), 4.28-4.31 (1H, m), 5.08-5.09 (1H, m), 6.88-6.90 (2H, m), 7.10-7.12 (1H, m), 7.31-7.33 (1H, m), 7.57-7.62 (2H, m). |
| 10(10a) | 1H-NMR (CDCl₃): δ: 2.65 (3H, s), 7.53 (1H, d, J = 7.8 Hz), 7.64 (1H, d, J = 7.3 Hz), 7.88 (1H, s). |
| 10(10b) | 1H-NMR (CDCl₃): δ: 1.50 (3H, d, J = 6.4 Hz), 2.02 (1H, d, J = 3.7 Hz), 5.26-5.27 (1H, m), 7.61 (1H, d, J = 8.3 Hz), 7.75 (1H, d, J = 8.3 Hz), 7.78 (1H, s). |
| 10(10c) | 1H-NMR (CDCl₃): δ: 1.44 (3H, d, J = 6.4 Hz), 2.58-2.59 (1H, m), 2.78-2.79 (1H, m), 3.14-3.16 (1H, m), 3.31 (1H, dd, J = 11.1, 6.0 Hz), 3.63 (1H, dd, J = 11.1, 2.8 Hz), 4.92 (1H, q, J = 6.4 Hz), 7.63 (2H, q, J = 8.4 Hz), 7.79 (1H, s). |
| 10(10d) | 1H-NMR (CDCl₃): δ: 1.35 (3H, t, J = 7.2 Hz), 1.46 (3H, d, J = 6.4 Hz), 2.55 (1H, dd, J = 5.0, 2.8 Hz), 2.78 (1H, t, J = 4.6 Hz), 3.15-3.17 (1H, m), 3.28 (1H, dd, J = 11.2, 6.2 Hz), 3.63 (1H, dd, J = 11.2, 3.0 Hz), 4.29 (2H, q, J = 7.2 Hz), 4.93 (1H, q, J = 6.4 Hz), 6.40 (1H, d, J = 16.0 Hz), 7.64-7.65 (2H, m), 7.76 (1H, s), 8.04 (1H, d, J = 16.0 Hz). |
1H-NMR (CDCl₃) δ: 1.35 (3H, t, J = 7.2 Hz), 1.46 (3H, d, J = 6.3 Hz), 1.69-1.71 (4H, m), 2.23-2.42 (3H, m), 2.70-2.73 (1H, m), 2.84-2.89 (2H, m), 3.02-3.05 (1H, m), 3.37-3.38 (2H, m), 3.84-3.86 (1H, m), 4.28-4.29 (2H, m), 4.87-4.89 (1H, m), 6.40 (1H, d, J = 16.0 Hz), 6.81-6.82 (2H, m), 7.05-7.07 (1H, m), 7.63-7.65 (2H, m), 7.77-7.80 (1H, m), 8.06 (1H, d, J = 16.0 Hz).
\( ^1H\text{-NMR (CDCl}_3 \ \delta 1.43 \ (3H, d, J = 6.3 \text{ Hz}) \), \) 1.57-1.66 (1H, m), 1.70-1.88 (3H, m), 2.23 (3H, s), 2.50-2.72 (3H, m), 2.59 (2H, t, \( J = 7.3 \) Hz), 2.93 (2H, t, \( J = 7.2 \) Hz), 2.96-3.03 (2H, m), 3.13 (1H, dd, \( J = 13.2, 4.4 \) Hz), 3.19 (1H, dd, \( J = 9.9, 5.7 \) Hz), 3.29-3.33 (1H, m), 3.43-3.49 (1H, m), 3.78-3.84 (1H, m), 4.36 (1H, q, \( J = 6.4 \) Hz), 6.82-6.86 (2H, m), 7.08 (1H, t, \( J = 7.9 \) Hz), 7.17-7.25 (4H, m).

<table>
<thead>
<tr>
<th>12(11e)</th>
<th><img src="image1" alt="Diagram" /></th>
</tr>
</thead>
<tbody>
<tr>
<td>[0225]</td>
<td><img src="image2" alt="Diagram" /></td>
</tr>
</tbody>
</table>

| 12(12a) | \( ^1H\text{-NMR (CDCl}_3 \ \delta 1.44 \ (3.0H, J = 6.0 \text{ Hz}) \), 2.48 (0.3H, dd, \( J = 4.6, 2.3 \) Hz), 2.50 (0.7H, dd, \( J = 5.2, 2.9 \) Hz), 2.75 (1.0H, dd, \( J = 5.2, 4.0 \) Hz), 3.11-3.16 (1.3H, m), 3.21 (0.7H, dd, \( J = 11.5, 6.3 \) Hz), 3.28 (2.0H, dd, \( J = 6.9, 1.7 \) Hz), 3.57 (0.3H, q, \( J = 3.2 \) Hz), 3.58-3.61 (0.7H, m), 3.71 (0.9H, s), 3.72 (2.1H, s), 4.72 (0.3H, q, \( J = 6.5 \) Hz), 4.80 (0.7H, q, \( J = 6.5 \) Hz), 5.73 (0.3H, dt, \( J = 15.5, 1.7 \) Hz), 6.14 (0.7H, dt, \( J = 15.7, 7.2 \) Hz), 6.85 (0.7H, d, \( J = 15.5 \) Hz), 7.08-7.14 (0.6H, m), 7.21-7.30 (2.0H, m), 7.39-7.47 (1.7H, m). |
| 12(12b) | \( ^1H\text{-NMR (CDCl}_3 \ \delta 1.44 \ (3.0H, t, J = 6.0 \text{ Hz}) \), 1.52-1.60 (2.0H, m), 1.64-1.72 (2.0H, m), 2.23 (3.0H, s), 2.33-2.44 (3.0H, m), 2.65-2.71 (1.0H, m), 2.81 (1.0H, dd, \( J = 12.6, 5.7 \) Hz), 2.89 (1.0H, dd, \( J = 13.2, 4.0 \) Hz), 3.00-3.05 (1.0H, m), 3.28 (2.0H, dd, \( J = 6.9, 1.7 \) Hz), 3.34 (0.3H, dd, \( J = 9.7, 4.0 \) Hz), 3.38 (0.7H, dd, \( J = 9.5, 3.7 \) Hz), 3.59 (0.3H, dd, \( J = 6.3, 1.7 \) Hz), 3.68-3.73 (0.7H, m), 3.70 (0.9H, s), 3.72 (2.1H, s), 3.80-3.87 (1.0H, m), 4.66 (0.3H, q, \( J = 6.5 \) Hz), 4.75 (0.7H, q, \( J = 6.7 \) Hz), 5.73 (0.3H, dt, \( J = 15.8, 1.7 \) Hz), 6.15 (0.7H, dt, \( J = 15.5, 7.2 \) Hz), 6.80-6.86 (2.3H, m), 7.04 (1.0H, t, \( J = 7.7 \) Hz), 7.09-7.15 (0.3H, m), 7.22-7.31 (2.7H, m), 7.39 (0.7H, d, \( J = 7.4 \) Hz), 7.44-7.47 (1.0H, m). |

| 12(12c) | \( ^1H\text{-NMR (CDCl}_3 \ \delta 1.45 \ (3H, d, J = 6.3 \text{ Hz}) \), 1.63-1.73 (4H, m), 1.89-1.95 (2H, m), 2.22 (3H, d, \( J = 1.7 \) Hz), 2.34-2.44 (5H, m), 2.63-2.71 (3H, m), 2.82 (1H, dd, \( J = 12.6, 5.7 \) Hz), 2.90 (1H, dd, \( J = 13.2, 4.0 \) Hz), 3.01-3.05 (1H, m), 3.28 (1H, dd, \( J = 9.5, 6.6 \) Hz), 3.35 (1H, dd, \( J = 9.7, 4.0 \) Hz), 3.68 (3H, s), 3.81-3.87 (1H, m), 4.76 (1H, q, \( J = 6.3 \) Hz), 6.80 (1H, d, \( J = 2.9 \) Hz), 6.82 (1H, s), 7.05 (1H, t, \( J = 8.0 \) Hz), 7.14 (1H, dd, \( J = 7.4, 1.1 \) Hz), 7.20 (1H, td, \( J = 7.4, 1.7 \) Hz), 7.24 (1H, dd, \( J = 7.4, 1.7 \) Hz), 7.44 (1H, dd, \( J = 7.7, 1.4 \) Hz). |

| 12(12d) | \( ^1H\text{-NMR (CDCl}_3 \ \delta 1.43 \ (3H, d, J = 6.3 \text{ Hz}) \), 1.67-1.73 (1H, m), 1.76-1.89 (2H, m), 1.90-1.98 (3H, m), 2.23 (3H, s), 2.35 (2H, t, \( J = 6.9 \) Hz), 2.67-2.78 (4H, m), 2.84 (1H, dt, \( J = 13.9, 5.4 \) Hz), 3.10 (1H, ddd, \( J = 15.5, 8.0, 5.2 \) Hz), 3.23 (1H, dt, \( J = 16.4, 3.4 \) Hz), 3.26 (1H, dd, \( J = 13.7, 4.6 \) Hz), 3.32 (1H, dd, \( J = 10.0, 6.6 \) Hz), 3.44 (1H, dd, \( J = 10.0, 6.0 \) Hz), 3.67 (1H, ddd, \( J = 12.2, 7.0, 4.2 \) Hz), 4.22 (1H, ddd, \( J = 12.5, 6.7, 3.9 \) Hz), 4.87 (1H, q, \( J = 6.3 \) Hz), 6.85-6.88 (2H, m), 7.09 (1H, t, \( J = 8.0 \) Hz), 7.15-7.22 (3H, m), 7.34-7.36 (1H, m). |
1H-NMR (CDCl₃) δ: 1.27 (3H, t, J = 7.2 Hz), 1.43 (3H, d, J = 6.9 Hz), 2.47-2.51 (3H, m), 2.54-2.58 (2H, m), 2.75 (1H, t, J = 4.6 Hz), 3.13-3.16 (1H, m), 3.22 (1H, dd, J = 11.2, 6.0 Hz), 3.57 (1H, dd, J = 11.5, 3.4 Hz), 4.15 (2H, q, J = 7.1 Hz), 4.80 (1H, q, J = 6.5 Hz), 6.03 (1H, dt, J = 15.7, 6.7 Hz), 6.75 (1H, d, J = 15.5 Hz), 7.19-7.27 (2H, m), 7.38 (2H, ddd, J = 12.7, 8.0, 1.6 Hz).

1H-NMR (CDCl₃) δ: 1.26 (3H, t, J = 7.2 Hz), 1.43 (3H, d, J = 6.9 Hz), 1.64-1.73 (3H, m), 2.22 (3H, d, J = 1.1 Hz), 2.33-2.47 (4H, m), 2.49 (2H, t, J = 6.9 Hz), 2.56 (2H, q, J = 7.1 Hz), 2.64-2.70 (1H, m), 2.81 (1H, dd, J = 12.6, 5.7 Hz), 2.89 (1H, dd, J = 13.2, 4.0 Hz), 3.02-3.06 (1H, m), 3.27 (1H, dd, J = 11.2, 6.0 Hz), 3.57 (1H, ddd, J = 11.5, 3.4 Hz), 4.15 (2H, q, J = 7.1 Hz), 4.80 (1H, q, J = 6.5 Hz), 6.03 (1H, dt, J = 15.7, 6.7 Hz), 6.75 (1H, d, J = 15.5 Hz), 7.19-7.27 (2H, m), 7.38 (2H, ddd, J = 12.7, 8.0, 1.6 Hz).

1H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 7.2 Hz), 1.44 (3H, d, J = 6.3 Hz), 1.59-1.76 (8H, m), 2.22 (3H, d, J = 1.7 Hz), 2.33-2.44 (2H, m), 2.34 (3H, t, J = 7.4 Hz), 2.65 (2H, t, J = 7.7 Hz), 2.65-2.71 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.90 (1H, dd, J = 13.2, 4.6 Hz), 3.01-3.06 (1H, m), 3.27 (1H, dd, J = 9.5, 6.6 Hz), 3.35 (1H, dd, J = 9.7, 4.0 Hz), 3.81-3.86 (1H, m), 4.12 (2H, q, J = 7.1 Hz), 4.74 (1H, q, J = 6.5 Hz), 6.80 (1H, d, J = 3.4 Hz), 6.82 (1H, br s), 7.05 (1H, t, J = 8.0 Hz), 7.13 (1H, dd, J = 7.4, 1.1 Hz), 7.19 (1H, td, J = 7.4, 1.7 Hz), 7.23 (1H, td, J = 6.2, 2.3 Hz), 7.43 (1H, dd, J = 7.4, 1.7 Hz).

1H-NMR (CDCl₃) δ: 1.40 (3H, d, J = 6.3 Hz), 1.52-1.98 (7H, m), 2.20-2.29 (2H, m), 2.23 (3H, s), 2.39 (1H, dd, J = 13.9, 4.0 Hz), 2.47-2.55 (2H, m), 2.69-2.77 (1H, m), 2.75 (1H, dd, J = 13.5, 10.0 Hz), 2.80 (1H, dt, J = 15.1, 6.0 Hz), 2.96-3.02 (1H, m), 3.24 (1H, dd, J = 13.2, 4.6 Hz), 3.31 (1H, dd, J = 13.2, 2.9 Hz), 3.40 (2H, d, J = 6.9 Hz), 3.73 (1H, dd, J = 12.0, 3.7 Hz), 4.25 (1H, dq, J = 14.2, 3.2 Hz), 4.79 (1H, q, J = 6.3 Hz), 6.89 (2H, d, J = 9.2 Hz), 7.08-7.12 (2H, m), 7.16-7.23 (2H, m), 7.38 (1H, t, J = 4.6 Hz).

1H-NMR (CDCl₃) δ: 1.40 (9H, br s), 2.09-2.16 (1H, m), 2.34 (3H, d, J = 1.7 Hz), 2.59-2.68 (1H, m), 3.93-4.06 (2H, m), 5.47 (1H, dd, J = 9.6, 5.5 Hz), 7.28 (1H, t, J = 9.0 Hz), 7.56 (2H, dt, J = 10.8, 3.7 Hz).
Table 15

14(14b) Diastereomer A:
1H-NMR (CDCl₃) δ: 1.49 (9H, s), 1.84-1.94 (2H, m), 2.25 (3H, d, J = 1.7 Hz), 3.75-3.79 (1H, m), 3.82 (1H, q, J = 8.2 Hz), 4.30 (1H, q, J = 7.8 Hz), 4.72 (1H, d, J = 9.2 Hz), 5.77 (1H, br s), 7.05 (2H, t, J = 8.9 Hz), 7.13 (1H, t, J = 7.7 Hz).

Diastereomer B:
1H-NMR (CDCl₃) δ: 1.49 (9H, s), 1.96 (1H, br s), 2.27 (3H, d, J = 1.7 Hz), 3.68-3.74 (1H, m), 3.70-3.77 (1H, m), 4.58 (1H, br s), 6.98 (1H, dd, J = 7.7, 1.4 Hz), 7.02 (1H, d, J = 10.3 Hz), 7.14 (1H, t, J = 7.7 Hz).

14(14c) 1H-NMR (CDCl₃) δ: 1.49 (9H, s), 1.94-2.02 (2H, m), 2.27 (3H, d, J = 1.7 Hz), 3.44 (1H, br s), 3.70-3.77 (1H, m), 4.58 (1H, br s), 6.98 (1H, dd, J = 7.7, 1.4 Hz), 7.02 (1H, d, J = 10.3 Hz), 7.14 (1H, t, J = 7.7 Hz).

14(14d) 1H-NMR (CDCl₃) δ: 1.46 (9H, s), 1.83-1.91 (1H, m), 2.10-2.18 (1H, m), 2.24 (3H, d, J = 1.7 Hz), 2.89 (1H, dd, J = 13.5, 8.4 Hz), 3.11 (1H, dd, J = 13.7, 3.9 Hz), 3.68-3.74 (1H, m), 3.84 (1H, td, J = 9.0, 5.9 Hz), 4.70-4.75 (1H, m), 6.50 (1H, s), 7.05 (3H, t, J = 9.4 Hz), 7.20 (1H, t, J = 7.8 Hz), 7.76 (1H, s), 8.47 (1H, s).

14(14e) 1H-NMR (CDCl₃) δ: 2.20 (3H, d, J = 1.7 Hz), 2.45 (2H, q, J = 8.2 Hz), 3.06 (1H, dd, J = 13.7, 8.0 Hz), 3.18 (1H, dd, J = 14.3, 7.4 Hz), 3.81 (1H, dt, J = 13.4, 5.2 Hz), 3.93 (1H, q, J = 9.5 Hz), 4.38 (1H, br s), 4.58 (1H, quint), 6.82 (1H, d, J = 2.3 Hz), 6.84 (1H, br s), 7.09 (1H, t, J = 8.0 Hz).

14(14f) 1H-NMR (CDCl₃) δ: 1.35 (3H, t, J = 7.2 Hz), 1.46 (3H, d, J = 6.3 Hz), 2.53 (1H, dd, J = 5.2, 2.9 Hz), 2.76 (1H, t, J = 4.6 Hz), 3.15 (1H, td, J = 6.6, 2.9 Hz), 3.29 (1H, dd, J = 11.2, 6.0 Hz), 3.59 (1H, dd, J = 11.5, 2.9 Hz), 4.28 (2H, q, J = 7.1 Hz), 4.89 (1H, q, J = 6.5 Hz), 6.33 (1H, d, J = 15.5 Hz), 7.29 (1H, t, J = 7.4 Hz), 7.40 (1H, t, J = 7.7 Hz), 7.49 (1H, d, J = 8.0 Hz), 7.54 (1H, d, J = 8.0 Hz), 8.09 (1H, d, J = 15.5 Hz).

[Table 16]

14(14g) 1H-NMR (CDCl₃) δ: 1.34 (3H, t, J = 7.2 Hz), 1.45 (3H, d, J = 6.9 Hz), 1.85-1.92 (1H, m), 1.94-1.99 (1H, m), 2.22 (3H, d, J = 1.1 Hz), 2.39 (1H, dd, J = 12.0, 7.4 Hz), 2.50 (1H, dd, J = 12.0, 5.2 Hz), 2.71 (1H, dd, J = 13.7, 8.6 Hz), 2.76-2.88 (2H, m), 3.22-3.31 (3H, m), 3.32-3.37 (1H, m), 3.66-3.70 (1H, m), 4.27 (2H, q, J = 7.1 Hz), 4.81 (1H, q, J = 6.5 Hz), 6.33 (1H, d, J = 15.5 Hz), 6.78-6.85 (2H, m), 7.06 (1H, q, J = 8.6 Hz), 7.29 (1H, td, J = 7.6, 1.5 Hz), 7.40 (1H, td, J = 7.2, 1.3 Hz), 7.45 (1H, dd, J = 7.4, 1.1 Hz), 7.54 (1H, d, J = 8.0 Hz), 8.10 (1H, d, J = 16.0 Hz).
14(14h) 1H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 7.1 Hz), 1.44 (3H, d, J = 6.6 Hz), 1.84-2.00 (2H, m), 2.22 (3H, d, J = 1.7 Hz), 2.37 (1H, dd, J = 12.4, 7.3 Hz), 2.49 (1H, dd, J = 12.4, 4.9 Hz), 2.57-2.61 (2H, m), 2.71 (1H, dd, J = 13.7, 8.3 Hz), 2.82-2.88 (2H, m), 2.98 (2H, t, J = 8.0 Hz), 3.18-3.30 (3H, m), 3.35 (1H, dt, J = 11.3, 4.1 Hz), 3.65-3.71 (1H, m), 4.14 (2H, q, J = 7.2 Hz), 4.73 (1H, q, J = 6.4 Hz), 6.77-6.82 (2H, m), 7.05 (1H, t, J = 8.2 Hz), 7.15 (1H, dd, J = 7.4, 1.6 Hz), 7.19 (1H, dd, J = 7.2, 1.6 Hz), 7.23 (1H, dd, J = 4.6, 1.7 Hz), 7.41 (1H, dd, J = 7.6, 1.5 Hz).

14(141) 1H-NMR (CDCl₃) δ: 1.38 (3H, d, J = 6.3 Hz), 2.14-2.28 (2H, m), 2.23 (3H, d, J = 1.7 Hz), 2.57-2.70 (3H, m), 2.83-2.92 (2H, m), 2.97 (1H, dd, J = 12.4, 4.9 Hz), 3.13 (1H, dt, J = 15.5, 7.2 Hz), 3.25 (1H, dd, J = 14.6, 7.2 Hz), 3.28 (1H, dd, J = 10.9, 5.7 Hz), 3.64-3.71 (1H, m), 4.09-4.18 (1H, m), 4.15 (2H, q, J = 7.9 Hz), 4.72 (1H, q, J = 6.5 Hz), 6.04 (1H, dt, J = 15.7, 6.7 Hz), 6.74 (1H, d, J = 15.5 Hz), 6.79 (2H, t, J = 7.4 Hz), 7.05 (1H, t, J = 8.0 Hz), 7.19-7.21 (2H, m), 7.24-7.26 (1H, m), 7.33-7.36 (1H, m).

15(15a) 1H-NMR (CDCl₃) δ: 1.26 (3H, t, J = 8.6 Hz), 1.41 (3H, d, J = 6.3 Hz), 1.85-1.92 (1H, m), 1.93-1.99 (1H, m), 2.22 (3H, s), 2.37 (1H, dd, J = 12.6, 7.4 Hz), 2.46-2.50 (3H, m), 2.55 (1H, t, J = 7.2 Hz), 2.71 (1H, dd, J = 13.5, 8.3 Hz), 2.83-2.88 (2H, m), 3.13-3.22 (2H, m), 3.24-3.30 (2H, m), 3.35 (1H, dt, J = 7.7, 2.1 Hz), 3.64-3.71 (1H, m), 4.09-4.18 (1H, m), 4.15 (2H, q, J = 7.9 Hz), 4.72 (1H, q, J = 6.5 Hz), 6.04 (1H, dt, J = 15.7, 6.7 Hz), 6.74 (1H, d, J = 15.5 Hz), 6.79 (2H, t, J = 7.4 Hz), 7.05 (1H, t, J = 8.0 Hz), 7.19-7.25 (3H, m), 7.37 (1H, t, J = 6.3 Hz).

15(15b) 1H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 8.6 Hz), 1.42 (3H, d, J = 6.3 Hz), 1.58-1.64 (2H, m), 1.69-1.76 (2H, m), 1.84-1.92 (1H, m), 1.93-1.99 (1H, m), 2.22 (3H, d, J = 1.1 Hz), 2.33-2.38 (3H, m), 2.49 (1H, dd, J = 12.3, 4.9 Hz), 2.64 (2H, t, J = 7.7 Hz), 2.71 (1H, dd, J = 13.5, 8.3 Hz), 2.82-2.87 (2H, m), 3.17 (1H, dd, J = 9.5, 4.3 Hz), 3.26-3.31 (1H, m), 3.33-3.36 (1H, m), 3.65-3.70 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.07-4.11 (1H, m), 4.71 (1H, q, J = 6.5 Hz), 6.80 (2H, t, J = 8.3 Hz), 7.05 (1H, t, J = 8.0 Hz), 7.12 (1H, dd, J = 7.4, 1.1 Hz), 7.17-7.24 (2H, m), 7.40 (1H, dd, J = 7.4, 1.7 Hz).

15(15c) 1H-NMR (CDCl₃) δ: 1.24 (3H, d, J = 6.3 Hz), 1.49-1.57 (1H, m), 1.66-1.76 (1H, m), 1.82-1.88 (2H, m), 2.18-2.25 (1H, m), 2.23 (3H, d, J = 1.1 Hz), 2.26-2.34 (2H, m), 2.46-2.57 (3H, m), 2.67-2.73 (1H, m), 2.76 (1H, dd, J = 12.6, 2.9 Hz), 2.96 (1H, dd, J = 14.0, 6.6 Hz), 3.19 (1H, dd, J = 11.5, 8.0 Hz), 3.28-3.32 (2H, m), 3.42 (1H, q, J = 9.4 Hz), 3.86-3.92 (1H, m), 4.15-4.24 (2H, m), 4.66 (1H, q, J = 6.3 Hz), 7.00 (1H, dd, J = 7.4, 1.7 Hz), 7.09-7.22 (5H, m), 7.31 (1H, dd, J = 7.7, 1.4 Hz).
According to the same method as described in Examples 1 to 3 above, the following synthetic intermediates were produced.
Specifically, the description Example No. 1(1a)-2 indicates that the production is carried out according to the same steps as Example 1(1a). Hereinbelow, compounds with an example number in which a number is added behind the hyphen indicate that the compounds are produced according to the same steps as those described in the corresponding example.

<table>
<thead>
<tr>
<th>Examples No.</th>
<th>Structure</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(1a)-2</td>
<td><img src="image" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.26 (5.4H, s), 1.47 (3.6H, s), 1.85-2.01 (3H, m), 2.22-2.38 (1H, m), 3.43-3.73 (2H, m), 5.12-5.19 (0.5H, m), 5.26-5.33 (0.5H, m), 7.09-7.20 (2H, m), 7.96-8.06 (2H, m).</td>
</tr>
<tr>
<td>1(1b)-2</td>
<td><img src="image" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.38-1.56 (11H, m), 1.56-1.99 (3H, m), 3.26-3.41 (1H, m), 3.42-3.53 (1H, m), 3.99-4.10 (1H, m), 4.48-4.57 (0.5H, m), 5.91-6.00 (0.5H, m), 6.98-7.07 (2H, m), 7.29-7.39 (2H, m).</td>
</tr>
<tr>
<td>1(1c)-2</td>
<td><img src="image" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.32-1.59 (9H, m), 1.59-2.00 (4H, m), 2.09-2.25 (0.5H, m), 3.16-3.34 (1H, m), 3.34-3.48 (1H, m), 3.66-3.83 (0.5H, m), 4.52-4.64 (0.5H, m), 6.20-6.31 (0.5H, m), 6.92-7.21 (3H, m), 7.21-7.49 (2H, m), 7.63-7.81 (1H, m), 8.34-8.51 (1H, m).</td>
</tr>
<tr>
<td>1(1d)-2</td>
<td><img src="image" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.5 (9H, s), 1.61-1.83 (4H, m), 2.46-2.62 (1H, m), 2.94-3.15 (1H, m), 3.21-3.44 (2H, m), 3.86-4.04 (1H, m), 6.90-7.02 (2H, m), 7.06-7.20 (2H, m).</td>
</tr>
</tbody>
</table>
### Table

<table>
<thead>
<tr>
<th>Examples No.</th>
<th>Structure</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(1e)-2</td>
<td><img src="image1.png" alt="Structure Image" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.30-1.43 (1H, m), 1.64-1.90 (3H, m), 2.72 (2H, d, J = 6.4 Hz), 2.78-2.89 (1H, m), 2.98-3.08 (1H, m), 3.15-3.25 (1H, m), 6.93-7.01 (2H, m), 7.12-7.20 (2H, m).</td>
</tr>
<tr>
<td>1(1a)-3</td>
<td><img src="image2.png" alt="Structure Image" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.27 (5H, s), 1.46 (4H, s), 1.86-1.99 (3H, m), 2.25-2.40 (1H, m), 3.44-3.74 (2H, m), 5.12-5.17 (0.5H, m), 5.23-5.30 (0.5H, m), 7.25-7.34 (1H, m), 7.41-7.51 (1H, m), 7.62-7.80 (2H, m).</td>
</tr>
<tr>
<td>1(1b)-3</td>
<td><img src="image3.png" alt="Structure Image" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.44-1.62 (10H, m), 1.67-1.81 (3H, m), 3.30-3.40 (1H, m), 3.43-3.53 (1H, m), 4.01-4.09 (1H, m), 4.49-4.57 (0.5H, m), 5.96-6.03 (0.5H, m), 6.92-7.01 (1H, m), 7.05-7.19 (2H, m), 7.27-7.33 (2H, m).</td>
</tr>
<tr>
<td>1(1c)-3</td>
<td><img src="image4.png" alt="Structure Image" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.35-1.59 (10H, m), 1.64-2.13 (4H, m), 3.16-3.33 (1H, m), 3.36-3.49 (1H, m), 4.52-4.61 (0.5H, m), 6.25-6.33 (0.5H, m), 6.91-7.30 (4H, m), 7.32-7.41 (1H, m), 7.66-7.82 (1H, m), 8.37-8.52 (1H, m).</td>
</tr>
<tr>
<td>1(1d)-3</td>
<td><img src="image5.png" alt="Structure Image" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.5 (9H, s), 1.61-1.85 (4H, m), 2.47-2.65 (1H, m), 3.00-3.19 (1H, m), 3.22-3.44 (2H, m), 3.89-4.08 (1H, m), 6.84-7.01 (3H, m), 7.13-7.28 (1H, m).</td>
</tr>
</tbody>
</table>
[0233]

[Table 20]

1(1e)-3: 1H-NMR (CDCl₃) δ: 1.32-1.45 (1H, m), 1.66-1.97 (3H, m), 2.75 (2H, d, J = 6.9 Hz), 2.81-2.90 (1H, m), 3.00-3.08 (1H, m), 3.19-3.29 (1H, m), 6.84-7.02 (3H, m), 7.20-7.29 (1H, m).

1(1a)-4: 1H-NMR (CDCl₃) δ: 1.26 (5H, s), 1.47 (4H, s), 1.83-2.00 (3H, m), 2.23-2.39 (1H, m), 3.42-3.73 (2H, m), 5.11-5.18 (0.5H, m), 5.24-5.31 (0.5H, m), 7.40-7.50 (2H, m), 7.87-7.97 (2H, m).

1(1b)-4: 1H-NMR (CDCl₃) δ: 1.40-1.65 (12H, m), 1.66-1.81 (2H, m), 3.28-3.41 (1H, m), 3.42-3.54 (1H, m), 3.99-4.08 (1H, m), 4.47-4.55 (0.5H, m), 5.93-6.02 (0.5H, m), 7.22-7.35 (4H, m).

1(1c)-4: 1H-NMR (CDCl₃) δ: 1.34-1.56 (10H, m), 1.62-1.95 (4H, m), 3.17-3.31 (1H, m), 3.34-3.48 (1H, m), 4.50-4.62 (0.5H, m), 6.20-6.30 (0.5H, m), 6.91-7.03 (1H, m), 7.18-7.41 (4H, m), 7.63-7.81 (1H, m), 8.36-8.50 (1H, m).

1(1d)-4: 1H-NMR (CDCl₃) δ: 1.50 (9H, s), 1.61-1.85 (4H, m), 2.47-2.64 (1H, m), 2.94-3.17 (1H, m), 3.19-3.45 (2H, m), 3.86-4.05 (1H, m), 7.04-7.20 (2H, m), 7.21-7.31 (2H, m).
EP 2 374 794 A1

(continued)

| 1(1e)-4 | \begin{align*} \text{H-NMR (CDCl}_3\text{)} & : 1.33-1.43 (1H, m), 1.67-1.91 (3H, m), 2.72 (2H, d, J = 6.88 Hz), 2.79-2.88 (1H, m), 2.99-3.07 (1H, m), 3.16-3.25 (1H, m), 7.12-7.17 (2H, m), 7.23-7.28 (2H, m). \end{align*} |
| 1(1a)-5 | \begin{align*} \text{H-NMR (CDCl}_3\text{)} & : 1.27 (5H, s), 1.46 (4H, s), 1.82-2.00 (3H, m), 2.23-2.42 (1H, m), 3.42-3.72 (2H, m), 5.08-5.13 (0.5H, m), 5.20-5.24 (0.5H, m), 7.46-7.56 (1H, m), 7.67-7.77 (2H, m). \end{align*} |
| 1(1b)-5 | \begin{align*} \text{H-NMR (CDCl}_3\text{)} & : 1.43-1.54 (11H, m), 1.68-1.79 (3H, m), 3.28-3.39 (1H, m), 3.44-3.53 (1H, m), 3.97-4.04 (1H, m), 4.47-4.55 (0.5H, m), 6.10.6.17 (0.5H, m), 6.99-7.10 (1H, m), 7.11-7.22 (1H, m), 7.30-7.39 (1H, m). \end{align*} |

| 1(1c)-5 | \begin{align*} \text{H-NMR (CDCl}_3\text{)} & : 1.34-1.63 (11H, m), 1.65-1.97 (3H, m), 3.19-3.31 (1H, m), 3.36-3.50 (1H, m), 4.49-4.57 (0.5H, m), 6.21-6.29 (0.5H, m), 6.90-7.29 (3H, m), 7.38-7.46 (1H, m), 7.64-7.80 (1H, m), 8.36-8.50 (1H, m). \end{align*} |
| 1(1d)-5 | \begin{align*} \text{H-NMR (CDCl}_3\text{)} & : 1.50 (9H, s), 1.58-1.86 (4H, m), 2.47-2.64 (1H, m), 2.96-3.14 (1H, m), 3.21-3.45 (2H, m), 3.87-4.05 (1H, m), 6.85-7.03 (2H, m), 7.23-7.36 (1H, m). \end{align*} |
\[ \text{Table 22} \]

| 1(1e)-5 | \[1H-NMR (DMSO-D6) \delta: 1.52-1.64 (1H, m), 1.79-2.04 (3H, m), 2.97 (2H, d, J = 7.34 Hz), 3.07-3.16 (1H, m), 3.16-3.26 (1H, m), 3.62-3.72 (1H, m), 7.17 (1H, dd, J = 8.25, 1.38 Hz), 7.39 (1H, dd, J = 10.6, 2.3 Hz), 7.53-7.60 (1H, m).] |
| 1(1a)-6 | \[1H-NMR (CDCl3) \delta: 1.26 (5H, s), 1.47 (4H, s), 1.84-2.00 (3H, m), 2.21-2.46 (4H, m), 3.42-3.74 (2H, m), 5.14-5.22 (0.5H, m), 5.28-5.36 (0.5H, m), 7.21-7.32 (2H, m), 7.81-7.93 (2H, m).] |
| 1(1b)-6 | \[1H-NMR (CDCl3) \delta: 1.49-1.54 (12H, m), 1.63-1.84 (2H, m), 2.34 (3H, s), 3.24-3.40 (1H, m), 3.41-3.50 (1H, m), 4.04-4.16 (1H, m), 4.44-4.53 (0.5H, m), 5.74-5.81 (0.5H, m), 7.09-7.16 (2H, m), 7.17-7.28 (2H, m).] |
| 1(1c)-6 | \[1H-NMR (CDCl3) \delta: 1.33-1.73 (9H, m), 1.74-2.00 (3H, m), 2.32-2.38 (3H, m), 3.16-3.34 (2H, m), 3.66-3.75 (1H, m), 4.08-4.16 (1H, m), 4.55-4.64 (0.5H, m), 6.19-6.27 (0.5H, m), 6.95-7.38 (5H, m), 7.66-7.81 (1H, m), 8.38-8.61 (1H, m).] |

\[ \text{Table 22} \]

| 1(1d)-6 | \[1H-NMR (CDCl3) \delta: 1.51 (9H, s), 1.62-1.82 (4H, m), 2.32 (3H, s), 2.43-2.58 (1H, m), 2.96-3.19 (1H, m), 3.22-3.41 (2H, m), 3.86-4.07 (1H, m), 6.99-7.14 (4H, m).] |
| 1(1a)-7 | \[\delta: 1.26(5H, s), 1.46(4H, s), 1.84-2.00(3H, m), 2.23-2.38(1H, m), 3.44-3.71(2H, m), 5.08-5.13(0.5H, m), 5.20-5.26(0.5H, m), 7.20-7.32(1H, m), 7.72-7.86(2H, m).\] |
| 1(1b)-7 | \[\delta: 1.40-1.55(10H, m), 1.57-1.65(2H, m), 1.65-1.81(2H, m), 2.38-3.39(1H, m), 3.44-3.53(1H, m), 3.97-4.04(1H, m), 4.46-4.53(0.5H, m), 6.06-6.13(0.5H, m), 6.93-7.25(3H, m).\] |
| 1(1c)-7 | \[\delta: 1.34-1.56(11H, m), 1.78-1.96(3H, m), 3.17-3.34(1H, m), 3.36-3.49(1H, m), 4.49-4.58(0.5H, m), 6.19-6.28(0.5H, m), 6.96-7.33(4H, m), 7.64-7.80(1H, m), 8.36-8.50(1H, m).\] |
| 1(1d)-7 | \[\delta: 1.50(9H, s), 1.54-1.88(4H, m), 2.44-2.64(1H, m), 2.93-3.12(1H, m), 3.20-3.46(2H, m), 3.85-4.05(1H, m), 6.81-7.13(3H, m).\] |
| 1(1e)-7 | \[\delta: 1.30-1.42(1H, m), 1.66-2.00(3H, m), 2.66-2.74(2H, m), 2.80-2.91(1H, m), 2.98-3.09(1H, m), 3.15-3.26(1H, m), 6.88-6.96(1H, m), 6.98-7.12(2H, m).\] |
### Table 23

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (CDCl₃) δ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(1a)-8</td>
<td>1.26 (5H, s), 11.46 (4H, s), 1.84-2.00 (3H, m), 2.23-2.39 (1H, m), 3.43-3.72 (2H, m), 5.11-5.17 (0.5H, m), 5.23-5.29 (0.5H, m), 7.36-7.46 (1H, m), 7.49-7.60 (1H, m), 7.80-7.88 (1H, m), 7.91-7.97 (1H, m).</td>
</tr>
<tr>
<td>1(1b)-8</td>
<td>1.38-1.85 (14H, m), 3.27-3.40 (1H, m), 3.43-3.52 (1H, m), 4.02-4.09 (1H, m), 4.46-4.56 (0.5H, m), 5.99-6.08 (0.5H, m), 7.14-7.40 (4H, m).</td>
</tr>
<tr>
<td>1(1c)-8</td>
<td>1.33-1.57 (10H, m), 1.65-1.98 (4H, m), 3.15-3.35 (1H, m), 3.35-3.50 (1H, m), 4.50-4.63 (0.5H, m), 6.21-6.30 (0.5H, m), 6.94-7.49 (5H, m), 7.63-7.82 (1H, m), 8.34-8.51 (1H, m).</td>
</tr>
<tr>
<td>1(1d)-8</td>
<td>1.50 (9H, s), 1.61-1.85 (4H, m), 2.45-2.62 (1H, m), 2.97-3.17 (1H, m), 3.21-3.45 (2H, m), 3.89-4.07 (1H, m), 7.01-7.25 (4H, m).</td>
</tr>
<tr>
<td>1(1e)-8</td>
<td>1.32-1.46 (1H, m), 1.62-1.98 (3H, m), 2.63-2.76 (2H, m), 2.78-2.93 (1H, m), 2.98-3.10 (1H, m), 3.15-3.31 (1H, m), 7.04-7.33 (4H, m).</td>
</tr>
<tr>
<td>1(1a)-9</td>
<td>1.27 (5H, s), 1.46 (4H, s), 1.83-2.00 (3H, m), 2.23-2.39 (1H, m), 3.41-3.72 (2H, m), 5.08-5.15 (0.5H, m), 5.20-5.27 (0.5H, m), 7.18-7.30 (1H, m), 7.84-7.93 (1H, m), 8.02-8.09 (1H, m).</td>
</tr>
</tbody>
</table>
[Table 24]

1(1b)-9

\[ \delta: 1.34-1.85 (14H, m), 3.30-3.40 (1H, m), 3.45-3.53 (1H, m), 3.98-4.05 (1H, m), 4.45-4.53 (0.5H, m), 6.09-6.16 (0.5H, m), 7.05-7.25 (2H, m), 7.34-7.46 (1H, m). \]


1(1c)-9

\[ \delta: 1.29-1.60 (12H, m), 1.74-1.98 (2H, m), 3.16-3.32 (1H, m), 3.35-3.52 (1H, m), 4.48-4.60 (0.5H, m), 6.18-6.27 (0.5H, m), 6.87-7.54 (4H, m), 7.60-7.80 (1H, m), 8.34-8.51 (1H, m). \]


1(1d)-9

\[ \delta: 1.46-1.51 (11H, m), 1.68-1.86 (2H, m), 2.44-2.61 (1H, m), 2.93-3.11 (1H, m), 3.21-3.45 (2H, m), 3.86-4.04 (1H, m), 6.96-7.09 (2H, m), 7.16-7.27 (1H, m). \]


1(1e)-9

\[ \delta: 1.38-1.49 (1H, m), 1.71-1.94 (3H, m), 2.69-2.81 (2H, m), 2.86-2.95 (1H, m), 3.03-3.12 (1H, m), 3.22-3.35 (1H, m), 7.02-7.10 (2H, m), 7.23-7.28 (1H, m). \]

1(1a)-10

\[ \delta: 1.27 (5H, s), 1.46 (4H, s), 1.83-1.98 (3H, m), 2.22-2.38 (1H, m), 2.40-2.46 (3H, m), 3.42-3.71 (2H, m), 5.10-5.15 (0.5H, m), 5.23-5.28 (0.5H, m), 7.29-7.38 (1H, m), 7.72-7.79 (1H, m), 7.92-7.97 (1H, m). \]
1H-NMR (CDCl₃): δ: 1.42-1.85 (14H, m), 2.36 (3H, s), 3.26-3.41 (1H, m), 3.43-3.52 (1H, m), 4.01-4.08 (1H, m), 4.41-4.51 (0.5H, m), 5.89-5.96 (0.5H, m), 7.04-7.22 (2H, m), 7.28-7.38 (1H, m).

1H-NMR (CDCl₃): δ: 1.32-1.61 (12H, m), 1.77-1.98 (2H, m), 2.37 (3H, s), 3.16-3.33 (1H, m), 3.35-3.49 (1H, m), 4.52-4.61 (0.5H, m), 6.16-6.25 (0.5H, m), 6.91-7.46 (4H, m), 7.63-7.82 (1H, m), 8.34-8.51 (1H, m).

1H-NMR (CDCl₃): δ: 1.50 (9H, s), 1.54-1.85 (4H, m), 2.34 (3H, s), 2.40-2.57 (1H, m), 2.93-3.15 (1H, m), 3.20-3.44 (2H, m), 3.85-4.04 (1H, m), 6.91-7.06 (1H, m), 7.08-7.22 (2H, m).

1H-NMR (CDCl₃): δ: 1.33-1.45 (1H, m), 1.67-1.90 (3H, m), 2.33 (3H, s), 2.65-2.75 (2H, m), 2.81-2.89 (1H, m), 3.00-3.09 (1H, m), 3.18-3.27 (1H, m), 6.98-7.02 (1H, m), 7.11-7.15 (1H, m), 7.18-7.21 (1H, m).

1H-NMR (CDCl₃): δ: 1.29 (5H, s), 1.46 (4H, s), 1.84-1.99 (3H, m), 2.25-2.38 (1H, m), 3.44-3.71 (2H, m), 5.06-5.11 (0.5H, m), 5.17-5.21 (0.5H, m), 7.25-7.34 (1H, m), 7.52-7.58 (1H, m), 7.71-7.75 (1H, m).
<table>
<thead>
<tr>
<th>Structure</th>
<th>1H-NMR (CDCl₃) δ:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(b)-11</td>
<td>1.41-1.83 (14H, m), 3.30-3.40 (1H, m), 3.45-3.54 (1H, m), 3.98-4.06 (1H, m), 4.46-4.54 (0.5H, m), 6.15-6.24 (0.5H, m), 6.92-7.04 (2H, m), 7.09-7.19 (1H, m).</td>
</tr>
<tr>
<td>1(c)-11</td>
<td>1.30-1.63 (11H, m), 1.64-2.00 (3H, m), 3.16-3.33 (1H, m), 3.35-3.56 (1H, m), 4.45-4.59 (0.5H, m), 6.19-6.33 (0.5H, m), 6.80-7.30 (4H, m), 7.61-7.83 (1H, m), 8.32-8.53 (1H, m).</td>
</tr>
<tr>
<td>1(d)-11</td>
<td>1.50 (9H, s), 1.54-1.88 (4H, m), 2.43-2.64 (1H, m), 2.97-3.15 (1H, m), 3.22-3.46 (2H, m), 3.88-4.06 (1H, m), 6.74-6.87 (1H, m), 6.90-7.04 (2H, m).</td>
</tr>
<tr>
<td>1(e)-11</td>
<td>1.31-1.43 (1H, m), 1.66-1.99 (3H, m), 2.65-2.77 (2H, m), 2.79-2.90 (1H, m), 2.97-3.08 (1H, m), 3.17-3.28 (1H, m), 6.84 (1H, d, J = 9.6 Hz), 6.93 (1H, d, J = 8.3 Hz), 7.01 (1H, s).</td>
</tr>
<tr>
<td>1(a)-12</td>
<td>1.29 (5H, s), 1.47 (4H, s), 1.84-2.01 (3H, m), 2.24-2.42 (1H, m), 3.43-3.73 (2H, m), 5.04-5.12 (0.5H, m), 5.15-5.22 (0.5H, m), 6.97-7.10 (1H, m), 7.43-7.53 (2H, m).</td>
</tr>
</tbody>
</table>
1(1b)-12

$^1$H-NMR (CDCl$_3$) δ: 1.48-1.54 (10H, m), 1.56-1.80 (4H, m), 3.29-3.40 (1H, m), 3.45-3.53 (1H, m), 3.97-4.05 (1H, m), 4.47-4.56 (0.5H, m), 8.13-6.21 (0.5H, m), 6.67-6.76 (1H, m), 6.82-6.95 (2H, m).

1(1c)-12

$^1$H-NMR (CDCl$_3$) δ: 1.32-1.62 (10H, m), 1.64-2.11 (4H, m), 3.15-3.52 (2H, m), 4.46-4.58 (0.5H, m), 6.22-6.31 (0.5H, m), 6.63-7.16 (4H, m), 7.62-7.81 (1H, m), 8.33-8.51 (1H, m).

1(1e)-12

$^1$H-NMR (CDCl$_3$) δ: 1.33-1.44 (1H, m), 1.65-1.92 (3H, m), 2.73 (2H, d, J = 6.88 Hz), 2.81-2.91 (1H, m), 2.99-3.09 (1H, m), 3.18-3.30 (1H, m), 6.61-6.69 (1H, m), 6.70-6.78 (2H, m).

1(1a)-13

$^1$H-NMR (CDCl$_3$) δ: 1.27 (6H, s), 1.45 (3H, s), 1.86-2.06 (3H, m), 2.20-2.38 (1H, m), 3.53-3.70 (2H, m), 4.74-4.81 (0.5H, m), 4.95-5.02 (0.5H, m), 6.93-6.99 (1H, m), 7.54-7.62 (1H, m).

1(1b)-13

$^1$H-NMR (CDCl$_3$) δ: 1.46-1.54 (10H, m), 1.56-1.84 (4H, m), 3.24-3.53 (2H, m), 3.99-4.07 (1H, m), 4.65-4.75 (0.5H, m), 5.99-6.07 (0.5H, m), 6.69-6.78 (2H, m).
**EP 2 374 794 A1**

(continued)

<table>
<thead>
<tr>
<th>1(1c)-13</th>
<th>1H-NMR (CDCl3) δ: 1.30-1.61 (10H, m), 1.67-2.02 (3H, m), 3.02-3.58 (2H, m), 4.23-4.54 (1H, m), 6.70-6.99 (2H, m), 7.05-7.14 (1H, m), 7.72-7.79 (1H, m), 8.41-8.47 (1H, m).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1(1d)-13</th>
<th>1H-NMR (CDCl3) δ: 1.50 (9H, s), 1.60-1.82 (3H, m), 1.83-1.95 (1H, m), 2.76-3.00 (1H, m), 3.00-3.15 (1H, m), 3.20-3.45 (2H, m), 3.86-4.04 (1H, m), 6.56 (1H, br s), 6.73 (1H, d, J = 4.0 Hz).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1(1e)-13</th>
<th>1H-NMR (CDCl3) δ: 1.44-1.53 (1H, m), 1.74-2.01 (3H, m), 2.86-2.99 (3H, m), 3.02-3.11 (1H, m), 3.31-3.38 (1H, m), 6.62 (1H, d, J = 3.4 Hz), 6.72 (1H, d, J = 4.0 Hz).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1(1a)-14</th>
<th>1H-NMR (CDCl3) δ: 1.21-1.31 (8H, m), 1.47 (4H, s), 1.86-1.99 (3H, m), 2.24-2.37 (1H, m), 2.65-2.76 (2H, m), 3.43-3.73 (2H, m), 5.16-5.23 (0.5H, m), 5.31-5.37 (0.5H, m), 7.33-7.45 (2H, m), 7.72-7.84 (2H, m).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1(1b)-14</th>
<th>1H-NMR (CDCl3) δ: 1.19-1.29 (4H, m), 1.49-1.55 (10H, m), 1.64-1.85 (4H, m), 2.57-2.70 (2H, m), 3.23-3.41 (1H, m), 3.41-3.50 (1H, m), 4.06-4.16 (0.5H, m), 4.45-4.54 (0.5H, m), 7.07-7.18 (2H, m), 7.18-7.25 (2H, m).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1(1c)-14</td>
<td><img src="image" alt="Chemical Structure" /></td>
</tr>
<tr>
<td>1(1d)-14</td>
<td><img src="image" alt="Chemical Structure" /></td>
</tr>
<tr>
<td>1(1e)-14</td>
<td><img src="image" alt="Chemical Structure" /></td>
</tr>
<tr>
<td>1(1a)-15</td>
<td><img src="image" alt="Chemical Structure" /></td>
</tr>
<tr>
<td>1(1b)-15</td>
<td><img src="image" alt="Chemical Structure" /></td>
</tr>
</tbody>
</table>

[0242]
### Table 29

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (CDCl₃) δ</th>
<th>Spectral Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(1c)-15</td>
<td>1.36-1.60 (11H, m), 1.79-1.97 (3H, m), 3.19-3.30 (1H, m), 3.35-3.51 (1H, m), 4.50-4.58 (0.5H, m), 6.20-6.27 (0.6H, m), 6.89-7.60 (4H, m), 7.62-7.80 (1H, m), 8.36-8.50 (1H, m).</td>
<td></td>
</tr>
<tr>
<td>1(1d)-15</td>
<td>1.49 (9H, s), 1.56-1.68 (2H, m), 1.69-1.86 (2H, m), 2.46-2.62 (1H, m), 2.95-3.12 (1H, m), 3.22-3.45 (2H, m), 3.88-4.03 (1H, m), 6.96-7.07 (1H, m), 7.23-7.38 (2H, m).</td>
<td></td>
</tr>
<tr>
<td>1(1e)-15</td>
<td>1.35-1.46 (1H, m), 1.69-1.92 (3H, m), 2.69-2.76 (2H, m), 2.78-2.97 (1H, m), 3.00-3.09 (1H, m), 3.20-3.30 (1H, m), 7.03-7.08 (1H, m), 7.29-7.37 (2H, m).</td>
<td></td>
</tr>
<tr>
<td>1(1a)-16</td>
<td>1.26 (5H, s), 1.47 (4H, s), 1.86-2.03 (3H, m), 2.26-2.41 (1H, m), 3.43-3.74 (2H, m), 5.16-5.22 (0.5H, m), 5.28-5.34 (0.5H, m), 7.41-7.70 (1H, m), 7.79-7.89 (1H, m), 8.10-8.26 (2H, m).</td>
<td></td>
</tr>
<tr>
<td>1(1b)-16</td>
<td>1.39-1.65 (11H, m), 1.66-1.81 (2H, m), 1.88-2.02 (1H, m), 3.26-3.40 (1H, m), 3.44-3.54 (1H, m), 4.04-4.16 (1H, m), 4.56-4.64 (0.5H, m), 6.04-6.11 (0.5H, m), 7.40-7.66 (4H, m).</td>
<td></td>
</tr>
<tr>
<td>1(1c)-16</td>
<td>1.33-1.57 (10H, m), 1.83-1.98 (4H, m), 3.16-3.28 (1H, m), 3.35-3.51 (1H, m), 4.55-4.64 (0.5H, m), 6.34-6.42 (0.5H, m), 6.96-7.15 (2H, m), 7.41-7.81 (4H, m), 8.37-8.51 (1H, m).</td>
<td></td>
</tr>
</tbody>
</table>
1(1d)-16

\[ \begin{align*}
1^H\text{-NMR (CDCl}_3\text{)} \delta: 1.50 (9\text{H}, s), 1.59-1.85 (4\text{H}, m), 2.54-2.75 (1\text{H}, m), 3.05-3.44 (3\text{H}, m), 3.91-4.09 (1\text{H}, m), 7.30-7.51 (4\text{H}, m).
\end{align*} \]

1(1e)-16

\[ \begin{align*}
1^H\text{-NMR (CDCl}_3\text{)} \delta: 1.34-1.47 (1\text{H}, m), 1.68-1.92 (3\text{H}, m), 2.78-2.90 (3\text{H}, m), 3.01-3.08 (1\text{H}, m), 3.22-3.31 (1\text{H}, m), 7.36-7.43 (2\text{H}, m), 7.44-7.50 (2\text{H}, m).
\end{align*} \]

1(1a)-17

\[ \begin{align*}
1^H\text{-NMR (CDCl}_3\text{)} \delta: 1.17-1.32 (5\text{H}, m), 1.46 (5\text{H}, s), 1.83-1.99 (3\text{H}, m), 2.22-2.37 (1\text{H}, m), 2.69-2.87 (4\text{H}, m), 3.43-3.72 (2\text{H}, m), 5.12-5.18 (0.5\text{H}, m), 5.26-5.32 (0.5\text{H}, m), 7.38-7.47 (1\text{H}, m), 7.67-7.77 (1\text{H}, m), 7.80-7.89 (1\text{H}, m).
\end{align*} \]

1(1b)-17

\[ \begin{align*}
1^H\text{-NMR (CDCl}_3\text{)} \delta: 1.16-1.30 (4\text{H}, m), 1.39-1.83 (12\text{H}, m), 2.62-2.88 (3\text{H}, m), 3.23-3.53 (2\text{H}, m), 4.01-4.18 (1\text{H}, m), 4.43-4.54 (0.5\text{H}, m), 5.83-5.94 (0.5\text{H}, m), 7.02-7.35 (3\text{H}, m).
\end{align*} \]

1(1c)-17

\[ \begin{align*}
1^H\text{-NMR (CDCl}_3\text{)} \delta: 1.22 (3\text{H}, t, J = 6.0 \text{ Hz}), 1.39 (9\text{H}, s), 1.44-2.00 (4\text{H}, m), 2.69-2.81 (3\text{H}, m), 3.13-3.33 (1\text{H}, m), 3.34-3.48 (1\text{H}, m), 4.52-4.62 (0.5\text{H}, m), 8.19-6.30 (0.5\text{H}, m), 6.92-7.40 (4\text{H}, m), 7.65-7.81 (1\text{H}, m), 8.36-8.51 (1\text{H}, m).
\end{align*} \]
(continued)

1(1d)-17

\[
\text{H-NMR (CDCl}_3\text{) } \delta: 1.22 (3H, t, J = 7.3 Hz), 1.50 (9H, s), 1.57-1.84 (4H, m), 2.43-2.60 (1H, m), 2.72 (2H, q, J = 7.3 Hz), 2.94-3.13 (1H, m), 3.20-3.43 (2H, m), 3.86-4.05 (1H, m), 6.89-6.99 (1H, m), 6.99-7.09 (1H, m), 7.20-7.27 (1H, m).
\]

1(1e)-17

\[
\text{H-NMR (CDCl}_3\text{) } \delta: 1.22 (3H, t, J = 7.3 Hz), 1.42-1.56 (1H, m), 1.88-1.96 (3H, m), 2.65-2.89 (4H, m), 2.89-3.00 (1H, m), 3.05-3.17 (1H, m), 3.29-3.40 (1H, m), 6.94-7.02 (1H, m), 7.03-7.11 (1H, m), 7.17-7.29 (1H, m).
\]

1(1a)-18

\[
\text{H-NMR (CDCl}_3\text{) } \delta: 1.26 (5H, s), 1.46 (4H, s), 1.82-2.01 (2H, m), 2.24-2.38 (1H, m), 3.44-3.73 (2H, m), 5.15-5.21 (0.5H, m), 5.27-5.33 (0.5H, m), 7.45-7.64 (2H, m), 7.70-7.79 (1H, m), 8.03-8.11 (2H, m).
\]

1(1b)-18

\[
\text{H-NMR (CDCl}_3\text{) } \delta: 1.39-1.65 (10H, m), 1.66-1.85 (3H, m), 1.86-2.01 (1H, m), 3.26-3.42 (1H, m), 3.43-3.54 (1H, m), 4.02-4.17 (1H, m), 4.55-4.65 (0.5H, m), 6.06-6.15 (0.5H, m), 7.40-7.65 (4H, m).
\]

1(1c)-18

\[
\text{H-NMR (CDCl}_3\text{) } \delta: 1.34-1.62 (11H, m), 1.76-1.98 (3H, m), 3.17-3.50 (2H, m), 4.54-4.64 (0.5H, m), 6.28-6.37 (0.5H, m), 6.97-7.16 (1H, m), 7.35-7.80 (5H, m), 8.37-8.51 (1H, m).
\]
1(1d)-18

![Structure](image1)

$^1$H-NMR (CDCl₃) δ: 1.49 (9H, s), 1.60-1.85 (4H, m), 2.56-2.70 (1H, m), 3.04-3.24 (1H, m), 3.24-3.45 (2H, m), 3.93-4.08 (1H, m), 7.24-7.35 (2H, m), 7.51-7.57 (2H, m).

1(1e)-18

![Structure](image2)

$^1$H-NMR (CDCl₃) δ: 1.39-1.50 (1H, m), 1.70-1.94 (3H, m), 2.80-2.93 (3H, m), 2.95-3.25 (1H, m), 3.26-3.37 (1H, m), 7.33 (2H, d, J = 8.3 Hz), 7.55 (2H, d, J = 8.3 Hz).

1(1a)-19

![Structure](image3)

$^1$H-NMR (CDCl₂) δ: 1.25 (5.4H, s), 1.46 (3.6H, s), 1.95-2.11 (1.0H, m), 2.34 (1.2H, d, J = 1.7 Hz), 2.36 (1.8H, d, J = 1.1 Hz), 2.56-2.66 (1.0H, m), 3.67 (0.5H, td, J = 12.5, 3.2 Hz), 3.74 (0.5H, td, J = 13.2, 3.4 Hz), 3.91 (0.5H, ddd, J = 22.8, 13.0, 1.9 Hz), 4.01 (0.5H, ddd, J = 22.3, 13.2, 2.3 Hz), 5.18-5.20 (0.5H, br m), 5.28-5.31 (0.5H, br m), 5.39 (1.0H, dt, J = 46.0, 8.4 Hz), 7.27-7.33 (1.0H, m), 7.61-7.70 (2.0H, m).

[Table 32]

1(1b)-19

![Structure](image4)

$^1$H-NMR (CDCl₃) δ: 1.52 (9.0H, s), 1.62-1.69 (1.0H, br m), 1.80-1.88 (1.0H, br m), 2.25 (3.0H, d, J = 1.1 Hz), 2.98 (0.2H, dd, J = 36.4, 14.6 Hz), 3.35 (0.8H, dd, J = 37.8, 12.6 Hz), 3.79 (0.2H, dd, J = 21.5, 12.3 Hz), 3.96 (0.8H, ddd, J = 21.6, 13.3, 2.1 Hz), 4.29 (0.8H, q, J = 8.0 Hz), 4.43 (0.2H, t, J = 6.6 Hz), 4.54 (0.8H, d, J = 7.4 Hz), 4.64 (0.2H, t, J = 7.4 Hz), 4.93 (1.0H, d, J = 52.7 Hz), 6.17 (1.0H, br s), 6.95-7.05 (2.0H, m), 7.14 (1.0H, t, J = 7.7 Hz).
Less polar

$^1$H-NMR (CDCl$_3$): $\delta$: 1.45 (6.3H, s), 1.53 (2.7H, s), 1.93-2.02 (1.0H, br m), 2.09-2.39 (1.0H, br m), 2.25 (0.9H, s), 2.27 (2.1H, d, $J = 1.7$ Hz), 2.73-2.86 (0.3H, m), 3.07 (0.7H, dd, $J = 34.9, 12.6$ Hz), 3.92 (1.0H, dd, $J = 18.9, 13.7$ Hz), 4.63-5.09 (2.0H, m), 6.47 (0.7H, d, $J = 6.3$ Hz), 6.86-7.11 (3.3H, br m), 7.20 (1.0H, t, $J = 7.7$ Hz), 7.66 (0.3H, br s), 7.72 (0.7H, s), 8.39 (0.3H, br s), 8.43 (0.7H, br s).

More polar

$^1$H-NMR (CDCl$_3$): $\delta$: 1.48 (4.5H, s), 1.57 (4.5H, s), 2.19-2.24 (1.5H, br m), 2.27 (3.0H, br s), 2.30-2.39 (0.5H, br m), 3.20 (0.5H, dd, $J = 36.7, 13.2$ Hz), 3.32 (0.5H, dd, $J = 37.5, 13.5$ Hz), 3.90 (0.5H, dd, $J = 21.2, 13.7$ Hz), 4.11 (0.5H, dd, $J = 22.6, 15.2$ Hz), 4.41 (0.5H, t, $J = 6.6$ Hz), 4.56 (0.5H, t, $J = 8.0$ Hz), 5.11 (0.5H, d, $J = 51.5$ Hz), 5.19 (0.5H, d, $J = 52.1$ Hz), 6.87-7.03 (2.0H, m), 7.08-7.12 (2.0H, m), 7.18-7.22 (1.0H, m), 7.61 (0.5H, br s), 7.67 (0.5H, br s), 8.33 (0.5H, br s), 8.39 (0.5H, br s).

$^1$H-NMR (CDCl$_3$): $\delta$: 1.52 (9.0H, br s), 1.72-1.79 (0.5H, br m), 1.81-1.88 (0.5H, br m), 2.14-2.22 (2.0H, br m), 2.24 (3.0H, d, $J = 1.5$ Hz), 2.64-2.72 (0.5H, br m), 2.81-2.88 (0.5H, br m), 3.11-3.24 (2.0H, br m), 4.13-4.26 (1.0H, br m), 4.88-5.06 (1.0H, br m), 6.78-6.84 (2.0H, br m), 7.08 (1.0H, t, $J = 7.9$ Hz).

$^1$H-NMR (CDCl$_3$): $\delta$: 1.44-1.61 (1H, m), 2.09-2.20 (1H, m), 2.24 (3H, d, $J = 1.5$ Hz), 2.70 (2H, d, $J = 6.8$ Hz), 3.12 (1H, ddt, $J = 28.7, 13.0, 1.5$ Hz), 3.22 (1H, ddd, $J = 32.6, 13.1, 4.3$ Hz), 3.57 (1H, ddd, $J = 14.6, 7.9, 5.0$ Hz), 5.19 (1H, dt, $J = 54.9, 4.5$ Hz), 6.86 (1H, d, $J = 2.4$ Hz), 6.88 (1H, s), 7.09 (1H, t, $J = 7.9$ Hz).

$^1$H-NMR (CDCl$_3$): $\delta$: 1.24 (5.4H, s), 1.45 (3.6H, s), 1.98-2.03 (1.0H, m), 2.33 (1.2H, d, $J = 1.1$ Hz), 2.35 (1.8H, d, $J = 1.7$ Hz), 2.37-2.47 (1.0H, m), 3.64-3.73 (1.4H, m), 3.84 (0.6H, dt, $J = 11.6, 1.9$ Hz), 4.18-4.23 (1.0H, br m), 4.48-4.60 (2.0H, m), 5.29 (0.6H, t, $J = 8.0$ Hz), 5.37 (0.4H, dd, $J = 8.6, 6.9$ Hz), 7.25-7.38 (6.0H, m), 7.58-7.67 (2.0H, m).

$^1$H-NMR (CDCl$_3$): $\delta$: 1.50 (9H, s), 1.51-1.59 (1H, m), 1.63-2.00 (1H, m), 2.25 (3H, d, $J = 1.7$ Hz), 3.35 (1H, dd, $J = 12.0, 4.0$ Hz), 3.73-3.88 (2H, m), 4.22 (1H, q, $J = 7.8$ Hz), 4.39-4.49 (3H, m), 6.93-7.01 (2H, m), 7.12 (1H, t, $J = 7.7$ Hz), 7.24-7.36 (5H, m).
1(1c)-20

Less Polar

$^1$H-NMR (CDCl$_3$) $\delta$: 1.52 (9.0H, brs), 1.87-1.92 (0.5H, brm), 1.99-2.03 (0.5H, brm), 2.08-2.15 (0.5H, brm), 2.17-2.23 (0.5H, brm), 2.25-2.28 (3.0H, m), 2.93-2.96 (0.5H, brm), 3.30 (0.5H, dd, J = 13.5, 2.0 Hz), 3.50-3.54 (0.5H, br m), 3.70-3.74 (0.5H, br m), 3.98 (0.5H, dd, J = 12.9, 6.0 Hz), 4.16 (0.5H, t, J = 5.4 Hz), 4.39-4.47 (2.0H, m), 4.89-4.91 (0.5H, br m), 4.96-4.98 (0.5H, br m), 6.93-6.99 (3.0H, m), 7.18-7.35 (9.0H, m).

1(1d)-20

$^1$H-NMR (CDCl$_3$) $\delta$: 1.47 (3.6H, s), 1.55 (5.4H, s), 2.01-2.06 (1.0H, brm), 2.14-2.24 (1.0H, brm), 2.26 (3.0H, s), 3.24 (1.0H, td, J = 11.7, 3.8 Hz), 3.64 (0.4H, d, J = 10.9 Hz), 3.96-4.02 (1.0H, brm), 4.11-4.12 (0.6H, brm), 4.35-4.53 (3.0H, m), 6.85-7.01 (2.0H, m), 7.04-7.06 (2.0H, brm), 7.17 (1.0H, q, J = 7.1 Hz), 7.27-7.35 (5.0H, brm), 7.57 (0.6H, s), 7.61 (0.4H, s), 8.33 (0.6H, s), 8.38 (0.4H, s).

1(1e)-20

$^1$H-NMR (CDCl$_3$) $\delta$: 1.51 (9.0H, brs), 1.81 (1.0H, dt, J = 13.3, 5.5 Hz), 1.97-1.99 (1.0H, m), 2.23 (3.0H, d, J = 1.2 Hz), 2.51-2.61 (0.5H, brm), 2.64-2.73 (0.5H, brm), 3.26-3.31 (1.0H, brm), 3.43-3.51 (0.5H, brm), 3.68-3.73 (0.5H, brm), 3.86-3.94 (1.0H, brm), 4.06-4.20 (1.0H, brm), 4.39-4.45 (2.0H, brm), 6.76-6.84 (2.0H, m), 7.06 (1.0H, t, J = 7.7 Hz), 7.26-7.34 (5.0H, m).

1(1a)-21

$^1$H-NMR (CDCl$_3$) $\delta$: 1.01-1.09 (3H, m), 1.22-1.29 (5H, m), 1.46 (5H, s), 2.28-2.41 (4H, m), 2.41-2.53 (1H, m), 3.01-3.12 (1H, m), 3.74-3.89 (1H, m), 5.05-5.12 (0.5H, m), 5.15-5.24 (0.5H, m), 7.22-7.33 (1H, m), 7.56-7.68 (2H, m).

[0247]
### Table 34

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (CDCl₃) δ</th>
<th><em>ASSIGNMENT</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>1(1b)-21</td>
<td>0.91-1.06 (3H, m), 1.43-1.64 (12H, m), 1.91-2.02 (1H, m), 2.15-2.19 (1H, m), 2.19-2.28 (4H, m), 2.70-2.81 (0.5H, m), 3.77-3.86 (0.5H, m), 4.01-4.16 (0.5H, m), 4.43-4.54 (0.5H, m), 6.89-7.06 (2H, m), 7.07-7.17 (1H, m).</td>
<td></td>
</tr>
<tr>
<td>1(1c)-21</td>
<td>0.85-1.11 (3H, m), 1.34-1.63 (11H, m), 2.02-2.18 (2H, m), 2.21-2.39 (4H, m), 3.71-3.86 (1H, m), 4.51-4.68 (0.5H, m), 6.42-6.55 (0.5H, m), 6.80-7.24 (4H, m), 7.62-7.80 (1H, m), 8.32-8.60 (1H, m).</td>
<td></td>
</tr>
<tr>
<td>1(1d)-21</td>
<td>0.89-1.02 (3H, m), 1.51 (9H, s), 1.57-1.89 (1H, m), 1.91-2.08 (2H, m), 2.23 (3H, s), 2.42-2.70 (2H, m), 3.19-3.37 (1H, m), 3.59-3.71 (1H, m), 3.74-4.01 (1H, m), 6.76-6.90 (2H, m), 7.02-7.11 (1H, m).</td>
<td></td>
</tr>
<tr>
<td>1(1e)-21</td>
<td>0.95-1.00 (1H, m), 1.03 (3H, d, J = 6.9 Hz), 1.97-2.06 (1H, m), 2.08-2.21 (1H, m), 2.23 (3H, s), 2.54 (1H, dd, J =10.2, 7.1 Hz), 2.63-2.76 (2H, m), 3.04 (1H, dd, J =10.2, 7.8 Hz), 3.24-3.36 (1H, m), 6.83-6.89 (2H, m), 7.03-7.10 (1H, m).</td>
<td></td>
</tr>
<tr>
<td>1(1a)-22</td>
<td>1.04 (3H, t, J = 6.6 Hz), 1.27 (5H, s), 1.46 (4H, s), 1.89-2.03 (2H, m), 2.29-2.42 (4H, m), 2.93-3.13 (1H, m), 3.74-3.88 (1H, m), 5.17 (0.5H, dd, J = 8.7, 3.7 Hz), 5.28 (0.5H, dd, J = 8.9, 2.5 Hz), 7.22-7.32 (1H, m), 7.56-7.67 (2H, m).</td>
<td></td>
</tr>
</tbody>
</table>
1(1b)-22  
\[ \text{1H-NMR (CDCl}_3\text{) } \delta: 0.95 (2H, d, J = 6.9 Hz), 1.29-1.37 (1H, m), 1.40-1.83 (12H, m), 2.20-2.28 (4H, m), 2.98 (1H, t, J = 9.9 Hz), 3.44-3.55 (1H, m), 4.02-4.16 (1H, m), 4.45-4.56 (0.6H, m), 5.85-5.91 (0.4H, m), 6.92-7.06 (2H, m), 7.07-7.16 (1H, m). \]

1(1c)-22  
\[ \text{1H-NMR (CDCl}_3\text{) } \delta: 0.89-1.06 (3H, m), 1.30-1.80 (12H, m), 2.24-2.41 (4H, m), 2.87-3.01 (1H, m), 3.34-3.52 (1H, m), 4.50-4.60 (0.5H, m), 6.19-6.28 (0.5H, m), 6.85-7.24 (4H, m), 7.63-7.81 (1H, m), 8.36-8.51 (1H, m). \]

1(1d)-22  
\[ \text{1H-NMR (CDCl}_3\text{) } \delta: 0.95-1.04 (3H, m), 1.29-1.56 (10H, m), 1.70-1.80 (1H, m), 2.10-2.30 (4H, m), 2.42-2.58 (1H, m), 2.77-2.96 (1H, m), 2.97-3.15 (1H, m), 3.38-3.54 (1H, m), 3.87-4.08 (1H, m), 6.76-6.91 (2H, m), 7.03-7.11 (1H, m). \]

1(1e)-22  
\[ \text{1H-NMR (CDCl}_3\text{) } \delta: 0.99 (3H, d, J = 6.9 Hz), 1.39-1.47 (1H, m), 1.59-1.88 (1H, m), 2.04-2.29 (4H, m), 2.34-2.45 (1H, m), 2.63-2.75 (2H, m), 3.15-3.23 (1H, m), 3.28-3.39 (1H, m), 6.83-6.89 (2H, m), 7.04-7.10 (1H, m). \]

1(1a)-23  
\[ \text{1H-NMR (CDCl}_3\text{) } \delta: 1.30 (4.5H, s), 1.47 (4.5H, s), 2.24-2.27 (1.0H, m), 2.33 (1.5H, d, J = 1.1 Hz), 2.36 (1.5H, d, J = 1.1 Hz), 2.44-2.49 (1.0H, m), 3.51-3.58 (2.0H, m), 4.08 (0.5H, dd, J = 10.0, 7.7 Hz), 4.16 (0.5H, dd, J = 9.2, 6.9 Hz), 5.32 (0.5H, dd, J = 9.5, 2.0 Hz), 5.45 (0.5H, dd, J = 9.5, 2.0 Hz), 7.29-7.33 (6.0H, m), 7.62-7.70 (2.0H, m). \]
1(1b)-23 1H-NMR (CDCl₃) δ: 1.51 (4.5H, s), 1.52 (4.5H, s), 1.80-1.98 (1.0H, m), 2.06-2.35 (2.0H, m), 2.25 (3.0H, s), 3.32-3.41 (1.0H, m), 3.74-3.86 (0.5H, m), 4.17-4.26 (0.5H, m), 4.37-4.72 (0.5H, m), 4.89-5.22 (0.5H, m), 5.71 (0.5H, s), 6.53-6.57 (0.5H, m), 6.98-7.31 (8.0H, m).

1(1c)-23 1H-NMR (CDCl₃) δ: 1.38 (9H, s), 1.99-2.34 (2H, m), 2.28 (3H, s), 3.30-3.57 (2H, m), 3.65-3.77 (1H, m), 4.47-4.74 (1H, m), 6.38 (1H, d, J = 9.2 Hz), 6.77-7.34 (9H, m), 7.57-7.74 (1H, m), 8.27-8.46 (1H, m).

1(1d)-23 1H-NMR (CDCl₃) δ: 1.50 (4.5H, s), 1.53 (4.5H, s), 1.92-2.11 (2.0H, m), 2.24 (3.0H, s), 2.59-2.70 (1.0H, m), 3.04-3.22 (1.0H, m), 3.23-3.47 (2.0H, m), 3.68-3.86 (1.0H, m), 4.02-4.12 (0.5H, m), 4.13-4.24 (0.5H, m), 6.80-6.95 (2.0H, m), 7.04-7.13 (1.0H, m), 7.15-7.24 (3.0H, m), 7.27-7.32 (2.0H, m).

1(1e)-23 1H-NMR (CDCl₃) δ: 1.94-2.01 (2.0H, m), 2.24 (3.0H, d, J = 1.8 Hz), 2.77 (2.0H, d, J = 6.9 Hz), 2.87 (1.0H, dd, J = 10.1, 8.7 Hz), 3.33 (1.0H, quint, J = 8.7 Hz), 3.45 (1.0H, dd, J = 10.3, 7.6 Hz), 3.55 (1.0H, quint, J = 7.6 Hz), 6.87-6.93 (2.0H, m), 7.06-7.12 (1.0H, m), 7.16-7.25 (3.0H, m), 7.27-7.31 (2.0H, m).

3(3a)-2 1H-NMR (CDCl₃) δ: 1.47 (3H, d, J = 6.0 Hz), 1.94-1.98 (1H, m), 3.81 (3H, s), 5.15-5.23 (1H, m), 6.69 (1H, dd, J = 8.7, 3.2 Hz), 7.16 (1H, d, J = 3.2 Hz), 7.39 (1H, d, J = 8.7 Hz). Optical purity: 95.6%ee
### 3(3b)-2
\[
\begin{align*}
\text{MeO} & \quad \text{Br} \\
\end{align*}
\]
\[1^H\text{-NMR (CDCl}_3\): \delta: 1.43 (3H, dd, J = 6.4, 2.8 Hz), 2.57-2.61 (1H, m), 2.76-2.80 (1H, m), 3.12-3.19 (1H, m), 3.29-3.36 (1H, m), 3.60-3.65 (1H, m), 3.81 (3H, s), 4.80-4.87 (1H, m), 6.71 (1H, dt, J = 8.7, 2.8 Hz), 7.07 (1H, t, J = 2.8 Hz), 7.40 (1H, dd, J = 8.7, 2.8 Hz).
\]

### 3(3c)-2
\[
\begin{align*}
\text{MeO} & \quad \text{CO}_2\text{Et} \\
\end{align*}
\]
\[1^H\text{-NMR (CDCl}_3\): \delta: 1.34 (3H, t, J = 7.2 Hz), 1.45 (3H, d, J = 6.6 Hz), 2.55-2.58 (1H, m), 2.75-2.79 (1H, m), 3.14-3.17 (1H, m), 3.31 (1H, dd, J = 11.4, 5.9 Hz), 3.62 (1H, dd, J = 11.4, 3.1 Hz), 3.85 (3H, s), 4.26 (2H, q, J = 7.2 Hz), 4.89 (1H, q, J = 6.6 Hz), 6.26 (1H, d, J = 15.6 Hz), 6.82 (1H, dd, J = 8.5, 2.7 Hz), 7.04 (1H, d, J = 2.7 Hz), 7.53 (1H, d, J = 8.5 Hz), 7.99 (1H, d, J = 15.6 Hz).
\]

### 3(3a)-3
\[
\begin{align*}
\text{MeO} & \quad \text{Br} \\
\end{align*}
\]
\[1^H\text{-NMR (CDCl}_3\): \delta: 1.47 (3H, d, J = 6.8 Hz), 1.87-1.97 (1H, m), 3.79 (3H, s), 5.16-5.24 (1H, m), 6.90 (1H, dd, J = 8.5, 2.4 Hz), 7.07 (1H, d, J = 2.4 Hz), 7.48 (1H, d, J = 8.5 Hz). Optical purity: 93.9%ee
\]

### 3(3b)-3
\[
\begin{align*}
\text{MeO} & \quad \text{Br} \\
\end{align*}
\]
\[1^H\text{-NMR (CDCl}_3\): \delta: 1.41 (3H, d, J = 6.3 Hz), 2.54-2.57 (1H, m), 2.75-2.78 (1H, m), 3.10-3.16 (1H, m), 3.30 (1H, dd, J = 11.9, 6.0 Hz), 3.56 (1H, dd, J = 11.9, 3.2 Hz), 3.80 (3H, s), 4.84 (1H, q, J = 6.3 Hz), 6.91 (1H, dd, J = 8.7, 2.8 Hz), 7.06 (1H, d, J = 1.8 Hz), 7.40 (1H, d, J = 8.7 Hz).
\]

### 3(3c)-3
\[
\begin{align*}
\text{MeO} & \quad \text{CO}_2\text{Et} \\
\end{align*}
\]
\[1^H\text{-NMR (CDCl}_3\): \delta: 1.35 (3H, t, J = 7.3 Hz), 1.45 (3H, d, J = 6.9 Hz), 2.51-2.54 (1H, m), 2.74-2.78 (1H, m), 3.11-3.17 (1H, m), 3.24-3.30 (1H, m), 3.53-3.59 (1H, m), 3.83 (3H, s), 4.25-4.32 (2H, m), 4.83 (1H, q, J = 6.4 Hz), 6.32 (1H, d, J = 15.6 Hz), 6.96 (1H, d, J = 8.3 Hz), 7.03 (1H, s), 7.40 (1H, d, J = 7.3 Hz), 8.08 (1H, d, J = 15.6 Hz).
\]

### 3(3a)-4
\[
\begin{align*}
\text{OH} & \quad \text{OMe} \\
\end{align*}
\]
\[1^H\text{-NMR (CDCl}_3\): \delta: 1.48 (3H, d, J = 6.3 Hz), 1.98-2.02 (1H, m), 3.90 (3H, s), 5.27-5.36 (1H, m), 6.83 (1H, dd, J = 7.9, 1.5 Hz), 7.22 (1H, dd, J = 7.9, 1.5 Hz), 7.31 (1H, t, J = 7.9 Hz). Optical purity: 95.1%ee
\]
3(3b)-4

\[
\begin{align*}
\text{\textsuperscript{1}H-NMR (CDCl\textsubscript{3})} & \delta: 1.43 (3H, d, J = 6.4 Hz), 2.56 (1H, dd, J = 4.9, 2.7 Hz), 2.77 (1H, t, J = 4.5 Hz), 3.11-3.18 (1H, m), 3.31 (1H, dd, J = 11.2, 5.9 Hz), 3.59 (1H, dd, J = 11.2, 3.2 Hz), 3.90 (3H, s), 4.96 (1H, q, J = 6.4 Hz), 6.82 (1H, d, J = 7.9 Hz), 7.13 (1H, d, J = 7.9 Hz), 7.31 (1H, t, J = 7.9 Hz).
\end{align*}
\]


3(3c)-4

\[
\begin{align*}
\text{\textsuperscript{1}H-NMR (CDCl\textsubscript{3})} & \delta: 1.35 (3H, t, J = 7.2 Hz), 1.46 (3H, d, J = 6.4 Hz), 2.53 (1H, dd, J = 5.1, 2.7 Hz), 2.75 (1H, t, J = 4.6 Hz), 3.11-3.15 (1H, m), 3.26 (1H, dd, J = 11.2, 5.9 Hz), 3.53 (1H, dd, J = 11.2, 2.7 Hz), 3.87 (3H, s), 4.27 (2H, q, J = 7.2 Hz), 4.88 (1H, q, J = 6.4 Hz), 6.52 (1H, d, J = 16.1 Hz), 6.85 (1H, d, J = 8.0 Hz), 7.16 (1H, d, J = 8.0 Hz), 7.34 (1H, t, J = 8.0 Hz), 7.88 (1H, d, J = 16.1 Hz).
\end{align*}
\]

3(3a)-5

\[
\begin{align*}
\text{\textsuperscript{1}H-NMR (CDCl\textsubscript{3})} & \delta: 1.46 (3H, d, J = 6.4 Hz), 1.99 (1H, d, J = 3.2 Hz), 3.89 (3H, s), 5.25-5.32 (1H, m), 6.57 (1H, dd, J = 10.1, 2.7 Hz), 6.99 (1H, dd, J = 9.7, 2.7 Hz). \text{Optical purity: 97.2\%ee}
\end{align*}
\]

3(3b)-5

\[
\begin{align*}
\text{\textsuperscript{1}H-NMR (CDCl\textsubscript{3})} & \delta: 1.41 (3H, d, J = 6.0 Hz), 2.56 (1H, dd, J = 5.2, 2.9 Hz), 2.78 (1H, t, J = 4.6 Hz), 3.13-3.18 (1H, m), 3.29 (1H, dd, J = 11.5, 6.0 Hz), 3.61 (1H, dd, J = 11.5, 3.4 Hz), 3.89 (3H, s), 4.94 (1H, q, J = 6.5 Hz), 6.57 (1H, dd, J = 9.7, 2.9 Hz), 6.88 (1H, dd, J = 9.2, 2.9 Hz).
\end{align*}
\]

3(3c)-5

\[
\begin{align*}
\text{\textsuperscript{1}H-NMR (CDCl\textsubscript{3})} & \delta: 1.34 (3H, t, J = 7.1 Hz), 1.43 (3H, d, J = 6.3 Hz), 2.54 (1H, dd, J = 4.9, 2.6 Hz), 2.77 (1H, t, J = 4.6 Hz), 3.13-3.16 (1H, m), 3.26 (1H, dd, J = 10.9, 6.0 Hz), 3.57 (1H, dd, J = 10.9, 2.9 Hz), 3.86 (3H, s), 4.27 (2H, q, J = 7.1 Hz), 4.88 (1H, q, J = 6.3 Hz), 6.50 (1H, d, J = 16.0 Hz), 6.57 (1H, dd, J = 10.3, 2.6 Hz), 6.90 (1H, dd, J = 9.5, 2.6 Hz), 7.77 (1H, d, J = 16.0 Hz).
\end{align*}
\]

3(3a)-6

\[
\begin{align*}
\text{\textsuperscript{1}H-NMR (CDCl\textsubscript{3})} & \delta: 1.49 (3H, d, J = 6.9 Hz), 1.84 (1H, d, J = 5.0 Hz), 2.33 (3H, d, J = 2.3 Hz), 5.12-5.18 (1H, m), 7.21 (1H, t, J = 8.0 Hz), 7.34 (1H, d, J = 8.3 Hz). \text{Optical purity: 92.5\%ee}
\end{align*}
\]

3(3b)-6

\[
\begin{align*}
\text{\textsuperscript{1}H-NMR (CDCl\textsubscript{3})} & \delta: 1.45 (3H, d, J = 6.3 Hz), 2.33 (3H, d, J = 2.4 Hz), 2.55 (1H, dd, J = 5.1, 2.4 Hz), 2.77 (1H, dd, J = 4.9, 4.2 Hz), 3.12-3.16 (1H, m), 3.29 (1H, dd, J = 11.4, 6.1 Hz), 3.61 (1H, dd, J = 11.4, 3.1 Hz), 4.81 (1H, q, J = 6.3 Hz), 7.15 (1H, t, J = 7.9 Hz), 7.35 (1H, d, J = 8.3 Hz).
\end{align*}
\]
| 3(3c)-6 | $^1$H-NMR (CDCl$_3$) δ: 1.35 (3H, t, J = 7.1 Hz), 1.47 (3H, d, J = 6.4 Hz), 2.33 (3H, d, J = 2.4 Hz), 2.56 (1H, dd, J = 4.9, 2.7 Hz), 2.78 (1H, t, J = 4.6 Hz), 3.14-3.17 (1H, m), 3.31 (1H, dd, J = 11.4, 6.0 Hz), 3.62 (1H, dd, J = 11.2, 3.2 Hz), 4.28 (2H, q, J = 7.1 Hz), 4.86 (1H, q, J = 6.4 Hz), 6.36 (1H, d, J = 15.9 Hz), 7.29 (1H, d, J = 7.3 Hz), 7.36 (1H, d, J = 8.3 Hz), 7.91 (1H, d, J = 15.9 Hz). |
| 3(3a)-7 | $^1$H-NMR (CDCl$_3$) δ: 1.45 (3H, d, J = 6.3 Hz), 1.75 (1H, d, J = 4.0 Hz), 2.27 (3H, d, J = 2.3 Hz), 5.05-5.11 (1H, m), 7.21 (1H, d, J = 8.6 Hz), 7.40 (1H, t, J = 7.7 Hz). Optical purity: 94.0% ee |
| 3(3b)-7 | $^1$H-NMR (CDCl$_3$) δ: 1.41 (3H, d, J = 6.3 Hz), 2.27 (3H, d, J = 2.3 Hz), 2.50-2.51 (1H, m), 2.76-2.78 (1H, m), 3.13-3.19 (2H, m), 3.61-3.66 (1H, m), 4.73 (1H, q, J = 6.3 Hz), 7.10 (1H, d, J = 9.2 Hz), 7.39 (1H, t, J = 7.7 Hz). |
| 3(3c)-7 | $^1$H-NMR (CDCl$_3$) δ: 1.34 (3H, t, J = 7.2 Hz), 1.42 (3H, d, J = 6.5 Hz), 2.25 (3H, d, J = 2.3 Hz), 2.51 (1H, dd, J = 5.2, 2.3 Hz), 2.75-2.79 (1H, m), 3.14-3.21 (2H, m), 3.62-3.67 (1H, m), 4.27 (2H, q, J = 7.2 Hz), 4.77 (1H, q, J = 6.5 Hz), 6.50 (1H, d, J = 16.0 Hz), 7.23 (1H, d, J = 7.7 Hz), 7.40 (1H, t, J = 7.7 Hz), 7.81 (1H, d, J = 16.0 Hz). |
| 3(3a)-8 | $^1$H-NMR (CDCl$_3$) δ: 1.49 (3H, d, J = 6.9 Hz), 2.03 (1H, d, J = 4.0 Hz), 5.22-5.28 (1H, m), 7.65 (1H, dd, J = 8.0, 1.1 Hz), 7.76 (1H, d, J = 8.0 Hz), 7.81 (1H, d, J = 1.1 Hz). Optical purity: 94.8% ee |
| 3(3b)-8 | $^1$H-NMR (CDCl$_3$) δ: 1.44 (3H, d, J = 6.4 Hz), 2.58-2.60 (1H, m), 2.78-2.82 (1H, m), 3.13-3.19 (1H, m), 3.28-3.34 (1H, m), 3.62-3.67 (1H, m), 4.90 (1H, q, J = 6.4 Hz), 7.64-7.67 (2H, m), 7.83 (1H, s). |
| 3(3c)-8 | $^1$H-NMR (CDCl$_3$) δ: 1.35 (3H, t, J = 7.1 Hz), 1.44 (3H, d, J = 6.5 Hz), 2.55 (1H, dd, J = 4.6, 2.9 Hz), 2.76-2.80 (1H, m), 3.13-3.18 (1H, m), 3.26 (1H, dd, J = 11.5, 6.3 Hz), 3.65 (1H, dd, J = 11.5, 2.9 Hz), 4.29 (2H, q, J = 7.1 Hz), 4.91 (1H, q, J = 6.5 Hz), 6.37 (1H, d, J = 16.0 Hz), 7.63-7.69 (2H, m), 7.79 (9H, s), 7.97 (1H, d, J = 16.0 Hz). |
| 3(3a)-9 | 1H-NMR (CDCl₃) δ: 1.45 (3H, d, J = 6.3 Hz), 1.98 (1H, d, J = 3.4 Hz), 5.12-5.18 (1H, m), 7.35 (1H, dd, J = 9.7, 7.4 Hz), 7.46 (1H, dd, J = 11.5, 8.0 Hz). Optical purity: 93.6%ee |
| 3(3b)-9 | 1H-NMR (CDCl₃) δ: 1.40 (3H, d, J = 6.3 Hz), 2.57 (1H, dd, J = 4.9, 2.6 Hz), 2.79 (1H, t, J = 4.5 Hz), 3.13-3.17 (1H, m), 3.29 (1H, dd, J = 11.5, 5.7 Hz), 3.62 (1H, dd, J = 11.5, 2.9 Hz), 4.80 (1H, q, J = 6.3 Hz), 7.32-7.37 (2H, m). |

[Table 39]

| 3(3c)-9 | 1H-NMR (CDCl₃) δ: 1.34 (3H, t, J = 7.2 Hz), 1.42 (3H, d, J = 6.9 Hz), 2.55 (1H, dd, J = 2.9 Hz), 2.78 (1H, t, J = 4.6 Hz), 3.14-3.17 (1H, m), 3.27 (1H, dd, J = 11.5, 5.7 Hz), 3.64 (1H, dd, J = 11.5, 2.9 Hz), 4.28 (2H, q, J = 7.1 Hz), 4.85 (1H, q, J = 6.3 Hz), 6.26 (1H, d, J = 15.5 Hz), 7.31-7.35 (2H, m), 7.91 (1H, d, J = 15.5 Hz). |

| 3(3a)-10 | 1H-NMR (CDCl₃) δ: 1.47 (3H, d, J = 6.3 Hz), 1.98 (1H, d, J = 3.4 Hz), 5.21-5.27 (1H, m), 6.82 (1H, td, J = 8.2, 3.1 Hz), 7.19-7.23 (1H, m). Optical purity: 94.1%ee |

| 3(3b)-10 | 1H-NMR (CDCl₃) δ: 1.42 (3H, d, J = 6.5 Hz), 2.57 (1H, dd, J = 4.6, 2.6 Hz), 2.79 (1H, t, J = 4.6 Hz), 3.14-3.18 (1H, m), 3.29 (1H, dd, J = 11.5, 5.7 Hz), 3.65 (1H, dd, J = 11.5, 2.9 Hz), 4.90 (1H, q, J = 6.5 Hz), 6.82 (1H, td, J = 8.3, 2.9 Hz), 7.08-7.13 (1H, m). |

| 3(3c)-10 | 1H-NMR (CDCl₃) δ: 1.35 (3H, t, J = 7.1 Hz), 1.43 (3H, d, J = 6.3 Hz), 2.55 (1H, dd, J = 4.6, 2.6 Hz), 2.79 (1H, t, J = 4.6 Hz), 3.14-3.18 (1H, m), 3.27 (1H, dd, J = 11.2, 6.0 Hz), 3.64 (1H, dd, J = 11.2, 2.9 Hz), 4.28 (2H, q, J = 7.1 Hz), 4.86 (1H, q, J = 6.3 Hz), 6.48 (1H, dd, J = 16.0, 1.7 Hz), 6.76-6.82 (1H, m), 7.08-7.12 (1H, m), 7.69 (1H, d, J = 16.0 Hz). |

| 3(3a)-11 | 1H-NMR (CDCl₃) δ: 1.45 (3H, d, J = 6.3 Hz), 2.00 (1H, d, J = 3.4 Hz), 5.11-5.18 (1H, m), 7.43 (1H, d, J = 9.7 Hz), 7.56 (1H, d, J 6.9 Hz). Optical purity: 94.0%es |
3(3b)-11 1H-NMR (CDCl₃) δ: 1.41 (3H, d, J = 6.3 Hz), 2.57 (1H, dd, J = 4.9, 2.6 Hz), 2.79 (1H, t, J = 4.6 Hz), 3.13-3.17 (1H, m), 3.29 (1H, dd, J = 11.5, 5.7 Hz), 3.64 (1H, dd, J = 11.5, 2.9 Hz), 4.80 (1H, q, J = 6.3 Hz), 7.32 (1H, d, J = 10.3 Hz), 7.57 (1H, d, J = 6.9 Hz).

3(3c)-11 1H-NMR (CDCl₃) δ: 1.34 (3H, t, J = 7.3 Hz), 1.42 (3H, d, J = 6.9 Hz), 2.55 (1H, dd, J = 4.9, 2.6 Hz), 2.78 (1H, t, J = 4.6 Hz), 3.13-3.18 (1H, m), 3.27 (1H, dd, J = 11.5, 6.0 Hz), 3.64 (1H, dd, J = 11.5, 2.9 Hz), 4.28 (2H, q, J = 7.3 Hz), 4.84 (1H, q, J = 6.3 Hz), 6.29 (1H, d, J = 16.0 Hz), 7.31 (1H, d, J = 10.3 Hz), 7.57 (1H, d, J = 7.4 Hz), 7.89 (1H, d, J = 16.0 Hz).

3(3a)-12 1H-NMR (CDCl₃) δ: 1.50 (3H, d, J = 6.4 Hz), 5.24-5.30 (1H, m), 7.38 (1H, d, J = 7.8 Hz), 7.64 (1H, d, J = 7.8 Hz), 7.90 (1H, s). Optical purity: 94%ee

3(3b)-12 1H-NMR (CDCl₃) δ: 1.45 (3H, d, J = 6.4 Hz), 2.54 (1H, dd, J = 4.8, 2.5 Hz), 2.79 (1H, t, J = 4.8 Hz), 3.15-3.19 (1H, m), 3.33 (1H, dd, J = 11.2, 6.2 Hz), 3.60 (1H, dd, J = 11.2, 3.2 Hz), 4.92 (1H, q, J = 6.4 Hz), 7.38 (1H, dd, J = 8.3, 2.3 Hz), 7.65 (1H, d, J = 8.3 Hz), 7.78 (1H, s).

3(3c)-12 1H-NMR (CDCl₃) δ: 1.36 (3H, t, J = 7.1 Hz), 1.47 (3H, d, J = 6.4 Hz), 2.52 (1H, dd, J = 4.8, 2.5 Hz), 2.78 (1H, t, J = 4.4 Hz), 3.15-3.19 (1H, m), 3.30 (1H, dd, J = 11.2, 6.2 Hz), 3.61 (1H, dd, J = 11.2, 2.8 Hz), 4.29 (2H, q, J = 7.1 Hz), 4.92 (1H, q, J = 6.4 Hz), 6.38 (1H, d, J = 15.6 Hz), 7.54 (1H, d, J = 8.3 Hz), 7.62 (1H, d, J = 8.3 Hz), 7.77 (1H, s), 8.04 (1H, d, J = 15.6 Hz).

3(3a)-13 1H-NMR (CDCl₃) δ: 1.41 (3H, t, J = 7.0 Hz), 1.47 (3H, d, J = 6.3 Hz), 4.03 (2H, q, J = 7.0 Hz), 5.18 (1H, q, J = 6.3 Hz), 6.68 (1H, dd, J = 8.7, 3.0 Hz), 7.15 (1H, d, J = 3.0 Hz), 7.38 (1H, d, J = 8.7 Hz). Optical purity: 90.8%ee

3(3b)-3 1H-NMR (CDCl₃) δ: 1.42 (3H, t, J = 7.0 Hz), 1.42 (3H, d, J = 6.4 Hz), 2.58 (1H, dd, J = 4.8, 2.8 Hz), 2.77 (1H, t, J = 4.8 Hz), 3.12-3.17 (1H, m), 3.31 (1H, dd, J = 11.1, 6.0 Hz), 3.62 (1H, dd, J = 11.1, 3.0 Hz), 4.03 (2H, q, J = 7.0 Hz), 4.82 (1H, q, J = 6.4 Hz), 6.69 (1H, dd, J = 8.7, 2.8 Hz), 7.05 (1H, d, J = 2.8 Hz), 7.38 (1H, d, J = 8.7 Hz).
3(3c)-13 $^{1}$H-NMR (CDCl$_3$): $\delta$: 1.34 (3H, t, J = 7.1 Hz), 1.43 (3H, t, J = 7.1 Hz), 1.44 (3H, d, J = 6.4 Hz), 2.56 (1H, dd, J = 4.7, 2.5 Hz), 2.77 (1H, t, J = 4.7 Hz), 3.13-3.17 (1H, m), 3.29 (1H, dd, J = 11.3, 6.0 Hz), 3.62 (1H, dd, J = 11.3, 3.0 Hz), 4.08 (2H, q, J = 7.1 Hz), 4.26 (2H, q, J = 7.1 Hz), 4.88 (1H, q, J = 6.4 Hz), 6.25 (1H, d, J = 15.6 Hz), 6.81 (1H, dd, J = 8.5, 2.5 Hz), 7.03 (1H, d, J = 2.5 Hz), 7.52 (1H, d, J = 8.5 Hz), 7.98 (1H, d, J = 15.6 Hz).

3(3a)-14 $^{1}$H-NMR (CDCl$_3$): $\delta$: 1.47 (3H, d, J = 3.4 Hz), 5.16-5.21 (1H, m), 7.11 (1H, dd, J = 8.6, 2.6 Hz), 7.43 (1H, d, J = 8.6 Hz), 7.60 (1H, d, J = 2.6 Hz). Optical purity: 93.3% ee

3(3b)-14 $^{1}$H-NMR (CDCl$_3$): $\delta$: 1.46 (3H, d, J = 6.4 Hz), 2.56 (1H, dd, J = 4.6, 2.6 Hz), 2.79 (1H, t, J = 4.6 Hz), 3.14-3.18 (1H, m), 3.30 (1H, dd, J = 11.2, 6.0 Hz), 3.63 (1H, dd, J = 11.2, 3.2 Hz), 4.84 (1H, q, J = 6.6 Hz), 7.11 (1H, dd, J = 8.3, 2.6 Hz), 7.44 (1H, d, J = 8.3 Hz), 7.49 (1H, d, J = 2.6 Hz).

3(3c)-14 $^{1}$H-NMR (CDCl$_3$): $\delta$: 1.34 (3H, t, J = 6.9 Hz), 1.44 (3H, d, J = 6.3 Hz), 2.53-2.55 (1H, m), 2.79 (1H, t, J = 4.6 Hz), 3.15-3.18 (1H, m), 3.28 (1H, dd, J = 11.5, 6.0 Hz), 3.63 (1H, dd, J = 11.5, 2.3 Hz), 4.28 (2H, q, J = 6.9 Hz), 4.86 (1H, q, J = 6.5 Hz), 6.31 (1H, d, J = 16.0 Hz), 7.25-7.28 (1H, m), 7.45-7.51 (2H, m), 7.98 (1H, d, J = 16.0 Hz).

3(3a)-15 $^{1}$H-NMR (CDCl$_3$): $\delta$: 1.46 (3H, d, J = 6.4 Hz), 1.97 (1H, d, J = 3.7 Hz), 5.17-5.23 (1H, m), 7.33 (1H, dd, J = 8.3, 1.8 Hz), 7.52-7.56 (2H, m). Optical purity: 93.4% ee

3(3b)-15 $^{1}$H-NMR (CDCl$_3$): $\delta$: 1.41 (3H, d, J = 6.4 Hz), 2.57 (1H, q, J = 2.9 Hz), 2.77 (1H, t, J = 4.6 Hz), 3.12-3.15 (1H, m), 3.29 (1H, dd, J = 11.5, 5.7 Hz), 3.59 (1H, dd, J = 11.5, 3.4 Hz), 4.84 (1H, q, J = 6.4 Hz), 7.33 (1H, dd, J = 8.6, 2.3 Hz), 7.44 (1H, d, J = 8.6 Hz), 7.53 (1H, d, J = 2.3 Hz).
3(3c)-15

**1**H-NMR (CDCl₃) δ: 1.35 (3H, t, J = 7.3 Hz), 1.43 (3H, d, J = 6.4 Hz), 2.54 (1H, dd, J = 5.2, 2.9 Hz), 2.77 (1H, t, J = 4.6 Hz), 3.12-3.16 (1H, m), 3.26 (1H, dd, J = 11.5, 5.7 Hz), 3.60 (1H, dd, J = 11.5, 3.2 Hz), 4.28 (2H, q, J = 7.3 Hz), 4.85 (1H, q, J = 6.4 Hz), 6.33 (1H, d, J = 8.0 Hz), 7.44 (1H, d, J = 2.3 Hz), 7.99 (1H, d, J = 15.5 Hz).

3(3a)-16

**1**H-NMR (CDCl₃) δ: 1.01 (3H, t, J = 7.4 Hz), 1.66-1.78 (1H, m), 1.79-1.90 (1H, m), 1.94 (1H, d, J = 3.2 Hz), 4.99-5.05 (1H, m), 7.10-7.15 (1H, m), 7.31-7.36 (1H, m), 7.50-7.56 (2H, m). Optical purity: 80.1% ee

3(3b)-16

**1**H-NMR (CDCl₃) δ: 0.99 (3H, t, J = 7.3 Hz), 1.88-1.79 (2H, m), 2.55 (1H, dd, J = 5.1, 2.7 Hz), 2.73-2.77 (1H, m), 3.10-3.16 (1H, m), 3.30 (1H, dd, J = 11.3, 5.9 Hz), 3.58 (1H, dd, J = 11.3, 3.3 Hz), 4.70 (1H, dd, J = 7.3, 5.2 Hz), 7.12 (1H, d, J = 7.6, 1.7 Hz), 7.33 (1H, t, J = 7.6 Hz), 7.46 (1H, dd, J = 7.6, 1.7 Hz), 7.51 (1H, dd, J = 7.8, 1.0 Hz).

3(3c)-16

**1**H-NMR (CDCl₃) δ: 0.92 (3H, t, J = 7.3 Hz), 1.35 (3H, t, J = 7.2 Hz), 1.64-1.75 (1H, m), 1.77-1.87 (1H, m), 2.52 (1H, dd, J = 4.9, 2.7 Hz), 2.74 (1H, dd, J = 5.4, 4.6 Hz), 3.11-3.16 (1H, m), 3.25 (1H, dd, J = 11.2, 6.0 Hz), 3.58 (1H, dd, J = 11.2, 3.2 Hz), 4.28 (2H, q, J = 7.2 Hz), 4.65 (1H, dd, J = 7.6, 5.4 Hz), 6.32 (1H, d, J = 15.6 Hz), 7.26-7.31 (1H, m), 7.36-7.41 (1H, m), 7.45 (1H, dd, J = 7.8, 2.0 Hz), 7.54 (1H, d, J = 7.8 Hz), 8.12 (1H, d, J = 15.6 Hz).

3(3a)-17

**1**H-NMR (CDCl₃) δ: 1.02 (3H, t, J = 7.3 Hz), 1.61-1.72 (1H, m), 1.78-1.88 (1H, m), 2.00 (1H, d, J = 3.7 Hz), 5.01-5.05 (1H, m), 6.82 (1H, td, J = 8.2, 2.9 Hz), 7.16 (1H, dq, J = 9.5, 1.5 Hz). Optical purity: 96.8% ee

3(3b)-17

**1**H-NMR (CDCl₃) δ: 1.00 (3H, t, J = 7.3 Hz), 1.62-1.80 (2H, m), 2.56 (1H, dd, J = 5.0, 2.8 Hz), 2.78 (1H, t, J = 4.6 Hz), 3.13-3.17 (1H, m), 3.27 (1H, dd, J = 11.5, 6.0 Hz), 3.64 (1H, dd, J = 11.5, 3.0 Hz), 4.72 (1H, dd, J = 6.9, 4.6 Hz), 6.82 (1H, td, J = 8.3, 3.2 Hz), 7.05 (1H, dq, J = 9.3, 1.5 Hz).
<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (CDCl₃) δ:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(3c)-17</td>
<td>0.95 (3H, t, J = 7.6 Hz), 1.34 (3H, t, J = 7.1 Hz), 1.63-1.81 (2H, m), 2.54 (1H, dd, J = 4.8, 2.5 Hz), 2.77 (1H, t, J = 4.1 Hz), 3.13-3.17 (1H, m), 3.24 (1H, dd, J = 11.5, 6.0 Hz), 3.64 (1H, dd, J = 11.5, 2.3 Hz), 4.28 (2H, q, J = 7.1 Hz), 4.65 (1H, t, J = 6.2 Hz), 6.48 (1H, d, J = 16.5 Hz), 6.76-6.82 (1H, m), 7.06 (1H, d, J = 9.6 Hz), 7.71 (1H, d, J = 16.5 Hz).</td>
</tr>
<tr>
<td>3(3a)-18</td>
<td>0.94-1.00 (3H, m), 1.38-1.61 (2H, m), 1.93 (1H, brs), 5.06-5.13 (1H, m), 7.10-7.14 (1H, m), 7.34 (1H, t, J = 7.3 Hz), 7.48-7.58 (2H, m). Optical purity: 97.0% ee</td>
</tr>
<tr>
<td>3(3b)-18</td>
<td>0.94 (3H, t, J = 7.2 Hz), 1.37-1.48 (1H, m), 1.50-1.59 (1H, m), 1.62-1.73 (2H, m), 2.55 (1H, dd, J = 4.6, 2.6 Hz), 2.75 (1H, t, J = 4.6 Hz), 3.10-3.14 (1H, m), 3.29 (1H, dd, J = 11.2, 6.0 Hz), 3.57 (1H, dd, J = 11.2, 2.9 Hz), 4.77 (1H, dd, J = 7.7, 4.9 Hz), 7.10-7.14 (1H, m), 7.31-7.35 (1H, m), 7.46 (1H, dd, J = 8.0, 1.5 Hz), 7.51 (1H, d, J = 8.0, 1.1 Hz).</td>
</tr>
<tr>
<td>3(3c)-18</td>
<td>0.92 (3H, t, J = 7.4 Hz), 1.29-1.40 (4H, m), 1.47 (1H, dtt, J = 24.2, 8.6, 2.9 Hz), 1.55-1.64 (1H, m), 1.76-1.84 (1H, m), 2.51 (1H, dd, J = 5.2, 2.9 Hz), 2.74 (1H, t, J = 4.6 Hz), 3.12-3.15 (1H, m), 3.24 (1H, dd, J = 11.2, 6.0 Hz), 3.58 (1H, dd, J = 10.9, 2.9 Hz), 4.24-4.31 (2H, m), 4.73 (1H, dd, J = 8.0, 5.7 Hz), 6.33 (1H, d, J = 15.8 Hz), 7.26-7.31 (1H, m), 7.37-7.41 (1H, m), 7.46 (1H, d, J = 7.4, 1.1 Hz), 7.54 (1H, d, J = 7.4 Hz), 8.11 (1H, d, J = 15.8 Hz).</td>
</tr>
<tr>
<td>3(3a)-18</td>
<td>0.97 (3H, t, J = 7.3 Hz), 1.36-1.80 (4H, m), 1.98 (1H, brs), 5.02-5.05 (1H, m), 6.85 (1H, dq, J = 9.9, 2.9 Hz), 7.30 (1H, dd, J = 9.9, 3.2 Hz), 7.46 (1H, dd, J = 8.7, 5.5 Hz). Optical purity: 87.3% ee</td>
</tr>
<tr>
<td>3(3b)-19</td>
<td>0.95 (3H, t, J = 7.3 Hz), 1.37-1.48 (1H, m), 1.50-1.59 (1H, m), 1.61-1.68 (2H, m), 2.55 (1H, dd, J = 4.8, 2.5 Hz), 2.77 (1H, t, J = 4.4 Hz), 3.12-3.16 (1H, m), 3.27 (1H, dd, J = 11.5, 6.0 Hz), 3.61 (1H, dd, J = 11.5, 3.0 Hz), 4.72 (1H, t, J = 7.3 Hz), 6.86 (1H, td, J = 8.1, 3.1 Hz), 7.20 (1H, dd, J = 9.5, 3.1 Hz), 7.47 (1H, dd, J = 8.7, 5.5 Hz).</td>
</tr>
<tr>
<td>3(3c)-19</td>
<td>( ^1\text{H-NMR (CDCl}_3\text{)} \delta: 0.92 (3H, t, J = 7.1 \text{ Hz}), 1.31-1.39 (1H, m), 1.34 (3H, t, J = 7.1 \text{ Hz}), 1.42-1.52 (1H, m), 1.53-1.62 (1H, m), 1.71-1.80 (1H, m), 2.52 (1H, dd, J = 4.0, 2.5 \text{ Hz}), 2.76 (1H, t, J = 4.8 \text{ Hz}), 3.13-3.17 (1H, m), 3.23 (1H, dd, J = 11.5, 6.0 \text{ Hz}), 3.62 (1H, dd, J = 11.5, 3.0 \text{ Hz}), 4.27 (2H, q, J = 7.1 \text{ Hz}), 4.74 (1H, dd, J = 7.1, 5.3 \text{ Hz}), 6.28 (1H, d, J = 16.0 \text{ Hz}), 6.98 (1H, dd, J = 8.3, 2.8 \text{ Hz}), 7.19 (1H, dd, J = 9.6, 2.8 \text{ Hz}), 7.53 (1H, dd, J = 8.7, 5.5 \text{ Hz}), 7.99 (1H, d, J = 16.0 \text{ Hz}). )</td>
</tr>
</tbody>
</table>

| 3(3a)-20 | \( ^1\text{H-NMR (CDCl}_3\text{)} \delta: 0.97 (3H, t, J = 7.3 \text{ Hz}), 1.39-1.59 (2H, m), 1.59-1.70 (1H, m), 1.72-1.80 (1H, m), 1.94 (1H, d, J = 3.7 \text{ Hz}), 2.42 (3H, s), 5.14-5.18 (1H, m), 7.15 (1H, d, J = 7.3 \text{ Hz}), 7.23 (1H, t, J = 7.6 \text{ Hz}), 7.38 (1H, d, J = 7.3 \text{ Hz}). \text{ Optical purity: 90\%ee} \) |

| 3(3b)-20 | \( ^1\text{H-NMR (CDCl}_3\text{)} \delta: 0.94 (3H, t, J = 7.3 \text{ Hz}), 1.40-1.48 (1H, m), 1.52-1.60 (1H, m), 1.63-1.69 (2H, m), 2.42 (3H, s), 2.54 (1H, dd, J = 5.0, 2.8 \text{ Hz}), 2.75 (1H, t, J = 4.6 \text{ Hz}), 3.11-3.15 (1H, m), 3.27 (1H, dd, J = 11.5, 6.0 \text{ Hz}), 3.57 (1H, dd, J = 11.5, 3.2 \text{ Hz}), 4.85 (1H, t, J = 6.2 \text{ Hz}), 7.15 (1H, d, J = 6.0 \text{ Hz}), 7.22 (1H, t, J = 7.3 \text{ Hz}), 1.28 (1H, t, J = 8.0 \text{ Hz}). \) |

| 3(3c)-20 | \( ^1\text{H-NMR (CDCl}_3\text{)} \delta: 0.90 (3H, t, J = 7.1 \text{ Hz}), 1.35 (3H, t, J = 7.1 \text{ Hz}), 1.44-1.59 (3H, m), 1.71-1.80 (1H, m), 2.32 (3H, s), 2.49 (1H, dd, J = 5.0, 3.0 \text{ Hz}), 2.73 (1H, t, J = 4.8 \text{ Hz}), 3.08-3.12 (1H, m), 3.17 (1H, dd, J = 11.5, 6.0 \text{ Hz}), 3.52 (1H, dd, J = 11.5, 3.0 \text{ Hz}), 4.29 (2H, q, J = 7.1 \text{ Hz}), 4.60 (1H, dd, J = 8.3, 4. Hz), 5.96 (1H, d, J = 15.6 \text{ Hz}), 7.14 (1H, d, J = 7.3 \text{ Hz}), 7.25 (1H, t, J = 7.6 \text{ Hz}), 7.34 (1H, d, J = 7.3 \text{ Hz}), 7.85 (1H, d, J = 15.6 \text{ Hz}). \) |

| 3(3a)-2 | \( ^1\text{H-NMR (CDCl}_3\text{)} \delta: 0.98 (3H, q, J = 7.5 \text{ Hz}), 1.18-1.30 (1H, m), 1.42-1.59 (1H, m), 1.61-1.81 (2H, m), 1.98 (1H, brs), 5.10-6.15 (1H, m), 7.02-7.07 (1H, m), 7.30-7.38 (2H, m). \text{ Optical purity: 93\%ee} \) |
$^1$H-NMR (CDCl$_3$) δ: 0.95 (3H, t, J = 7.3 Hz), 1.38-1.48 (1H, m), 1.49-1.59 (1H, m), 1.60-1.70 (2H, m), 2.55 (1H, dd, J = 5.0, 3.0 Hz), 2.76 (1H, t, J = 4.6 Hz), 3.10-3.16 (1H, m), 3.27 (1H, dd, J = 11.5, 6.0 Hz), 3.59 (1H, dd, J = 11.5, 3.0 Hz), 4.75-4.82 (1H, m), 7.03 (1H, td, J = 8.0, 1.8 Hz), 7.25-7.33 (2H, m).

$^1$H-NMR (CDCl$_3$) δ: 0.96 (3H, t, J = 7.3 Hz), 1.35-1.54 (2H, m), 1.55-1.58 (1H, m), 1.63-1.77 (1H, m), 1.88-1.91 (1H, m), 2.31 (3H, s), 5.03-5.07 (1H, m), 7.14 (9H, d, J = 7.8 Hz), 7.34 (1H, s), 7.41 (1H, d, J = 7.8 Hz). Optical purity: 92.7%ee
3(3a)-23  
\[
\begin{align*}
\text{1H-NMR (CDCl}_3\text{) } &\delta: 0.96 (3H, t, J = 7.3 Hz), 1.37-1.59 (2H, m), \\
& 1.61-1.82 (2H, m), 1.92-1.97 (1H, m), 3.90 (3H, s), 5.14-5.18 (1H, m), \\
& 6.82 (1H, d, J = 7.8 Hz), 7.17 (1H, d, J = 7.8 Hz), 7.30 (1H, t, J = 8.0 Hz). \text{ Optical purity: 96.7\\%}. 
\end{align*}
\]

3(3b)-23  
\[
\begin{align*}
\text{1H-NMR (CDCl}_3\text{) } &\delta: 0.94 (3H, t, J = 6.9 Hz), 1.39-1.49 (1H, m), \\
& 1.51-1.61 (1H, m), 1.62-1.70 (2H, m), 2.54-2.56 (1H, m), 2.75 (1H, t, J = 4.6 Hz), \\
& 3.10-3.14 (1H, m), 3.29 (1H, dd, J = 11.5, 6.0 Hz), 3.57 (1H, dd, J = 11.5, 3.2 Hz), \\
& 3.90 (3H, s), 4.85 (1H, t, J = 6.4 Hz), 6.81 (1H, d, J = 8.3 Hz), 7.09 (1H, d, J = 7.8 Hz), 7.29 (1H, t, J = 7.8 Hz). 
\end{align*}
\]

3(3c)-23  
\[
\begin{align*}
\text{1H-NMR (CDCl}_3\text{) } &\delta: 0.93 (3H, t, J = 7.1 Hz), 1.34 (3H, t, J = 7.3 Hz), \\
& 1.38-1.44 (1H, m), 1.45-1.84 (2H, m), 1.73-1.82 (1H, m), \\
& 2.52 (1H, dd, J = 5.0, 2.8 Hz), 2.74 (1H, t, J = 4.6 Hz), 3.10-3.14 (1H, m), \\
& 3.23 (1H, dd, J = 11.0, 6.0 Hz), 3.54 (1H, dd, J = 11.0, 3.2 Hz), \\
& 3.87 (3H, s), 4.27 (2H, q, J = 7.3 Hz), 4.75 (1H, dd, J = 8.5, 4.4 Hz), 6.57 (1H, d, J = 16.0 Hz), \\
& 6.85 (1H, d, J = 8.3 Hz), 7.13 (1H, d, J = 8.8 Hz), 7.32 (1H, t, J = 8.0 Hz), 7.89 (1H, d, J = 16.0 Hz). 
\end{align*}
\]

3(3a)-24  
\[
\begin{align*}
\text{1H-NMR (CDCl}_3\text{) } &\delta: 0.97 (3H, t, J = 7.3 Hz), 1.38-1.60 (2H, m), \\
& 1.61-1.67 (1H, m), 1.68-1.77 (1H, m), 1.99 (1H, d, J = 4.1 Hz), \\
& 5.01-5.06 (1H, m), 7.10 (1H, dd, J = 8.7, 2.8 Hz), 7.43 (1H, d, J = 8.7 Hz), 7.55 (1H, d, J = 2.8 Hz). \text{ Optical purity: 93.7\\%}. 
\end{align*}
\]

3(3b)-24  
\[
\begin{align*}
\text{1H-NMR (CDCl}_3\text{) } &\delta: 0.95 (3H, t, J = 7.2 Hz), 1.38-1.48 (1H, m), \\
& 1.50-1.58 (1H, m), 1.60-1.70 (2H, m), 2.53-2.55 (1H, m), 2.77 (1H, t, J = 4.6 Hz), 3.12-3.16 (1H, m), \\
& 3.26 (1H, dd, J = 11.5, 6.0 Hz), 3.81 (1H, dd, J = 11.5, 2.9 Hz), 4.73 (7H, dd, J = 7.2, 4.9 Hz), \\
& 7.10 (1H, dd, J = 8.3, 2.0 Hz), 7.43 (1H, s), 7.45 (1H, t, J = 2.6 Hz). 
\end{align*}
\]
<table>
<thead>
<tr>
<th>3(3c)-24</th>
<th><img src="image1.png" alt="Structure" /></th>
<th>$^1$H-NMR (CDCl$_3$) $\delta$: 0.92 (3H, t, $J = 7.3$ Hz), 1.34 (3H, t, $J = 7.1$ Hz), 1.30-1.48 (2H, m), 1.52-1.59 (1H, m), 1.72-1.81 (1H, m), 2.51 (1H, dd, $J = 4.4$, 2.5 Hz), 2.76 (1H, t, $J = 4.4$ Hz), 3.13-3.17 (1H, m), 3.21 (1H, dd, $J = 11.0$, 6.2 Hz), 3.62 (1H, dd, $J = 11.0$, 2.8 Hz), 4.27 (2H, q, $J = 7.1$ Hz), 4.71 (1H, dd, $J = 8.0$, 4.8 Hz), 6.30 (1H, d, $J = 16.0$ Hz), 7.24 (1H, d, $J = 2.3$ Hz), 7.46 (1H, s), 7.47 (1H, d, $J = 10.5$ Hz), 8.00 (1H, d, $J = 16.0$ Hz).</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(3a)-25</td>
<td><img src="image2.png" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 0.96 (3H, t, $J = 7.3$ Hz), 1.36-1.60 (2H, m), 1.61-1.76 (2H, m), 1.93-1.96 (1H, m), 5.05-5.06 (1H, m), 7.31 (1H, dd, $J = 8.3$, 2.3 Hz), 7.49 (1H, d, $J = 8.3$ Hz), 7.52 (1H, d, $J = 2.3$ Hz). Optical purity: 90.6%ee</td>
</tr>
<tr>
<td>3(3b)-25</td>
<td><img src="image3.png" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 0.94 (3H, t, $J = 7.3$ Hz), 1.35-1.45 (1H, m), 1.48-1.59 (1H, m), 1.59-1.68 (2H, m), 2.55 (1H, dd, $J = 5.0$, 2.8 Hz), 2.76 (1H, t, $J = 4.6$ Hz), 3.09-3.13 (1H, m), 3.26 (1H, dd, $J = 11.5$, 6.0 Hz), 3.58 (1H, dd, $J = 11.5$, 2.8 Hz), 4.73 (1H, dd, $J = 7.6$, 4.8 Hz), 7.32 (1H, dd, $J = 8.3$, 1.8 Hz), 7.40 (1H, d, $J = 8.3$ Hz), 7.53 (1H, d, $J = 1.8$ Hz).</td>
</tr>
<tr>
<td>3(3c)-25</td>
<td><img src="image4.png" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 0.91 (3H, t, $J = 7.3$ Hz), 1.35 (3H, t, $J = 7.1$ Hz), 1.38-1.49 (1H, m), 1.52-1.61 (2H, m), 1.72-1.81 (1H, m), 2.51 (1H, dd, $J = 5.0$, 2.8 Hz), 2.75 (1H, t, $J = 4.6$ Hz), 3.10-3.14 (1H, m), 3.21 (1H, dd, $J = 11.5$, 6.0 Hz), 3.59 (1H, dd, $J = 11.5$, 2.8 Hz), 4.28 (2H, q, $J = 7.1$ Hz), 4.70 (1H, dd, $J = 7.8$, 5.0 Hz), 6.32 (1H, d, $J = 96.0$ Hz), 7.35 (1H, d, $J = 8.3$ Hz), 7.40 (1H, d, $J = 8.3$ Hz), 7.50 (1H, s), 8.02 (1H, d, $J = 16.0$ Hz).</td>
</tr>
</tbody>
</table>

[Table 46] 3(3a)-26 | ![Structure](image5.png) | $^1$H-NMR (CDCl$_3$) $\delta$: 0.97 (3H, t, $J = 7.3$ Hz), 1.40-1.68 (3H, m), 1.71-1.79 (1H, m), 1.99-2.01 (1H, m), 6.12-6.16 (1H, m), 7.29 (1H, d, $J = 7.8$ Hz), 7.38 (1H, d, $J = 7.8$ Hz), 7.47 (1H, d, $J = 7.8$ Hz). Optical purity: 92%ee |
<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (CDCl₃) δ:</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(3b)-26</td>
<td>0.95 (3H, t, J = 7.3 Hz), 1.39-1.60 (2H, m), 1.62-1.68 (2H, m), 2.55-2.57 (1H, m), 2.76 (1H, t, J = 4.6 Hz), 3.11-3.15 (1H, m), 3.27 (1H, dd, J = 11.5, 6.0 Hz), 3.60 (1H, dd, J = 11.5, 2.8 Hz), 4.83 (1H, t, J = 6.0 Hz), 7.29 (1H, d, J = 7.8 Hz), 7.37-7.39 (2H, m).</td>
<td></td>
</tr>
<tr>
<td>3(3c)-26</td>
<td>0.91 (3H, t, J = 7.2 Hz), 1.34-1.38 (1H, m), 1.35 (3H, t, J = 7.2 Hz), 1.44-1.58 (2H, m), 1.69-1.78 (1H, m), 2.50 (1H, dd, J = 5.2, 2.9 Hz), 2.74 (1H, dd, J = 5.2, 4.0 Hz), 3.08-3.11 (1H, m), 3.16 (1H, dd, J = 11.5, 6.3 Hz), 3.55 (1H, dd, J = 11.5, 2.9 Hz), 4.30 (2H, q, J = 7.2 Hz), 4.63 (1H, dd, J = 8.6, 4.0 Hz), 6.16 (1H, d, J = 16.6 Hz), 7.29 (1H, t, J = 8.0 Hz), 7.35 (1H, dd, J = 8.0, 1.1 Hz), 7.43 (1H, dd, J = 7.7, 1.4 Hz), 7.76 (1H, d, J = 16.6 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3a)-27</td>
<td>1.48 (3H, d, J = 6.3 Hz), 5.29 (1H, q, J = 6.3 Hz), 7.29 (1H, t, J = 7.7 Hz), 7.39 (1H, dd, J = 7.7, 1.4 Hz), 7.52 (1H, dd, J = 7.7, 1.4 Hz). Optimal purity: 93.8%.</td>
<td></td>
</tr>
<tr>
<td>3(3b)-27</td>
<td>1.43 (3H, d, J = 6.4 Hz), 2.57 (1H, dd, J = 4.9, 2.6 Hz), 2.78 (1H, t, J = 4.6 Hz), 3.13-3.16 (1H, m), 3.30 (1H, dd, J = 11.2, 6.0 Hz), 3.61 (1H, dd, J = 11.5, 2.9 Hz), 4.94 (1H, q, J = 6.4 Hz), 7.29 (1H, t, J = 7.8 Hz), 7.39 (1H, dd, J = 7.8, 1.6 Hz), 7.42 (1H, dd, J = 7.8, 1.6 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3c)-27</td>
<td>1.36 (3H, t, J = 7.1 Hz), 1.43 (3H, d, J = 6.3 Hz), 2.51 (1H, dd, J = 4.9, 2.6 Hz), 2.75 (1H, t, J = 4.6 Hz), 3.09-3.12 (1H, m), 3.20 (1H, dd, J = 11.5, 6.3 Hz), 3.53 (1H, dd, J = 11.5, 2.9 Hz), 4.30 (2H, q, J = 7.1 Hz), 4.76 (1H, q, J = 6.3 Hz), 6.14 (1H, d, J = 16.0 Hz), 7.30 (4H, t, J = 7.6 Hz), 7.35 (4H, dd, J = 7.6, 1.3 Hz), 7.47 (1H, dd, J = 7.6, 1.3 Hz), 7.78 (1H, d, J = 16.0 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3b)-28</td>
<td>0.97 (3H, t, J = 7.3 Hz), 1.65-1.76 (2H, m), 2.24 (3H, s), 2.55 (1H, dd, J = 5.0, 2.8 Hz), 2.76 (1H, t, J = 4.6 Hz), 3.11-3.16 (1H, m), 3.28 (1H, dd, J = 11.0, 6.0 Hz), 3.59 (1H, dd, J = 11.5, 3.2 Hz), 4.61 (1H, t, J = 6.2 Hz), 7.11 (1H, d, J = 10.5 Hz), 7.34 (1H, d, J = 6.9 Hz).</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>NMR Data (CDCl₃) δ</td>
<td>Optical Purity</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3(3c)-28</td>
<td>0.91 (3H, t, J = 7.3 Hz), 1.34 (3H, t, J = 7.1 Hz), 1.61-1.72 (1H, m), 1.72-1.80 (1H, m), 2.27 (3H, s), 2.52 (1H, dd, J = 4.8, 2.5 Hz), 2.76 (1H, t, J = 4.6 Hz), 3.12-3.17 (1H, m), 3.24 (1H, dd, J = 11.0, 6.0 Hz), 3.60 (1H, dd, J = 11.2, 3.0 Hz), 4.27 (2H, q, J = 7.1 Hz), 4.62 (1H, t, J = 6.4 Hz), 6.27 (1H, d, J = 15.8 Hz), 7.11 (1H, d, J = 10.5 Hz), 7.38 (1H, d, J = 7.3 Hz), 7.98 (1H, d, J = 15.8 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3a)-29</td>
<td>1.48 (3H, d, J = 6.3 Hz), 2.00 (1H, d, J = 3.4 Hz), 4.1 (2H, q, J = 7.1 Hz), 5.28-5.33 (1H, m), 6.81 (1H, dd, J = 7.9, 1.6 Hz), 7.20 (1H, dd, J = 7.9, 1.6 Hz), 7.28 (1H, t, J = 7.9 Hz). Optical purity: 92.7%ee</td>
<td></td>
</tr>
<tr>
<td>3(3b)-29</td>
<td>1.43 (3H, d, J = 6.3 Hz), 1.48 (3H, d, J = 7.0 Hz), 2.55 (1H, dd, J = 5.2, 2.9 Hz), 2.76 (1H, t, J = 4.6 Hz), 3.13-3.16 (1H, m), 3.31 (1H, dd, J = 11.5, 5.7 Hz), 3.58 (1H, dd, J = 11.5, 5.7 Hz), 4.10 (2H, q, J = 7.0 Hz), 4.97 (1H, q, J = 6.3 Hz), 6.80 (1H, dd, J = 7.7, 1.6 Hz), 7.11 (1H, dd, J = 7.7, 1.6 Hz), 7.28 (2H, t, J = 7.7 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3c)-29</td>
<td>1.35 (3H, t, J = 7.1 Hz), 1.46 (6H, d, J = 6.3 Hz), 1.47 (6H, t, J = 6.8 Hz), 2.53 (1H, dd, J = 4.9, 2.6 Hz), 2.75 (1H, t, J = 4.6 Hz), 3.11-3.15 (1H, m), 3.26 (1H, dd, J = 19.5, 5.7 Hz), 3.54 (1H, dd, J = 10.9, 3.4 Hz), 4.07-4.12 (2H, m), 4.27 (2H, q, J = 7.1 Hz), 4.89 (1H, q, J = 6.3 Hz), 6.58 (1H, d, J = 16.0 Hz), 6.83 (1H, d, J = 8.0 Hz), 7.14 (1H, d, J = 8.0 Hz), 7.31 (1H, t, J = 8.0 Hz), 7.89 (1H, d, J = 16.0 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3a)-30</td>
<td>1.38 (3H, d, J = 5.7 Hz), 1.39 (3H, d, J = 6.3 Hz), 1.48 (3H, d, J = 6.3 Hz), 1.99 (1H, d, J = 3.4 Hz), 4.52-4.59 (1H, m), 5.27-5.32 (1H, m), 6.84 (1H, dd, J = 7.8, 1.6 Hz), 7.19 (1H, dd, J = 7.8, 1.6 Hz), 7.27 (1H, t, J = 7.8 Hz). Optical purity: 92.7%ee</td>
<td></td>
</tr>
<tr>
<td>3(3b)-30</td>
<td>1.39 (6H, d, J = 6.3 Hz), 1.43 (3H, d, J = 6.3 Hz), 2.56 (1H, dd, J = 5.2, 2.3 Hz), 2.75-2.78 (1H, m), 3.13-3.76 (1H, m), 3.32 (1H, dd, J = 11.2, 6.0 Hz), 3.58 (1H, dd, J = 11.5, 3.4 Hz), 4.51-4.59 (1H, m), 4.95 (1H, d, J = 6.3 Hz), 6.82 (1H, dd, J = 7.9, 1.3 Hz), 7.10 (1H, dd, J = 7.9, 1.3 Hz), 7.26 (1H, t, J = 7.9 Hz).</td>
<td></td>
</tr>
</tbody>
</table>
Table 48

<table>
<thead>
<tr>
<th>Substance</th>
<th>1H-NMR (CDCl₃) δ</th>
<th>Physical Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(3c)-30</td>
<td>1.34 (3H, t, J = 7.1 Hz), 1.37 (3H, d, J = 5.7 Hz), 1.38 (3H, d, J = 6.3 Hz), 1.46 (3H, d, J = 6.4 Hz), 2.53 (1H, dd, J = 4.9, 2.6 Hz), 2.74-2.77 (1H, m), 3.11-3.15 (1H, m), 3.27 (1H, dd, J = 10.9, 5.7 Hz), 3.54 (1H, dd, J = 10.9, 3.4 Hz), 4.27 (2H, q, J = 7.1 Hz), 4.66-4.63 (1H, m), 4.88 (1H, q, J = 6.4 Hz), 6.55 (1H, d, J = 16.0 Hz), 6.84 (1H, d, J = 8.0 Hz), 7.12 (1H, d, J = 8.0 Hz), 7.30 (1H, t, J = 8.0 Hz), 7.87 (1H, d, J = 16.0 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3a)-31</td>
<td>1.45 (3H, d, J = 6.3 Hz), 1.95 (1H, d, J = 4.0 Hz). 2.24 (3H, d, J = 1.7 Hz), 5.11-5.18 (1H, m), 7.26 (1H, d, J = 10.3 Hz), 7.33 (1H, d, J = 8.0 Hz) Optical purity: 94.2%ee</td>
<td></td>
</tr>
<tr>
<td>3(3b)-31</td>
<td>1.40 (3H, d, J = 6.6 Hz), 2.24 (3H, d, J = 1.8 Hz), 2.56 (1H, dd, J = 5.0, 2.8 Hz), 2.78 (1H, t, J = 4.6 Hz), 3.12-3.17 (1H, m), 3.30 (1H, dd, J = 11.5, 6.0 Hz), 3.60 (1H, dd, J = 11.5, 3.2 Hz), 4.79 (1H, q, J = 6.6 Hz), 7.15 (1H, d, J = 10.1 Hz), 7.33 (1H, d, J = 7.3 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3c)-31</td>
<td>1.34 (3H, t, J = 7.1 Hz), 1.42 (3H, d, J = 6.6 Hz), 2.27 (3H, s), 2.54 (1H, dd, J = 5.2, 2.9 Hz), 2.76-2.78 (1H, m), 3.13-3.17 (1H, m), 3.27 (1H, dd, J = 11.2, 6.0 Hz), 3.60 (1H, dd, J = 11.2, 3.2 Hz), 4.27 (2H, q, J = 7.1 Hz), 4.84 (1H, q, J = 6.6 Hz), 6.27 (1H, d, J = 15.8 Hz), 7.14 (1H, d, J = 10.3 Hz), 7.38 (1H, d, J = 8.0 Hz), 7.95 (1H, d, J = 15.8 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3a)-32</td>
<td>1.45 (3H, d, J = 6.3 Hz), 2.01 (1H, d, J = 3.4 Hz), 5.13-5.18 (1H, m), 7.35 (1H, dd, J = 9.5, 7.2 Hz), 7.46 (1H, dd, J = 11.2, 8.3 Hz). Optical purity: 93.0%ee</td>
<td></td>
</tr>
<tr>
<td>3(3b)-32</td>
<td>1.40 (3H, d, J = 6.4 Hz), 2.57 (1H, dd, J = 5.0, 2.8 Hz), 2.79 (1H, t, J = 4.6 Hz), 3.13-3.17 (1H, m), 3.29 (1H, dd, J = 11.5, 6.0 Hz), 3.62 (1H, dd, J = 11.2, 3.0 Hz), 4.80 (1H, q, J = 6.4 Hz), 7.32-7.38 (2H, m).</td>
<td></td>
</tr>
<tr>
<td>3(3c)-32</td>
<td>1.34 (6H, t, J = 7.1 Hz), 1.42 (6H, d, J = 6.4 Hz), 2.55 (1H, dd, J = 4.9, 2.6 Hz), 2.78 (1H, t, J = 4.6 Hz), 3.13-3.17 (1H, m), 3.27 (1H, dd, J = 11.2, 6.0 Hz), 3.64 (1H, dd, J = 11.5, 2.9 Hz), 4.28 (2H, q, J = 7.1 Hz), 4.85 (1H, q, J = 6.4 Hz), 6.26 (1H, d, J = 15.8 Hz), 7.30-7.35 (2H, m), 7.91 (1H, d, J = 15.8 Hz).</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>1H-NMR (CDCl₃) δ:</td>
<td>Details</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>3(3a)-33</td>
<td>1.49 (3H, d, J = 6.9 Hz), 2.00 (1H, d, J = 3.4 Hz), 5.27-5.32 (1H, m), 6.52 (1H, t, J = 73.6 Hz), 7.12-7.15 (1H, m), 7.35 (1H, t, J = 7.9 Hz), 7.51 (1H, dd, J = 7.9, 1.4 Hz). Optical purity: 94.6%ee</td>
<td></td>
</tr>
<tr>
<td>3(3b)-33</td>
<td>1.44 (3H, d, J = 6.4 Hz), 2.57 (1H, dd, J = 4.9, 2.6 Hz), 2.78 (1H, t, J = 4.3 Hz), 3.13-3.16 (1H, m), 3.31 (1H, dd, J = 11.5, 5.7 Hz), 3.61 (1H, dd, J = 11.5, 2.9 Hz), 4.94 (1H, q, J = 6.4 Hz), 6.53 (1H, t, J = 73.6 Hz), 7.12-7.15 (1H, m), 7.35 (1H, t, J = 7.9 Hz), 7.40 (1H, dd, J = 7.9, 1.7 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3c)-33</td>
<td>1.35 (3H, t, J = 7.1 Hz), 1.45 (3H, d, J = 6.4 Hz), 2.54 (1H, dd, J = 4.9, 2.6 Hz), 2.76 (1H, dd, J = 5.2, 4.0 Hz), 3.11-3.14 (1H, m), 3.25 (1H, dd, J = 11.2, 6.0 Hz), 3.56 (1H, dd, J = 11.2, 3.2 Hz), 4.28 (2H, q, J = 7.1 Hz), 4.83 (1H, q, J = 6.4 Hz), 6.35 (1H, d, J = 16.3 Hz), 6.49 (1H, t, J = 73.3 Hz), 7.08-7.11 (1H, m), 7.37 (1H, t, J = 7.7 Hz), 7.43 (1H, dd, J = 7.7, 1.4 Hz), 7.78 (1H, d, J = 16.3 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3a)-34</td>
<td>1.33 (3H, d, J = 6.0 Hz), 1.33 (3H, d, J = 6.0 Hz), 1.47 (3H, d, J = 6.4 Hz), 1.94 (1H, d, J = 3.2 Hz), 4.50-4.59 (1H, m), 5.14-5.21 (1H, m), 6.67 (1H, dd, J = 8.7, 3.0 Hz), 7.14 (1H, d, J = 3.0 Hz), 7.37 (1H, d, J = 8.7 Hz). Optical purity: of 91.6%ee</td>
<td></td>
</tr>
<tr>
<td>3(3b)-34</td>
<td>1.33 (6H, d, J = 6.4 Hz), 1.42 (3H, d, J = 6.3 Hz), 2.57 (1H, dd, J = 5.0, 2.8 Hz), 2.78 (1H, t, J = 4.6 Hz), 3.13-3.17 (1H, m), 3.31 (1H, dd, J = 11.0, 6.0 Hz), 3.62 (1H, dd, J = 11.2, 3.0 Hz), 4.49-4.58 (1H, m), 4.82 (1H, q, J = 6.3 Hz), 6.68 (1H, dd, J = 8.7, 3.2 Hz), 7.04 (1H, d, J = 3.2 Hz), 7.37 (1H, d, J = 8.7 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3b)-35</td>
<td>0.99 (3H, t, J = 7.8 Hz), 1.62-1.81 (2H, m), 2.53-2.59 (1H, m), 2.75-2.82 (1H, m), 3.12-3.18 (1H, m), 3.29 (1H, dd, J = 11.2, 5.7 Hz), 3.62 (1H, dd, J = 11.5, 3.2 Hz), 4.59-4.69 (1H, m), 6.83-6.90 (1H, m), 7.17-7.22 (1H, m), 7.44-7.50 (1H, m).</td>
<td></td>
</tr>
<tr>
<td>3(3c)-35</td>
<td>( ^1H)-NMR (COCl(_3)) ( \delta ): 0.93 (3H, t, J = 8.9 Hz), 1.35 (3H, t, J = 7.1 Hz), 1.62-1.87 (2H, m), 2.49-2.58 (1H, m), 2.72-2.84 (1H, m), 3.10-3.31 (2H, m), 3.53-3.70 (1H, m), 4.27 (2H, q, J = 7.1 Hz), 4.66 (1H, t, J = 6.2 Hz), 6.28 (1H, d, J = 15.6 Hz), 6.93-7.04 (1H, m), 7.15-7.24 (1H, m), 7.49-7.60 (1H, m), 7.99 (1H, d, J = 15.6 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3b)-35</td>
<td>( ^1H)-NMR (CDCl(_3)) ( \delta ): 0.99 (3H, t, J = 7.5 Hz), 1.65-1.80 (2H, m), 2.54-2.58 (1H, m), 2.76 (H, t, J = 4.6 Hz), 3.10-3.18 (1H, m), 3.26-3.32 (1H, m), 3.60 (1H, dd, J = 11.2, 3.0 Hz), 4.70-4.76 (1H, m), 7.01-7.07 (1H, m), 7.23-7.35 (2H, m).</td>
<td></td>
</tr>
<tr>
<td>3(3c)-35</td>
<td>( ^1H)-NMR (CDCl(_3)) ( \delta ): 0.94 (3H, t, J = 7.6 Hz), 1.35 (3H, t, J = 7.1 Hz), 1.63-1.86 (2H, m), 2.51-2.55 (1H, m), 2.76 (1H, t, J = 4.6 Hz), 3.11-3.17 (1H, m), 3.22-3.28 (1H, m), 3.60 (1H, dd, J = 11.5, 2.8 Hz), 4.28 (2H, q, J = 7.1 Hz), 4.61-4.67 (1H, m), 6.52 (1H, d, J = 14.7 Hz), 6.99-7.07 (1H, m), 7.22-7.40 (2H, m), 7.83 (1H, d, J = 14.7 Hz).</td>
<td></td>
</tr>
</tbody>
</table>

| 3(3b)-36 | \( ^1H\)-NMR (CDCl\(_3\)) \( \delta \): 0.97 (3H, t, J = 7.8 Hz), 1.68-1.77 (2H, m), 2.31 (3H, s), 2.53-2.56 (1H, m), 2.72-2.76 (1H, m), 3.08-3.14 (1H, m), 3.26-3.32 (1H, m), 3.56 (1H, dd, J = 10.1, 5.0 Hz), 4.66 (1H, t, J = 6.4 Hz), 7.13 (1H, d, J = 7.8 Hz), 7.30-7.37 (2H, m). |
| 3(3c)-36 | \( ^1H\)-NMR (CDCl\(_3\)) \( \delta \): 0.90 (3H, t, J = 7.3 Hz), 1.34 (3H, t, J = 7.1 Hz), 1.60-4.73 (1H, m), 1.76-1.88 (1H, m), 2.35 (3H, s), 2.49-2.52 (3H, m), 2.74 (1H, t, J = 4.6 Hz), 3.10-3.15 (1H, m), 3.24 (1H, dd, J = 11.0, 6.0 Hz), 3.56 (1H, dd, J = 11.2, 3.0 Hz), 4.27 (2H, q, J = 7.2 Hz), 4.61 (1H, t, J = 6.6 Hz), 6.32 (1H, d, J = 15.6 Hz), 7.20 (1H, d, J = 7.8 Hz), 7.31-7.38 (2H, m), 8.10 (1H, d, J = 15.6 Hz). |
| 3(3b)-37 | \( ^1H\)-NMR (CDCl\(_3\)) \( \delta \): 0.99 (3H, t, J = 7.3 Hz), 1.66-1.82 (2H, m), 2.53-2.57 (1H, m), 2.73-2.77 (1H, m), 3.10-3.17 (1H, m), 3.27-3.33 (1H, m), 3.57 (1H, dd, J = 11.5, 3.2 Hz), 3.90 (3H, s), 4.78 (1H, dd, J = 7.3, 5.0 Hz), 6.80-6.84 (1H, m), 7.06-7.11 (1H, m), 7.26-7.32 (1H, m). |
**EP 2 374 794 A1**

(continued)

<p>| 3(3c)-37 | $^1$H-NMR (CDCl$_3$) $\delta$: 0.96 (3H, t, J = 7.4 Hz), 1.35 (3H, t, J = 7.2 Hz), 1.65-1.85 (2H, m), 2.50-2.54 (1H, m), 2.72-2.76 (1H, m), 3.10-3.14 (1H, m), 3.24 (1H, dd, J = 11.5, 5.7 Hz), 3.55 (1H, dd, J = 11.2, 3.2 Hz), 3.87 (3H, s), 4.27 (2H, q, J = 7.4 Hz), 4.63-4.68 (1H, m), 6.56 (1H, d, J = 16.0 Hz), 6.85 (1H, d, J = 8.0 Hz), 7.12 (1H, d, J = 6.9 Hz), 7.33 (1H, t, J = 8.0 Hz), 7.90 (1H, d, J = 16.0 Hz). |
| 3(3b)-38 | $^1$H-NMR (CDCl$_3$) $\delta$: 1.00 (3H, t, J = 7.3 Hz), 1.63-1.82 (2H, m), 2.42 (3H, s), 2.53-2.57 (1H, m), 2.75 (1H, t, J = 4.6 Hz), 3.11-3.16 (1H, m), 3.29 (1H, dd, J = 11.5, 5.7 Hz), 3.58 (1H, dd, J = 11.5, 3.2 Hz), 4.78 (1H, q, J = 7.8 Hz), 7.15 (1H, d, J = 7.8 Hz), 7.19-7.32 (2H, m). |
| 3(3c)-38 | $^1$H-NMR (CDCl$_3$) $\delta$: 0.93 (3H, t, J = 7.3 Hz), 1.35 (3H, t, J = 7.1 Hz), 1.80-1.71 (1H, m), 1.71-1.83 (1H, m), 2.32 (3H, s), 2.47-2.52 (1H, m), 2.71-2.75 (1H, m), 3.08-3.13 (1H, m), 3.19 (1H, dd, J = 11.5, 6.0 Hz), 3.52 (1H, dd, J = 11.5, 3.0 Hz), 4.29 (2H, q, J = 7.3 Hz), 4.51 (1H, dd, J = 7.8, 5.0 Hz), 5.95 (1H, d, J = 16.0 Hz), 7.14 (1H, d, J = 7.3 Hz), 7.21-7.29 (1H, m), 7.33 (1H, d, J = 7.3 Hz), 7.86 (1H, d, J = 16.0 Hz). |
| 3(3b)-39 | $^1$H-NMR (CCl$_3$) $\delta$: 0.91 (3H, t, J = 7.3 Hz), 1.34 (3H, t, J = 7.1 Hz), 1.60-1.69 (1H, m), 1.70-1.82 (1H, m), 2.53 (1H, dd, J = 4.8, 2.5 Hz), 2.77 (1H, t, J = 4.6 Hz), 3.12-3.16 (1H, m), 3.22 (1H, dd, J = 11.2, 6.2 Hz), 3.63 (1H, dd, J = 11.2, 2.7 Hz), 4.27 (2H, q, J = 7.1 Hz), 4.63 (1H, t, J = 6.4 Hz), 6.25 (1H, d, J = 15.6 Hz), 7.28-7.36 (2H, m), 7.94 (1H, d, J = 15.6 Hz). |</p>
<table>
<thead>
<tr>
<th>Compound</th>
<th>NMR Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(3b)-40</td>
<td>( \delta: 0.99 ) (3H, t, ( J = 6.6 ) Hz), 1.63-1.81 (2H, m), 2.53-2.57 (1H, m), 2.75-2.80 (1H, m), 3.12-3.18 (1H, m), 3.27 (1H, dd, ( J = 11.5, 6.0 ) Hz), 3.62 (1H, dd, ( J = 11.5, 3.2 ) Hz), 4.63-4.68 (1H, m), 7.11 (1H, dd, ( J = 5.7, 3.0 ) Hz), 7.44 (2H, dd, ( J = 5.7, 3.0 ) Hz).</td>
</tr>
<tr>
<td>3(3c)-40</td>
<td>( \delta: 0.92 ) (3H, t, ( J = 8.7 ) Hz), 1.34 (3H, t, ( J = 7.3 ) Hz), 1.58-1.86 (2H, m), 2.49-2.54 (1H, m), 2.72-2.81 (1H, m), 3.10-3.19 (1H, m), 3.20-3.28 (1H, m), 3.62 (1H, dd, ( J = 11.2, 2.1 ) Hz), 4.27 (2H, q, ( J = 7.3 ) Hz), 4.63 (1H, t, ( J = 6.4 ) Hz), 6.31 (1H, d, ( J = 16.0 ) Hz), 7.22-7.30 (1H, m), 7.43-7.52 (2H, m), 8.00 (1H, d, ( J = 16.0 ) Hz).</td>
</tr>
<tr>
<td>3(3b)-41</td>
<td>( \delta: 0.97 ) (3H, t, ( J = 7.4 ) Hz), 1.64-1.78 (2H, m), 2.54-2.57 (1H, m), 2.74-2.77 (1H, m), 3.09-3.16 (1H, m), 3.27 (1H, dd, ( J = 11.5, 4.9 ) Hz), 3.58 (1H, dd, ( J = 11.5, 3.4 ) Hz), 4.64-4.68 (1H, m), 7.32 (1H, dd, ( J = 8.6, 1.7 ) Hz), 7.39 (1H, d, ( J = 8.0 ) Hz), 7.52-7.55 (1H, m).</td>
</tr>
<tr>
<td>3(3c)-41</td>
<td>( \delta: 0.90 ) (3H, t, ( J = 7.3 ) Hz), 1.34 (3H, t, ( J = 7.1 ) Hz), 1.59-1.73 (1H, m), 1.73-1.87 (1H, m), 2.50-2.54 (1H, m), 2.72-2.80 (1H, m), 3.09-3.16 (1H, m), 3.22 (1H, dd, ( J = 10.1, 6.0 ) Hz), 3.59 (1H, dd, ( J = 10.1, 5.0 ) Hz), 4.28 (2H, q, ( J = 7.1 ) Hz), 4.59-4.66 (1H, m), 6.33 (1H, d, ( J = 15.6 ) Hz), 7.31-7.44 (2H, m), 7.49-7.52 (1H, m), 8.02 (1H, d, ( J = 15.6 ) Hz).</td>
</tr>
<tr>
<td>3(3b)-42</td>
<td>( \delta: 1.00 ) (3H, t, ( J = 7.8 ) Hz), 1.61-1.83 (2H, m), 2.54-2.61 (1H, m), 2.74-2.78 (1H, m), 3.10-3.18 (1H, m), 3.25-3.32 (1H, m), 3.58-3.64 (1H, m), 4.73-4.79 (1H, m), 7.25-7.31 (1H, m), 7.34-7.41 (2H, m).</td>
</tr>
<tr>
<td>3(3c)-42</td>
<td>( \delta: 0.94 ) (3H, t, ( J = 7.3 ) Hz), 1.36 (3H, t, ( J = 7.1 ) Hz), 1.57-1.82 (2H, m), 2.49-2.54 (1H, m), 2.74 (1H, t, ( J = 4.4 ) Hz), 3.07-3.13 (1H, m), 3.18 (1H, dd, ( J = 11.0, 6.0 ) Hz), 3.55 (1H, dd, ( J = 11.5, 2.8 ) Hz), 4.30 (2H, q, ( J = 7.0 ) Hz), 4.51-4.57 (1H, m), 6.15 (1H, d, ( J = 16.5 ) Hz), 7.30 (1H, d, ( J = 7.3 ) Hz), 7.35 (1H, d, ( J = 7.3 ) Hz), 7.42 (1H, d, ( J = 7.3 ) Hz), 7.77 (1H, d, ( J = 16.5 ) Hz).</td>
</tr>
</tbody>
</table>
Table 52

<table>
<thead>
<tr>
<th>Compound</th>
<th>NMR Data (CDCl₃) δ</th>
<th>1H-NMR (CDCl₃) δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(3b)-43</td>
<td>1H-NMR (CDCl₃) δ: 0.40-0.54 (3H, m), 0.56-0.62 (1H, m), 1.17-1.24 (1H, m), 2.58 (1H, dd, J = 4.6, 2.6 Hz), 2.78 (1H, t, J = 4.6 Hz), 3.11-3.16 (1H, m), 3.34 (1H, dd, J = 11.2, 5.4 Hz), 3.54 (1H, dd, J = 11.2, 3.7 Hz), 4.45 (1H, d, J = 6.9 Hz), 7.12-7.16 (1H, m), 7.35 (1H, t, J = 7.4 Hz), 7.51-7.54 (2H, m).</td>
<td></td>
</tr>
<tr>
<td>3(3c)-43</td>
<td>1H-NMR (CDCl₃) δ: 0.23-0.30 (1H, m), 0.41-0.50 (2H, m), 0.60-0.67 (1H, m), 1.17-1.24 (1H, m), 1.35 (3H, t, J = 7.2 Hz), 2.61 (1H, dd, J = 4.9, 2.6 Hz), 2.76-2.78 (1H, m), 3.11-3.15 (1H, m), 3.39 (1H, dd, J = 11.5, 5.2 Hz), 3.60 (1H, dd, J = 11.5, 3.4 Hz), 4.20-4.26 (1H, m), 4.27 (2H, q, J = 7.3 Hz), 6.34 (1H, d, J = 15.5 Hz), 7.28-7.33 (1H, m), 7.37-7.42 (1H, m), 7.48 (1H, d, J = 6.3 Hz), 7.56 (1H, d, J = 6.9 Hz), 8.14 (1H, d, J = 15.5 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3b)-44</td>
<td>1H-NMR (CDCl₃) δ: 0.40-0.63 (4H, m), 1.18-1.25 (1H, m), 2.52 (1H, dd, J = 4.9, 2.6 Hz), 2.73-2.75 (1H, m), 3.10-3.14 (1H, m), 3.34 (1H, dd, J = 11.2, 6.0 Hz), 3.52 (1H, dd, J = 11.2, 3.4 Hz), 4.45 (1H, d, J = 7.4 Hz), 7.14-7.16 (1H, td, J = 7.7, 1.5 Hz), 7.32-7.36 (1H, m), 7.50-7.54 (2H, m).</td>
<td></td>
</tr>
<tr>
<td>3(3c)-44</td>
<td>1H-NMR (CDCl₃) δ: 0.24-0.30 (1H, m), 0.41-0.52 (2H, m), 0.63-0.69 (1H, m), 1.19-1.27 (1H, m), 1.35 (3H, t, J = 7.2 Hz), 2.50 (1H, dd, J = 4.9, 2.6 Hz), 2.74 (1H, t, J = 4.6 Hz), 3.13-3.17 (1H, m), 3.34 (1H, dd, J = 11.5, 6.0 Hz), 3.57 (1H, dd, J = 11.5, 3.4 Hz), 4.20-4.30 (3H, m), 6.34 (1H, d, J = 16.0 Hz), 7.28-7.33 (1H, m), 7.37-7.41 (1H, m), 7.47 (1H, d, J = 8.0 Hz), 7.56 (1H, d, J = 6.9 Hz), 8.16 (1H, d, J = 16.0 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3b)-45</td>
<td>1H-NMR (CDCl₃) δ: 1.58-1.62 (3.0H, m), 2.51 (0.5H, dd, J = 4.9, 2.6 Hz), 2.65 (0.5H, dd, J = 5.2, 2.3 Hz), 2.74-2.79 (1.0H, m), 3.10-3.17 (1.0H, m), 3.35-3.42 (1.0H, m), 3.50 (0.5H, dd, J = 11.2, 3.7 Hz), 3.58 (0.5H, dd, J = 11.5, 3.4 Hz), 5.09-5.16 (1.0H, m), 7.01-7.06 (1.0H, m), 7.10-7.15 (1.0H, m), 7.35 (1.0H, d, J = 8.0 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3c)-45</td>
<td>1H-NMR (CDCl₃) δ: 1.35 (3.0H, t, J = 7.3 Hz), 1.53-1.57 (3.0H, m), 2.50 (0.5H, dd, J = 5.2, 2.9 Hz), 2.69 (0.5H, dd, J = 5.2, 2.9 Hz), 2.72-2.77 (1.0H, m), 3.06 (0.5H, s), 3.11-3.15 (0.5H, m), 3.32 (0.5H, dd, J = 11.2, 6.0 Hz), 3.38 (0.5H, dd, J = 11.5, 4.6 Hz), 3.49 (0.5H, dd, J = 10.9, 3.4 Hz), 3.56 (0.5H, dd, J = 11.5, 3.4 Hz), 4.28 (2.0H, q, J = 7.3 Hz), 5.07-5.15 (1.0H, m), 6.27 (1.0H, d, J = 16.0 Hz), 7.03-7.09 (1.0H, m), 7.23-7.28 (1.0H, m), 7.32-7.36 (1.0H, m), 8.41-8.46 (1.0H, m).</td>
<td></td>
</tr>
<tr>
<td>3(3b)-46</td>
<td>1H-NMR (CDCl₃) δ: 1.60-1.64 (3.0H, m), 2.51 (3.0H, s), 2.54 (0.5H, dd, J = 4.9, 2.6 Hz), 2.58 (0.5H, dd, J = 4.9, 2.6 Hz), 2.29-2.29 (1.0H, m), 3.11-3.16 (1.0H, m), 3.20-3.30 (3.0H, m), 3.47-3.55 (1.0H, m), 5.26 (1.0H, q, J = 6.9 Hz), 6.99 (1.0H, t, J = 8.0 Hz), 7.09 (1.0H, d, J = 8.0 Hz), 7.39 (1.0H, d, J = 8.0 Hz).</td>
<td></td>
</tr>
</tbody>
</table>
(continued)

3(3c)-46

$^1$H-NMR (CDCl$_3$) $\delta$: 1.32-1.36 (3.0H, m), 1.51-1.55 (3.0H, m), 2.39 (3.0H, s), 2.44-2.47 (0.5H, m), 2.70 (0.5H, dd, J = 5.2, 2.9 Hz), 2.72-2.75 (1.0H, m), 3.05-3.08 (0.5H, m), 3.10-3.14 (0.5H, m), 3.17 (0.5H, dd, J = 10.9, 6.3 Hz), 3.33 (0.5H, dd, J = 11.5, 4.6 Hz), 3.48-3.52 (1.0H, m), 4.27 (2.0H, q, J = 7.3 Hz), 4.99 (0.5H, q, J = 6.7 Hz), 5.05 (0.5H, q, J = 6.7 Hz), 5.17 (0.5H, d, J = 2.3 Hz), 6.21 (0.5H, d, J = 2.3 Hz), 7.14-7.19 (2.0H, m), 7.34-7.38 (1.0H, m), 8.46-8.54 (1.0H, m).

3(3b)-47

$^1$H-NMR (CDCl$_3$) $\delta$: 1.34 (3.0H, t, J = 7.1 Hz), 1.52-1.58 (3.0H, m), 2.50 (0.5H, dd, J = 5.2, 2.9 Hz), 2.69 (0.5H, dd, J = 5.2, 2.9 Hz), 2.72-2.75 (1.0H, m), 2.85-2.88 (1.0H, m), 3.30 (0.5H, dd, J = 10.9, 5.7 Hz), 3.35 (0.5H, dd, J = 10.9, 4.6 Hz), 3.44 (0.5H, dd, J = 11.5, 3.4 Hz), 3.50 (0.5H, dd, J = 11.5, 3.4 Hz), 4.27 (2.0H, q, J = 7.1 Hz), 5.27-5.33 (1.0H, m), 6.21 (1.0H, d, J = 16.0 Hz), 7.19-7.23 (1.0H, m), 7.37 (1.0H, d, J = 8.0 Hz), 7.43 (1.0H, d, J = 7.4 Hz), 8.52-8.57 (1.0H, m).

3(3c)-47

$^1$H-NMR (CDCl$_3$) $\delta$: 1.34 (3.0H, t, J = 7.1 Hz), 1.52-1.58 (3.0H, m), 2.50 (0.5H, dd, J = 5.2, 2.9 Hz), 2.69 (0.5H, dd, J = 5.2, 2.9 Hz), 2.72-2.75 (1.0H, m), 2.85-2.88 (1.0H, m), 3.30 (0.5H, dd, J = 10.9, 5.7 Hz), 3.35 (0.5H, dd, J = 10.9, 4.6 Hz), 3.44 (0.5H, dd, J = 11.5, 3.4 Hz), 3.50 (0.5H, dd, J = 11.5, 3.4 Hz), 4.27 (2.0H, q, J = 7.1 Hz), 5.27-5.33 (1.0H, m), 6.21 (1.0H, d, J = 16.0 Hz), 7.19-7.23 (1.0H, m), 7.37 (1.0H, d, J = 8.0 Hz), 7.43 (1.0H, d, J = 7.4 Hz), 8.52-8.57 (1.0H, m).

3(3b)-48

$^1$H-NMR (CDCl$_3$) $\delta$: 1.60 (3.0H, t, J = 7.4 Hz), 2.53 (0.5H, dd, J = 4.8, 2.5 Hz), 2.66 (0.5H, dd, J = 5.0, 2.8 Hz), 2.78 (1.0H, q, J = 4.7 Hz), 3.10-3.18 (1.0H, m), 3.33-3.43 (1.0H, m), 3.54 (0.5H, dd, J = 11.0, 3.7 Hz), 3.62 (0.5H, dd, J = 11.5, 3.7 Hz), 5.04-5.12 (1.0H, m), 6.97-7.04 (1.0H, m), 7.28-7.33 (1.0H, m).

3(3c)-48

$^1$H-NMR (CDCl$_3$) $\delta$: 1.34 (3.0H, t, J = 7.2 Hz), 1.54-1.59 (3.0H, m), 2.51 (0.5H, dd, J = 5.2, 2.9 Hz), 2.68 (0.5H, dd, J = 5.2, 2.3 Hz), 2.75 (1.0H, q, J = 4.6 Hz), 3.06-3.10 (0.5H, m), 3.11-3.15 (0.5H, m), 3.30-3.38 (1.0H, m), 3.52 (0.5H, dd, J = 11.2, 3.2 Hz), 3.60 (0.5H, dd, J = 11.5, 3.4 Hz), 4.27 (2.0H, q, J = 7.3 Hz), 5.06-5.14 (1.0H, m), 6.23 (1.0H, d, J = 15.5 Hz), 7.07-7.12 (1.0H, m), 7.28-7.32 (1.0H, m), 8.33-8.37 (1.0H, m).

3(3c)-49

$^1$H-NMR (CDCl$_3$) $\delta$: 1.25-1.28 (3H, m), 1.37-1.41 (3H, m), 2.46-2.57 (4H, m), 2.76-2.80 (1H, m), 3.12-3.17 (2H, m), 3.17-3.22 (1H, m), 3.59-3.64 (1H, m), 4.11-4.18 (2H, m), 4.70-4.77 (1H, m), 5.96-6.02 (1H, m), 6.58-6.62 (1H, m), 7.16 (1H, dd, J = 11.5, 7.7 Hz), 7.22 (1H, dd, J = 11.5, 9.2 Hz).
3(3c)-50

1H-NMR (CDCl₃) δ: 1.18-1.32 (3H, m), 1.39-1.48 (3H, m), 2.46-2.53 (3H, m), 2.54-2.64 (1H, m), 2.70-2.79 (1H, m), 3.07-3.23 (2H, m), 3.38-3.54 (2H, m), 3.81 (3H, s), 4.15 (2H, q, J = 6.4 Hz), 4.85 (1H, q, J = 6.4 Hz), 5.81-5.91 (1H, m), 6.42 (1H, d, J = 16.0 Hz), 6.75-6.81 (1H, m), 7.04-7.16 (1H, m), 7.19-7.31 (1H, m).

3(3c)-51

1H-NMR (CDCl₃) δ: 1.27 (3H, t, J = 7.2 Hz), 1.43 (3H, d, J = 6.4 Hz), 2.32 (3H, s), 2.45-2.51 (3H, m), 2.54 (2H, t, J = 6.4 Hz), 2.75 (1H, t, J = 4.4 Hz), 3.11-3.16 (1H, m), 3.20 (1H, dd, J = 11.0, 6.0 Hz), 3.56 (1H, dd, J = 11.0, 2.8 Hz), 4.15 (2H, q, J = 7.2 Hz), 4.76 (1H, q, J = 6.4 Hz), 6.03 (1H, d, J = 15.6, 6.6 Hz), 6.74 (1H, d, J = 15.6 Hz), 7.07 (1H, d, J = 8.3 Hz), 7.19 (1H, s), 7.28 (1H, d, J = 8.3 Hz).

3(3c)-52

1H-NMR (CDCl₃) δ: 1.27 (3H, t, J = 7.2 Hz), 1.42 (3H, d, J = 6.1 Hz), 2.46-2.53 (3H, m), 2.56 (2H, t, J = 6.1 Hz), 2.73-2.80 (1H, m), 3.09-3.17 (1H, m), 3.18-3.24 (1H, m), 3.54-3.61 (1H, m), 4.14 (2H, q, J = 7.2 Hz), 4.77 (1H, q, J = 6.1 Hz), 6.05 (1H, dt, J = 15.6, 5.6 Hz), 6.73 (1H, d, J = 15.6 Hz), 6.94 (1H, dd, J = 10.3, 5.7 Hz), 7.07 (1H, dd, J = 10.3, 2.8 Hz), 7.32-7.40 (1H, m).

3(3c)-53

1H-NMR (CDCl₃) δ: 1.27 (3H, t, J = 7.8 Hz), 1.40 (3H, d, J = 6.9 Hz), 2.44-2.65 (5H, m), 2.77 (1H, t, J = 4.1 Hz), 3.10-3.19 (1H, m), 3.22 (1H, dd, J = 11.0, 5.5 Hz), 3.61 (1H, dd, J = 11.0, 2.5 Hz), 4.14 (2H, q, J = 7.8 Hz), 4.77 (1H, q, J = 6.9 Hz), 5.98 (1H, dt, J = 11.9, 6.3 Hz), 6.63 (1H, d, J = 15.6 Hz), 6.87-6.92 (1H, m), 7.07-7.16 (1H, m), 7.33 (1H, dd, J = 8.5, 5.7 Hz).

3(3c)-54

1H-NMR (CDCl₃) δ: 1.26 (3H, t, J = 7.1 Hz), 1.42 (3H, d, J = 6.4 Hz), 2.33 (3H, s), 2.42-2.54 (5H, m), 2.76 (1H, t, J = 3.9 Hz), 3.09-3.18 (1H, m), 3.22 (1H, dd, J = 10.8, 6.6 Hz), 3.58 (1H, dd, J = 10.8, 2.3 Hz), 4.14 (2H, q, J = 7.1 Hz), 4.77 (1H, q, J = 6.4 Hz), 5.99 (1H, dt, J = 15.4, 7.0 Hz), 6.72 (1H, d, J = 15.4 Hz), 7.03 (2H, d, J = 4.6 Hz), 7.20 (1H, s).

3(3c)-55

1H-NMR (CDCl₃) δ: 1.26 (3H, t, J = 7.1 Hz), 1.42 (3H, d, J = 6.3 Hz), 2.29 (3H, s), 2.47-2.52 (2H, m), 2.55-2.60 (1H, m), 2.73-2.75 (1H, m), 2.99 (1H, dd, J = 7.2, 1.4 Hz), 3.09-3.18 (2H, m), 3.40 (1H, dd, J = 13.7, 6.3 Hz), 3.52 (1H, d, J = 8.0 Hz), 4.10 (2H, q, J = 7.1 Hz), 4.76 (1H, q, J = 6.3 Hz), 5.33-5.39 (1H, m), 5.63-5.68 (1H, m), 7.08 (1H, d, J = 7.4 Hz), 7.15-7.20 (1H, m), 7.33 (1H, d, J = 7.4 Hz).

3(3c)-56

1H-NMR (CDCl₃) δ: 1.23 (3H, t, J = 7.5 Hz), 1.43 (3H, d, J = 6.0 Hz), 2.49-2.53 (2H, m), 2.59 (1H, dd, J = 14.4, 7.1 Hz), 2.76 (1H, t, J = 4.1 Hz), 3.01 (1H, d, J = 6.9 Hz), 3.10-3.17 (2H, m), 3.44 (1H, dd, J = 15.1, 6.0 Hz), 3.55 (1H, d, J = 10.8 Hz), 4.10 (2H, q, J = 7.5 Hz), 4.76 (1H, q, J = 6.0 Hz), 5.45-5.53 (1H, m), 5.63-5.70 (1H, m), 6.95 (1H, t, J = 9.9 Hz), 7.20-7.25 (2H, m).
3(3c)-57

\[ \delta: 1.27(3H, t, J = 6.2Hz), 1.44(3H, d, J = 6.4Hz), 2.48-2.53(3H, m), 2.58(2H, t, J = 6.6Hz), 2.76-2.78(1H, m), 3.15-3.19(1H, m), 3.21-3.26(1H, m), 3.58(1H, dd, J = 11.2, 2.5Hz), 4.15(2H, q, J = 6.2Hz), 4.84(1H, q, J = 6.4Hz), 6.11-6.18(1H, m), 6.74(1H, d, J = 15.6Hz), 7.47(2H, br s), 7.68(1H, s). \]

3(3c)-58

\[ \delta: 1.26(3H, t, J = 7.1Hz), 1.41(3H, t, J = 6.7Hz), 2.43-2.55(4H, m), 2.76(1H, t, J = 4.6Hz), 3.10-3.19(2H, m), 3.22(1H, dd, J = 11.2, 6.2Hz), 3.60(1H, dd, J = 11.2, 3.0Hz), 4.04(2H, q, J = 7.1Hz), 4.15(2H, q, J = 7.1Hz), 4.76(1H, q, J = 6.7Hz), 5.93(1H, dt, J = 15.5, 6.5Hz), 6.64(1H, d, J = 15.5Hz), 6.75(1H, dd, J = 8.6, 2.6Hz), 6.95(1H, d, J = 2.6Hz), 7.30(1H, d, J = 8.6Hz). \]

3(3c)-59

\[ \delta: 1.26(3H, t, J = 7.0Hz), 1.41(3H, d, J = 6.4Hz), 2.43-2.55(4H, m), 2.76(1H, t, J = 4.6Hz), 3.10-3.18(2H, m), 3.22(1H, dd, J = 11.0, 6.0Hz), 3.60(1H, dd, J = 11.2, 3.0Hz), 4.14(2H, q, J = 7.0Hz), 5.93(1H, dt, J = 15.5, 6.5Hz), 6.64(1H, d, J = 15.4Hz), 6.74(1H, dd, J = 8.5, 2.8Hz), 6.94(1H, d, J = 2.8Hz), 7.29(1H, d, J = 8.5Hz). \]

3(3c)-60

\[ \delta: 1.27(3H, t, J = 7.4Hz), 1.39(3H, d, J = 6.9Hz), 2.23-2.25(2H, m), 2.44-2.57(3H, m), 2.75-2.78(1H, m), 3.13-3.16(1H, m), 3.20(1H, dd, J = 11.2, 6.0Hz), 3.59(1H, dd, J = 11.2, 3.4Hz), 4.13-4.18(2H, m), 4.71-4.76(1H, m), 5.93-5.99(1H, m), 6.62(1H, d, J = 16.0Hz), 7.05(1H, d, J = 10.9Hz), 7.18(1H, d, J = 7.4Hz). \]

3(3c)-61

\[ \delta: 0.91(3H, t, J = 7.3Hz), 1.27(3H, t, J = 7.3Hz), 1.58-1.80(2H, m), 2.24(3H, s), 2.75(1H, t, J = 4.4Hz), 3.09-3.19(3H, m), 3.58(1H, dd, J = 10.8, 2.5Hz), 4.15(2H, q, J = 7.3Hz), 4.51(1H, d, J = 6.4Hz), 5.95(1H, dt, J = 15.6, 6.4Hz), 6.63(1H, d, J = 15.6Hz), 7.01(1H, d, J = 11.0Hz), 7.18(1H, d, J = 7.8Hz). \]

3(3c)-62

\[ \delta: 1.27(3H, t, J = 7.1Hz), 1.41(3H, t, J = 6.9Hz), 1.42(3H, d, J = 6.3Hz), 2.47-2.52(3H, m), 2.56-2.60(1H, m), 2.73(1H, t, J = 4.6Hz), 3.08-3.14(2H, m), 3.18(1H, dd, J = 11.2, 6.0Hz), 3.47(1H, dd, J = 11.2, 3.2Hz), 4.01(2H, q, J = 6.9Hz), 4.15(2H, q, J = 7.1Hz), 4.84(1H, q, J = 6.3Hz), 5.95(1H, dt, J = 16.0, 6.6Hz), 6.43(1H, d, J = 16.0Hz), 6.76(1H, d, J = 8.0Hz), 7.09(1H, d, J = 8.0Hz), 7.20(1H, t, J = 8.0Hz). \]
Compounds of Examples 16 to 77 described below were produced with reference to the steps that are described in Examples 1 to 15 above.

Example No. Structure Data

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Structure</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>16(16a)</td>
<td><img src="image1" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.33 (3H, t, J = 7.2 Hz), 1.45 (3H, d, J = 6.3 Hz), 1.63-1.77 (4H, m), 2.22 (3H, s), 2.32-2.36 (1H, m), 2.36-2.43 (1H, m), 2.43-2.50 (1H, m), 2.66-2.73 (1H, m), 2.84 (1H, dd, J = 12.5, 5.9 Hz), 2.90 (1H, dd, J = 13.2, 4.2 Hz), 3.01-3.05 (1H, m), 3.33 (1H, dd, J = 9.6, 6.5 Hz), 3.42 (1H, dd, J = 9.6, 3.9 Hz), 3.81-3.89 (4H, m), 4.26 (2H, q, J = 7.2 Hz), 4.84 (1H, q, J = 6.5 Hz), 6.26 (1H, d, J = 15.6 Hz), 6.79-6.85 (3H, m), 7.01-7.07 (2H, m), 7.54 (1H, d, J = 8.8 Hz), 8.02 (1H, d, J = 15.6 Hz).</td>
</tr>
<tr>
<td>16(16b)</td>
<td><img src="image2" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.24 (3H, t, J = 7.1 Hz), 1.45 (3H, d, J = 6.6 Hz), 1.62-1.76 (4H, m), 2.19-2.24 (3H, m), 2.32-2.47 (3H, m), 2.52-2.59 (2H, m), 2.64-2.73 (1H, m), 2.80-2.93 (4H, m), 2.99-3.08 (1H, m), 3.26-3.32 (1H, m), 3.33-3.42 (1H, m), 3.76-3.81 (3H, m), 3.81-3.89 (1H, m), 4.09-4.17 (2H, m), 4.68-4.76 (1H, m), 6.71-6.84 (3H, m), 6.97-7.09 (3H, m), 7.23-7.25 (1H, m).</td>
</tr>
</tbody>
</table>
Example No. | Structure | Data |
--- | --- | --- |
16(16c) | &nbsp; | ¹H-NMR (CDCl₃) δ: 1.39 (3H, d, J = 6.4 Hz), 1.65-1.98 (4H, m), 2.23 (3H, s), 2.47-2.56 (1H, m), 2.57-2.69 (2H, m), 2.72-2.86 (3H, m), 3.00-3.11 (2H, m), 3.20-3.54 (7H, m), 3.78 (3H, s), 4.03-4.10 (1H, m), 4.99 (1H, dd, J = 12.4, 6.0 Hz), 6.77 (1H, dd, J = 8.7, 2.3 Hz), 6.82-6.88 (2H, m), 6.94 (1H, d, J = 2.3 Hz), 7.09 (1H, t, J = 7.8 Hz), 7.16 (1H, d, J = 8.3 Hz). |
17(17a) | &nbsp; | ¹H-NMR (CDCl₃) δ: 1.34 (3H, t, J = 7.1 Hz), 1.42-1.48 (4H, m), 1.63-1.73 (4H, m), 2.22 (3H, s), 2.32-2.47 (3H, m), 2.64-2.73 (1H, m), 2.83 (1H, dd, J = 11.9, 5.5 Hz), 2.90 (1H, dd, J = 12.8, 3.7 Hz), 3.00-3.08 (1H, m), 3.28-3.33 (1H, m), 3.34-3.39 (1H, m), 3.81-3.87 (4H, m), 4.23-4.30 (2H, m), 4.78 (1H, q, J = 6.1 Hz), 6.32 (1H, dd, J = 15.6, 2.8 Hz), 6.78-6.83 (2H, m), 6.95 (1H, d, J = 8.7 Hz), 7.01-7.07 (2H, m), 7.37 (1H, d, J = 8.7 Hz), 8.10 (1H, d, J = 16.0 Hz). |
17(17b) | &nbsp; | ¹H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 7.2 Hz), 1.41-1.48 (4H, m), 1.63-1.75 (3H, m), 2.22 (3H, s), 2.33-2.44 (3H, m), 2.56-2.61 (2H, m), 2.63-2.72 (1H, m), 2.81 (1H, dd, J = 12.6, 5.7 Hz), 2.90 (1H, dd, J = 13.0, 4.0 Hz), 2.94-3.00 (2H, m), 3.01-3.06 (1H, m), 3.27 (1H, dd, J = 9.8, 6.6 Hz), 3.35 (1H, dd, J = 9.6, 4.0 Hz), 3.79 (3H, s), 3.81-3.87 (1H, m), 4.15 (2H, q, J = 7.2 Hz), 4.71 (1H, q, J = 5.9 Hz), 6.70 (1H, d, J = 2.7 Hz), 6.79-6.82 (3H, m), 7.05 (1H, t, J = 8.0 Hz), 7.34 (1H, d, J = 8.5 Hz). |
18(18a) | &nbsp; | ¹H-NMR (CDCl₃) δ: 1.34 (3H, t, J = 7.2 Hz), 1.42-1.50 (4H, m), 1.63-1.75 (3H, m), 2.22 (3H, s), 2.33-2.44 (3H, m), 2.56-2.61 (2H, m), 2.63-2.72 (1H, m), 2.81 (1H, dd, J = 12.6, 5.7 Hz), 2.90 (1H, dd, J = 13.0, 4.0 Hz), 2.94-3.00 (2H, m), 3.01-3.06 (1H, m), 3.27 (1H, dd, J = 9.8, 6.6 Hz), 3.35 (1H, dd, J = 9.6, 4.0 Hz), 3.79 (3H, s), 3.81-3.87 (1H, m), 4.15 (2H, q, J = 7.2 Hz), 4.71 (1H, q, J = 5.9 Hz), 6.70 (1H, d, J = 2.7 Hz), 6.79-6.82 (3H, m), 7.05 (1H, t, J = 8.0 Hz), 7.34 (1H, d, J = 8.5 Hz). |
(continued)

18(18b) 1H-NMR (CDCl₃) δ: 1.26 (3H, t, J = 7.2 Hz), 1.42-1.49 (4H, m), 1.63-1.76 (3H, m), 2.22 (3H, s), 2.32-2.45 (3H, m), 2.48-2.53 (2H, m), 2.63-2.72 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.87-2.99 (2H, m), 3.00-3.08 (2H, m), 3.28 (1H, dd, J = 9.5, 6.6 Hz), 3.37 (1H, dd, J = 9.5, 3.9 Hz), 3.82 (3H, s), 3.83-3.88 (1H, m), 4.15 (2H, q, J = 7.2 Hz), 4.77 (1H, q, J = 6.4 Hz), 6.75-6.84 (3H, m), 7.02-7.09 (2H, m), 7.23 (1H, t, J = 7.8 Hz).

18(18c) 1H-NMR (CDCl₃) δ: 1.38 (3H, d, J = 6.4 Hz), 1.61-1.94 (4H, m), 2.23 (3H, s), 2.49-2.65 (3H, m), 2.66-2.79 (2H, m), 2.92-3.06 (3H, m), 3.21-3.30 (2H, m), 3.41-3.47 (1H, m), 3.50 (2H, d, J = 5.5 Hz), 3.83 (3H, s), 4.02-4.05 (1H, m), 4.11-4.33 (2H, br m), 5.10 (1H, q, J = 6.4 Hz), 6.76 (1H, d, J = 7.8 Hz), 6.82-6.88 (2H, m), 7.04-7.10 (2H, m), 7.21 (1H, t, J = 7.8 Hz).

19(19a) 1H-NMR (CDCl₃) δ: 0.92 (3H, t, J = 7.2 Hz), 1.34 (3H, t, J = 7.2 Hz), 1.41-1.50 (1H, m), 1.53-1.76 (4H, br m), 1.81-1.88 (1H, m), 2.20-2.24 (4H, m), 2.31-2.39 (2H, m), 2.44 (1H, dd, J = 12.5, 7.1 Hz), 2.63-2.72 (1H, m), 2.83 (1H, dd, J = 12.5, 5.9 Hz), 2.89 (1H, dd, J = 13.3, 4.3 Hz), 3.00-3.06 (1H, m), 3.28 (1H, dd, J = 9.5, 6.6 Hz), 3.39 (1H, dd, J = 9.5, 4.2 Hz), 3.81-3.88 (1H, m), 4.27 (2H, q, J = 7.2 Hz), 4.56-4.62 (1H, m), 6.33 (1H, d, J = 15.9 Hz), 6.78-6.83 (2H, m), 7.04 (1H, t, J = 8.1 Hz), 7.27-7.32 (1H, m), 7.36-7.45 (2H, m), 7.55 (1H, d, J = 8.1 Hz), 8.14 (1H, d, J = 15.9 Hz).

19(19b) 1H-NMR (CDCl₃) δ: 0.98 (3H, t, J = 7.2 Hz), 1.25 (3H, t, J = 6.8 Hz), 1.40-1.51 (1H, m), 1.52-1.61 (1H, m), 1.62-1.74 (4H, br m), 1.77-1.87 (1H, m), 2.22 (3H, s), 2.30-2.40 (2H, m), 2.43 (1H, dd, J = 12.6, 7.2 Hz), 2.57-2.62 (2H, m), 2.63-2.70 (1H, m), 2.83 (1H, dd, J = 12.6, 5.7 Hz), 2.90 (1H, dd, J = 13.2, 4.4 Hz), 2.94-3.07 (3H, m), 3.25 (1H, dd, J = 9.5, 6.3 Hz), 3.37 (1H, dd, J = 9.5, 3.9 Hz), 3.81-3.87 (1H, m), 4.14 (2H, q, J = 7.2 Hz), 4.51 (1H, dd, J = 7.9, 5.0 Hz), 6.78-6.84 (2H, m), 7.04 (1H, t, J = 7.9 Hz), 7.14-7.25 (3H, m), 7.39 (1H, dd, J = 7.9, 2.2 Hz).

19(19c) 1H-NMR (CDCl₃) δ: 0.94 (3H, t, J = 7.3 Hz), 1.59-1.92 (6H, m), 2.21-2.25 (3H, m), 2.50-2.61 (2H, m), 2.63-2.82 (4H, m), 2.90-3.03 (1H, m), 3.15-3.30 (3H, m), 3.34-3.55 (5H, m), 3.90-3.97 (1H, m), 4.82 (1H, dd, J = 7.7, 5.5 Hz), 6.80-6.87 (2H, m), 7.08 (1H, t, J = 7.9 Hz), 7.17-7.25 (2H, m), 7.27-7.30 (1H, m), 7.35-7.40 (1H, m).
20(20a) 1H-NMR (CDCl₃) δ: 1.35 (3H, t, J = 7.1 Hz), 1.43-1.48 (4H, m), 1.57 (1H, br s), 1.64-1.75 (3H, m), 2.22 (3H, d, J = 1.5 Hz), 2.32-2.38 (4H, m), 2.38-2.42 (1H, m), 2.43-2.49 (1H, m), 2.65-2.74 (1H, m), 2.82 (1H, dd, J = 12.7, 5.9 Hz), 2.89 (1H, dd, J = 13.2, 4.4 Hz), 3.01-3.08 (1H, m), 3.35 (1H, dd, J = 9.6, 6.6 Hz), 3.42 (1H, dd, J = 9.6, 4.0 Hz), 4.28 (2H, q, J = 7.1 Hz), 4.81 (1H, q, J = 6.3 Hz), 6.36 (1H, d, J = 15.6 Hz), 6.78-6.83 (2H, m), 7.05 (1H, t, J = 8.1 Hz), 7.27-7.31 (1H, m), 7.37 (1H, d, J = 8.1 Hz), 7.91 (1H, d, J = 15.6 Hz).

20(20b) 1H-NMR (CDCl₃) δ: 1.22-1.28 (3H, m), 1.42-1.48 (4H, m), 1.63-1.75 (3H, m), 2.20-2.25 (6H, m), 2.32-2.49 (3H, m), 2.53-2.60 (2H, m), 2.64-2.73 (1H, m), 2.78-2.86 (1H, m), 2.86-2.97 (3H, m), 3.01-3.09 (1H, m), 3.30-3.37 (1H, m), 3.38-3.44 (1H, m), 3.80-3.87 (1H, m), 4.11-4.19 (2H, m), 4.74-4.83 (1H, m), 6.78-6.84 (2H, m), 6.92-6.98 (1H, m), 7.02-7.09 (1H, m), 7.14-7.21 (1H, m).

20(20c) 1H-NMR (CDCl₃) δ: 1.44 (3H, d, J = 6.3 Hz), 1.61-1.69 (1H, m), 1.75-1.94 (3H, m), 2.22-2.25 (6H, m), 2.52-2.57 (2H, m), 2.59-2.69 (2H, m), 2.73-3.07 (7H, m), 3.16 (1H, dd, J = 13.2, 3.4 Hz), 3.23 (1H, dd, J = 10.9, 5.7 Hz), 3.37 (1H, dd, J = 9.7, 6.3 Hz), 3.51-3.58 (1H, m), 3.73 (1H, dd, J = 13.3, 4.1 Hz), 2.90 (1H, dd, J = 13.2, 4.0 Hz), 2.99-3.06 (1H, m), 3.26 (1H, dd, J = 9.5, 6.3 Hz), 3.38 (1H, dd, J = 9.5, 4.3 Hz), 3.81-3.87 (1H, m), 4.24-4.30 (2H, m), 4.67 (1H, dd, J = 8.0, 5.2 Hz), 6.33 (1H, d, J = 15.5 Hz), 6.78-6.82 (2H, m), 7.02-7.06 (1H, m), 7.27-7.31 (1H, m), 7.37-7.41 (1H, m), 7.42-7.45 (1H, m), 7.55 (1H, d, J = 7.4 Hz), 8.14 (1H, d, J = 15.5 Hz).

[Table 60]

21(21a) 1H-NMR (CDCl₃) δ: 0.91 (3H, t, J = 7.4 Hz), 1.30-1.37 (4H, m), 1.42-1.50 (2H, m), 1.54-1.74 (5H, m), 1.78-1.85 (1H, m), 2.22 (3H, s), 2.31-2.41 (2H, m), 2.44 (1H, dd, J = 12.6, 6.9 Hz), 2.64-2.71 (1H, m), 2.83 (1H, dd, J = 12.6, 5.7 Hz), 2.89 (1H, dd, J = 13.2, 4.0 Hz), 2.99-3.06 (1H, m), 3.26 (1H, dd, J = 9.5, 6.3 Hz), 3.38 (1H, dd, J = 9.5, 4.3 Hz), 3.81-3.87 (1H, m), 4.24-4.30 (2H, m), 4.67 (1H, dd, J = 8.0, 5.2 Hz), 6.33 (1H, d, J = 15.5 Hz), 6.78-6.82 (2H, m), 7.02-7.06 (1H, m), 7.27-7.31 (1H, m), 7.37-7.41 (1H, m), 7.42-7.45 (1H, m), 7.55 (1H, d, J = 7.4 Hz), 8.14 (1H, d, J = 15.5 Hz).

21(21b) 1H-NMR (CDCl₃) δ: 0.93 (3H, t, J = 6.9 Hz), 1.22-1.27 (3H, m), 1.31-1.49 (2H, m), 1.51-1.62 (3H, m), 1.63-1.74 (3H, m), 1.75-1.85 (1H, m), 2.22 (3H, br s), 2.31-2.46 (3H, m), 2.57-2.63 (2H, m), 2.63-2.71 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.90 (1H, dd, J = 13.3, 4.1 Hz), 2.94-3.08 (3H, m), 3.23 (1H, dd, J = 9.4, 6.6 Hz), 3.37 (1H, dd, J = 9.4, 3.9 Hz), 3.81-3.87 (1H, m), 4.14 (2H, q, J = 7.4 Hz), 4.59 (1H, dd, J = 8.3, 3.7 Hz), 6.78-6.83 (2H, m), 7.05 (1H, t, J = 8.0 Hz), 7.13-7.25 (3H, m), 7.4 yl (1H, d, J = 7.3 Hz).
[0275]

[Table 61]

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Chemical Shifts</th>
</tr>
</thead>
<tbody>
<tr>
<td>21(21c) 1H-NMR (CDCl₃)</td>
<td>δ: 0.92 (3H, t, J = 6.9 Hz), 1.29-1.39 (1H, m), 1.46-1.59 (2H, m), 1.65-1.95 (5H, m), 2.23 (3H, br s), 2.54-2.59 (2H, m), 2.63-2.68 (1H, m), 2.72-2.82 (3H, m), 2.96-3.03 (1H, m), 3.13-3.21 (1H, m), 3.23-3.30 (2H, m), 3.40-3.51 (3H, m), 3.58-3.88 (1H, m), 3.95-4.01 (1H, m), 4.89 (1H, dd, J = 8.3, 4.3 Hz), 6.80-6.87 (2H, m), 7.08 (1H, t, J = 7.7 Hz), 7.18-7.24 (2H, m), 7.24-7.30 (1H, m), 7.35-7.39 (1H, m).</td>
</tr>
<tr>
<td>22(22a) 1H-NMR (CDCl₃)</td>
<td>δ: 1.34 (3H, t, J = 7.3 Hz), 1.41-1.49 (4H, m), 1.63-1.76 (3H, m), 2.22 (3H, s), 2.27 (3H, s), 2.32-2.49 (3H, m), 2.66-2.72 (1H, m), 2.82 (1H, dd, J = 12.6, 6.3 Hz), 2.89 (1H, dd, J = 13.5, 4.3 Hz), 3.01-3.07 (1H, m), 3.32 (1H, dd, J = 9.7, 6.3 Hz), 3.40 (1H, dd, J = 9.7, 4.0 Hz), 3.81-3.88 (1H, m), 4.26 (2H, q, J = 7.3 Hz), 4.79 (1H, q, J = 6.3 Hz), 6.28 (1H, d, J = 16.0 Hz), 6.79-6.84 (2H, m), 7.05 (1H, t, J = 8.0 Hz), 7.13 (1H, d, J = 10.9 Hz), 7.39 (1H, d, J = 8.0 Hz), 7.98 (1H, d, J = 16.0 Hz).</td>
</tr>
<tr>
<td>22(22b) 1H-NMR (CDCl₃)</td>
<td>δ: 1.24 (3H, t, J = 7.1 Hz), 1.41-1.50 (4H, m), 1.51-1.60 (1H, m), 1.64-1.76 (3H, m), 2.20-2.24 (6H, m), 2.33-2.45 (3H, m), 2.53-2.58 (2H, m), 2.66-2.73 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.87-2.92 (3H, m), 3.01-3.06 (1H, m), 3.28 (1H, dd, J = 9.5, 6.6 Hz), 3.36 (1H, dd, J = 9.5, 4.0 Hz), 3.81-3.88 (1H, m), 4.14 (2H, d, J = 16.0 Hz), 4.69 (1H, d, J = 5.7 Hz), 6.79-6.84 (2H, m), 6.96 (1H, d, J = 7.4 Hz), 7.03-7.10 (2H, m).</td>
</tr>
<tr>
<td>22(22c) 1H-NMR (CDCl₃)</td>
<td>δ: 1.36 (3H, d, J = 6.3 Hz), 1.73-2.02 (4H, m), 2.21 (3H, s), 2.23 (3H, s), 2.48-2.54 (1H, m), 2.57-2.62 (1H, m), 2.75-2.87 (3H, m), 2.92-3.03 (2H, m), 3.19-3.39 (4H, m), 3.45 (1H, dd, J = 10.9, 5.7 Hz), 3.63-3.70 (1H, m), 4.17-4.23 (1H, m), 4.64 (1H, br s), 4.91 (1H, q, J = 6.1 Hz), 6.85-6.91 (2H, m), 6.98 (1H, d, J = 10.9 Hz), 7.02 (1H, d, J = 7.7 Hz), 7.11 (1H, t, J = 7.7 Hz).</td>
</tr>
<tr>
<td>23(23a) 1H-NMR (CDCl₃)</td>
<td>δ: 1.09-1.12 (6H, m), 1.24-1.28 (3H, m), 1.36-1.40 (3H, m), 1.65-1.69 (2H, m), 2.21-2.25 (3H, m), 2.43-2.49 (2H, m), 2.51-2.55 (3H, m), 2.57-2.63 (2H, m), 2.70 (1H, dd, J = 12.0, 4.0 Hz), 3.02-3.09 (2H, m), 3.29-3.33 (2H, m), 3.73-3.77 (1H, m), 4.10-4.19 (2H, m), 4.63-4.70 (1H, m), 5.92-6.00 (1H, m), 6.60 (1H, d, J = 15.5 Hz), 7.01-7.19 (5H, m).</td>
</tr>
<tr>
<td>23(23b) 1H-NMR (CDCl₃)</td>
<td>δ: 123-1.28 (6H, m), 1.37-1.42 (3H, m), 1.42-1.50 (1H, m), 1.64-1.74 (5H, m), 2.21-2.24 (6H, m), 2.31-2.46 (5H, m), 2.54-2.59 (2H, m), 2.66-2.73 (1H, m), 2.82 (1H, dd, J = 12.6, 5.2 Hz), 2.90 (1H, d, J = 13.2, 4.6 Hz), 3.01-3.06 (1H, m), 3.22-3.27 (1H, m), 3.34 (1H, dd, J = 9.5, 4.3 Hz), 3.79-3.90 (1H, m), 4.10-4.15 (2H, m), 4.66 (1H, q, J = 5.7 Hz), 6.78-6.84 (2H, m), 6.93 (1H, d, J = 8.0 Hz), 7.02-7.08 (2H, m).</td>
</tr>
</tbody>
</table>
23(23c)  

| 1H-NMR (CDCl₃) δ: 1.35-1.38 (3H, m), 1.48-1.99 (9H, m), 2.22-2.27 (7H, m), 2.36-2.46 (2H, m), 2.55-2.66 (2H, m), 2.75-2.89 (2H, m), 3.01-3.09 (1H, m), 3.23-3.29 (1H, m), 3.29-3.34 (1H, m), 3.35-3.42 (2H, m), 3.75-3.80 (1H, m), 4.26 (1H, d, J = 7.0, 3.1 Hz), 4.71 (1H, dd, J = 12.6, 5.2 Hz), 6.86-6.92 (3H, m), 7.00 (1H, d, J = 10.9 Hz), 7.10 (1H, t, J = 7.7 Hz). |

24(24a)  

| 1H-NMR (CDCl₃) δ: 1.34 (3H, t, J = 7.3 Hz), 1.42 (3H, d, J = 6.3 Hz), 1.43-1.50 (1H, m), 1.64-1.74 (3H, m), 2.21-2.25 (6H, m), 2.40 (3H, t, J = 20.3, 6.7 Hz), 2.67-2.73 (1H, m), 2.81 (1H, dd, J = 12.3, 6.0 Hz), 2.88 (1H, dd, J = 13.2, 4.6 Hz), 3.01-3.06 (1H, m), 3.27 (1H, dd, J = 9.7, 6.9 Hz), 3.39 (1H, dd, J = 9.7, 4.0 Hz), 3.82-3.88 (1H, m), 4.27 (2H, q, J = 7.3 Hz), 4.69 (1H, q, J = 6.3 Hz), 6.50 (1H, d, J = 16.0 Hz), 6.79-6.82 (2H, m), 7.05 (1H, t, J = 8.0 Hz), 7.22 (1H, d, J = 8.0 Hz), 7.40 (1H, t, J = 8.0 Hz), 7.82 (1H, d, J = 16.0 Hz). |

[Table 62]  

24(24b)  

| 1H-NMR (CDCl₃) δ: 1.24 (3H, t, J = 6.9 Hz), 1.41 (3H, d, J = 6.3 Hz), 1.43-1.50 (1H, m), 1.63-1.75 (3H, m), 2.21-2.24 (6H, m), 2.33-2.46 (3H, m), 2.61 (2H, t, J = 7.7 Hz), 2.66-2.72 (1H, m), 2.81 (1H, dd, J = 12.6, 5.7 Hz), 2.89 (1H, dd, J = 13.5, 4.3 Hz), 2.92-2.97 (2H, m), 3.02-3.06 (1H, m), 3.26 (1H, dd, J = 9.5, 4.0 Hz), 3.38 (1H, dd, J = 9.5, 4.0 Hz), 3.82-3.87 (1H, m), 4.13 (2H, q, J = 6.9 Hz), 4.66 (1H, q, J = 6.3 Hz), 6.79-6.83 (2H, m), 7.02-7.07 (2H, m), 7.10 (1H, d, J = 8.0 Hz). |

24(24c)  

| 1H-NMR (CDCl₃) δ: 1.38 (3H, d, J = 6.3 Hz), 1.65-1.75 (1H, m), 1.77-1.97 (3H, m), 2.19 (3H, d, J = 1.7 Hz), 2.23 (3H, s), 2.57-2.61 (2H, m), 2.65-2.77 (2H, m), 2.79-3.00 (3H, m), 3.07 (1H, dd, J = 12.6, 3.4 Hz), 3.09-3.15 (1H, m), 3.17-3.22 (2H, m), 3.30 (1H, dd, J = 9.7, 5.7 Hz), 3.58-3.66 (1H, m), 3.75-4.20 (1H, br m), 3.99-4.05 (1H, m), 4.61 (1H, q, J = 6.3 Hz), 6.83-6.88 (2H, m), 7.02 (1H, d, J = 8.0 Hz), 7.06-7.13 (2H, m). |

25(25a)  

| 1H-NMR (CDCl₃) δ: 1.35 (3H, t, J = 7.1 Hz), 1.44 (3H, d, J = 6.5 Hz), 1.46-1.76 (5H, m), 2.23 (3H, s), 2.33-2.49 (3H, m), 2.68-2.74 (1H, m), 2.81 (1H, dd, J = 12.6, 6.3 Hz), 2.88 (1H, dd, J = 12.6, 4.6 Hz), 2.99-3.06 (1H, m), 3.32-3.40 (2H, m), 3.82-3.86 (1H, m), 4.29 (2H, q, J = 7.1 Hz), 4.85 (1H, q, J = 6.5 Hz), 6.37 (1H, d, J = 15.5 Hz), 6.78-6.84 (2H, m), 7.05 (1H, t, J = 8.0 Hz), 7.63 (1H, d, J = 8.0 Hz), 7.67 (1H, dd, J = 8.0, 1.1 Hz), 7.80 (1H, d, J = 1.1 Hz), 7.99 (1H, d, J = 15.5 Hz). |
(continued)

25(25b) 1H-NMR (CDCl3) \( \delta \): 1.25 (3H, t, J = 7.3 Hz), 1.44 (3H, d, J = 6.3 Hz), 1.45-1.50 (1H, m), 1.63-1.76 (3H, m), 2.23 (3H, s), 2.34-2.47 (3H, m), 2.60-2.64 (2H, m), 2.68-2.74 (1H, m), 2.81 (1H, dd, J = 12.3, 6.0 Hz), 2.88 (1H, dd, J = 13.2, 4.6 Hz), 2.97-3.05 (3H, m), 3.30 (1H, dd, J = 9.7, 6.3 Hz), 3.35 (1H, dd, J = 9.7, 3.4 Hz), 3.81-3.87 (1H, m), 4.15 (2H, q, J = 7.3 Hz), 4.81 (1H, q, J = 6.3 Hz), 6.79-6.84 (2H, m), 7.05 (1H, t, J = 8.0 Hz), 7.46 (1H, d, J = 1.7 Hz), 7.55 (1H, dd, J = 8.0, 1.7 Hz), 7.58 (1H, d, J = 8.0 Hz).

25(25c) 1H-NMR (CDCl3) \( \delta \): 1.37 (3H, d, J = 6.5 Hz), 1.71-2.00 (4H, m), 2.24 (3H, s), 2.50-2.58 (1H, m), 2.63-2.70 (1H, m), 2.75 (1H, dd, J = 92.6, 8.6 Hz), 2.78-2.85 (2H, m), 2.87-2.94 (1H, m), 3.09-3.46 (6H, m), 3.56-3.61 (1H, m), 4.09-4.15 (1H, m), 5.12 (1H, q, J = 6.5 Hz), 6.86-6.88 (2H, m), 7.11 (1H, t, J = 7.7 Hz), 7.46-7.50 (2H, m), 7.54 (1H, s).

26(26a) 1H-NMR (CDCl3) \( \delta \): 1.34 (3H, t, J = 7.1 Hz), 1.42 (3H, d, J = 6.3 Hz), 1.44-1.51 (1H, m), 1.63-1.76 (3H, m), 2.23 (3H, s), 2.33-2.49 (3H, m), 2.69-2.71 (1H, m), 2.82 (1H, dd, J = 13.0, 6.3 Hz), 2.89 (1H, dd, J = 13.0, 4.0 Hz), 3.01-3.06 (1H, m), 3.33 (1H, dd, J = 9.7, 6.6 Hz), 3.39 (1H, dd, J = 9.7, 4.0 Hz), 3.82-3.88 (1H, m), 4.27 (2H, q, J = 7.1 Hz), 4.80 (1H, dd, J = 6.3 Hz), 6.27 (1H, d, J = 15.5 Hz), 6.79-6.83 (2H, m), 7.05 (1H, t, J = 8.0 Hz), 7.29-7.36 (2H, m), 7.93 (1H, d, J = 15.5 Hz).

26(26b) 1H-NMR (CDCl3) \( \delta \): 1.25 (3H, t, J = 7.1 Hz), 1.41 (3H, d, J = 6.3 Hz), 1.43-1.51 (1H, m), 1.64-1.77 (3H, m), 2.23 (3H, s), 2.34-2.46 (3H, m), 2.55-2.59 (2H, m), 2.68-2.74 (1H, m), 2.81 (1H, dd, J = 12.3, 6.0 Hz), 2.86-2.94 (3H, m), 3.01-3.06 (1H, m), 3.28 (1H, dd, J = 9.7, 6.9 Hz), 3.35 (1H, dd, J = 9.7, 4.0 Hz), 3.81-3.87 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.70 (1H, dd, J = 6.3 Hz), 6.79-6.83 (2H, m), 6.96 (1H, dd, J = 11.2, 7.7 Hz), 7.05 (1H, t, J = 8.0 Hz), 7.22-7.26 (1H, m).

26(26c) 1H-NMR (CDCl3) \( \delta \): 1.35 (3H, d, J = 6.3 Hz), 1.69-2.00 (4H, m), 2.24 (3H, s), 2.47-2.53 (1H, m), 2.58-2.63 (1H, m), 2.72-2.78 (2H, m), 2.78-2.85 (1H, m), 2.88-2.95 (1H, m), 3.00-3.08 (1H, m), 3.14-3.21 (1H, m), 3.24 (1H, dd, J = 12.9, 3.2 Hz), 3.30 (1H, dd, J = 13.5, 4.3 Hz), 3.36 (1H, dd, J = 10.9, 5.4 Hz), 3.44 (1H, dd, J = 10.9, 6.3 Hz), 3.58-3.65 (1H, m), 4.11-4.16 (1H, m), 4.97 (1H, q, J = 6.3 Hz), 6.84-6.90 (2H, m), 7.03 (1H, dd, J = 11.5, 8.0 Hz), 7.10 (1H, t, J = 8.0 Hz), 7.15 (1H, dd, J = 11.5, 8.3 Hz).
(continued)

27(27a)

$^1$H-NMR (CDCl$_3$) δ: 1.34 (3H, t, J = 7.1 Hz), 1.43 (3H, d, J = 6.3 Hz), 1.45-1.52 (1H, m), 1.65-1.77 (3H, m), 2.23 (3H, s), 2.34-2.49 (3H, m), 2.68-2.75 (1H, m), 2.83 (1H, dd, J = 13.2, 5.2 Hz), 2.89 (1H, dd, J = 13.2, 4.0 Hz), 3.02-3.07 (1H, m), 3.33 (1H, dd, J = 9.7, 6.9 Hz), 3.41 (1H, dd, J = 9.7, 3.4 Hz), 3.83-3.88 (1H, m), 4.28 (2H, q, J = 7.1 Hz), 4.81 (1H, q, J = 6.3 Hz), 6.49 (1H, dd, J = 16.0, 1.7 Hz), 6.77-6.84 (3H, m), 7.03-7.10 (2H, m), 7.72 (1H, d, J = 16.0 Hz).

27(27b)

$^1$H-NMR (CDCl$_3$) δ: 1.25 (3H, dd, J = 9.2, 5.2 Hz), 1.42 (3H, d, J = 6.3 Hz), 1.44-1.50 (1H, m), 1.64-1.76 (3H, m), 2.23 (3H, s), 2.34-2.59 (5H, m), 2.67-2.74 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.86-2.93 (2H, m), 2.93-3.00 (1H, m), 3.02-3.07 (1H, m), 3.30 (1H, dd, J = 9.7, 6.3 Hz), 3.37 (1H, dd, J = 9.7, 4.0 Hz), 3.82-3.89 (1H, m), 4.14 (2H, q, J = 7.3 Hz), 4.77 (1H, q, J = 6.3 Hz), 6.68-6.73 (1H, m), 6.79-6.84 (2H, m), 6.98-7.01 (1H, m), 7.05 (1H, t, J = 8.0 Hz).

27(27c)

$^1$H-NMR (CDCl$_3$) δ: 1.35 (3H, d, J = 6.3 Hz), 1.64-1.98 (4H, m), 2.23 (3H, s), 2.49-2.61 (2H, m), 2.67 (1H, dd, J = 12.9, 7.7 Hz), 2.76 (1H, dd, J = 13.7, 10.3 Hz), 2.81-2.91 (2H, m), 2.96-3.03 (1H, m), 3.05-3.11 (1H, m), 3.25-3.32 (2H, m), 3.46-3.55 (3H, m), 4.04-4.10 (1H, m), 5.18 (1H, q, J = 6.1 Hz), 6.66-6.71 (1H, m), 6.83-6.88 (2H, m), 6.92-6.96 (1H, m), 7.10 (1H, t, J = 7.7 Hz).

[Table 64]

28(28a)

$^1$H-NMR (CDCl$_3$) δ: 0.22-0.29 (1H, m), 0.42-0.52 (2H, m), 0.63-0.69 (1H, m), 1.19-1.27 (1H, m), 1.33 (3H, t, J = 7.1 Hz), 1.47-1.48 (1H, m), 1.64-1.76 (3H, m), 2.22 (3H, s), 2.30 (1H, dd, J = 13.2, 9.7 Hz), 2.42 (1H, q, J = 8.0 Hz), 2.51 (1H, dd, J = 12.6, 6.9 Hz), 2.63-2.69 (1H, m), 2.78 (1H, dd, J = 12.6, 6.3 Hz), 2.85 (1H, dd, J = 13.2, 4.0 Hz), 3.07-3.11 (1H, m), 3.30 (1H, dd, J = 9.7, 6.3 Hz), 3.49 (1H, dd, J = 9.7, 4.0 Hz), 3.84-3.90 (1H, m), 4.14 (1H, d, J = 8.0 Hz), 4.26 (2H, q, J = 7.1 Hz), 6.34 (1H, dd, J = 16.0 Hz), 6.76-6.80 (2H, m), 7.03 (1H, t, J = 8.0 Hz), 7.28-7.32 (1H, m), 7.36-7.40 (1H, m), 7.43-7.46 (1H, m), 7.58 (1H, d, J = 6.9 Hz), 8.21 (1H, d, J = 16.0 Hz).

28(28b)

$^1$H-NMR (CDCl$_3$) δ: 0.25-0.31 (1H, m), 0.40-0.51 (2H, m), 0.60-0.67 (1H, m), 1.22-1.28 (4H, m), 1.40-1.50 (1H, m), 1.64-1.76 (3H, m), 2.22 (3H, s), 2.32 (1H, dd, J = 13.2, 9.7 Hz), 2.38-2.45 (1H, m), 2.50 (1H, dd, J = 12.6, 6.9 Hz), 2.58-2.70 (3H, m), 2.79 (1H, dd, J = 12.3, 6.0 Hz), 2.87 (1H, dd, J = 13.5, 4.3 Hz), 2.96-3.12 (4H, m), 3.29 (1H, dd, J = 9.7, 8.6 Hz), 3.49 (1H, dd, J = 9.7, 4.0 Hz), 3.83-3.89 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.19 (1H, d, J = 6.9 Hz), 6.77-6.81 (2H, m), 7.01-7.06 (1H, m), 7.16-7.25 (3H, m), 7.42-7.45 (1H, m).
28(28c)

1H-NMR (CDCl₃) δ: 0.27-0.37 (2H, m), 0.40-0.46 (1H, m), 0.56-0.63 (1H, m), 1.13-1.21 (1H, m), 1.61-1.70 (1H, m), 1.75-1.85 (2H, m), 1.86-1.96 (1H, m), 2.21 (3H, s), 2.49-2.67 (4H, m), 2.73-2.84 (2H, m), 2.88-3.16 (5H, m), 3.30 (1H, dd, J = 11.5, 7.4 Hz), 3.48 (1H, dd, J = 11.5,4.0 Hz), 3.71-3.78 (1H, m), 4.19-4.25 (1H, m), 4.53 (1H, d, J = 6.9 Hz), 6.73-6.77 (2H, m), 7.02 (1H, t, J = 8.0 Hz), 7.18-7.25 (3H, m), 7.42-7.45 (1H, m).

29(29a)

1H-NMR (CDCl₃) δ: 0.21-0.28 (1H, m), 0.41-0.52 (2H, m), 0.63-0.69 (1H, m), 1.19-1.28 (1H, m), 1.34 (3H, t, J = 7.2 Hz), 1.41-1.49 (1H, m), 1.62-1.75 (3H, m), 2.22 (3H, s), 2.32-2.46 (3H, m), 2.64-2.70 (1H, m), 2.84 (1H, dd, J = 12.6, 6.3 Hz), 2.90 (1H, dd, J = 13.2, 4.0 Hz), 3.00-3.05 (1H, m), 3.37-3.43 (2H, m), 3.82-3.88 (1H, m), 4.14 (1H, d, J = 7.4 Hz), 4.26 (2H, q, J = 7.1 Hz), 6.34 (1H, d, J = 16.0 Hz), 6.79-6.82 (2H, m), 7.02-7.07 (1H, m), 7.29-7.32 (1H, m), 7.37-7.41 (1H, m), 7.45 (1H, d, J = 8.0 Hz), 7.58 (1H, d, J = 6.9 Hz), 8.20 (1H, d, J = 16.0 Hz).

29(29b)

1H-NMR (CDCl₃) δ: 0.24-0.31 (1H, m), 0.39-0.47 (2H, m), 0.60-0.67 (1H, m), 1.21-1.28 (4H, m), 1.40-1.49 (1H, m), 1.82-1.75 (3H, m), 2.22 (3H, s), 2.32-2.40 (2H, m), 2.42 (1H, dd, J = 12.6, 6.9 Hz), 2.56-2.64 (2H, m), 2.64-2.70 (1H, m), 2.83 (1H, dd, J = 12.8, 6.3 Hz), 2.90 (1H, dd, J = 13.2, 4.0 Hz), 2.96-3.07 (3H, m), 3.39 (2H, d, J = 5.7 Hz), 3.83-3.88 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.19 (1H, d, J = 7.4 Hz), 6.79-6.83 (2H, m), 7.05 (1H, t, J = 8.0 Hz), 7.16-7.20 (1H, m), 7.20-7.26 (2H, m), 7.41-7.44 (1H, m).

[Table 65]

29(29c)

1H-NMR (CDCl₃) δ: 0.24-0.31 (1H, m), 0.39-0.47 (2H, m), 0.59-0.66 (1H, m), 1.16-1.24 (1H, m), 1.64-1.93 (4H, m), 2.52-2.60 (1H, m), 2.60-2.68 (2H, m), 2.70-2.82 (2H, m), 2.83-2.90 (1H, m), 2.99-3.06 (1H, m), 3.11-3.18 (1H, m), 3.21-3.31 (2H, m), 3.31-3.54 (6H, m), 3.55-3.62 (1H, m), 3.98-4.04 (1H, m), 4.41 (1H, d, J = 8.0 Hz), 6.81-6.86 (2H, m), 7.06-7.10 (1H, m), 7.18-7.25 (2H, m), 7.27-7.30 (1H, m), 7.42-7.45 (1H, m).

30(30a)

1H-NMR (CDCl₃) δ: 1.23-1.28 (3H, m), 1.36-1.40 (3H, m), 1.42-1.52 (1H, m), 1.64-1.76 (3H, m), 2.23 (3H, s), 2.33-2.50 (7H, m), 2.55-2.58 (1H, m), 2.67-2.76 (1H, m), 2.81 (1H, dd, J = 12.6, 5.7 Hz), 2.89 (1H, dd, J = 13.2, 4.0 Hz), 3.00-3.09 (1H, m), 3.21-3.29 (1H, m), 3.32-3.40 (1H, m), 3.80-3.89 (1H, m), 4.10-4.20 (2H, m), 4.65-4.70 (1H, m), 5.96-6.04 (1H, m), 6.60 (1H, d, J = 15.5 Hz), 6.79-6.84 (2H, m), 7.03-7.07 (1H, m), 7.14-7.25 (2H, m).
30(30b) 1H-NMR (CDCl$_3$) $\delta$: 1.25 (3H, t, J = 7.1 Hz), 1.39 (3H, d, J = 6.3 Hz), 1.42-1.51 (1H, m), 1.52-1.63 (4H, m), 1.63-1.77 (4H, m), 2.22 (3H, s), 2.32-2.36 (2H, m), 2.38-2.46 (2H, m), 2.55-2.61 (2H, m), 2.68-2.74 (1H, m), 2.81 (1H, dd, J = 12.6, 5.7 Hz), 2.89 (1H, dd, J = 13.2, 4.6 Hz), 3.00-3.07 (1H, m), 3.25 (1H, dd, J = 9.2, 6.9 Hz), 3.31 (1H, dd, J = 9.2, 4.0 Hz), 3.81-3.87 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.66 (1H, q, J = 6.3 Hz), 6.79-6.84 (2H, m), 6.93 (1H, dd, J = 11.5, 8.0 Hz), 7.05 (1H, t, J = 7.7 Hz), 7.23 (1H, dd, J = 11.5, 8.3 Hz).

30(30c) 1H-NMR (CDCl$_3$) $\delta$: 1.35 (3H, d, J = 6.3 Hz), 1.50-1.59 (1H, m), 1.59-1.68 (1H, m), 1.69-1.81 (3H, m), 1.81-1.96 (2H, m), 1.97-2.06 (1H, m), 2.20-2.28 (5H, m), 2.36-2.46 (2H, m), 2.61-2.70 (2H, m), 2.81-2.87 (1H, m), 2.90-2.96 (1H, m), 3.09-3.16 (1H, m), 3.27-3.38 (4H, m), 3.31-3.86 (1H, m), 4.27-4.34 (1H, m), 4.71 (1H, q, J = 6.1 Hz), 6.88-6.94 (3H, m), 7.09-7.13 (1H, m), 7.14-7.20 (1H, m).

31(31a) 1H-NMR (CDCl$_3$) $\delta$: 1.30-1.35 (3.0H, m), 1.38-1.48 (1.0H, m), 1.54-1.59 (3.0H, m), 1.61-1.75 (3.0H, m), 2.20-2.23 (3.0H, m), 2.24-2.43 (2.5H, m), 2.51 (0.5H, dd, J = 12.3, 6.6 Hz), 2.60-2.69 (1.0H, m), 2.73 (0.5H, dd, J = 12.6, 6.3 Hz), 2.79-2.93 (1.5H, m), 2.97-3.06 (1.0H, m), 3.08-3.13 (0.5H, m), 3.22 (0.5H, dd, J = 9.2, 6.3 Hz), 3.32 (0.5H, dd, J = 9.5, 4.3 Hz), 3.40 (0.5H, dd, J = 9.5, 6.0 Hz), 3.51 (0.5H, dd, J = 9.2, 4.0 Hz), 3.78-3.89 (1.0H, m), 4.20-4.30 (2.0H, m), 5.07-5.12 (1.0H, m), 6.26-6.32 (1.0H, m), 6.75-6.84 (2.0H, m), 7.00-7.08 (2.0H, m), 7.22-7.28 (1.0H, m), 7.35 (1.0H, d, J = 7.4 Hz), 8.43-8.49 (1.0H, m).

31(39b) 1H-NMR (CDCl$_3$) $\delta$: 1.24-1.25 (3.0H, m), 1.40-1.49 (1.0H, m), 1.64-1.61 (3.0H, m), 1.62-1.76 (3.0H, m), 2.21-2.23 (3.0H, m), 2.28-2.43 (2.5H, m), 2.32 (0.5H, dd, J = 12.6, 6.9 Hz), 2.54-2.68 (3.0H, m), 2.75 (0.5H, dd, J = 12.0, 6.3 Hz), 2.83-2.92 (1.5H, m), 3.01-3.13 (2.5H, m), 3.15-3.25 (2.0H, m), 3.37 (0.5H, dd, J = 9.7, 4.0 Hz), 3.42 (0.5H, dd, J = 9.2, 5.7 Hz), 3.54 (0.5H, dd, J = 9.7, 4.0 Hz), 3.81-3.89 (1.0H, m), 4.11-4.17 (1.0H, m), 4.95-5.00 (1.0H, m), 6.77-6.83 (2.0H, m), 6.87-6.93 (1.0H, m), 6.95-6.99 (1.0H, m), 7.01-7.07 (1.0H, m), 7.14-7.19 (1.0H, m).

31(31c) 1H-NMR (CDCl$_3$) $\delta$: 1.54 (3.0H, d, J = 6.9 Hz), 1.66-1.76 (3.0H, m), 2.21-2.23 (3.0H, m), 2.88-2.95 (1.0H, m), 3.01-3.20 (4.0H, m), 3.21-3.29 (1.0H, m), 3.36 (0.5H, dd, J = 10.0, 6.0 Hz), 3.41 (0.5H, dd, J = 10.0, 6.4 Hz), 3.45-3.53 (1.0H, m), 3.61-3.56 (0.5H, m), 3.69-3.76 (0.5H, m), 4.11-4.20 (1.0H, m), 5.07-5.10 (1.0H, m), 6.81-6.86 (3.0H, m), 7.03-7.09 (2.0H, m), 7.11-7.18 (1.0H, m).
32(32a) 1H-NMR (CDCl₃) δ: 1.30-1.34 (3.0H, m), 1.39-1.49 (1.0H, m), 1.51-1.56 (3.0H, m), 1.57-1.75 (3.0H, m), 2.19-2.24 (3.0H, m), 2.25-2.45 (6.0H, m), 2.52 (0.5H, dd, J = 12.6, 6.9 Hz), 2.61-2.68 (1.0H, m), 2.72 (0.5H, dd, J = 12.6, 6.3 Hz), 2.79-2.92 (2.0H, m), 2.98-3.03 (0.5H, m), 3.08-3.12 (0.5H, m), 3.20 (0.5H, dd, J = 9.2, 6.3 Hz), 3.28-3.33 (1.0H, m), 3.43 (0.5H, dd, J = 9.2, 4.0 Hz), 3.79-3.87 (1.0H, m), 4.19-4.29 (2.0H, m), 4.98 (1.0H, q, J = 6.6 Hz), 6.19-6.24 (1.0H, m), 6.74-6.84 (2.0H, m), 6.99-7.06 (1.0H, m), 7.15-7.18 (2.0H, m), 7.38-7.41 (1.0H, m), 8.54-8.59 (1.0H, m).

32(32b) 1H-NMR (CDCl₃) δ: 1.25 (3.0H, t, J = 7.2 Hz), 1.41-1.50 (1.0H, m), 1.52-1.56 (3.0H, m), 1.64-1.77 (3.0H, m), 2.22 (3.0H, s), 2.29-2.46 (6.0H, m), 2.51 (0.5H, dd, J = 12.5, 7.4 Hz), 2.56-2.62 (2.0H, m), 2.62-2.71 (1.0H, m), 2.75-2.91 (2.0H, m), 3.00-3.12 (2.5H, m), 3.22-3.27 (0.5H, m), 3.29-3.34 (0.5H, m), 3.36 (0.5H, dd, J = 9.7, 4.6 Hz), 3.44 (0.5H, dd, J = 9.7, 4.6 Hz), 3.84-3.89 (1.0H, m), 4.12-4.17 (2.0H, m), 4.96 (1.0H, q, J = 6.4 Hz), 6.77-6.83 (2.0H, m), 7.00-7.11 (4.0H, m).

32(32c) 1H-NMR (CDCl₃) δ: 1.48-1.51 (3.0H, m), 1.66-2.00 (4.0H, m), 2.20-2.23 (3.0H, m), 2.37-2.41 (3.0H, m), 2.51-2.79 (4.5H, m), 2.87-2.94 (1.0H, m), 3.04-3.45 (7.5H, m), 3.63-3.69 (0.5H, m), 3.71-3.76 (0.5H, m), 4.18-4.26 (1.0H, m), 5.00-5.09 (1.0H, m), 6.78-6.87 (2.0H, m), 6.95-6.99 (1.0H, m), 7.03-7.12 (3.0H, m).

33(33a) 1H-NMR (CDCl₃) δ: 1.34 (3H, t, J = 7.0 Hz), 1.41-1.51 (4H, m), 1.63-1.77 (3H, m), 2.22 (3H, s), 2.32-2.48 (3H, m), 2.65-2.74 (1H, m), 2.82 (1H, dd, J = 12.4, 6.0 Hz), 2.89 (1H, dd, J = 13.1, 4.4 Hz), 3.01-3.07 (1H, m), 3.29 (1H, dd, J = 9.4, 6.6 Hz), 3.38 (1H, dd, J = 9.4, 3.9 Hz), 3.81-3.88 (4H, m), 4.27 (2H, q, J = 7.0 Hz), 4.84 (1H, q, J = 6.4 Hz), 6.52 (1H, d, J = 16.0 Hz), 5.08 (1H, dd, J = 10.5, 2.3 Hz), 6.72-6.83 (2H, m), 6.88 (1H, dd, J = 9.4, 2.3 Hz), 7.05 (1H, t, J 7.8 Hz), 7.82 (1H, d, J = 16.0 Hz).

33(33b) 1H-NMR (CDCl₃) δ: 1.26 (3H, t, J = 7.1 Hz), 1.40 (3H, d, J = 6.3 Hz), 1.43-1.50 (1H, m), 1.63-1.77 (3H, m), 2.22 (3H, s), 2.31-2.52 (5H, m), 2.67-2.72 (1H, m), 2.80-2.99 (4H, m), 3.02-3.07 (1H, m), 3.28 (1H, dd, J = 9.2, 5.7 Hz), 3.36 (1H, dd, J = 9.2, 3.4 Hz), 3.81 (3H, s), 3.82-3.88 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.76 (1H, q, J = 6.3 Hz), 6.50 (1H, dd, J = 10.3, 2.3 Hz), 6.77 (1H, dd, J = 10.0, 2.3 Hz), 6.79-6.84 (2H, m), 7.03-7.07 (1H, m).
### Table 68

<table>
<thead>
<tr>
<th>Formula</th>
<th>NMR Data</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>33(33c)</td>
<td>$^1$H-NMR (CDCl$_3$): $\delta$: 1.34 (3H, $d, J = 6.9$ Hz), 1.62-1.71 (1H, m), 1.72 (3H, $s$), 2.23 (3H, $s$), 2.46-2.64 (3H, m), 2.66-2.80 (2H, m), 2.85-2.96 (2H, m), 2.97-3.04 (1H, m), 3.21-3.51 (6H, m), 3.80 (3H, $s$), 4.03-4.09 (1H, m), 5.09-5.14 (1H, m), 6.48 (1H, $dd, J = 10.6, 2.6$ Hz), 6.74 (1H, $dd, J = 10.0, 2.6$ Hz), 6.83-6.87 (2H, m), 7.09 (1H, $t, J = 8.0$ Hz).</td>
<td><img src="image" alt="Structure" /></td>
</tr>
<tr>
<td>34(34a)</td>
<td>$^1$H-NMR (CDCl$_3$): $\delta$: 1.30-1.34 (3.0H, $m$), 1.39-1.49 (1.0H, $m$), 1.55-1.58 (3.0H, $m$), 1.62-1.75 (3.0H, $m$), 2.20-2.24 (3.0H, $m$), 2.26-2.38 (1.5H, $m$), 2.39-2.44 (1.0H, $m$), 2.51 (0.5H, $dd, J = 12.6, 6.9$ Hz), 2.62-2.70 (1.0H, $m$), 2.73 (0.5H, $dd, J = 12.6, 6.3$ Hz), 2.79-2.92 (1.5H, $m$), 2.98-3.03 (0.5H, $m$), 3.07-3.12 (0.5H, $m$), 3.22 (0.5H, $dd, J = 9.2, 5.7$ Hz), 3.32 (0.5H, $dd, J = 9.2, 4.0$ Hz), 3.41 (0.5H, $dd, J = 9.2, 5.7$ Hz), 3.52 (0.5H, $dd, J = 9.2, 4.6$ Hz), 3.79-3.88 (1.0H, $m$), 4.19-4.30 (2.0H, $m$), 5.09 (1.0H, $q, J = 6.7$ Hz), 6.22-6.27 (1.0H, $m$), 6.76-6.83 (2.0H, $m$), 7.00-7.12 (2.0H, $m$), 7.29-7.33 (1.0H, $m$), 8.39 (1.0H, $dd, J = 16.0, 8.6$ Hz).</td>
<td><img src="image" alt="Structure" /></td>
</tr>
<tr>
<td>34(34b)</td>
<td>$^1$H-NMR (CDCl$_3$): $\delta$: 1.22-1.26 (3.0H, $m$), 1.49-1.49 (1.0H, $m$), 1.54-1.80 (3.0H, $m$), 1.61-1.78 (3.0H, $m$), 2.20-2.24 (3.0H, $m$), 2.29-2.45 (2.5H, $m$), 2.48-2.60 (2.5H, $m$), 2.63-2.70 (1.0H, $m$), 2.76 (0.5H, $dd, J = 13.2, 5.7$ Hz), 2.82-2.92 (1.5H, $m$), 2.99-3.07 (1.5H, $m$), 3.08-3.19 (1.5H, $m$), 3.22-3.27 (0.5H, $m$), 3.37 (0.5H, $dd, J = 8.6, 3.4$ Hz), 3.42 (0.5H, $dd, J = 10.0, 5.0$ Hz), 3.54 (0.5H, $dd, J = 9.2, 4.0$ Hz), 3.81-3.89 (1.0H, $m$), 4.11-4.16 (2.0H, $m$), 4.92-4.97 (1.0H, $m$), 6.75-6.84 (2.0H, $m$), 6.89-6.92 (1.0H, $m$), 6.97-7.07 (2.0H, $m$).</td>
<td><img src="image" alt="Structure" /></td>
</tr>
<tr>
<td>34(34c)</td>
<td>$^1$H-NMR (CDCl$_3$): $\delta$: 1.54 (3.0H, $d, J = 6.9$ Hz), 1.69-2.01 (4.0H, $m$), 2.20-2.24 (3.0H, $m$), 2.47-2.55 (1.0H, $m$), 2.56-2.64 (1.0H, $m$), 2.69-3.04 (5.0H, $m$), 3.06-3.19 (3.0H, $m$), 3.22-3.30 (1.0H, $m$), 3.36 (0.5H, $dd, J = 10.3, 6.3$ Hz), 3.44 (0.5H, $dd, J = 10.0, 4.9$ Hz), 3.47-3.54 (1.0H, $m$), 3.62-3.71 (0.5H, $m$), 3.73-3.80 (0.5H, $m$), 4.10-4.16 (0.5H, $m$), 4.17-4.23 (0.5H, $m$), 5.05-5.11 (1.0H, $m$), 6.80-6.87 (2.0H, $m$), 6.95-7.02 (2.0H, $m$), 7.04-7.11 (1.0H, $m$).</td>
<td><img src="image" alt="Structure" /></td>
</tr>
<tr>
<td>35(35a)</td>
<td>$^1$H-NMR (CDCl$_3$): $\delta$: 1.34 (3H, $t, J = 7.1$ Hz), 1.43-1.49 (4H, $m$), 1.60-1.76 (3H, $m$), 2.35-2.49 (3H, $m$), 2.65-2.74 (1H, $m$), 2.80-2.94 (2H, $m$), 3.02-3.09 (1H, $m$), 3.28-3.42 (2H, $m$), 3.81-3.90 (1H, $m$), 4.27 (2H, $q, J = 7.1$ Hz), 4.80-4.87 (1H, $m$), 6.34 (1H, $d, J = 15.8$ Hz), 6.93 (2H, $t, J = 8.0$ Hz), 7.06-7.14 (2H, $m$), 7.24-7.33 (1H, $m$), 7.37-7.43 (1H, $m$), 7.47 (1H, $d, J = 7.8$ Hz), 7.55 (1H, $d, J = 7.8$ Hz), 8.12 (1H, $d, J = 15.8$ Hz).</td>
<td><img src="image" alt="Structure" /></td>
</tr>
</tbody>
</table>
35(35b) \( ^1H\)-NMR (CDCl\(_3\)) \( \delta \): 1.25 (3H, t, J = 7.1 Hz), 1.41-1.51 (4H, m), 1.62-1.77 (3H, m), 2.36-2.49 (3H, m), 2.56-2.64 (2H, m), 2.66-2.74 (1H, m), 2.78-2.87 (1H, m), 2.89-2.95 (1H, m), 2.96-3.02 (2H, m), 3.03-3.10 (1H, m), 3.26-3.39 (2H, m), 3.82-3.90 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.73-4.80 (1H, m), 6.90-6.98 (2H, m), 7.07-7.28 (5H, m), 7.41-7.46 (1H, m).

35(35c) \( ^1H\)-NMR (CDCl\(_3\)) \( \delta \): 1.36-1.45 (3H, m), 1.70-2.01 (4H, m), 2.53-2.69 (2H, m), 2.70-2.80 (1H, m), 2.80-2.99 (3H, m), 3.03-3.49 (6H, m), 3.57-3.67 (1H, m), 4.07-4.19 (1H, m), 4.93-5.02 (1H, m), 6.93-7.05 (3H, m), 7.13-7.29 (4H, m), 7.34-7.42 (1H, m).

36(36a) \( ^1H\)-NMR (CDCl\(_3\)) \( \delta \): 1.34 (3H, t, J = 7.1 Hz), 1.41-1.50 (4H, m), 1.62-1.76 (3H, m), 2.35-2.49 (3H, m), 2.67-2.76 (1H, m), 2.80-2.87 (1H, m), 2.94 (1H, dd, J = 13.3, 4.1 Hz), 3.01-3.08 (1H, m), 3.29-3.36 (1H, m), 3.36-3.43 (1H, m), 3.81-3.89 (1H, m), 4.27 (2H, q, J = 7.1 Hz), 4.84 (1H, q, J = 6.4 Hz), 6.34 (1H, d, J = 15.6 Hz), 6.82-6.96 (3H, m), 7.17-7.33 (2H, m), 7.37-7.44 (1H, m), 7.47 (1H, d, J = 7.3 Hz), 7.55 (1H, d, J = 7.8 Hz), 8.12 (1H, d, J = 15.6 Hz).

36(36b) \( ^1H\)-NMR (CDCl\(_3\)) \( \delta \): 1.34 (3H, t, J = 7.1 Hz), 1.39-1.54 (4H, m), 1.83-1.77 (3H, m), 2.36-2.48 (3H, m), 2.56-2.63 (2H, m), 2.67-2.77 (1H, m), 2.79-2.86 (1H, m), 2.90-3.09 (4H, m), 3.26-3.33 (1H, m), 3.33-3.39 (1H, m), 3.81-3.89 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.77 (1H, q, J = 6.4 Hz), 6.84-6.95 (3H, m), 7.13-7.28 (4H, m), 7.41-7.46 (1H, m).

36(36c) \( ^1H\)-NMR (CDCl\(_3\)) \( \delta \): 1.25 (3H, t, J = 7.1 Hz), 1.68-2.00 (4H, m), 2.47-2.68 (2H, m), 2.69-2.79 (1H, m), 2.79-2.99 (3H, m), 3.02-3.28 (3H, m), 3.29-3.48 (3H, m), 3.55-3.65 (1H, m), 4.06-4.19 (1H, m), 4.90-5.00 (1H, m), 6.89-6.97 (2H, m), 6.97-7.02 (1H, m), 7.16-7.30 (4H, m), 7.33-7.39 (1H, m).

37(37a) \( ^1H\)-NMR (CDCl\(_3\)) \( \delta \): 1.34 (3H, t, J = 7.1 Hz), 1.39-1.54 (4H, m), 1.58-1.79 (3H, m), 2.27-2.49 (6H, m), 2.64-2.74 (1H, m), 2.81-2.94 (2H, m), 3.00-3.09 (1H, m), 3.28-3.43 (2H, m), 3.82-3.90 (1H, m), 4.27 (2H, q, J = 7.1 Hz), 4.84 (1H, q, J = 6.4 Hz), 6.34 (1H, d, J = 15.8 Hz), 7.00-7.10 (4H, m), 7.24-7.33 (1H, m), 7.37-7.43 (1H, m), 7.47 (1H, d, J = 7.8 Hz), 7.55 (1H, d, J = 7.8 Hz), 8.11 (1H, d, J = 15.6 Hz).
$^1$H-NMR (CDCl$_3$) δ: 1.25 (3H, t, J = 7.1 Hz), 1.43-1.63 (4H, m), 1.60-1.77 (3H, m), 2.28-2.47 (6H, m), 2.56-2.63 (2H, m), 2.65-2.73 (1H, m), 2.80-2.95 (2H, m), 2.95-3.08 (3H, m), 3.26-3.33 (1H, m), 3.34-3.40 (1H, m), 3.82-3.90 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.77 (1H, q, J = 6.4 Hz), 7.02-7.09 (4H, m), 7.13-7.28 (3H, m), 7.42-7.47 (1H, m).

$^1$H-NMR (CDCl$_3$) δ: 1.36-1.45 (3H, m), 1.76-2.08 (4H, m), 2.32 (3H, s), 2.53-2.69 (2H, m), 2.78-2.95 (3H, m), 2.98-3.13 (2H, m), 3.23-3.48 (5H, m), 3.71-3.81 (1H, m), 4.22-4.31 (1H, m), 4.69-5.34 (1H, m), 6.99-7.15 (4H, m), 7.15-7.28 (3H, m), 7.32-7.38 (1H, m).

$^1$H-NMR (CDCl$_3$) δ: 1.34 (3H, t, J = 7.1 Hz), 1.38-1.51 (4H, m), 1.60-1.76 (3H, m), 2.32-2.49 (3H, m), 2.64-2.73 (1H, m), 2.79-2.93 (2H, m), 3.00-3.08 (1H, m), 3.29-3.36 (1H, m), 3.37-3.44 (1H, m), 3.81-3.90 (1H, m), 4.27 (2H, q, J = 7.1 Hz), 4.84 (1H, q, J = 6.3 Hz), 6.34 (1H, d, J = 15.6 Hz), 6.82-6.89 (1H, m), 6.93-7.08 (2H, m), 7.25-7.33 (1H, m), 7.37-7.44 (1H, m), 7.47 (1H, d, J = 7.8 Hz), 7.56 (1H, d, J = 7.8 Hz), 8.13 (1H, d, J = 15.6 Hz).

$^1$H-NMR (CDCl$_3$) δ: 1.20-1.29 (3H, m), 1.30-1.38 (3H, m), 1.40-1.56 (4H, m), 1.59-1.80 (3H, m), 2.31-2.50 (3H, m), 2.55-2.66 (2H, m), 2.66-2.77 (1H, m), 2.80-2.98 (2H, m), 3.00-3.10 (9H, m), 3.26-3.47 (2H, m), 3.80-3.91 (1H, m), 4.20-4.35 (2H, m), 4.79-4.89 (1H, m), 6.29-6.39 (1H, m), 6.91-7.06 (3H, m), 7.12-7.33 (2H, m), 7.35-7.58 (3H, m), 8.05-8.16 (1H, m).
39(39b) \[ \text{1H-NMR (CDCl}_3 \text{) } \delta: 1.18-1.29 (6H, m), 1.41-1.55 (4H, m), 1.60-1.79 (3H, m), 2.32-2.47 (3H, m), 2.55-2.66 (4H, m), 2.67-2.76 (1H, m), 2.80-3.09 (5H, m), 3.25-3.43 (2H, m), 3.81-3.90 (1H, m), 4.14 (2H, q, J = 7.3 Hz), 4.75-4.79 (1H, m), 6.92-7.06 (3H, m), 7.11-7.31 (4H, m), 7.41-7.49 (1H, m). \]

39(39c) \[ \text{1H-NMR (CDCl}_3 \text{) } \delta: 1.23 (3H, t, J = 7.6 Hz), 1.41 (3H, d, J = 5.5 Hz), 1.75-2.06 (4H, m), 2.51-2.71 (4H, m), 2.73-2.95 (3H, m), 2.95-3.14 (2H, m), 3.21-3.49 (5H, m), 3.69-3.79 (1H, m), 4.19-4.29 (1H, m), 4.97 (1H, q, J = 6.1 Hz), 6.99-7.11 (3H, m), 7.16-7.28 (4H, m), 7.33-7.39 (1H, m). \]

40(40a) \[ \text{1H-NMR (CDCl}_3 \text{) } \delta: 1.34 (3H, t, J = 7.1 Hz), 1.41-1.54 (4H, m), 1.62-1.76 (3H, m), 2.35-2.53 (3H, m), 2.69-2.78 (1H, m), 2.81-2.89 (1H, m), 2.96-3.09 (2H, m), 3.30-3.44 (2H, m), 3.81-3.91 (1H, m), 4.27 (2H, q, J = 6.6 Hz), 6.34 (1H, d, J = 15.6 Hz), 7.23-7.51 (7H, m), 7.56 (1H, d, J = 7.8 Hz), 8.12 (1H, d, J = 15.6 Hz). \]

40 (40b) \[ \text{1H-NMR (CDCl}_3 \text{) } \delta: 1.20-1.28 (3H, m), 1.41-1.48 (4H, m), 1.69-1.77 (3H, m), 2.34-2.52 (3H, m), 2.52-2.66 (2H, m), 2.67-2.78 (1H, m), 2.78-2.87 (1H, m), 2.88-3.09 (4H, m), 3.26-3.33 (1H, m), 3.34-3.41 (1H, m), 3.81-3.89 (1H, m), 4.14 (2H, q, J = 7.8 Hz), 4.77 (1H, q, J = 6.4 Hz), 7.12-7.29 (3H, m), 7.29-7.47 (5H, m). \]

41(41a) \[ \text{1H-NMR (CDCl}_3 \text{) } \delta: 1.36-1.47 (3H, m), 1.71-2.11 (4H, m), 2.46-2.72 (2H, m), 2.75-3.15 (5H, m), 3.21-3.51 (5H, m), 3.63-3.74 (1H, m), 4.16-4.26 (1H, m), 4.91-5.00 (1H, m), 7.12-7.58 (8H, m). \]

41(41b) \[ \text{1H-NMR (CDCl}_3 \text{) } \delta: 1.34 (3H, t, J = 7.2 Hz), 1.41-1.49 (4H, m), 1.61-1.75 (3H, m), 2.35-2.51 (3H, m), 2.70-2.77 (1H, m), 2.81-2.86 (1H, m), 2.96-3.08 (2H, m), 3.30-3.36 (1H, m), 3.38-3.43 (1H, m), 3.83-3.90 (1H, m), 4.27 (2H, q, J = 7.2 Hz), 4.84 (1H, q, J = 6.5 Hz), 6.34 (1H, d, J = 16.0 Hz), 7.22-7.33 (3H, m), 7.37-7.43 (1H, m), 7.44-7.53 (3H, m), 7.53-7.58 (1H, m), 8.13 (1H, d, J = 16.0 Hz). \]

41(41b) \[ \text{1H-NMR (CDCl}_3 \text{) } \delta: 1.21-1.28 (3H, m), 1.39-1.51 (4H, m), 1.80-1.77 (3H, m), 2.35-2.54 (3H, m), 2.55-2.67 (2H, m), 2.70-2.79 (1H, m), 2.80-2.88 (1H, m), 2.94-3.15 (4H, m), 3.26-3.34 (1H, m), 3.34-3.42 (1H, m), 3.83-3.92 (1H, m), 4.14 (2H, q, J = 7.2 Hz), 4.77 (1H, q, J = 6.4 Hz), 7.14-7.30 (5H, m), 7.42-7.46 (1H, m), 7.48-7.54 (2H, m). \]
41(41c) 1H-NMR (CDCl₃) δ: 1.41 (3H, d, J = 6.4 Hz), 1.70-1.93 (3H, m), 1.93-2.03 (1H, m), 2.53-2.71 (2H, m), 2.74-2.82 (1H, m), 2.83-3.00 (3H, m), 3.05-3.15 (1H, m), 3.17-3.31 (2H, m), 3.39-3.49 (3H, m), 3.57-3.66 (1H, m), 4.12-4.20 (1H, m), 4.97 (1H, q, J = 6.4 Hz), 7.18-7.28 (3H, m), 7.29-7.40 (3H, m), 7.56 (2H, d, J = 7.8 Hz).

42(42a) 1H-NMR (CDCl₃) δ: 1.19-1.30 (3H, m), 1.38-1.51 (4H, m), 1.61-1.76 (3H, m), 2.22 (3H, s), 2.30-2.47 (3H, m), 2.47-2.62 (1H, m), 2.62-2.72 (1H, m), 2.75-2.95 (3H, m), 2.95-3.10 (2H, m), 3.18-3.52 (3H, m), 3.75-3.88 (4H, m), 4.06-4.20 (2H, m), 4.81 (1H, q, J = 6.4 Hz), 5.81-5.93 (1H, m), 6.43 (1H, d, J = 16.0 Hz), 6.75-6.85 (3H, m), 7.00-7.14 (2H, m), 7.20-7.32 (1H, m).

42(42b) 1H-NMR (CDCl₃) δ: 1.22-1.29 (3H, m), 1.38-1.57 (6H, m), 1.61-1.78 (5H, m), 2.22 (3H, s), 2.30-2.45 (5H, m), 2.55-2.77 (3H, m), 2.78-2.94 (2H, m), 3.00-3.08 (1H, m), 3.22-3.30 (1H, m), 3.78-3.88 (4H, m), 4.06-4.20 (2H, m), 4.12 (2H, q, J = 7.2 Hz), 4.73 (1H, q, J = 6.3 Hz), 6.73-6.84 (3H, m), 7.01-7.08 (2H, m), 7.17-7.23 (1H, m).

42(42c) 1H-NMR (CDCl₃) δ: 1.33-1.47 (4H, m), 1.59-1.99 (6H, m), 2.01-2.12 (1H, m), 2.18-2.31 (4H, m), 2.34-2.48 (2H, m), 2.72-2.93 (3H, m), 3.01-3.12 (1H, m), 3.20-3.49 (5H, m), 3.81 (3H, s), 3.88-3.97 (1H, m), 4.34-4.42 (1H, m), 4.78 (1H, q, J = 6.3 Hz), 6.76 (1H, d, J = 6.9 Hz), 6.98 (1H, d, J = 6.9 Hz), 7.09-7.20 (2H, m).

43(43a) 1H-NMR (CDCl₃) δ: 0.92 (3H, t, J = 7.3 Hz), 1.34 (3H, t, J = 7.3 Hz), 1.40-1.52 (1H, m), 1.67-1.85 (5H, m), 2.22 (3H, s), 2.29-2.50 (3H, m), 2.64-2.73 (1H, m), 2.77-2.93 (2H, m), 2.99-3.08 (1H, m), 3.28 (1H, dd, J = 9.6, 6.7 Hz), 3.40 (1H, dd, J = 9.6, 4.1 Hz), 3.82-3.90 (1H, m), 4.26 (2H, q, J = 7.3 Hz), 4.59 (1H, t, J = 6.4 Hz), 6.28 (1H, d, J = 15.6 Hz), 6.76-6.84 (2H, m), 6.94-7.08 (2H, m), 7.13-7.21 (1H, m), 7.55 (1H, dd, J = 8.5, 5.7 Hz), 8.00 (1H, d, J = 15.6 Hz).

43(43b) 1H-NMR (CDCl₃) δ: 0.98 (3H, t, J = 7.3 Hz), 1.24 (3H, t, J = 7.3 Hz), 1.39-1.51 (1H, m), 1.59-1.82 (5H, m), 2.22 (3H, s), 2.30-2.48 (3H, m), 2.54-2.60 (2H, m), 2.65-2.73 (1H, m), 2.79-3.00 (4H, m), 3.01-3.08 (1H, m), 3.25 (1H, dd, J = 9.2, 6.4 Hz), 3.37 (1H, dd, J = 9.2, 4.1 Hz), 3.81-3.89 (1H, m), 4.13 (2H, q, J = 7.3 Hz), 4.46-4.52 (1H, m), 6.78-6.84 (2H, m), 6.86-6.92 (1H, m), 7.02-7.08 (1H, m), 7.08-7.15 (2H, m).
<table>
<thead>
<tr>
<th>43(43c)</th>
<th>1H-NMR (CDCl₃) δ: 0.93 (3H, t, J = 7.1 Hz), 1.53-1.65 (1H, m), 1.66-1.76 (1H, m), 1.77-2.10 (4H, m), 2.24 (3H, s), 2.45-2.59 (1H, m), 2.59-2.70 (1H, m), 2.71-2.87 (2H, m), 2.88-2.98 (1H, m), 2.98-3.10 (2H, m), 3.23-3.48 (5H, m), 3.71-3.82 (1H, m), 4.23-4.33 (1H, m), 4.72 (1H, t, J = 6.2 Hz), 6.89 (3H, t, J = 8.9 Hz), 7.01 (1H, d, J = 9.6 Hz), 7.09-7.15 (1H, m), 7.16-7.21 (1H, m).</th>
</tr>
</thead>
<tbody>
<tr>
<td>44(44a)</td>
<td>1H-NMR (CDCl₃) δ: 0.93 (3H, t, J = 7.3 Hz), 1.34 (3H, t, J = 7.1 Hz), 1.39-1.52 (1H, m), 1.59-1.89 (5H, m), 2.22 (3H, s), 2.30-2.49 (3H, m), 2.64-2.73 (1H, m), 2.80-2.93 (2H, m), 2.99-3.08 (1H, m), 3.28 (1H, dd, J = 9.6, 6.4 Hz), 3.39 (1H, dd, J = 9.6, 3.9 Hz), 3.80-3.88 (1H, m), 4.28 (2H, q, J = 7.2 Hz), 4.54-4.61 (1H, m), 6.53 (1H, d, J = 16.0 Hz), 6.77-6.84 (2H, m), 6.99-7.08 (2H, m), 7.22-7.37 (2H, m), 7.87 (1H, d, J = 16.5 Hz).</td>
</tr>
<tr>
<td>44(44b)</td>
<td>1H-NMR (CDCl₃) δ: 0.97 (3H, t, J = 7.3 Hz), 1.26 (3H, t, J = 7.1 Hz), 1.39-1.52 (1H, m), 1.58-1.89 (5H, m), 2.23 (3H, s), 2.29-2.50 (3H, m), 2.50-2.74 (1H, m), 2.76-3.14 (5H, m), 3.23-3.32 (1H, d, J = 9.6, 3.9 Hz), 3.80-3.88 (1H, m), 4.15 (2H, q, J = 7.1 Hz), 4.52 (1H, t, J = 5.7 Hz), 6.77-6.84 (2H, m), 6.90-6.98 (1H, m), 7.01-7.08 (1H, m), 7.16-7.25 (2H, m).</td>
</tr>
<tr>
<td>44(44c)</td>
<td>1H-NMR (CDCl₃) δ: 0.93 (3H, t, J = 7.3 Hz), 1.54-1.75 (2H, m), 1.76-1.98 (3H, m), 1.98-2.11 (4H, m), 2.24 (3H, s), 2.49-2.68 (2H, m), 2.78-2.87 (1H, m), 2.88-3.09 (4H, m), 3.22-3.32 (1H, m), 3.33-3.49 (4H, m), 3.73-3.84 (1H, m), 4.25-4.34 (1H, m), 4.76-4.82 (1H, m), 6.84-6.96 (3H, m), 7.08-7.21 (3H, m).</td>
</tr>
<tr>
<td>45(45a)</td>
<td>1H-NMR (CDCl₃) δ: 0.91 (3H, t, J = 7.3 Hz), 1.34 (3H, t, J = 7.3 Hz), 1.40-1.51 (1H, m), 1.59-1.76 (4H, m), 1.78-1.90 (1H, m), 2.22 (3H, s), 2.29-2.48 (6H, m), 2.62-2.71 (1H, m), 2.80-2.93 (2H, m), 3.00-3.07 (1H, m), 3.27 (1H, d, J = 9.6 Hz), 3.38 (1H, dd, J = 9.2, 6.4 Hz), 3.80-3.89 (1H, m), 4.12 (1H, q, J = 7.3 Hz), 4.26 (2H, q, J = 6.9 Hz), 4.55 (1H, t, J = 6.4 Hz), 6.33 (1H, d, J = 15.6 Hz), 6.76-6.84 (2H, m), 7.04 (1H, t, J = 7.8 Hz), 7.21 (1H, d, J = 7.8 Hz), 7.31 (1H, d, J = 7.8 Hz), 7.37 (1H, s), 8.13 (1H, d, J = 15.6 Hz).</td>
</tr>
<tr>
<td>45(45b)</td>
<td>1H-NMR (CDCl₃) δ: 0.96 (3H, t, J = 7.2 Hz), 1.22-1.28 (3H, m), 1.41-1.49 (1H, m), 1.60-1.74 (4H, m), 1.76-1.87 (1H, m), 2.22 (3H, s), 2.28-2.45 (6H, m), 2.55-2.61 (2H, m), 2.62-2.70 (1H, m), 2.83 (1H, dd, J = 12.6, 5.7 Hz), 2.87-2.99 (3H, m), 3.01-3.07 (1H, m), 3.24 (1H, dd, J = 9.5, 6.6 Hz), 3.36 (1H, dd, J = 9.5, 4.9 Hz), 3.81-3.87 (1H, m), 4.09-4.17 (2H, m), 4.45-4.49 (1H, m), 6.78-6.83 (2H, m), 7.02-7.07 (2H, m), 7.25-7.29 (2H, m).</td>
</tr>
</tbody>
</table>

[Table 73]
(continued)

\[ 45(45c) \]

\[ ^1\text{H-NMR (CDCl}_3\text{)}: \delta: 0.92 (3H, t, J = 7.3 Hz), 1.56-1.66 (1H, m), 1.70-1.94 (4H, m), 1.95-2.06 (1H, m), 2.23 (3H, s), 2.29 (3H, s), 2.52-2.68 (2H, m), 2.71-3.13 (5H, m), 3.17-3.27 (1H, m), 3.29-3.46 (4H, m), 3.66-3.75 (1H, m), 4.18-4.27 (1H, m), 4.68 (1H, t, J = 6.6 Hz), 6.83-6.91 (2H, m), 6.98-7.02 (1H, m), 7.04 (1H, t, J = 7.8 Hz), 7.20 (1H, d, J = 7.8 Hz). \]

\[ 46(46a) \]

\[ ^1\text{H-NMR (CDCl}_3\text{)}: \delta: 0.95 (3H, t, J = 7.3 Hz), 1.34 (3H, t, J = 7.2 Hz), 1.40-1.51 (1H, m), 1.56-1.89 (6H, m), 2.22 (3H, s), 2.29-2.49 (3H, m), 2.62-2.71 (1H, m), 2.80-2.94 (2H, m), 3.00-3.08 (1H, m), 3.23-3.30 (1H, m), 3.38 (1H, dd, J = 9.4, 3.9 Hz), 3.79-3.91 (4H, m), 4.27 (2H, q, J = 7.2 Hz), 4.57-4.63 (1H, m), 6.57 (1H, d, J = 16.0 Hz), 6.76-6.88 (3H, m), 7.01-7.12 (2H, m), 7.33 (1H, t, J = 8.7 Hz), 7.95 (1H, d, J = 15.6 Hz). \]

\[ 46(46b) \]

\[ ^1\text{H-NMR (CDCl}_3\text{)}: \delta: 0.97 (3H, t, J = 7.3 Hz), 1.23-1.30 (3H, m), 1.38-1.50 (1H, m), 1.58-1.84 (5H, m), 2.22 (3H, s), 2.29-2.55 (5H, m), 2.61-2.71 (1H, m), 2.77-3.09 (5H, m), 3.21-3.28 (1H, m), 3.37 (1H, dd, J = 9.2, 4.1 Hz), 3.79-3.88 (4H, m), 4.09-4.19 (2H, m), 4.49-4.55 (1H, m), 6.73-6.84 (3H, m), 6.99-7.07 (2H, m), 7.18-7.24 (1H, m). \]

\[ 46(46c) \]

\[ ^1\text{H-NMR (CDCl}_3\text{)}: \delta: 0.95 (3H, t, J = 7.1 Hz), 1.54-1.95 (5H, m), 1.95-2.08 (1H, m), 2.24 (3H, s), 2.50-2.65 (2H, m), 2.71-2.81 (1H, m), 2.83-3.03 (4H, m), 3.14-3.25 (1H, m), 3.30-3.50 (4H, m), 3.69-3.78 (1H, m), 3.83 (3H, s), 4.21-4.30 (1H, m), 4.77-4.84 (1H, m), 6.73-6.78 (1H, m), 6.83-6.92 (2H, m), 6.94-6.98 (1H, m), 7.07-7.14 (1H, m), 7.16-7.22 (1H, m). \]

\[ 47(47a) \]

\[ ^1\text{H-NMR (CDCl}_3\text{)}: \delta: 0.93 (3H, t, J = 7.3 Hz), 1.35 (3H, t, J = 7.2 Hz), 1.40-1.52 (1H, m), 1.58-1.85 (5H, m), 2.23 (3H, s), 2.28-2.52 (6H, m), 2.62-2.71 (1H, m), 2.75-2.93 (2H, m), 2.99-3.08 (1H, m), 3.18-3.25 (1H, m), 3.31-3.38 (1H, m), 3.78-3.87 (1H, m), 4.29 (2H, q, J = 7.2 Hz), 4.43-4.49 (1H, m), 5.96 (1H, d, J = 16.5 Hz), 6.76-6.86 (2H, m), 7.01-7.08 (1H, m), 7.12-7.18 (1H, m), 7.21-7.36 (2H, m), 7.87 (1H, d, J = 16.5 Hz). \]

\[ 47(47b) \]

\[ ^1\text{H-NMR (CDCl}_3\text{)}: \delta: 0.99 (3H, t, J = 7.3 Hz), 1.23-1.31 (3H, m), 1.38-1.51 (1H, m), 1.58-1.89 (5H, m), 2.22 (3H, s), 2.29-2.54 (8H, m), 2.62-2.72 (1H, m), 2.78-3.08 (5H, m), 3.24 (1H, dd, J = 9.2, 6.4 Hz), 3.36 (1H, dd, J = 9.2, 4.1 Hz), 3.81-3.88 (1H, m), 4.19 (2H, t, J = 7.1 Hz), 4.47-4.53 (1H, m), 6.77-6.85 (2H, m), 7.01-7.10 (2H, m), 7.11-7.18 (1H, m), 7.23-7.29 (1H, m). \]
47(47c)  
\[\text{\begin{tabular}{c}
\(1^1\text{H-NMR (CDCl}_3\): } 0.96 (3H, t, J = 7.3 Hz), 1.56-1.77 (2H, m), 1.78-1.98 (3H, m), 1.98-2.11 (1H, m), 2.24 (3H, s), 2.35 (3H, s), 2.41-2.60 (2H, m), 2.74-2.98 (3H, m), 2.99-3.12 (2H, m), 3.14-3.53 (5H, m), 3.77-3.89 (1H, m), 4.29-4.40 (1H, m), 4.76 (1H, t, J = 6.2 Hz), 6.85-6.92 (2H, m), 7.04-7.15 (3H, m), 7.16-7.21 (1H, m).
\end{tabular}}\]

[Table 75]

48(48a)  
\[\text{\begin{tabular}{c}
\(1^1\text{H-NMR (CDCl}_3\): } 1.34 (3H, t, J = 7.1 Hz), 1.46 (3H, d, J = 6.3 Hz), 1.51-1.68 (1H, m), 1.97 (1H, ddd, J = 22.9, 14.4, 6.0 Hz), 2.23 (3H, d, J = 1.5 Hz), 2.26 (1H, dd, J = 13.3, 8.9 Hz), 2.55 (1H, dd, J = 12.7, 6.8 Hz), 2.73 (1H, ddd, J = 31.7, 12.3, 1.6 Hz), 2.80-2.85 (1H, br m), 2.95 (2H, dt, J = 12.9, 5.7 Hz), 3.03-3.10 (1H, m), 3.32 (1H, dd, J = 9.5, 6.3 Hz), 3.38 (1H, dd, J = 9.5, 3.9 Hz), 3.41 (1H, ddd, J = 31.4, 12.7, 5.1 Hz), 3.79-3.84 (1H, m), 4.27 (2H, q, J = 7.2 Hz), 4.83 (1H, q, J = 6.5 Hz), 5.04 (1H, dt, J = 55.0, 5.2 Hz), 6.34 (1H, d, J = 15.6 Hz), 6.79 (1H, br s), 6.82 (1H, s), 7.06 (1H, t, J = 7.7 Hz), 7.30 (1H, td, J = 7.6, 1.4 Hz), 7.40 (1H, td, J = 7.5, 1.3 Hz), 7.46 (1H, dd, J = 7.8, 1.2 Hz), 7.55 (1H, dd, J = 7.7, 0.9 Hz), 8.12 (1H, d, J = 15.6 Hz).
\end{tabular}}\]

48(48b)  
\[\text{\begin{tabular}{c}
\(1^1\text{H-NMR (CDCl}_3\): } 1.25 (3H, t, J = 7.2 Hz), 9.46 (3H, d, J = 8.3 Hz), 1.51-1.68 (2H, m), 1.91-2.02 (1H, m), 2.23 (3H, d, J = 1.5 Hz), 2.36 (1H, dd, J = 13.4, 9.0 Hz), 2.54 (1H, dd, J = 12.8, 6.7 Hz), 2.57-2.61 (2H, m), 2.73 (1H, ddd, J = 31.8, 12.4, 1.6 Hz), 2.90-2.98 (2H, m), 2.99 (2H, t, J = 8.2 Hz), 3.03-3.10 (1H, m), 3.28 (1H, dd, J = 9.4, 6.5 Hz), 3.35 (1H, dd, J = 9.5, 3.9 Hz), 3.41 (1H, ddd, J = 31.9, 12.5, 4.9 Hz), 3.78-3.84 (1H, m), 4.14 (2H, q, J = 7.2 Hz), 4.76 (1H, q, J = 6.3 Hz), 5.04 (1H, dt, J = 55.7, 5.0 Hz), 6.79 (1H, d, J = 2.0 Hz), 6.82 (1H, s), 7.06 (1H, t, J = 7.8 Hz), 7.16 (1H, td, J = 7.6, 1.5 Hz), 7.21 (1H, td, J = 7.4, 1.5 Hz), 7.26 (1H, td, J = 7.4, 1.8 Hz), 7.43 (1H, dd, J = 7.2, 1.6 Hz).
\end{tabular}}\]

48(48c)  
\[\text{\begin{tabular}{c}
\(1^1\text{H-NMR (CDCl}_3\): } 1.42 (3H, d, J = 6.4 Hz), 1.67-1.84 (1H, m), 1.99-2.09 (1H, m), 2.23 (3H, s), 2.56-2.70 (4H, m), 2.86-3.00 (2H, m), 3.06-3.25 (3H, m), 3.35-3.45 (4H, m), 3.60 (1H, ddd, J = 32.8, 13.3, 4.8 Hz), 3.84-3.90 (1H, br m), 4.91 (1H, q, J = 6.4 Hz), 5.05 (1H, dt, J = 54.3, 4.5 Hz), 6.83 (1H, d, J = 5.0 Hz), 6.85 (1H, br s), 7.09 (1H, t, J = 8.0 Hz), 7.22-7.25 (3H, m), 7.39-7.42 (1H, m).
\end{tabular}}\]
1H-NMR (CDCl₃): δ: 1.34 (3H, t, J = 7.1 Hz), 1.47 (3H, d, J = 6.4 Hz), 1.68 (2H, dd, J = 7.6, 4.8 Hz), 2.22 (3H, s), 2.34 (1H, dd, J = 13.1, 9.4 Hz), 2.47 (1H, dd, J = 10.8, 3.4 Hz), 2.58 (1H, dd, J = 12.8, 6.6 Hz), 2.90-2.96 (2H, m), 3.04-3.12 (1H, m), 3.31-3.39 (3H, m), 3.82-3.87 (1H, m), 4.27 (2H, q, J = 6.7 Hz), 4.28-4.32 (1H, m), 4.83 (1H, q, J = 6.6 Hz), 6.34 (1H, d, J = 16.0 Hz), 6.80 (1H, br s), 6.82 (1H, s), 7.05 (1H, t, J = 7.8 Hz), 7.30 (1H, t, J = 7.3 Hz), 7.40 (1H, t, J = 7.6 Hz), 7.45 (1H, d, J = 7.3 Hz), 7.56 (1H, d, J = 7.8 Hz), 8.14 (1H, d, J = 16.0 Hz).

1H-NMR (CDCl₃): δ: 1.25 (3H, t, J = 7.1 Hz), 1.46 (3H, d, J = 6.3 Hz), 1.65-1.70 (2H, m), 2.22 (3H, d, J = 1.7 Hz), 2.35 (1H, dd, J = 13.4, 9.3 Hz), 2.45 (1H, dd, J = 10.6, 3.3 Hz), 2.55 (1H, dd, J = 12.2, 6.6 Hz), 2.57-2.62 (2H, m), 2.90 (1H, dd, J = 12.7, 5.6 Hz), 2.95-3.00 (1H, m), 2.99 (2H, t, J = 7.9 Hz), 3.03-3.09 (1H, m), 3.29 (1H, br s), 3.94 (1H, q, J = 6.5 Hz), 3.34-3.38 (2H, m), 3.81-3.88 (1H, m), 4.14 (2H, q, J = 7.2 Hz), 4.28-4.32 (1H, m), 4.77 (1H, q, J = 6.3 Hz), 6.79 (1H, d, J = 1.7 Hz), 6.82 (1H, s), 7.05 (1H, t, J = 7.8 Hz), 7.16 (1H, dd, J = 7.3, 1.5 Hz), 7.20 (1H, dd, J = 7.2, 1.6 Hz), 7.23-7.24 (1H, m), 7.43 (1H, dd, J = 7.7, 1.3 Hz).

1H-NMR (CDCl₃): δ: 1.38 (3H, d, J = 6.4 Hz), 1.74-1.81 (1H, m), 1.93 (1H, dd, J = 13.3, 5.5 Hz), 2.23 (3H, s), 2.52-2.65 (2H, m), 2.81-2.89 (2H, m), 3.00-3.09 (2H, m), 3.20 (1H, dd, J = 13.3, 2.3 Hz), 3.27-3.34 (3H, br m), 3.41 (1H, dd, J = 10.5, 5.0 0 Hz), 3.68-3.76 (1H, m), 3.70 (1H, dd, J = 12.4, 4.6 Hz), 4.15-4.21 (1H, m), 4.34 (1H, br s), 4.91 (1H, q, J = 6.4 Hz), 6.89 (1H, d, J = 5.0 Hz), 6.91 (1H, br s), 7.10 (1H, t, J = 7.8 Hz), 7.16-7.23 (3H, m), 7.28 (1H, dd, J = 8.5, 4.8 Hz).

1H-NMR (CDCl₃): δ: 0.90-1.09 (4H, m), 1.30-1.38 (3H, m), 1.40-1.49 (3H, m), 1.82-1.93 (1H, m), 1.96-2.15 (2H, m), 2.23 (3H, s), 2.31-2.49 (2H, m), 2.53-2.99 (4H, m), 3.27-3.46 (2H, m), 3.75-3.89 (1H, m), 4.22-4.32 (2H, m), 4.79-4.89 (1H, m), 6.34 (1H, d, J = 15.8 Hz), 6.76-6.85 (2H, m), 6.99-7.08 (1H, m), 7.23-7.33 (1H, m), 7.36-7.44 (1H, m), 7.44-7.51 (1H, m), 7.52-7.59 (1H, m), 8.13 (1H, d, J = 15.6 Hz).
**EP 2 374 794 A1**

(continued)

| 50(50b) | 1H-NMR (CDCl₃) δ: 0.95 (3H, d, J = 6.9 Hz), 0.99-1.08 (1H, m), 1.21-1.2 (4H, m), 1.46 (3H, d, J = 6.4 Hz), 1.82-1.92 (1H, m), 2.00-2.13 (1H, m), 2.22 (3H, s), 2.31-2.45 (2H, m), 2.52-2.67 (4H, m), 2.67-2.79 (1H, m), 2.79-2.87 (1H, m), 2.91-3.03 (3H, m), 3.30 (1H, dd, J = 6.4, 4.1 Hz), 3.36 (1H, dd, J = 9.6, 4.1 Hz), 3.77-3.87 (1H, m), 4.14 (2H, q, J = 7.3 Hz), 4.77 (1H, q, J = 6.4 Hz), 6.77-6.83 (2H, m), 7.01-7.07 (1H, m), 7.13-7.29 (3H, m), 7.41-7.46 (1H, m). |
| 50(50c) | 1H-NMR (CDCl₃) δ: 1.03 (3H, d, J = 6.9 Hz), 1.39 (4H, d, J = 6.9 Hz), 1.94-2.05 (1H, m), 2.23 (3H, s), 2.52-2.69 (2H, m), 2.80-2.98 (3H, m), 3.03-3.13 (1H, m), 3.14-3.30 (4H, m), 3.31-3.83 (4H, m), 4.16-4.26 (1H, m), 4.95 (1H, q, J = 6.0 Hz), 6.84-6.92 (2H, m), 7.07-7.13 (1H, m) 7.14-7.27 (3H, m), 7.31-7.38 (1H, m). |

| Table 77 |

| 51(51a) | 1H-NMR (CDCl₃) δ: 0.93 (3H, d, J = 6.0 Hz), 1.22-1.38 (5H, m), 1.47 (3H, d, J = 6.4 Hz), 1.55-1.84 (2H, m), 1.95-2.07 (2H, m), 2.08-2.28 (1H, m), 2.33-2.49 (2H, m), 2.71-2.83 (2H, m), 2.84-2.92 (1H, m), 2.95-3.24 (1H, m), 3.26-3.35 (1H, m), 3.35-3.43 (1H, m), 3.80-3.90 (1H, m), 4.27 (2H, q, J = 7.3 Hz), 4.85 (1H, q, J = 6.5 Hz), 6.34 (1H, d, J = 16.0 Hz), 6.81 (2H, d, J = 9.6 Hz), 7.04 (1H, t, J = 7.6 Hz), 7.24-7.33 (1H, m), 7.40 (1H, t, J = 6.9 Hz), 7.48 (1H, d, J = 7.8 Hz), 7.56 (1H, d, J = 7.3 Hz), 8.13 (1H, d, J = 16.0 Hz). |
| 51(59b) | 1H-NMR (CDCl₃) δ: 0.92 (3H, d, J = 6.9 Hz), 1.21-1.33 (5H, m), 1.46 (3H, d, J = 6.0 Hz), 1.53-1.86 (1H, m), 1.99 (1H, t, J = 8.9 Hz), 2.07-2.19 (1H, m), 2.22 (3H, s), 2.33-2.47 (2H, m), 2.53-2.66 (2H, m), 2.71-2.82 (2H, m), 2.84-2.91 (1H, m), 2.99 (2H, t, J = 8.0 Hz), 3.13 (1H, t, J = 7.6 Hz), 3.24-3.32 (1H, m), 3.32-3.38 (1H, m), 3.80-3.88 (1H, m), 4.14 (2H, q, J = 7.8 Hz), 4.77 (1H, q, J = 6.4 Hz), 6.76-6.84 (2H, m), 7.04 (1H, t, J = 7.8 Hz), 7.13-7.29 (3H, m), 7.44 (1H, d, J = 7.3 Hz). |
| 51(51c) | 1H-NMR (CDCl₃) δ: 0.99 (3H, d, J = 4.6 Hz), 1.40 (3H, d, J = 4.6 Hz), 1.46-1.56 (1H, m), 1.91-2.01 (1H, m), 2.24 (3H, s), 2.36-2.52 (2H, m), 2.53-2.69 (2H, m), 2.73-2.93 (3H, m), 3.02-3.13 (1H, m), 3.21-3.48 (5H, m), 3.73-3.83 (1H, m), 4.14-4.25 (1H, m), 4.91-4.99 (1H, m), 6.83-6.92 (2H, m), 7.07-7.14 (1H, m), 7.16-7.29 (3H, m), 7.32-7.39 (1H, m). |
1H-NMR (CDCl₃) δ: 1.33 (3.0H, t, J = 7.3 Hz), 1.47 (3.0H, d, J = 6.4 Hz), 1.62-1.89 (1.0H, m), 1.94-2.01 (1.0H, m), 2.22 (3.0H, d, J = 1.4 Hz), 2.45-2.59 (3.0H, m), 2.87 (1.0H, dd, J = 12.4, 6.0 Hz), 2.93-3.01 (2.0H, m), 3.25-3.43 (4.0H, m), 3.86-3.92 (1.0H, m), 4.26 (2.0H, q, J = 7.3 Hz), 4.85 (1.0H, q, J = 6.4 Hz), 6.34 (1.0H, d, J = 15.6 Hz), 6.84 (2.0H, d, J = 9.2 Hz), 7.05 (1.0H, t, J = 7.8 Hz), 7.15-7.21 (3.0H, m), 7.24-7.31 (3.0H, m), 7.39 (1.0H, td, J = 7.6, 1.4 Hz), 7.47 (1.0H, dd, J = 7.8, 0.9 Hz), 7.55 (1.0H, d, J = 6.9 Hz), 8.13 (1.0H, d, J = 15.6 Hz).

1H-NMR (CDCl₃) δ: 1.20-1.30 (3H, m), 1.36-1.79 (4H, m), 1.80-1.92 (1H, m), 1.92-2.02 (1H, m), 2.11-2.26 (3H, s), 2.24-2.59 (5H, m), 2.73-3.12 (5H, m), 3.22-3.50 (4H, m), 3.82-3.95 (1H, m), 4.07-4.19 (2H, m), 4.73-4.83 (1H, m), 6.78-6.89 (2H, m), 7.01-7.09 (1H, m), 7.11-7.30 (8H, m), 7.41-7.48 (1H, m).

1H-NMR (CDCl₃) δ: 1.41 (3H, d, J = 6.4 Hz), 1.95-2.07 (1H, m), 2.16-2.27 (4H, m), 2.53-2.71 (2H, m), 2.75-2.96 (4H, m), 2.99-3.13 (1H, m), 3.27-3.49 (5H, m), 3.55-3.67 (1H, m), 3.90-3.98 (1H, m), 4.16-4.24 (1H, m), 4.93 (1H, q, J = 6.4 Hz), 6.86-6.93 (2H, m), 7.02-7.30 (9H, m), 7.32-7.39 (1H, m).

1H-NMR (CDCl₃) δ: 1.27 (3H, t, J = 6.2 Hz), 1.41 (3H, d, J = 6.0 Hz), 1.82-1.75 (3H, m), 2.23 (3H, s), 2.33 (3H, s), 2.35-2.60 (8H, m), 2.60-2.72 (1H, m), 2.81 (1H, dd, J = 12.8, 6.4 Hz), 2.90 (1H, dd, J = 12.8, 6.4 Hz), 2.98-3.09 (1H, m), 3.19-3.31 (1H, m), 3.33-3.42 (1H, m), 3.77-3.89 (1H, m), 4.14 (2H, q, J = 6.2 Hz), 4.72 (1H, q, J = 6.0 Hz), 6.04 (1H, dt, J = 15.6, 5.0 Hz), 6.75 (1H, d, J = 15.6 Hz), 6.80 (1H, s), 6.82 (2H, d, J = 4.1 Hz), 7.00-7.11 (2H, m), 7.20-7.23 (1H, m).

1H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 6.0 Hz), 1.43 (3H, d, J = 6.4 Hz), 1.57-1.77 (8H, m), 2.19 (3H, s), 2.31 (3H, s), 2.32-2.45 (5H, m), 2.61 (2H, t, J = 10.0 Hz), 2.64-2.72 (1H, m), 2.82 (1H, dd, J = 12.4, 5.5 Hz), 2.90 (1H, dd, J = 13.3, 4.1 Hz), 2.99-3.07 (1H, m), 3.25 (1H, dd, J = 9.2, 6.4 Hz), 3.33 (1H, td, J = 9.2, 4.1 Hz), 3.79-3.87 (1H, m), 4.13 (2H, q, J = 6.0 Hz), 4.71 (1H, q, J = 6.4 Hz), 6.80 (1H, d, J = 3.2 Hz), 6.82 (1H, s), 6.95 (1H, br s), 7.04 (2H, t, J = 6.0 Hz), 7.32 (1H, d, J = 7.8 Hz).
$^1$H-NMR (CDCl$_3$): δ: 1.39 (3H, d, J = 6.3 Hz), 1.52-1.67 (2H, m), 1.71-1.96 (5H, m), 1.99-2.09 (1H, m), 2.24 (3H, s), 2.30 (3H, s), 1.71-1.96 (1H, m), 2.20-2.34 (1H, m), 2.67 (2H, dd, J = 11.7, 8.7 Hz), 2.87 (1H, t, J = 11.7 Hz), 2.93-3.03 (1H, m), 3.11-3.21 (1H, m), 3.29-3.42 (4H, m), 3.80-3.91 (1H, m), 4.34 (1H, m), 4.75 (1H, q, J = 6.3 Hz), 6.89 (1H, d, J = 5.5 Hz), 6.93 (2H, d, J = 9.2 Hz), 7.03 (1H, d, J = 3.9 Hz), 7.11 (1H, t, J = 7.6 Hz), 7.24 (1H, d, J = 4.6 Hz).

$^1$H-NMR (CDCl$_3$): δ: 1.27 (3H, t, J = 7.1 Hz), 1.41 (3H, d, J = 6.4 Hz), 1.63-1.74 (3H, m), 2.23 (3H, s), 2.32-2.46 (4H, m), 2.50 (2H, d, J = 6.9 Hz), 2.56 (2H, t, J = 6.9 Hz), 2.64-2.73 (1H, m), 2.81 (1H, dd, J = 12.4, 6.0 Hz), 2.89 (1H, dd, J = 13.5, 3.4 Hz), 2.99-3.08 (1H, m), 3.22-3.29 (1H, m), 3.30-3.42 (1H, m), 3.78-3.87 (1H, m), 4.15 (2H, q, J = 7.1 Hz), 4.71 (1H, q, J = 6.4 Hz), 6.07 (1H, dt, J = 15.6, 7.6 Hz), 6.72 (1H, d, J = 15.6 Hz), 6.79 (1H, br s), 6.82 (1H, s), 6.94 (1H, t, J = 8.3 Hz), 7.06 (2H, dd, J = 15.6, 8.3 Hz), 7.35 (1H, t, J = 7.1 Hz).

$^1$H-NMR (CDCl$_3$): δ: 1.26 (3H, t, J = 7.1 Hz), 1.42 (3H, d, J = 6.4 Hz), 1.60-1.76 (8H, m), 2.23 (3H, s), 2.35 (3H, dd, J = 7.3, 6.0 Hz), 2.39-2.45 (2H, m), 2.64 (2H, t, J = 7.8 Hz), 2.67-2.74 (1H, m), 2.81 (1H, dd, J = 11.9, 5.0 Hz), 2.89 (1H, dd, J = 13.5, 3.4 Hz), 3.02-3.04 (1H, m), 3.25 (1H, dd, J = 7.1, 3.6 Hz), 3.32 (1H, td, J = 7.1, 2.5 Hz), 3.80-3.86 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.70 (1H, q, J = 6.4 Hz), 6.80 (1H, d, J = 1.4 Hz), 6.82 (1H, s), 6.85 (1H, s), 6.92 (1H, t, J = 8.3 Hz), 7.05 (1H, t, J = 7.8 Hz), 7.39 (1H, dd, J = 6.6, 3.3 Hz).
| 55(55a) | \[^1\text{H}-\text{NMR (CDCl}_3\text{)}\] δ: 1.26 (3H, t, J = 7.1 Hz), 1.40 (3H, d, J = 6.4 Hz), 1.63-1.75 (3H, m), 2.23 (3H, s), 2.32-2.57 (8H, m), 2.65-2.75 (1H, m), 2.82 (1H, dd, J = 12.4, 6.0 Hz), 2.89 (1H, dd, J = 13.3, 3.7 Hz), 3.00-3.08 (1H, m), 3.28 (1H, dd, J = 9.6, 6.0 Hz), 3.38 (1H, dt, J = 17.9, 6.3 Hz), 3.79-3.90 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.72 (1H, q, J = 6.4 Hz), 5.99 (1H, dt, J = 15.6, 6.9 Hz), 6.63 (1H, d, J = 15.6 Hz), 6.80 (1H, d, J = 4.6 Hz), 6.83 (1H, s), 6.86-6.95 (1H, m), 7.05 (1H, t, J = 8.0 Hz), 7.11 (1H, dd, J = 10.1, 2.8 Hz), 7.34 (1H, dd, J = 8.5, 5.7 Hz). |
| 55(55b) | \[^1\text{H}-\text{NMR (CDCl}_3\text{)}\] δ: 1.25 (3H, t, J = 7.2 Hz), 1.41 (3H, d, J = 6.4 Hz), 1.54-1.76 (8H, m), 2.23 (3H, s), 2.34 (2H, t, J = 7.3 Hz), 2.37-2.47 (3H, m), 2.60 (2H, t, J = 7.8 Hz), 2.65-2.75 (1H, m), 2.82 (1H, dd, J = 12.4, 5.5 Hz), 2.90 (1H, dd, J = 13.3, 4.1 Hz), 2.98-3.16 (1H, m), 3.26 (1H, dd, J = 9.4, 6.6 Hz), 3.35 (1H, dd, J = 9.4, 4.1 Hz), 3.81-3.89 (1H, m), 4.12 (2H, q, J = 7.2 Hz), 4.70 (1H, q, J = 6.4 Hz), 6.80 (1H, d, J = 4.6 Hz), 6.83 (1H, s), 6.88 (1H, td, J = 8.3, 2.8 Hz), 7.02-7.11 (2H, m), 7.14 (1H, dd, J = 10.1, 2.8 Hz). |
| 55(55c) | \[^1\text{H}-\text{NMR (CDCl}_3\text{)}\] δ: 1.36 (2H, d, J = 6.4 Hz), 1.48-1.65 (2H, m), 1.66-1.97 (5H, m), 1.99-2.09 (1H, m), 2.24 (3H, s), 2.28 (1H, dd, J = 6.4, 3.2 Hz), 2.35-2.51 (2H, m), 2.82-2.6 (1H, m), 2.71 (1H, dd, J = 12.8, 8.7 Hz), 2.87 (1H, dd, J = 12.8, 10.1 Hz), 2.94-3.03 (1H, m), 3.14-3.24 (1H, m), 3.30-3.42 (4H, m), 3.81-3.93 (1H, m), 4.31-4.39 (1H, m), 4.74 (1H, q, J = 6.4 Hz), 6.86 (1H, td, J = 8.4, 2.9 Hz), 6.91 (2H, d, J = 9.2 Hz), 7.04-7.08 (2H, m), 7.11 (1H, t, J = 8.0 Hz). |
| 56(56a) | \[^1\text{H}-\text{NMR (CDCl}_3\text{)}\] δ: 1.26 (3H, t, J = 7.1 Hz), 1.42 (3H, d, J = 6.4 Hz), 1.62-1.74 (3H, m), 2.22 (3H, s), 2.33 (3H, s), 2.34-2.50 (7H, m), 2.51 (1H, q, J = 6.6 Hz), 2.59-2.73 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.90 (1H, dd, J = 12.6, 3.9 Hz), 2.99-3.07 (1H, m), 3.27 (1H, dd, J = 9.2, 6.4 Hz), 3.40 (1H, dd, J = 9.6, 4.1 Hz), 3.78-3.89 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.72 (1H, q, J = 6.4 Hz), 6.00 (1H, dt, J = 15.4, 6.5 Hz), 6.72 (1H, d, J = 15.4 Hz), 6.80 (1H, d, J = 3.2 Hz), 6.82 (1H, s), 7.00-7.08 (2H, m), 7.19 (1H, s), 7.28 (1H, d, J = 8.3 Hz). |

| 56(56b) | \[^1\text{H}-\text{NMR (CDCl}_3\text{)}\] δ: 1.26 (3H, t, J = 7.1 Hz), 1.43 (3H, d, J = 6.4 Hz), 1.54-1.78 (8H, m), 2.07 (3H, s), 2.23 (3H, s), 2.29-2.49 (5H, m), 2.62 (2H, t, J = 7.3 Hz), 2.66-2.74 (1H, m), 2.79-2.97 (2H, m), 2.99-3.10 (1H, m), 3.23-3.31 (1H, m), 3.32-3.41 (1H, m), 3.80-3.91 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.73 (1H, q, J = 6.4 Hz), 6.78-6.86 (2H, m), 6.98-7.10 (3H, m), 7.27 (1H, d, J = 8.3 Hz). |
### 56(56c)

<table>
<thead>
<tr>
<th>1H-NMR (CDCl$_3$) δ:</th>
<th>(1H, d, J = 6.3 Hz), 1.49-1.99 (8H, m), 2.20-2.28 (1H, m), 2.23 (3H, s), 2.31 (3H, s), 2.33-2.40 (1H, m), 2.43-2.52 (1H, m), 2.57 (1H, dd, J = 12.6, 8.0 Hz), 2.61-2.69 (1H, m), 2.74 (1H, dd, J = 12.6, 10.6 Hz), 2.79-2.87 (1H, m), 2.97-3.10 (1H, m), 3.21-3.42 (3H, m), 3.37 (1H, t, J = 6.9 Hz), 3.72 (1H, br s), 4.21-4.29 (1H, br m), 4.75 (1H, q, J = 6.3 Hz), 6.88 (2H, d, J = 9.2 Hz), 6.99 (2H, dd, J = 12.0, 8.0 Hz), 7.06-7.13 (1H, m), 7.16 (1H, s).</th>
</tr>
</thead>
</table>

### 57(57a)

<table>
<thead>
<tr>
<th>1H-NMR (CDCl$_3$) δ:</th>
<th>(3H, t, J = 7.1 Hz), 1.36-1.47 (1H, m), 1.42 (3H, d, J = 6.4 Hz), 1.63-1.73 (3H, m), 2.21 (3H, d, J = 6.9 Hz), 2.30 (3H, s), 2.36-2.40 (4H, m), 2.63-2.72 (1H, m), 2.77-2.85 (1H, m), 2.87-2.93 (1H, m), 3.00 (2H, d, J = 7.3 Hz), 3.01-3.08 (1H, m), 3.19-3.26 (1H, m), 3.30-3.35 (1H, m), 3.38-3.44 (1H, m), 3.79-3.87 (1H, m), 4.11 (2H, q, J = 7.1 Hz), 4.73 (1H, q, J = 6.4 Hz), 5.33-5.41 (1H, m), 5.60-5.69 (1H, m), 6.80 (1H, d, J = 3.2 Hz), 6.82 (1H, s), 7.00-7.13 (2H, m), 7.13-7.20 (1H, m), 7.32 (1H, d, J = 7.3 Hz).</th>
</tr>
</thead>
</table>

### 57(57b)

<table>
<thead>
<tr>
<th>1H-NMR (CDCl$_3$) δ:</th>
<th>(3H, t, J = 7.1 Hz), 1.44 (3H, d, J = 6.3 Hz), 1.47-1.61 (4H, m), 1.63-1.71 (3H, m), 1.74-1.82 (2H, m), 2.23 (3H, s), 2.32 (3H, s), 2.37-2.42 (4H, m), 2.54-2.72 (3H, m), 2.82 (1H, dd, J = 12.4, 5.0 Hz), 2.90 (1H, dd, J = 13.3, 4.1 Hz), 3.00-3.07 (1H, m), 3.25 (1H, dd, J = 8.0, 6.6 Hz), 3.34 (1H, dd, J = 9.4, 3.0 Hz), 3.80-3.88 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.74 (1H, q, J = 6.3 Hz), 6.80 (1H, d, J = 3.7 Hz), 6.82 (1H, s), 7.01-7.08 (2H, m), 7.14 (1H, t, J = 7.3 Hz), 7.30 (1H, d, J = 7.8 Hz).</th>
</tr>
</thead>
</table>

### 57(57c)

<table>
<thead>
<tr>
<th>1H-NMR (CDCl$_3$) δ:</th>
<th>(3H, t, J = 6.4 Hz), 1.43-1.64 (2H, m), 1.75-1.87 (2H, m), 1.88-2.02 (3H, m), 2.12-2.21 (1H, m), 2.24 (3H, s), 2.26-2.35 (1H, m), 2.31 (3H, s), 2.41-2.65 (3H, m), 2.92 (tt, dd, J = 12.8, 9.6 Hz), 3.03 (1H, dd, J = 12.6, 9.9 Hz), 3.18-3.25 (1H, m), 3.27-3.51 (4H, m), 3.55 (1H, d, J = 13.3 Hz), 3.96-4.07 (1H, m), 4.45-4.52 (1H, m), 4.78 (1H, q, J = 6.4 Hz), 6.92 (2H, t, J = 8.3 Hz), 7.05 (1H, d, J = 7.3 Hz), 7.12 (2H, q, J = 7.6 Hz), 7.21 (1H, d, J = 7.8 Hz).</th>
</tr>
</thead>
</table>

---

**Table 81**

### 58(58a)

| 1H-NMR (CDCl$_3$) δ: | (3H, t, J = 7.1 Hz), 1.40-1.49 (1H, m), 1.42 (3H, d, J = 6.4 Hz), 1.63-1.73 (3H, m), 2.23 (3H, s), 2.33-2.45 (3H, m), 2.49-2.53 (1H, m), 2.59 (1H, dd, J = 13.3, 6.4 Hz), 2.65-2.72 (1H, m), 2.78-2.85 (1H, m), 2.87-2.92 (1H, m), 3.00-3.07 (2H, m), 3.25 (1H, dd, J = 9.6, 5.0 Hz), 3.32-3.37 (1H, m), 3.43-3.46 (1H, m), 3.80-3.86 (1H, m), 4.11 (2H, q, J = 7.1 Hz), 4.72 (1H, q, J = 6.4 Hz), 5.46-5.53 (1H, m), 5.64-5.71 (1H, m), 6.80 (1H, s), 6.82 (1H, s), 6.94-6.98 (1H, m), 7.05 (1H, t, J = 7.8 Hz), 7.22-7.25 (2H, m). |
58(58b) \(^{1}\text{H-NMR (CDCl}_3\text{)} \delta: 1.25 (3H, t, J = 7.2 Hz), 1.40-1.47 (1H, m), 1.44 (3H, d, J = 6.4 Hz), 1.54-1.61 (2H, m), 1.64-1.77 (5H, m), 2.23 (3H, s), 2.32-2.45 (5H, m), 2.59-2.76 (3H, m), 2.82 (1H, dd, J = 12.4, 5.5 Hz), 2.90 (1H, dd, J = 13.3, 4.1 Hz), 3.01-3.06 (1H, m), 3.26 (1H, dd, J = 9.2, 6.9 Hz), 3.34 (1H, dd, J = 9.2, 3.9 Hz), 3.81-3.87 (1H, m), 4.12 (2H, q, J = 7.2 Hz), 4.71 (1H, q, J = 6.4 Hz), 6.80 (1H, d, J = 2.3 Hz), 6.82 (1H, s), 6.93 (1H, t, J = 8.9 Hz), 7.05 (1H, t, J = 7.8 Hz), 7.17-7.24 (2H, m).

58(58c) \(^{1}\text{H-NMR (CDCl}_3\text{)} \delta: 1.38 (3H, d, J = 6.4 Hz), 1.46-1.58 (1H, m), 1.61-1.95 (6H, m), 2.02-2.12 (1H, m), 2.23 (3H, s), 2.27-2.32 (1H, m), 2.38-2.49 (2H, m), 2.74-2.85 (2H, m), 2.93 (1H, dd, J = 13-1, 10.3 Hz), 3.03-3.09 (1H, m), 3.22-3.28 (1H, m), 3.32-3.46 (4H, m), 3.88-3.96 (1H, m), 4.37-4.44 (1H, m), 4.76 (1H, q, J = 6.4 Hz), 6.89-6.95 (3H, m), 7.10-7.20 (3H, m).

59(59a) \(^{1}\text{H-NMR (CDCl}_3\text{)} \delta: 1.35 (3H, t, J = 7.1 Hz), 1.47 (3H, d, J = 6.4 Hz), 1.65-1.73 (3H, m), 2.23 (3H, s), 2.32-2.48 (3H, m), 2.67-2.74 (1H, m), 2.82-2.91 (2H, m), 2.99-3.03 (1H, m), 3.05-3.11 (1H, m), 3.37 (2H, d, J = 3.7 Hz), 3.84-3.90 (1H, m), 4.29 (2H, q, J = 7.1 Hz), 4.87 (1H, q, J = 6.4 Hz), 6.39 (1H, d, J = 15.1 Hz), 6.80 (1H, d, J = 5.0 Hz), 6.82 (1H, s), 7.05 (1H, t, J = 7.3 Hz), 7.55 (1H, d, J = 7.8 Hz), 7.64 (1H, d, J = 8.3 Hz), 7.76 (1H, s), 8.06 (1H, d, J = 15.1 Hz).

59(59b) \(^{1}\text{H-NMR (CDCl}_3\text{)} \delta: 1.25 (3H, t, J = 7.2 Hz), 1.46 (3H, d, J = 6.4 Hz), 1.65-1.72 (3H, m), 2.22 (3H, s), 2.32-2.46 (3H, m), 2.62 (2H, t, J = 7.8 Hz), 2.67-2.73 (1H, m), 2.84 (1H, dd, J = 12.8, 5.5 Hz), 2.89 (1H, dd, J = 12.8, 4.1 Hz), 2.98-3.04 (3H, m), 3.08-3.18 (1H, m), 3.33 (2H, d, J = 5.5 Hz), 3.83-3.89 (1H, m), 4.13 (2H, q, J = 7.2 Hz), 4.80 (1H, q, J = 6.4 Hz), 6.79 (1H, d, J = 5.5 Hz), 6.82 (1H, s), 7.05 (1H, t, J = 8.0 Hz), 7.28 (1H, d, J = 8.3 Hz), 7.46 (1H, d, J = 8.3 Hz), 7.71 (1H s).

59(59c) \(^{1}\text{H-NMR (CDCl}_3\text{)} \delta: 1.38 (3H, d, J = 6.4 Hz), 1.79-2.07 (4H, m), 2.24 (3H, s), 2.54-2.70 (2H, m), 2.85-3.00 (3H, m), 3.03-3.13 (2H, m), 3.29-3.41 (4H, m), 3.45-3.49 (1H, m), 3.77-3.83 (1H, m), 4.32-4.37 (1H, m), 4.99 (1H, q, J = 6.4 Hz), 6.91 (2H, t, J = 7.6 Hz), 7.12 (1H, t, J = 8.0 Hz), 7.33 (1H, d, J = 8.3 Hz), 7.44 (1H, d, J = 8.3 Hz), 7.58 (1H, s).

[Table 82]
60(60a) $^1$H-NMR (CDCl$_3$) $\delta$: 1.26 (3H, t, J = 7.1 Hz), 1.43 (3H, d, J = 6.4 Hz), 1.65-1.72 (3H, m), 2.23 (3H, s), 2.32-2.52 (7H, m), 2.58 (1H, t, J = 7.1 Hz), 2.66-2.73 (1H, m), 2.83 (1H, dd, J = 12.8, 6.0 Hz), 2.89 (1H, dd, J = 12.8, 4.4 Hz), 2.99-3.03 (1H, m), 3.28-3.37 (2H, m), 3.84-3.90 (1H, m), 4.16 (2H, q, J = 7.1 Hz), 4.77 (1H, q, J = 6.4 Hz), 6.15 (1H, dt, J = 15.6, 7.8 Hz), 6.73 (1H, d, J = 15.6 Hz), 6.79 (1H, d, J = 5.0 Hz), 6.82 (1H, s), 7.05 (1H, t, J = 7.8 Hz), 7.47 (2H, m), 7.67 (1H, m).

60(60b) $^1$H-NMR (CDCl$_3$) $\delta$: 1.25 (3H, t, J = 7.1 Hz), 1.44 (3H, d, J = 6.4 Hz), 1.59-1.77 (8H, m), 2.22 (3H, s), 2.32-2.46 (4H, m), 2.69 (3H, t, J = 7.8 Hz), 2.84 (1H, dd, J = 12.8, 6.0 Hz), 2.89 (1H, dd, J = 13.3, 4.6 Hz), 2.98-3.02 (1H, m), 3.07-3.18 (1H, m), 3.30 (2H, d, J = 5.5 Hz), 3.83-3.89 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.77 (1H, q, J = 6.4 Hz), 6.80 (1H, d, J = 5.0 Hz), 6.82 (1H, s), 7.05 (1H, t, J = 7.8 Hz), 7.25 (1H, d, J = 8.3 Hz), 7.44 (1H, d, J = 7.3 Hz), 7.71 (1H, s).

60(60c) $^1$H-NMR (CDCl$_3$) $\delta$: 1.40 (3H, d, J = 6.4 Hz), 1.54-1.68 (2H, m), 1.69-2.03 (6H, m), 2.21-2.30 (1H, m), 2.24 (3H, s), 2.36-2.43 (1H, m), 2.52-2.58 (1H, m), 2.63 (1H, dd, J = 12.8, 8.3 Hz), 2.72-2.77 (1H, m), 2.82 (1H, dd, J = 13.3, 10.1 Hz), 2.88-2.94 (1H, m), 3.08-3.16 (1H, m), 3.28-3.43 (4H, m), 3.75-3.81 (1H, m), 4.28-4.34 (1H, m), 4.82 (1H, q, J = 6.4 Hz), 6.89 (1H, s), 6.91 (1H, d, J = 2.8 Hz), 7.11 (1H, t, J = 7.8 Hz), 7.23 (1H, d, J = 8.3 Hz), 7.43 (1H, d, J = 7.3 Hz), 7.63 (1H, s).

B1(61a) $^1$H-NMR (CDCl$_3$) $\delta$: 0.92 (3H, t, J = 7.1 Hz), 1.34 (3H, t, J = 7.1 Hz), 1.43-1.51 (2H, m), 1.54-1.61 (2H, m), 1.62-1.82 (4H, m), 2.22 (3H, s), 2.32-2.50 (3H, m), 2.66-2.71 (1H, m), 2.83 (1H, dd, J = 12.8, 6.0 Hz), 2.89 (1H, dd, J = 13.3, 4.1 Hz), 3.01-3.06 (1H, m), 3.27 (1H, dd, J = 9.4, 6.6 Hz), 3.40 (1H, dd, J = 9.4, 3.4 Hz), 3.83-3.88 (1H, m), 4.27 (2H, q, J = 7.1 Hz), 4.67 (1H, dd, J = 7.1, 4.8 Hz), 6.28 (1H, d, J = 16.0 Hz), 6.80 (1H, d, J = 5.0 Hz), 6.82 (1H, s), 6.98 (1H, td, J = 8.7, 2.8 Hz), 7.05 (1H, t, J = 8.0 Hz), 7.17 (1H, dd, J = 9.6, 2.3 Hz), 7.55 (1H, dd, J = 8.7, 5.5 Hz), 8.01 (1H, d, J = 16.0 Hz).
[Table 83]

1(61b) 1H-NMR (CDCl₃) δ: 0.93 (3H, t, J = 6.4 Hz), 1.24 (3H, t, J = 7.1 Hz), 1.35-1.59 (3H, m), 1.64-1.79 (4H, m), 2.22 (3H, s), 2.32-2.47 (3H, m), 2.57 (2H, dd, J = 6.4, 7.1 Hz), 2.65-2.72 (1H, m), 2.82 (1H, dd, J = 12.4, 5.5 Hz), 2.88 (1H, d, J = 3.7 Hz), 2.90-2.95 (2H, m), 3.01-3.06 (2H, m), 3.23 (1H, dt, J = 8.4, 3.7 Hz), 3.37 (1H, dd, J = 9.6, 4.1 Hz), 3.82-3.88 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.56 (1H, m), 6.80 (1H, d, J = 5.5 Hz), 6.82 (1H, s), 6.86-6.91 (1H, m), 7.05 (1H, t, J = 8.0 Hz), 7.09-7.13 (1H, m), 7.28 (1H, t, J = 8.0 Hz).

61(61c) 1H-NMR (CDCl₃) δ: 0.91 (3H, t, J = 7.1 Hz), 1.29-1.35 (1H, m), 1.44-1.53 (2H, m), 1.66-2.01 (5H, m), 2.24 (3H, s), 2.48-2.56 (1H, m), 2.59-2.66 (1H, m), 2.76 (2H, dd, J = 12.8, 8.3 Hz), 2.85-2.96 (2H, m), 3.01-3.09 (1H, m), 3.17-3.24 (1H, m), 3.30-3.42 (4H, m), 3.64-3.70 (1H, m), 4.18-4.23 (1H, br m), 4.81-4.84 (1H, br m), 6.85-6.91 (3H, m), 7.02 (1H, dd, J = 10.3, 3.0 Hz), 7.11 (1H, t, J = 8.5 Hz), 7.18 (1H, dd, J = 8.5, 5.7 Hz).

62(62a) 1H-NMR (CDCl₃) δ: 0.90 (3H, t, J = 7.3 Hz), 1.35 (3H, t, J = 7.1 Hz), 1.44-1.58 (3H, m), 1.65-1.81 (4H, m), 2.22 (3H, s), 2.31-2.45 (3H, m), 2.33 (3H, s), 2.62-2.69 (1H, m), 2.81 (1H, dd, J = 12.4, 6.0 Hz), 2.89 (1H, dd, J = 13.1, 3.9 Hz), 2.98-3.05 (2H, m), 3.19 (1H, dd, J = 9.4, 6.6 Hz), 3.35 (1H, dd, J = 9.4, 4.1 Hz), 3.78-3.84 (1H, m), 4.29 (2H, q, J = 7.3 Hz), 4.55 (1H, dd, J = 8.3, 4.1 Hz), 5.97 (1H, d, J = 16.5 Hz), 6.79 (1H, d, J = 4.6 Hz), 6.81 (1H, s), 7.04 (1H, t, J = 8.0 Hz), 7.14 (1H, d, J = 7.3 Hz), 7.26 (1H, t, J = 8.0 Hz), 7.33 (1H, d, J = 7.3 Hz), 7.86 (1H, d, J = 16.5 Hz).

62(62b) 1H-NMR (CDCl₃) δ: 0.93 (3H, t, J = 7.1 Hz), 1.28 (3H, t, J = 7.3 Hz), 1.35-1.49 (2H, m), 1.50-1.61 (1H, m), 1.63-9.82 (4H, m), 2.22 (3H, s), 2.34 (3H, s), 2.37-2.48 (5H, m), 2.63-2.70 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.90 (1H, dd, J = 13.3, 4.1 Hz), 2.94-3.06 (4H, m), 3.22 (1H, dd, J = 9.4, 6.6 Hz), 3.36 (1H, dd, J = 9.4, 3.9 Hz), 3.81-3.87 (1H, m), 4.18 (2H, q, J = 7.1 Hz), 4.58 (1H, dd, J = 8.5, 3.4 Hz), 6.79 (1H, d, J = 4.1 Hz), 6.82 (1H, s), 7.02-7.08 (2H, m), 7.15 (1H, d, J = 7.6 Hz), 7.27 (1H, d, J = 7.8 Hz).

62(62c) 1H-NMR (CDCl₃) δ: 0.92 (3H, t, J = 6.9 Hz), 1.31-1.40 (1H, m), 1.43-1.56 (2H, m), 1.63-1.72 (1H, m), 1.90-2.03 (4H, m), 2.14-2.21 (1H, m), 2.24 (3H, s), 2.32 (3H, s), 2.45-2.56 (1H, m), 2.61-2.68 (1H, m), 2.91-3.06 (3H, m), 3.09-3.24 (2H, br m), 3.29-3.35 (2H, m), 3.38-3.45 (2H, m), 3.52-3.58 (1H, m), 4.52-4.57 (1H, m), 4.72 (1H, dd, J = 8.3, 3.2 Hz), 6.91 (2H, dd, J = 17.0, 9.2 Hz), 7.06-7.17 (4H, m).
### Table 84

<table>
<thead>
<tr>
<th>Compound</th>
<th>NMR Data (CDCl₃) δ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>63(63a)</strong></td>
<td>0.92 (3H, t, J = 7.3 Hz), 1.31-1.40 (1H, m), 1.34 (3H, t, J = 7.1 Hz), 1.42-1.52 (1H, m), 1.54-1.75 (5H, m), 1.75-1.84 (1H, m), 2.22 (3H, s), 2.32-2.48 (3H, m), 2.65-2.71 (1H, m), 2.83 (1H, dd, J = 12.6, 5.7 Hz), 2.89 (1H, dd, J = 13.3, 4.1 Hz), 3.01-3.05 (1H, m), 3.26 (1H, dd, J = 9.6, 6.4 Hz), 3.39 (1H, dd, J = 9.6, 4.1 Hz), 3.81-3.87 (1H, m), 4.28 (2H, q, J = 7.1 Hz), 4.66 (1H, dd, J = 8.0, 4.8 Hz), 6.54 (1H, d, J = 16.5 Hz), 6.80 (1H, d, J = 5.2 Hz), 6.82 (1H, s), 7.01-7.07 (2H, m), 7.25 (1H, d, J = 7.3 Hz), 7.30-7.36 (1H, m), 7.86 (1H, d, J = 16.5 Hz).</td>
</tr>
<tr>
<td><strong>63(63b)</strong></td>
<td>0.93 (3H, t, J = 7.1 Hz), 1.26 (3H, t, J = 7.1 Hz), 1.32-1.41 (1H, m), 1.42-1.47 (1H, m), 1.51-1.60 (3H, m), 1.66-1.70 (2H, m), 1.75-1.82 (1H, m), 2.22 (3H, s), 2.32-2.46 (3H, m), 2.55 (2H, t, J = 8.3 Hz), 2.64-2.70 (1H, m), 2.82 (1H, dd, J = 13.5, 4.8 Hz), 2.89 (1H, dd, J = 13.5, 3.4 Hz), 2.94-3.08 (3H, m), 3.21-3.26 (1H, m), 3.37 (1H, dd, J = 9.4, 2.1 Hz), 3.80-3.86 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.57-4.60 (1H, m), 6.79 (1H, d, J = 4.1 Hz), 6.81 (1H, s), 6.92-6.96 (1H, m), 7.04 (1H, t, J = 7.8 Hz), 7.17-7.22 (2H, m).</td>
</tr>
<tr>
<td><strong>63(63c)</strong></td>
<td>0.92 (3H, t, J = 6.0 Hz), 1.31-1.38 (1H, m), 1.46-1.54 (2H, m), 1.65-2.01 (5H, m), 2.24 (3H, s), 2.55-2.61 (2H, m), 2.66-2.72 (1H, m), 2.80-2.89 (2H, m), 2.94-3.03 (2H, m), 3.07-3.13 (1H, m), 3.33 (2H, t, J = 15.6 Hz), 3.44-3.47 (2H, br m), 3.56-3.63 (1H, br m), 4.10-4.16 (1H, m), 4.91-4.95 (1H, br m), 6.86 (2H, t, J = 9.6 Hz), 6.90-6.94 (1H, m), 7.10 (1H, t, J = 7.6 Hz), 7.14-7.20 (2H, m).</td>
</tr>
<tr>
<td><strong>64(64a)</strong></td>
<td>0.90 (3H, t, J = 7.3 Hz), 1.34 (3H, t, J = 7.1 Hz), 1.39-1.51 (2H, m), 1.54-1.72 (6H, m), 1.76-1.85 (1H, m), 2.22 (3H, s), 2.31-2.38 (1H, m), 2.35 (3H, s), 2.43 (1H, dd, J = 12.6, 7.1 Hz), 2.63-2.69 (1H, m), 2.82 (1H, dd, J = 13.1, 3.9 Hz), 3.00-3.05 (1H, m), 3.25 (1H, dd, J = 9.6, 6.4 Hz), 3.37 (1H, dd, J = 9.6, 4.1 Hz), 3.80-3.86 (1H, m), 4.26 (2H, q, J = 7.1 Hz), 4.63 (1H, dd, J = 7.8, 5.0 Hz), 6.32 (1H, d, J = 16.0 Hz), 6.79 (1H, d, J = 3.2 Hz), 6.81 (1H, s), 7.04 (1H, t, J = 7.8 Hz), 7.20 (1H, d, J = 6.9 Hz), 7.31 (1H, d, J = 7.8 Hz), 7.37 (1H, s), 8.12 (1H, d, J = 16.0 Hz).</td>
</tr>
</tbody>
</table>
\[ \text{[0299]} \]

**[Table 85]**

- **64(64b)**
  - \[^1\text{H-NMR (CDCl}_3\] \(\delta\): 0.92 (3H, t, J = 6.9 Hz), 1.25 (3H, t, J = 7.1 Hz), 1.31-1.47 (2H, m), 1.51-1.60 (2H, m), 1.62-1.72 (3H, m), 1.76-1.84 (1H, m), 2.22 (3H, s), 2.30 (3H, s), 2.33-2.45 (3H, m), 2.55-2.60 (2H, m), 2.63-2.69 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.88 (1H, d, J = 4.1 Hz), 2.91-2.97 (2H, m), 3.01-3.06 (1H, m), 3.22 (1H, dd, J = 9.4, 3.7 Hz), 3.36 (1H, dd, J = 9.4, 3.7 Hz), 3.80-3.86 (1H, m), 4.1 (2H, q, J = 7.1 Hz), 4.55 (1H, dd, J = 8.0, 3.9 Hz), 6.79 (1H, d, J = 3.4 Hz), 6.81 (1H, s), 6.97 (1H, s), 7.05 (2H, d, J = 8.3 Hz), 7.28 (1H, d, J = 8.3 Hz).

- **64(64c)**
  - \[^1\text{H-NMR (CDCl}_3\] \(\delta\): 0.88 (3H, t, J = 7.1 Hz), 1.22-1.37 (1H, m), 1.40-1.55 (2H, m), 1.63-1.93 (5H, m), 2.23 (3H, s), 2.29 (3H, s), 2.49-2.62 (4H, m), 2.68-2.84 (2H, m), 2.95-3.04 (2H, m), 3.18-3.28 (2H, m), 3.36-3.47 (2H, m), 3.93-4.15 (2H, m), 4.72-4.84 (1H, m), 6.83-6.88 (2H, m), 7.01 (1H, d, J = 7.8 Hz), 7.03-7.10 (2H, m), 7.24 (1H, d, J = 7.8 Hz).

- **65(65a)**
  - \[^1\text{H-NMR (CDCl}_3\] \(\delta\): 0.92 (3H, t, J = 7.1 Hz), 1.34 (3H, t, J = 7.1 Hz), 1.39-1.53 (3H, m), 1.54-1.73 (4H, m), 1.75-1.84 (1H, m), 2.23 (3H, s), 2.31-2.41 (2H, m), 2.44 (1H, dd, J = 12.6, 7.1 Hz), 2.63-2.69 (1H, m), 2.83 (1H, dd, J = 12.2, 5.3 Hz), 2.90 (1H, dd, J = 13.3, 3.7 Hz), 3.01-3.06 (1H, m), 3.22-3.27 (1H, m), 3.38 (1H, dd, J = 9.2, 2.8 Hz), 3.80-3.85 (1H, m), 3.88 (3H, s), 4.27 (2H, q, J = 7.1 Hz), 4.69 (1H, dd, J = 7.6, 4.4 Hz), 6.59 (1H, d, J = 16.0 Hz), 6.80 (1H, d, J = 4.1 Hz), 6.82 (1H, s), 6.85 (1H, d, J = 7.8 Hz), 7.04 (1H, t, J = 7.8 Hz), 7.10 (1H, d, J = 7.8 Hz), 7.33 (1H, t, J = 7.8 Hz), 7.95 (1H, d, J = 16.0 Hz).

- **65(65b)**
  - \[^1\text{H-NMR (CDCl}_3\] \(\delta\): 0.92 (3H, t, J = 6.4 Hz), 1.27 (3H, t, J = 6.9 Hz), 1.33-1.48 (2H, m), 1.50-1.60 (3H, m), 1.83-1.73 (3H, m), 1.75-1.82 (1H, m), 2.23 (3H, s), 2.31-2.46 (3H, m), 2.51 (2H, t, J = 8.0 Hz), 2.63-2.69 (1H, m), 2.82 (1H, dd, J = 11.9, 5.0 Hz), 2.88-2.96 (2H, m), 3.00-3.07 (2H, m), 3.23 (1H, t, J = 7.8 Hz), 3.37 (1H, dd, J = 9.2, 2.3 Hz), 3.82 (3H, s), 4.15 (2H, q, J = 6.9 Hz), 4.58-4.62 (1H, m), 8.76-8.82 (3H, m), 7.01-7.07 (2H, m), 7.21 (1H, t, J = 7.6 Hz).

- **65(65c)**
  - \[^1\text{H-NMR (CDCl}_3\] \(\delta\): 0.88 (3H, t, J = 7.1 Hz), 1.30-1.41 (1H, m), 1.43-1.54 (2H, m), 1.61-1.88 (5H, m), 2.38-2.72 (4H, m), 2.64-3.03 (3H, m), 3.13-3.54 (4H, m), 3.78-3.84 (2H, m), 4.28-4.45 (1H, m), 4.85-4.98 (1H, m), 6.74 (1H, d, J = 6.9 Hz), 6.83-6.85 (2H, br m), 7.01 (1H, d, J = 6.3 Hz), 7.06-7.09 (1H, br m), 7.18 (1H, t, J = 7.1 Hz).
66(66a) 1H-NMR (CDCl$_3$): $\delta$: 1.33 (3H, t, $J = 7.1$ Hz), 1.40-1.51 (1H, m), 1.42 (3H, t, $J = 7.1$ Hz), 1.45 (3H, d, $J = 8.4$ Hz), 1.63-1.74 (3H, m), 2.22 (3H, s), 2.32-2.42 (2H, m), 2.46 (1H, dd, $J = 12.8$, 7.3 Hz), 2.65-2.71 (1H, m), 2.83 (1H, dd, $J = 12.4$, 6.0 Hz), 2.90 (1H, dd, $J = 13.3$, 4.1 Hz), 3.01-3.06 (1H, m), 3.33 (1H, dd, $J = 9.6$, 6.4 Hz), 3.42 (1H, dd, $J = 9.6$, 4.1 Hz), 3.82-3.88 (1H, m), 4.07 (2H, q, $J = 7.1$ Hz), 4.25 (2H, q, $J = 7.1$ Hz), 4.84 (1H, q, $J = 6.4$ Hz), 6.25 (1H, d, $J = 15.6$ Hz), 6.79-6.83 (3H, m), 7.01 (1H, d, $J = 2.8$ Hz), 7.05 (1H, t, $J = 8.0$ Hz), 7.53 (1H, d, $J = 8.3$ Hz), 8.02 (1H, d, $J = 15.6$ Hz).

66(66b) 1H-NMR (CDCl$_3$): $\delta$: 1.24 (3H, t, $J = 7.1$ Hz), 1.39 (3H, t, $J = 7.1$ Hz), 1.42-1.51 (1H, m), 1.44 (3H, d, $J = 6.1$ Hz), 1.63-1.75 (3H, m), 2.22 (3H, s), 2.32-2.42 (3H, m), 2.53-2.58 (2H, m), 2.65-2.72 (1H, m), 2.82 (1H, dd, $J = 12.6$, 5.7 Hz), 2.87-2.94 (3H, m), 3.01-3.07 (1H, m), 3.29 (1H, dd, $J = 9.4$, 6.6 Hz), 3.39 (1H, dd, $J = 9.4$, 3.9 Hz), 3.82-3.88 (1H, m), 4.01 (2H, q, $J = 7.1$ Hz), 4.13 (2H, q, $J = 7.1$ Hz), 4.72 (1H, q, $J = 6.1$ Hz), 6.74 (3H, dd, $J = 8.5$, 2.8 Hz), 6.79-6.83 (2H, m), 6.99 (3H, d, $J = 2.8$ Hz), 7.05 (3H, t, $J = 8.5$ Hz), 7.06 (3H, d, $J = 8.5$ Hz).

66(66c) 1H-NMR (CDCl$_3$): $\delta$: 1.38 (3H, d, $J = 6.2$ Hz), 1.38 (3H, t, $J = 7.0$ Hz), 1.74-2.04 (4H, m), 2.23 (3H, s), 2.48-2.62 (2H, m), 2.77-2.91 (3H, m), 2.92-3.05 (2H, m), 3.21-3.46 (5H, m), 3.68-3.76 (1H, br m), 3.99 (2H, q, $J = 7.0$ Hz), 4.22-4.30 (1H, br m), 4.89 (1H, q, $J = 6.2$ Hz), 6.73 (1H, dd, $J = 8.5$, 2.8 Hz), 6.85-6.91 (3H, m), 7.10 (2H, t, $J = 7.8$ Hz), 7.12 (2H, d, $J = 8.5$ Hz).

67(67a) 1H-NMR (CDCl$_3$): $\delta$: 1.26 (3H, t, $J = 7.1$ Hz), 1.40 (3H, t, $J = 7.1$ Hz), 1.41 (3H, d, $J = 6.7$ Hz), 1.42-1.48 (1H, m), 1.61-1.75 (3H, m), 2.22 (3H, s), 2.31-2.56 (7H, m), 2.64-2.72 (1H, m), 2.82 (1H, dd, $J = 12.4$, 6.0 Hz), 2.90 (1H, dd, $J = 13.3$, 3.7 Hz), 3.01-3.07 (1H, m), 3.27 (1H, dd, $J = 9.7$, 6.6 Hz), 3.41 (1H, dd, $J = 9.7$, 3.7 Hz), 3.81-3.89 (1H, m), 4.03 (2H, q, $J = 7.1$ Hz), 4.14 (2H, q, $J = 7.1$ Hz), 4.72 (1H, q, $J = 6.7$ Hz), 5.94 (1H, dt, $J = 15.4$, 6.5 Hz), 6.64 (1H, d, $J = 15.4$ Hz), 6.75 (1H, dd, $J = 8.6$, 2.6 Hz), 6.78-6.83 (2H, m), 6.94 (1H, d, $J = 2.6$ Hz), 7.04 (1H, t, $J = 7.6$ Hz), 7.31 (1H, d, $J = 8.6$ Hz).
1H-NMR (CDCl₃) δ: 1.25 (4H, t, J = 7.1 Hz), 1.39 (2H, d, J = 6.4 Hz), 1.43-1.51 (1H, m), 1.61-1.62 (3H, m), 2.09-2.26 (4H, m), 2.72 (3H, s), 2.92-3.01 (2H, m), 3.37 (1H, m), 3.82-3.87 (1H, m), 4.01 (2H, q, J = 7.1 Hz), 4.12 (2H, q, J = 7.1 Hz), 4.69 (1H, q, J = 6.4 Hz), 6.73 (1H, d, J = 8.3, 2.8 Hz), 6.78-6.83 (2H, m), 6.98 (1H, d, J = 8.4 Hz), 7.01-7.07 (2H, m).

1H-NMR (CDCl₃) δ: 1.38 (3H, d, J = 6.1 Hz), 1.40 (3H, d, J = 6.1 Hz), 1.45-2.05 (8H, m), 2.20-2.28 (1H, m), 2.24 (3H, s), 2.35-2.48 (2H, m), 3.15 (1H, d, J = 12.6, 3.9 Hz), 3.27 (1H, d, J = 12.6, 3.0 Hz), 3.29-3.41 (2H, m), 3.42 (1H, d, J = 9.4, 5.9 Hz), 4.14 (2H, q, J = 7.1 Hz), 4.50-4.59 (1H, m), 4.71 (1H, q, J = 6.3 Hz), 5.94 (1H, dt, J = 15.6, 6.4 Hz), 6.64 (1H, d, J = 15.8 Hz), 6.74 (1H, d, J = 8.4, 2.6 Hz), 6.78-6.83 (2H, m), 6.93 (1H, d, J = 8.4 Hz), 7.04 (1H, t, J = 8.3 Hz), 7.30 (1H, d, J = 8.4 Hz).

1H-NMR (CDCl₃) δ: 1.26 (3H, t, J = 7.1 Hz), 1.32 (6H, d, J = 6.0 Hz), 1.41 (3H, d, J = 6.3 Hz), 1.42-1.48 (1H, m), 1.61-1.74 (3H, m), 2.22 (3H, s), 2.31-2.56 (7H, m), 2.64-2.71 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.89 (1H, dd, J = 13.3, 3.7 Hz), 3.01-3.07 (1H, m), 3.27 (1H, dd, J = 9.6, 6.4 Hz), 3.42 (1H, dd, J = 9.4, 3.9 Hz), 3.80-3.89 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.50-4.59 (1H, m), 4.71 (1H, q, J = 6.3 Hz), 5.94 (1H, dt, J = 15.6, 6.4 Hz), 6.64 (1H, d, J = 15.8 Hz), 6.74 (1H, d, J = 8.4, 2.6 Hz), 6.78-6.83 (2H, m), 6.93 (1H, d, J = 2.6 Hz), 7.04 (1H, t, J = 8.3 Hz), 7.30 (1H, d, J = 8.4 Hz).
(continued)

68(68c) 1H-NMR (CDCl₃): δ: 1.31 (3H, s), 1.32 (3H, s), 1.38 (3H, d, J = 6.3 Hz), 1.47-2.00 (8H, m), 2.21-2.27 (1H, m), 2.24 (3H, s), 2.35-2.47 (2H, m), 2.53-2.66 (2H, m), 2.72-2.86 (2H, m), 2.98-3.06 (1H, m), 3.25 (1H, dd, J = 13.3, 4.1 Hz), 3.32 (1H, dd, J = 12.6, 3.0 Hz), 3.35-3.43 (2H, m), 3.72-3.78 (1H, m), 4.23-4.30 (1H, m), 4.47-4.56 (1H, m), 4.74 (1H, q, J = 6.3 Hz), 6.71 (1H, dd, J = 8.3, 2.8 Hz), 6.88 (2H, d, J = 8.7 Hz), 6.92 (1H, d, J = 2.8 Hz), 7.01 (1H, d, J = 8.3 Hz), 7.10 (1H, t, J = 7.8 Hz).

69(69a) 1H-NMR (CDCl₃): δ: 0.91 (3H, t, J = 7.4 Hz), 1.32 (3H, t, J = 7.2 Hz), 1.41-1.50 (1H, m), 1.63-1.74 (4H, m), 1.74-1.84 (1H, m), 2.22 (3H, s), 2.28 (3H, s), 2.32-2.42 (2H, m), 2.45 (1H, dd, J = 12.3, 7.2 Hz), 2.65-2.71 (1H, m), 2.83 (1H, dd, J = 12.6, 5.7 Hz), 2.89 (1H, dd, J = 13.2, 4.0 Hz), 3.01-3.06 (1H, m), 3.27 (1H, dd, J = 9.5, 6.6 Hz), 3.39 (1H, dd, J = 9.7, 4.0 Hz), 3.82-3.87 (1H, m), 4.26 (2H, q, J = 7.2 Hz), 4.47-4.55 (1H, t, J = 6.3 Hz), 6.27 (1H, d, J = 16.0 Hz), 6.79-6.83 (2H, m), 7.05 (1H, t, J = 8.0 Hz), 7.09 (1H, d, J = 10.3 Hz), 7.39 (1H, d, J = 7.4 Hz), 8.00 (1H, d, J = 16.0 Hz).

69(69b) 1H-NMR (CDCl₃): δ: 0.96 (3H, t, J = 7.2 Hz), 1.25 (3H, t, J = 7.2 Hz), 1.41-1.50 (1H, m), 1.69-1.73 (4H, m), 1.73-1.82 (1H, m), 2.23 (6H, s), 2.32-2.41 (2H, m), 2.44 (1H, dd, J = 12.6, 6.9 Hz), 2.50-2.61 (2H, m), 2.65-2.71 (1H, m), 2.83 (1H, dd, J = 12.8, 5.7 Hz), 2.85-2.95 (3H, m), 3.02-3.06 (1H, m), 3.24 (1H, dd, J = 9.5, 6.6 Hz), 3.36 (1H, dd, J = 9.7, 4.0 Hz), 3.82-3.87 (1H, m), 4.14 (2H, q, J = 7.2 Hz), 4.44 (1H, t, J = 5.7 Hz), 6.79-6.83 (2H, m), 6.96 (1H, d, J = 7.4 Hz), 7.03 (1H, d, J = 10.9 Hz), 7.05 (1H, t, J = 7.7 Hz).

[Table 88]

69(69c) 1H-NMR (CDCl₃): δ: 0.91 (3H, t, J = 7.3 Hz), 1.34-1.65 (1H, m), 1.66-2.01 (5H, m), 2.20 (3H, s), 2.23 (3H, s), 2.47-2.61 (2H, m), 2.72-2.86 (3H, m), 2.89-3.03 (2H, m), 3.15-3.23 (1H, m), 3.26-3.36 (3H, m), 3.41 (1H, dd, J = 10.5, 5.5 Hz), 3.62-3.70 (1H, m), 3.82-3.90 (1H, m), 4.18-4.25 (1H, m), 4.65 (1H, t, J = 6.2 Hz), 6.45-6.49 (2H, m), 6.93 (1H, d, J = 11.0 Hz), 7.02 (1H, d, J = 7.3 Hz), 7.10 (1H, d, J = 8.0 Hz).

70(70a) 1H-NMR (CDCl₃): δ: 0.91 (3H, t, J = 7.4 Hz), 1.26 (7H, t, J = 7.1 Hz), 1.41-1.49 (1H, m), 1.59-1.79 (5H, m), 2.22 (3H, s), 2.24 (3H, s), 2.31-2.56 (7H, m), 2.64-2.71 (1H, m), 2.81 (1H, dd, J = 12.6, 5.7 Hz), 2.89 (1H, dd, J = 13.2, 4.6 Hz), 3.02-3.07 (1H, m), 3.21 (1H, dd, J = 9.5, 6.6 Hz), 3.38 (1H, dd, J = 9.7, 4.0 Hz), 3.80-3.87 (1H, m), 4.15 (2H, q, J = 7.1 Hz), 4.45 (1H, d, J = 6.6 Hz), 5.96 (1H, d, J = 7.4 Hz), 6.79-6.83 (2H, m), 6.96 (1H, d, J = 10.9 Hz), 7.04 (1H, t, J = 7.7 Hz), 7.19 (1H, d, J = 7.4 Hz).
**70(70b)**

$^1$H-NMR (CDCl$_3$) $\delta$: 0.96 (3H, t, $J = 7.2$ Hz), 1.25 (3H, t, $J = 7.2$ Hz), 1.41-1.49 (1H, m), 1.54-1.78 (9H, m), 2.17-2.25 (7H, m), 2.31-2.45 (4H, m), 2.50-2.61 (2H, m), 2.65-2.71 (1H, m), 2.83 (1H, dd, $J = 12.6$, 5.7 Hz), 2.90 (1H, dd, $J = 13.2$, 4.0 Hz), 3.02-3.07 (1H, m), 3.21 (1H, dd, $J = 9.7$, 6.3 Hz), 3.35 (1H, dd, $J = 9.5$, 4.3 Hz), 3.62-3.87 (1H, m), 4.12 (2H, q, $J = 7.2$ Hz), 4.40 (1H, t, $J = 5.7$ Hz), 6.79-6.83 (2H, m), 6.95 (1H, d, $J = 8.0$ Hz), 7.00-7.06 (2H, m).

**70(70c)**

$^1$H-NMR (CDCl$_3$) $\delta$: 0.94 (3H, t, $J = 7.3$ Hz), 1.48-2.05 (9H, m), 2.19-2.31 (2H, m), 2.22 (3H, s), 2.24 (3H, s), 2.33-2.45 (2H, m), 2.58-2.66 (1H, m), 2.69 (1H, dd, $J = 12.8$, 8.7 Hz), 2.83 (1H, dd, $J = 13.3$, 10.5 Hz), 2.89-2.98 (1H, m), 3.07-3.19 (1H, m), 3.26-3.45 (4H, m), 3.80-3.86 (1H, m), 4.46-4.51 (1H, m), 6.85-6.90 (2H, m), 6.91 (1H, d, $J = 8.3$ Hz), 6.95 (1H, d, $J = 11.0$ Hz), 7.10 (1H, t, $J = 8.0$ Hz).

**71(71a)**

$^1$H-NMR (CDCl$_3$) $\delta$: 1.34 (3H, t, $J = 7.1$ Hz), 1.43-1.50 (1H, m), 1.46 (3H, d, $J = 6.3$ Hz), 1.47 (3H, t, $J = 6.9$ Hz), 3.62-1.74 (3H, m), 2.22 (3H, s), 2.32-2.40 (2H, m), 2.43 (1H, dd, $J = 12.3$, 7.2 Hz), 2.64-2.70 (1H, m), 2.82 (1H, dd, $J = 12.6$, 5.7 Hz), 2.90 (1H, dd, $J = 13.2$, 4.0 Hz), 3.01-3.06 (1H, m), 3.29 (1H, dd, $J = 9.5$, 6.6 Hz), 3.38 (1H, dd, $J = 9.7$, 4.0 Hz), 3.80-3.86 (1H, m), 4.07-4.12 (2H, m), 4.27 (2H, q, $J = 7.1$ Hz), 4.85 (1H, q, $J = 6.3$ Hz), 6.60 (1H, d, $J = 16.0$ Hz), 6.79-6.85 (3H, m), 7.04 (1H, t, $J = 8.0$ Hz), 7.11 (1H, d, $J = 8.0$ Hz), 7.31 (1H, t, $J = 8.0$ Hz), 7.95 (1H, d, $J = 16.0$ Hz).

**71(71b)**

$^1$H-NMR (CDCl$_3$) $\delta$: 1.26 (3H, t, $J = 7.1$ Hz), 1.40-1.48 (1H, m), 1.42 (3H, d, $J = 6.9$ Hz), 1.44 (3H, d, $J = 6.4$ Hz), 1.61-1.75 (3H, m), 2.22 (3H, s), 2.32-2.40 (2H, m), 2.42 (1H, dd, $J = 12.6$, 7.4 Hz), 2.47-2.57 (2H, m), 2.64-2.70 (1H, m), 2.82 (1H, dd, $J = 12.3$, 6.0 Hz), 2.87-2.97 (2H, m), 3.00-3.07 (2H, m), 3.29 (1H, dd, $J = 9.5$, 6.6 Hz), 3.37 (1H, dd, $J = 9.7$, 4.0 Hz), 3.81-3.87 (1H, m), 4.00-4.06 (2H, m), 4.15 (2H, q, $J = 7.1$ Hz), 4.78 (1H, q, $J = 6.4$ Hz), 6.75 (1H, d, $J = 8.0$ Hz), 6.79-6.83 (2H, m), 7.03-7.06 (2H, m), 7.20 (1H, t, $J = 8.0$ Hz).

**71(71c)**

$^1$H-NMR (CDCl$_3$) $\delta$: 1.37 (7H, d, $J = 6.3$ Hz), 1.41 (7H, t, $J = 6.9$ Hz), 1.73-2.04 (4H, m), 2.22 (3H, s), 2.46-2.59 (2H, m), 2.79-3.04 (5H, m), 3.20-3.27 (1H, m), 3.29-3.37 (3H, m), 3.42-3.50 (1H, m), 3.69-3.76 (1H, m), 3.97-4.06 (2H, m), 4.24-4.30 (1H, m), 4.96 (1H, q, $J = 6.3$ Hz), 6.72 (2H, d, $J = 8.0$ Hz), 6.87-6.91 (2H, m), 6.95 (1H, d, $J = 8.0$ Hz), 7.09 (1H, t, $J = 7.7$ Hz), 7.15 (1H, t, $J = 7.7$ Hz).
(continued)

72(72a) 1H-NMR (CDCl₃) δ: 1.27 (3H, t, J = 7.2 Hz), 1.41 (3H, t, J = 6.9 Hz), 1.42 (3H, d, J = 6.5 Hz), 1.42-1.49 (1H, m), 1.60-1.75 (3H, m), 2.22 (3H, s), 2.32-2.44 (5H, m), 2.48-2.52 (1H, m), 2.56-2.60 (1H, m), 2.63-2.70 (1H, m), 2.79 (1H, dd, J = 12.6, 5.7 Hz), 2.89 (1H, dd, J = 12.9, 4.3 Hz), 2.98-3.07 (1H, m), 3.21 (1H, dd, J = 9.7, 6.9 Hz), 3.31 (1H, dd, J = 8.9, 3.7 Hz), 3.79-3.85 (1H, m), 4.01 (2H, q, J = 6.9 Hz), 4.15 (2H, q, J = 7.2 Hz), 4.81 (1H, q, J = 6.5 Hz), 5.97 (1H, dt, J = 16.0, 6.6 Hz), 6.44 (1H, d, J = 16.0 Hz), 6.77 (1H, d, J = 7.4 Hz), 6.79-6.83 (2H, m), 7.04 (1H, t, J = 8.0 Hz), 7.08 (1H, d, J = 7.4 Hz), 7.20 (1H, t, J = 8.0 Hz).

72(72b) 1H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 7.1 Hz), 1.39-1.48 (1H, m), 1.42 (3H, t, J = 7.4 Hz), 1.43 (3H, d, J = 6.4 Hz), 1.50-1.57 (2H, m), 1.83-1.77 (5H, m), 2.22 (3H, s), 2.33-2.44 (5H, m), 2.57-2.76 (3H, m), 2.82 (1H, dd, J = 12.3, 5.4 Hz), 2.90 (1H, dd, J = 13.2, 4.6 Hz), 3.01-3.06 (1H, m), 3.25 (1H, dd, J = 9.7, 6.9 Hz), 3.35 (1H, dd, J = 9.7, 4.0 Hz), 3.81-3.86 (1H, m), 4.01 (2H, q, J = 7.1 Hz), 4.12 (2H, q, J = 7.4 Hz), 4.73 (1H, q, J = 6.4 Hz), 6.74 (1H, d, J = 7.7 Hz), 6.79-6.83 (2H, m), 7.01-7.06 (2H, m), 7.17 (1H, t, J = 7.7 Hz).

72(72c) 1H-NMR (CDCl₃) δ: 1.37 (3H, d, J = 6.3 Hz), 1.41 (3H, t, J = 7.0 Hz), 1.38 (3H, d, J = 5.7 Hz), 1.41-1.49 (1H, m), 1.60-2.04 (7H, m), 2.20-2.29 (1H, m), 2.23 (3H, s), 2.36-2.45 (2H, m), 2.69 (1H, dd, J = 12.9, 8.9 Hz), 2.80-2.90 (2H, m), 2.92-2.99 (1H, m), 3.13-3.20 (1H, m), 3.28-3.33 (2H, m), 3.35-3.40 (2H, m), 3.80-3.86 (1H, m), 3.98-4.03 (2H, m), 4.30-4.36 (1H, m), 4.78 (1H, q, J = 6.3 Hz), 6.73 (1H, d, J = 8.0 Hz), 6.87-6.91 (2H, m), 6.96 (1H, d, J = 8.0 Hz), 7.10 (1H, t, J = 8.0 Hz), 7.14 (1H, t, J = 8.0 Hz).

[Table 90]

73(73a) 1H-NMR (CDCl₃) δ: 1.34 (3H, t, J = 7.0 Hz), 1.38 (3H, d, J = 5.7 Hz), 1.39 (3H, d, J = 6.3 Hz), 1.43-1.48 (1H, m), 1.46 (3H, d, J = 6.4 Hz), 1.69-1.74 (3H, m), 2.22 (3H, s), 2.32-2.40 (2H, m), 2.43 (1H, dd, J = 12.6, 6.9 Hz), 2.64-2.70 (1H, m), 2.82 (1H, dd, J = 12.6, 6.3 Hz), 2.90 (1H, dd, J = 13.2, 4.6 Hz), 3.01-3.06 (1H, m), 3.29 (1H, dd, J = 9.7, 6.3 Hz), 3.38 (1H, dd, J = 9.7, 4.0 Hz), 3.80-3.86 (1H, m), 4.27 (2H, q, J = 7.0 Hz), 4.57-4.64 (1H, m), 4.84 (1H, q, J = 6.4 Hz), 6.58 (1H, d, J = 16.0 Hz), 6.79-6.83 (2H, m), 6.85 (1H, d, J = 8.6 Hz), 7.04 (1H, t, J = 8.0 Hz), 7.09 (1H, d, J = 8.0 Hz), 7.29 (1H, t, J = 8.0 Hz), 7.92 (1H, d, J = 16.0 Hz).
73(73b) \( \text{H-NMR (CDCl}_3 \) \( \delta \): 1.26 (3H, t, J = 7.1 Hz), 1.34 (3H, d, J = 6.0 Hz), 1.35 (3H, d, J = 6.0 Hz), 1.42-1.51 (1H, m), 1.43 (3H, d, J = 6.4 Hz), 1.62-1.75 (3H, m), 2.22 (3H, s), 2.32-2.46 (3H, m), 2.48-2.53 (2H, m), 2.63-2.71 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.86-2.95 (2H, m), 2.97-3.07 (2H, m), 3.29 (1H, dd, J = 9.4, 6.6 Hz), 3.38 (1H, dd, J = 9.4, 3.9 Hz), 3.81-3.87 (1H, m), 4.15 (2H, q, J = 7.1 Hz), 4.51-4.60 (1H, m), 4.76 (1H, q, J = 6.4 Hz), 6.76 (1H, d, J = 8.0 Hz), 6.79-6.83 (2H, m), 7.00-7.07 (2H, m), 7.18 (1H, t, J = 8.0 Hz).

73(73c) \( \text{H-NMR (CDCl}_3 \) \( \delta \): 1.33 (3H, d, J = 5.7 Hz), 1.36 (3H, d, J = 9.2 Hz), 1.37 (3H, d, J = 9.2 Hz), 1.68-1.97 (4H, m), 2.23 (3H, s), 2.49-2.60 (2H, m), 2.72 (1H, dd, J = 13.2, 8.6 Hz), 2.77 (1H, dd, J = 13.7, 10.3 Hz), 2.84-3.00 (3H, m), 3.08-3.15 (1H, m), 3.24-3.31 (2H, m), 3.40 (1H, dd, J = 90.3, 5.7 Hz), 3.46 (1H, dd, J = 10.3, 5.2 Hz), 3.58-3.62 (1H, m), 4.34-4.40 (1H, m), 4.52-4.59 (1H, m), 5.01 (1H, q, J = 6.3 Hz), 6.74 (1H, d, J = 8.0 Hz), 6.85-6.90 (2H, m), 6.95 (1H, d, J = 8.0 Hz), 7.09 (1H, t, J = 7.7 Hz), 7.14 (1H, t, J = 8.0 Hz).

74(74a) \( \text{H-NMR (CDCl}_3 \) \( \delta \): 1.27 (3H, t, J = 7.1 Hz), 1.32 (6H, d, J = 5.7 Hz), 1.41-1.49 (1H, m), 1.42 (3H, d, J = 6.9 Hz), 1.62-1.74 (3H, m), 2.22 (3H, s), 2.32-2.44 (5H, m), 2.47-2.51 (1H, m), 2.55-2.59 (1H, m), 2.64-2.71 (1H, m), 2.80 (1H, dd, J = 13.7, 5.7 Hz), 2.89 (1H, dd, J = 12.9, 4.3 Hz), 2.97-3.07 (1H, m), 3.21 (1H, dd, J = 9.7, 5.7 Hz), 3.31 (1H, dd, J = 8.9, 3.2 Hz), 3.79-3.86 (1H, m), 4.15 (2H, q, J = 7.1 Hz), 4.45-4.52 (1H, m), 4.79 (1H, q, J = 6.3 Hz), 5.93 (1H, dt, J = 18.0, 6.6 Hz), 6.41 (1H, d, J = 16.4 Hz), 6.76-6.83 (3H, m), 7.02-7.08 (2H, m), 7.18 (1H, t, J = 7.7 Hz).

74(74b) \( \text{H-NMR (CDCl}_3 \) \( \delta \): 1.25 (3H, t, J = 7.1 Hz), 1.33 (3H, d, J = 6.0 Hz), 1.34 (3H, d, J = 6.0 Hz), 1.41-1.48 (1H, m), 1.42 (3H, d, J = 6.4 Hz), 1.48-1.56 (2H, m), 1.62-1.77 (5H, m), 2.22 (3H, s), 2.32-2.45 (5H, m), 2.53-2.62 (1H, m), 2.63-2.74 (2H, m), 2.82 (1H, dd, J = 12.8, 5.5 Hz), 2.90 (1H, dd, J = 13.3, 4.1 Hz), 3.00-3.06 (1H, m), 3.25 (1H, dd, J = 9.4, 6.6 Hz), 3.36 (1H, dd, J = 9.4, 3.9 Hz), 3.80-3.86 (1H, m), 4.12 (2H, q, J = 7.1 Hz), 4.49-4.58 (1H, m), 4.71 (1H, q, J = 6.4 Hz), 6.74 (1H, d, J = 8.1 Hz), 6.79-6.83 (2H, m), 6.99-7.07 (2H, m), 7.16 (1H, t, J = 8.1 Hz).
**Table 91**

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (CDCl₃) δ</th>
<th>( J = ) Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>74(74c)</td>
<td>( 1.32 ) (3H, d, ( J = 5.7 ) Hz), ( 1.33 ) (3H, d, ( J = 6.3 ) Hz), ( 1.37 ) (3H, d, ( J = 6.3 ) Hz), ( 1.39-1.49 ) (1H, m), ( 1.58-1.94 ) (6H, m), ( 1.99-2.06 ) (1H, m), ( 2.20-2.30 ) (1H, m), ( 2.23 ) (3H, s), ( 2.35-2.43 ) (2H, m), ( 2.74 ) (1H, dd, ( J = 12.9 ), 8.9 Hz), ( 2.80-2.89 ) (2H, m), ( 2.96-3.03 ) (1H, m), ( 3.18-3.25 ) (1H, m), ( 3.28-3.41 ) (4H, m), ( 3.82-3.88 ) (1H, m), ( 4.32-4.38 ) (1H, m), ( 4.48-4.55 ) (1H, m), ( 4.76 ) (1H, q, ( J = 6.3 ) Hz), ( 6.73 ) (1H, d, ( J = 8.0 ) Hz), ( 6.88-6.94 ) (3H, m), ( 7.10 ) (1H, t, ( J = 8.0 ) Hz), ( 7.12 ) (1H, t, ( J = 8.0 ) Hz).</td>
<td></td>
</tr>
<tr>
<td>75(75a)</td>
<td>( 1.35 ) (3H, t, ( J = 7.1 ) Hz), ( 1.41-1.51 ) (1H, m), ( 1.45 ) (3H, d, ( J = 6.4 ) Hz), ( 1.63-1.76 ) (3H, m), ( 2.22 ) (3H, s), ( 3.22-3.43 ) (2H, m), ( 2.44 ) (1H, dd, ( J = 12.4 ), 7.3 Hz), ( 2.65-2.73 ) (1H, m), ( 2.81 ) (1H, dd, ( J = 12.6 ), 5.7 Hz), ( 2.89 ) (1H, dd, ( J = 13.3 ), 4.1 Hz), ( 3.01-3.05 ) (1H, m), ( 3.29 ) (1H, dd, ( J = 9.4 ), 6.6 Hz), ( 3.36 ) (1H, dd, ( J = 9.6 ), 1.1 Hz), ( 3.79-3.86 ) (1H, m), ( 4.28 ) (2H, q, ( J = 7.1 ) Hz), ( 4.79 ) (1H, q, ( J = 6.4 ) Hz), ( 6.37 ) (1H, d, ( J = 15.8 ) Hz), ( 6.49 ) (1H, t, ( J = 73.6 ) Hz), ( 6.78-6.83 ) (2H, m), ( 7.05 ) (1H, t, ( J = 8.0 ) Hz), ( 7.08-7.1 ) (1H, m), ( 7.35-7.42 ) (1H, m), ( 7.81 ) (1H, d, ( J = 15.8 ) Hz).</td>
<td></td>
</tr>
<tr>
<td>75(75b)</td>
<td>( 1.26 ) (3H, 1, ( J = 7.1 ) Hz), ( 1.42-1.50 ) (1H, m), ( 1.44 ) (3H, d, ( J = 6.4 ) Hz), ( 1.63-1.75 ) (3H, m), ( 2.22 ) (3H, s), ( 2.33-2.42 ) (2H, m), ( 2.44 ) (1H, dd, ( J = 12.3 ), 7.2 Hz), ( 2.50-2.55 ) (2H, m), ( 2.66-2.72 ) (1H, m), ( 2.82 ) (1H, dd, ( J = 12.6 ), 5.7 Hz), ( 2.89 ) (1H, dd, ( J = 13.2 ), 4.0 Hz), ( 2.93-3.00 ) (1H, m), ( 3.01-3.09 ) (1H, m), ( 3.36 ) (1H, dd, ( J = 9.2 ), 4.0 Hz), ( 3.81-3.88 ) (1H, m), ( 4.15 ) (2H, q, ( J = 7.1 ) Hz), ( 4.78 ) (1H, q, ( J = 6.4 ) Hz), ( 6.54 ) (1H, t, ( J = 73.9 ) Hz), ( 6.79-6.83 ) (2H, m), ( 7.00 ) (1H, d, ( J = 8.0 ) Hz), ( 7.05 ) (1H, t, ( J = 8.0 ) Hz), ( 7.26 ) (1H, t, ( J = 8.0 ) Hz), ( 7.32 ) (1H, d, ( J = 7.4 ) Hz).</td>
<td></td>
</tr>
<tr>
<td>75(75c)</td>
<td>( 1.37 ) (3H, d, ( J = 6.3 ) Hz), ( 1.73-2.02 ) (4H, m), ( 2.23 ) (3H, s), ( 2.50-2.61 ) (2H, m), ( 2.77 ) (1H, dd, ( J = 12.9 ), 8.3 Hz), ( 2.85 ) (1H, dd, ( J = 13.2 ), 10.3 Hz), ( 2.92-3.02 ) (3H, m), ( 3.15-3.23 ) (1H, m), ( 3.30-3.36 ) (2H, m), ( 3.41 ) (1H, dd, ( J = 10.9 ), 6.7 Hz), ( 3.47 ) (1H, dd, ( J = 11.2 ), 6.0 Hz), ( 3.65-3.71 ) (1H, m), ( 4.19-4.24 ) (1H, m), ( 5.07 ) (1H, q, ( J = 6.3 ) Hz), ( 6.55 ) (1H, t, ( J = 74.2 ) Hz), ( 6.85-6.91 ) (2H, m), ( 6.98 ) (1H, d, ( J = 8.0 ) Hz), ( 7.10 ) (1H, t, ( J = 7.7 ) Hz), ( 7.22 ) (1H, t, ( J = 8.0 ) Hz), ( 7.26 ) (1H, d, ( J = 5.7 ) Hz).</td>
<td></td>
</tr>
<tr>
<td>76(76a)</td>
<td>( 1.39-1.47 ) (1H, m), ( 1.43 ) (3H, d, ( J = 6.9 ) Hz), ( 1.50-1.76 ) (4H, m), ( 1.76-1.87 ) (1H, m), ( 2.22 ) (3H, s), ( 2.24-2.66 ) (6H, m), ( 2.63-2.74 ) (1H, m), ( 2.81 ) (1H, dd, ( J = 12.4 ), 5.5 Hz), ( 2.89 ) (1H, dd, ( J = 13.3 ), 4.1 Hz), ( 2.98-3.08 ) (1H, m), ( 3.22-3.29 ) (1H, m), ( 3.31-3.43 ) (1H, m), ( 3.61-3.70 ) (1H, m), ( 3.67 ) (3H, s), ( 3.77-3.89 ) (1H, m), ( 4.70-4.80 ) (1H, m), ( 5.96-6.06 ) (1H, m), ( 6.71 ) (1H, d, ( J = 15.6 ) Hz), ( 6.77-6.84 ) (2H, m), ( 7.00-7.07 ) (1H, m), ( 7.17-7.30 ) (3H, m), ( 7.39 ) (1H, d, ( J = 7.3 ) Hz).</td>
<td></td>
</tr>
</tbody>
</table>
Compounds of Examples 78 to 155 described below were produced with reference to the steps that are described in Examples 1 to 15 above. In Examples 1 to 77, for instances, the production steps are carried out in the order of (1) coupling reaction, (2) olefin hydrogenation, and (3) ester hydrolysis, like the production steps 3(c), 3(d), and 3(e) of Example 3. However, Examples 78 to 155 are distinguished in that the production steps are carried out in the order of (1) olefin hydrogenation, (2) coupling reaction, and (3) ester hydrolysis.

**Table 92**

<table>
<thead>
<tr>
<th>Example</th>
<th>Formula</th>
<th>1H-NMR (CDCl₃) δ:</th>
</tr>
</thead>
<tbody>
<tr>
<td>76(76b)</td>
<td><img src="image" alt="Formula" /></td>
<td>1.37-1.47 (3H, m), 1.44 (3H, d, J = 6.4 Hz), 1.55-1.74 (7H, m), 2.22 (3H, s), 2.29-2.37 (3H, m), 2.37-2.46 (2H, m), 2.58-2.66 (2H, m), 2.66-2.74 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.90 (1H, dd, J = 13.3, 4.1 Hz), 2.99-3.08 (1H, m), 3.26 (1H, dd, J = 9.4, 6.6 Hz), 3.34 (1H, dd, J = 9.2, 4.1 Hz), 3.67 (3H, s), 3.80-3.88 (1H, m), 4.74 (1H, q, J = 6.4 Hz), 6.78-6.84 (2H, m), 7.05 (1H, t, J = 8.0 Hz), 7.10-7.15 (1H, m), 7.16-7.27 (2H, m), 7.43 (1H, d, J = 7.3 Hz).</td>
</tr>
<tr>
<td>76(76c)</td>
<td><img src="image" alt="Formula" /></td>
<td>1.38 (3H, d, J = 6.0 Hz), 1.41-1.51 (2H, m), 1.57-1.75 (6H, m), 1.84-1.96 (4H, m), 2.21 (8H, s), 2.25-2.31 (2H, m), 2.54-2.70 (3H, m), 2.80 (1H, dd, J = 13.3, 10.1 Hz), 2.90 (1H, dt, J = 14.1, 5.6 Hz), 3.06-3.17 (1H, m), 3.24-3.42 (5H, m), 3.71-3.77 (1H, m), 4.22-4.27 (1H, m), 4.75 (1H, q, J = 6.4 Hz), 6.87-6.93 (2H, m), 7.07-7.23 (4H, m), 7.31-7.36 (1H, m).</td>
</tr>
<tr>
<td>77(77a)</td>
<td><img src="image" alt="Formula" /></td>
<td>1.40-1.56 (3H, m), 1.44 (3H, d, J = 6.0 Hz), 1.61-1.75 (6H, m), 2.22 (3H, s), 2.23-2.46 (7H, m), 2.61-2.72 (1H, m), 2.81 (1H, dd, J = 12.6, 5.7 Hz), 2.89 (1H, dd, J = 13.1, 3.9 Hz), 2.97-3.08 (1H, m), 3.21-3.31 (1H, m), 3.31-3.42 (1H, m), 3.62-3.69 (1H, m), 3.67 (3H, s), 3.79-3.89 (1H, m), 4.67 (1H, dt, J = 5.5 Hz), 4.71-4.81 (1H, m), 5.21-5.74 (1H, m), 5.988-6.08 (1H, m), 6.69 (1H, d, J = 15.6 Hz), 6.77-6.84 (2H, m), 7.04 (1H, t, J = 7.8 Hz), 7.18-7.28 (3H, m), 7.39 (1H, d, J = 8.3 Hz).</td>
</tr>
<tr>
<td>77(77b)</td>
<td><img src="image" alt="Formula" /></td>
<td>1.35-1.41 (4H, m), 1.44 (3H, d, J = 5.7 Hz), 1.54-1.74 (8H, m), 2.23 (3H, s), 2.31 (2H, t, J = 7.4 Hz), 2.35-2.44 (3H, m), 2.62 (2H, t, J = 7.7 Hz), 2.65-2.73 (1H, m), 2.92 (1H, dd, J = 12.3, 6.0 Hz), 2.90 (1H, dd, J = 13.2, 4.0 Hz), 2.98-3.08 (1H, m), 3.26 (1H, dd, J = 9.2, 6.9 Hz), 3.35 (1H, dd, J = 9.2, 4.0 Hz), 3.55 (3H, s), 3.80-3.89 (1H, m), 4.75 (1H, q, J = 6.5 Hz), 6.79-6.83 (2H, m), 7.05 (1H, t, J = 8.0 Hz), 7.11-7.15 (1H, m), 7.17-7.24 (2H, m), 7.41-7.45 (1H, m).</td>
</tr>
<tr>
<td>77(77c)</td>
<td><img src="image" alt="Formula" /></td>
<td>1.39 (3H, d, J = 6.4 Hz), 1.41-1.49 (2H, m), 1.60-1.72 (6H, m), 1.79-2.02 (4H, m), 2.23 (3H, s), 2.30 (2H, td, J = 6.5, 2.3 Hz), 2.58-2.68 (3H, m), 2.79 (1H, dd, J = 13.3, 10.1 Hz), 2.85-2.92 (1H, m), 3.03-3.14 (1H, m), 3.21-3.38 (5H, m), 3.78-3.84 (1H, m), 4.23-4.30 (1H, m), 4.77 (1H, q, J = 6.3 Hz), 6.87-6.93 (2H, m), 7.07-7.25 (4H, m), 7.35-7.38 (1H, m).</td>
</tr>
<tr>
<td>Examples No.</td>
<td>Structure</td>
<td>Data</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>78(78a)</td>
<td><img src="image" alt="Structure 78(78a)" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.25 (3H, t, J = 7.2 Hz), 1.41-1.49 (4H, m), 1.63-1.75 (4H, m), 2.23 (3H, s), 2.34-2.45 (3H, m), 2.57-2.61 (2H, m), 2.66-2.73 (1H, m), 2.81 (1H, dd, J = 12.3, 6.0 Hz), 2.89 (1H, dd, J = 13.2, 4.0 Hz), 2.93-2.98 (2H, m), 3.00-3.06 (1H, m), 3.28 (1H, dd, J = 9.5, 6.6 Hz), 3.34 (1H, dd, J = 9.5, 4.0 Hz), 3.81-3.86 (1H, m), 4.15 (2H, q, J = 7.2 Hz), 4.73 (1H, q, J = 6.3 Hz), 6.79-6.84 (2H, m), 7.05 (1H, t, J = 8.0 Hz), 7.15 (1H, d, J = 2.3 Hz), 7.22 (1H, dd, J = 8.6, 2.3 Hz), 7.38 (1H, d, J = 8.0 Hz).</td>
</tr>
<tr>
<td>78(78b)</td>
<td><img src="image" alt="Structure 78(78b)" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.37 (3H, d, J = 6.3 Hz), 1.68-1.98 (4H, m), 2.23 (3H, s), 2.50-2.58 (1H, m), 2.59-2.66 (1H, m), 2.71 (1H, dd, J = 12.9, 8.3 Hz), 2.76-2.87 (3H, m), 3.05-3.16 (2H, m), 3.22 (1H, dd, J = 13.5, 2.7 Hz), 3.29 (1H, dd, J = 13.5, 4.0 Hz), 3.39 (1H, dd, J = 10.9, 5.2 Hz), 3.44 (1H, dd, J = 11.5, 6.9 Hz), 3.52-3.59 (1H, m), 3.98 (1H, br s), 4.06-4.11 (1H, m), 5.00 (1H, q, J = 6.3 Hz), 6.83-6.89 (2H, m), 7.10 (1H, t, J = 8.0 Hz), 7.16 (1H, dd, J = 8.6, 2.3 Hz), 7.23 (1H, d, J = 2.3 Hz), 7.31 (1H, d, J = 8.6 Hz).</td>
</tr>
<tr>
<td>79(79a)</td>
<td><img src="image" alt="Structure 79(79a)" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.24 (3H, t, J = 7.3 Hz), 1.41-1.48 (4H, m), 1.64-1.76 (3H, m), 2.22 (3H, s), 2.33-2.48 (3H, m), 2.55-2.60 (2H, m), 2.67-2.74 (1H, m), 2.83 (1H, dd, J = 12.3, 6.0 Hz), 2.88-2.96 (3H, m), 3.00-3.06 (1H, m), 3.30 (1H, dd, J = 9.5, 6.6 Hz), 3.36 (1H, dd, J = 9.5, 4.3 Hz), 3.82-3.89 (1H, m), 4.13 (2H, q, J = 7.3 Hz), 4.73 (1H, q, J = 6.5 Hz), 6.80-6.84 (2H, m), 7.04-7.10 (2H, m), 7.17 (1H, dd, J = 8.0, 2.3 Hz), 7.42 (1H, d, J = 2.3 Hz).</td>
</tr>
<tr>
<td>79(79b)</td>
<td><img src="image" alt="Structure 79(79b)" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.38 (3H, d, J = 6.5 Hz), 1.67-1.95 (4H, m), 2.23 (3H, s), 2.48-2.54 (1H, m), 2.60-2.87 (5H, m), 3.05-3.14 (2H, m), 3.22 (1H, dd, J = 12.6, 2.9 Hz), 3.28 (1H, dd, J = 13.2, 4.0 Hz), 3.41-3.54 (4H, m), 4.04-4.08 (1H, m), 5.03 (1H, q, J = 6.5 Hz), 6.84-6.88 (2H, m), 7.10 (1H, t, J = 8.0 Hz), 7.15-7.19 (2H, m), 7.36 (1H, d, J = 2.3 Hz).</td>
</tr>
</tbody>
</table>
**80(80a)**

1H-NMR (CDCl₃) δ: 1.28 (3H, t, J = 7.3 Hz), 1.44 (3H, d, J = 6.4 Hz), 1.64-1.76 (5H, m), 2.23 (3H, s), 2.32-2.47 (3H, m), 2.53-2.63 (2H, m), 2.65-2.73 (1H, m), 2.82 (1H, dd, J = 12.8, 5.5 Hz), 2.90 (1H, dd, J = 13.3, 3.7 Hz), 2.97-3.11 (2H, m), 3.12-3.22 (1H, m), 3.26-3.32 (1H, m), 3.36 (1H, dd, J = 8.7, 3.7 Hz), 3.81-3.89 (1H, m), 4.18 (2H, q, J = 7.3 Hz), 4.77 (1H, q, J = 6.4 Hz), 6.78-6.84 (2H, m), 7.05 (1H, t, J = 8.0 Hz), 7.20 (1H, t, J = 7.8 Hz), 7.29 (1H, d, J = 8.0 Hz), 7.38 (1H, d, J = 7.8 Hz).

**80(80b)**

1H-NMR (CDCl₃) δ: 1.37 (3H, d, J = 6.4 Hz), 1.71-2.02 (4H, m), 2.23 (3H, s), 2.59-2.64 (2H, m), 2.72 (1H, d, J = 12.9, 7.7 Hz), 2.82 (1H, d, J = 13.7, 10.3 Hz), 2.86-2.93 (1H, m), 3.05-3.18 (3H, m), 3.29-3.35 (2H, m), 3.41-3.51 (3H, m), 3.61-3.66 (1H, m), 4.15-4.20 (1H, m), 5.13 (1H, q, J = 6.3 Hz), 6.85-6.91 (2H, m), 7.10 (1H, t, J = 7.7 Hz), 7.16 (1H, t, J = 8.0 Hz), 7.27-7.29 (1H, m), 7.31-7.34 (1H, m).

**81(81a)**

1H-NMR (CDCl₃) δ: 1.26 (3H, t, J = 7.3 Hz), 1.38-1.51 (4H, m), 1.55-1.77 (8H, m), 2.23 (3H, s), 2.33-2.45 (5H, m), 2.62 (2H, t, J = 7.8 Hz), 2.66-2.74 (1H, m), 2.81 (1H, d, J = 12.4, 6.0 Hz), 2.90 (1H, dd, J = 13.8, 3.7 Hz), 3.00-3.07 (1H, m), 3.25 (1H, dd, J = 9.2, 6.9 Hz), 3.33 (1H, dd, J = 9.6, 3.7 Hz), 3.80-3.87 (1H, m), 4.14 (2H, q, J = 6.3 Hz), 4.70 (1H, q, J = 6.4 Hz), 6.79-6.83 (2H, m), 7.05 (1H, t, J = 7.8 Hz), 7.13 (1H, s), 7.18-7.23 (1H, m), 7.37 (1H, d, J = 8.3 Hz).

**81(81b)**

1H-NMR (CDCl₃) δ: 1.37 (3H, t, J = 6.3 Hz), 1.52-2.02 (9H, m), 2.20-2.29 (4H, m), 2.35-2.42 (1H, m), 2.43-2.51 (1H, m), 2.59 (1H, dd, J = 13.2, 8.0 Hz), 2.64-2.73 (1H, m), 2.78 (1H, d, J = 13.2, 10.3 Hz), 2.84-2.91 (1H, m), 3.02-3.11 (1H, m), 3.24-3.40 (4H, m), 3.73-3.81 (1H, m), 4.23-4.29 (1H, m), 4.74 (1H, q, J = 6.4 Hz), 6.87-6.91 (2H, m), 7.07-7.12 (2H, m), 7.18 (1H, dd, J = 8.0, 2.3 Hz), 7.30 (1H, d, J = 8.6 Hz).

**82(82a)**

1H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 7.1 Hz), 1.46 (4H, d, J = 6.4 Hz), 1.59-1.77 (3H, m), 2.34-2.47 (3H, m), 2.56-2.63 (2H, m), 2.65-2.75 (1H, m), 2.78-2.85 (1H, m), 2.88-2.95 (1H, m), 2.93-3.08 (3H, m), 3.26-3.33 (1H, m), 3.33-3.39 (1H, m), 3.80-3.90 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.77 (1H, q, J = 6.1 Hz), 6.99-7.07 (1H, m), 7.10-7.29 (6H, m), 7.41-7.47 (1H, m).
82(82b) 1H-NMR (CDCl₃) δ: 1.41 (3H, d, J = 6.4Hz), 1.69-2.02 (4H, m), 2.52-2.69 (2H, m), 2.74-3.00 (4H, m), 3.02-3.13 (1H, m), 3.17-3.30 (2H, m), 3.31-3.48 (3H, m), 3.61-3.71 (1H, m), 4.14-4.23 (1H, m), 4.90-4.99 (1H, m), 7.08-7.15 (1H, m), 7.16-7.28 (6H, m), 7.32-7.38 (1H, m).

83(83a) 1H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 7.1 Hz), 1.39-1.48 (4H, m), 1.61-1.75 (3H, m), 2.32-2.48 (3H, m), 2.56-2.63 (2H, m), 2.63-2.72 (1H, m), 2.77-2.92 (2H, m), 2.95-3.08 (3H, m), 3.26-3.32 (1H, m), 3.34-3.40 (1H, m), 3.80-3.88 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.77 (1H, q, J = 6.4 Hz), 6.97-7.05 (2H, m), 7.13-7.29 (4H, m), 7.41-7.46 (1H, m).

83(83b) 1H-NMR (CDCl₃) δ: 1.42 (3H, d, J = 6.0 Hz), 1.60-1.71 (1H, m), 1.77-1.94 (3H, m), 2.60-2.94 (6H, m), 2.97-3.19 (3H, m), 3.20-3.28 (1H, m), 3.35-3.52 (3H, m), 4.00-4.09 (1H, m), 4.92-5.01 (1H, m), 7.03-7.09 (2H, m), 7.16-7.28 (4H, m), 7.34-7.41 (1H, m).

84(84a) 1H-NMR (CDCl₃) δ: 1.22-1.29 (3H, m), 1.39-1.54 (4H, m), 1.60-1.77 (2H, m), 2.28-2.48 (7H, m), 2.55-2.64 (2H, m), 2.64-2.74 (1H, m), 2.79-2.93 (2H, m), 2.94-3.09 (3H, m), 3.25-3.45 (2H, m), 3.81-3.90 (1H, m), 4.14 (2H, q, J = 14.44 Hz), 4.77 (1H, q, J = 6.4 Hz), 6.94 (1H, d, J = 7.8 Hz), 7.07-7.30 (5H, m), 7.44 (1H, d, J = 7.8 Hz).

84(84b) 1H-NMR (CDCl₃) δ: 1.36-1.45 (3H, m), 1.63-1.97 (4H, m), 2.33 (3H, s), 2.51-2.92 (6H, m), 2.99-3.16 (2H, m), 3.17-3.31 (2H, m), 3.37-3.58 (3H, m), 4.03-4.16 (1H, m), 4.70-5.25 (1H, m), 6.99 (1H, d, J = 7.3 Hz), 7.05-7.28 (5H, m), 7.34-7.42 (1H, m).
(continued)

| 85(85a) | \( ^1\text{H-NMR (CDCl}_3 \delta \): 1.25 (3H, t, \( J = 7.1 \text{ Hz} \)), 1.37-1.50 (4H, m), 1.64-1.77 (2H, m), 2.34-2.48 (3H, m), 2.56-2.64 (2H, m), 2.65-2.77 (1H, m), 2.77-2.85 (1H, m), 2.87-2.95 (1H, m), 2.95-3.08 (3H, m), 3.27-3.34 (1H, m), 3.34-3.40 (1H, m), 3.81-3.89 (1H, m), 4.14 (3H, q, \( J = 7.1 \text{ Hz} \)), 4.77 (1H, q, \( J = 6.4 \text{ Hz} \)), 6.79 (1H, d, \( J = 9.2 \text{ Hz} \)), 6.89-6.98 (2H, m), 7.13-7.29 (3H, m), 7.43 (1H, d, \( J = 7.3 \text{ Hz} \)). |
| 85(85b) | \( ^1\text{H-NMR (CDCl}_3 \delta \): 1.41 (3H, d, \( J = 6.4 \text{ Hz} \)), 1.65-2.00 (4H, m), 2.53-2.92 (6H, m), 3.03-3.26 (3H, m), 3.28-3.37 (1H, m), 3.37-3.49 (2H, m), 3.50-3.60 (1H, m), 4.05-4.16 (1H, m), 4.97 (1H, q, \( J = 6.4 \text{ Hz} \)), 6.83-6.88 (1H, m), 6.95-7.03 (2H, m), 7.16-7.28 (3H, m), 7.34-7.40 (1H, m). |

[Table 96]

| 86(86a) | \( ^1\text{H-NMR (CDCl}_3 \delta \): 1.26 (3H, t, \( J = 7.1 \text{ Hz} \)), 1.38-1.51 (4H, m), 1.63-1.77 (3H, m), 2.35-2.49 (3H, m), 2.54-2.65 (2H, m), 2.65-2.77 (1H, m), 2.77-2.85 (1H, m), 2.87-3.09 (4H, m), 3.26-3.40 (2H, m), 3.80-3.89 (1H, m), 4.14 (2H, q, \( J = 7.1 \text{ Hz} \)), 4.77 (1H, q, \( J = 5.8 \text{ Hz} \)), 6.59-6.73 (3H, m), 7.13-7.31 (3H, m), 7.40-7.47 (1H, m). |
| 86(86b) | \( ^1\text{H-NMR (CDCl}_3 \delta \): 1.41 (3H, d, \( J = 6.1 \text{ Hz} \)), 1.68-2.07 (4H, m), 2.53-2.69 (2H, m), 2.73-2.97 (4H, m), 3.02-3.13 (1H, m), 3.15-3.29 (2H, m), 3.31-3.48 (3H, m), 3.57-3.66 (1H, m), 4.11-4.19 (1H, m), 4.90-4.98 (1H, m), 6.65-6.73 (1H, m), 6.73-6.81 (2H, m), 7.16-7.25 (3H, m), 7.33-7.39 (1H, m). |
87(87a)  
\[ \text{\^{1}H-NMR (CDCl}_3\text{)} \delta: 1.22-1.29 (3H, m), 1.42-1.54 (4H, m), 1.58-1.73 (2H, m), 1.75-1.89 (1H, m), 2.32-2.49 (2H, m), 2.56-2.64 (2H, m), 2.65-2.85 (3H, m), 2.88-3.09 (4H, m), 3.26-3.34 (1H, m), 3.37-3.43 (1H, m), 3.82-3.90 (3H, m), 4.14 (2H, q, J = 7.3 Hz), 4.77 (1H, q, J = 6.4 Hz), 6.54 (1H, d, J = 3.7 Hz), 6.69 (1H, d, J = 3.7 Hz), 7.13-7.29 (3H, m), 7.43 (1H, d, J = 7.3 Hz). \]

87(87b)  
\[ \text{\^{1}H-NMR (CDCl}_3\text{)} \delta: 9.41 (3H, d, J = 6.4 Hz). 1.69-2.09 (4H, m), 2.49-2.68 (2H, m), 2.68-2.78 (1H, m), 2.80-2.94 (2H, m), 2.94-3.30 (4H, m), 3.32-3.47 (3H, m), 3.52-3.64 (1H, m), 4.07-4.16 (1H, m), 4.87-4.97 (1H, m), 6.66-6.70 (1H, m), 6.71-6.75 (1H, m), 7.16-7.28 (3H, m), 7.33-7.40 (1H, m). \]

88(88a)  
\[ \text{\^{1}H-NMR (CDCl}_3\text{)} \delta: 1.21-1.29 (3H, m), 1.37-1.50 (4H, m), 1.62-1.75 (3H, m), 2.33-2.48 (3H, m), 2.55-2.65 (2H, m), 2.65-2.73 (1H, m), 2.77-2.93 (2H, m), 2.83-3.08 (3H, m), 3.25-3.33 (1H, m), 3.34-3.40 (1H, m), 3.80-3.89 (1H, m), 4.08-4.18 (2H, m), 4.77 (1H, q, J = 6.4 Hz), 6.39 (1H, d, J = 8.3 Hz), 7.13-7.36 (5H, m), 7.43 (1H, d, J = 7.3 Hz), \]

88(88b)  
\[ \text{\^{1}H-NMR (CDCl}_3\text{)} \delta: 9.37-1.44 (3H, m), 1.66-2.08 (4H, m), 2.52-2.70 (2H, m), 2.71-3.00 (4H, m), 3.01-3.14 (1H, m), 3.15-3.48 (5H, m), 3.57-3.68 (1H, m), 4.09-4.20 (1H, m), 4.89-4.99 (1H, m), 7.03-7.10 (1H, m), 7.17-7.27 (3H, m), 7.31-7.39 (3H, m). \]

89(89a)  
\[ \text{\^{1}H-NMR (CDCl}_3\text{)} \delta: 1.19-1.28 (7H, m), 1.42-1.48 (4H, m), 1.63-1.75 (3H, m), 2.30-2.47 (3H, m), 2.56-2.63 (2H, m), 2.64-2.75 (3H, m), 2.80-2.86 (1H, m), 2.87-2.93 (1H, m), 2.95-3.07 (3H, m), 3.27-3.32 (1H, m), 3.35-3.39 (1H, m), 3.82-3.88 (1H, m), 4.14 (2H, q, J = 7.11 Hz), 4.77 (1H, q, J = 6.3 Hz), 6.89-6.93 (1H, m), 6.99-7.02 (1H, m), 7.14-7.28 (4H, m), 7.42-7.46 (1H, m). \]
\[ 89(89b) \]

1H-NMR (CDCl\textsubscript{3}) \( \delta \): 1.22 (3H, t, \( J = 7.4 \text{ Hz} \)), 1.40 (3H, d, \( J = 6.3 \text{ Hz} \)), 1.76-1.96 (3H, m), 1.98-2.06 (1H, m), 2.54-2.68 (2H, m), 2.72 (2H, q, \( J = 7.4 \text{ Hz} \)), 2.80-2.96 (3H, m), 2.98-3.11 (2H, m), 3.25-3.40 (4H, m), 3.41-3.47 (1H, m), 3.71-3.79 (1H, m), 4.23-4.30 (1H, m), 4.93 (1H, q, \( J = 6.5 \text{ Hz} \)), 6.97-7.01 (1H, m), 7.08-7.10 (1H, m), 7.17-7.24 (3H, m), 7.24-7.28 (1H, m), 7.32-7.36 (1H, m).

\[ 90(90a) \]

1H-NMR (CDCl\textsubscript{3}) \( \delta \): 1.22-1.29 (3H, m), 1.39-1.52 (4H, m), 1.60-1.77 (3H, m), 2.28-2.48 (6H, m), 2.50-2.63 (2H, m), 2.64-2.74 (1H, m), 2.75-2.92 (2H, m), 2.94-3.22 (3H, m), 3.24-3.44 (2H, m), 3.80-3.89 (1H, m), 4.10-4.18 (2H, m), 4.77 (1H, q, \( J = 6.6 \text{ Hz} \)), 6.90-6.99 (2H, m), 7.08-7.17 (2H, m), 7.16-7.27 (2H, m).

\[ 90(90b) \]

1H-NMR (CDCl\textsubscript{3}) \( \delta \): 1.36 (3H, d, \( J = 6.4 \text{ Hz} \)), 1.76-1.98 (4H, m), 2.33 (3H, s), 2.51-2.66 (2H, m), 2.80-3.12 (5H, m), 3.23-3.50 (5H, m), 3.74-3.84 (1H, m), 4.25-4.34 (1H, m), 5.00 (1H, q, \( J = 6.4 \text{ Hz} \)), 6.89-6.95 (1H, m), 7.01-7.05 (1H, m), 7.13-7.23 (4H, m).

\[ 91(91a) \]

1H-NMR (CDCl\textsubscript{3}) \( \delta \): 1.22-1.29 (3H, m), 1.38-1.49 (4H, m), 1.59-1.77 (3H, m), 2.39-2.48 (3H, m), 2.49-2.66 (2H, m), 2.64-2.75 (1H, m), 2.76-2.85 (1H, m), 2.85-3.16 (4H, m), 3.23-3.44 (2H, m), 3.79-3.89 (1H, m), 4.08-4.20 (2H, m), 4.77 (1H, q, \( J = 6.3 \text{ Hz} \)), 6.84-6.90 (1H, m), 6.90-7.00 (2H, m), 7.18-7.29 (3H, m).

\[ 91(91b) \]

1H-NMR (CDCl\textsubscript{3}) \( \delta \): 1.36 (3H, d, \( J = 6.4 \text{ Hz} \)), 1.72-2.10 (4H, m), 2.56-2.67 (2H, m), 2.76-3.08 (5H, m), 3.22-3.50 (5H, m), 3.68-3.79 (1H, m), 4.20-4.30 (1H, m), 4.98 (1H, q, \( J = 6.4 \text{ Hz} \)), 6.87-7.01 (2H, m), 7.03-7.08 (1H, m), 7.11-7.22 (2H, m), 7.29-7.36 (1H, m).
**[Table 98]**

**92(92a)**

![Image](92a.png)

$^1\text{H-NMR (CDCl}_3\text{)} \delta$: 1.22-1.30 (3H, m), 1.38-1.50 (4H, m), 1.64-1.75 (3H, m), 2.32-2.49 (3H, m), 2.49-2.63 (2H, m), 2.64-2.74 (1H, m), 2.76-3.15 (5H, m), 3.26-3.35 (1H, m), 3.35-3.42 (1H, m), 3.60-3.89 (1H, m), 4.08-4.19 (2H, m), 4.77 (1H, q, $J = 6.4$ Hz), 6.91-7.02 (2H, m), 7.20-7.25 (3H, m), 7.29-7.34 (1H, m).

**92(92b)**

![Image](92b.png)

$^1\text{H-NMR (CDCl}_3\text{)} \delta$: 1.37 (3H, d, $J = 6.0$ Hz), 1.72-2.07 (4H, m), 2.51-2.68 (2H, m), 2.72-3.05 (5H, m), 3.18-3.50 (5H, m), 3.64-3.76 (1H, m), 4.14-4.27 (1H, m), 4.96-5.05 (1H, m), 6.90-6.97 (1H, m), 7.06-7.23 (3H, m), 7.31-7.41 (2H, m).

**93(93a)**

![Image](93a.png)

$^1\text{H-NMR (CDCl}_3\text{)} \delta$: 1.18-1.29 (6H, m), 1.41-1.51 (4H, m), 1.58-1.78 (3H, m), 2.29-2.48 (3H, m), 2.49-2.63 (2H, m), 2.63-2.76 (3H, m), 2.77-3.24 (5H, m), 3.24-3.43 (2H, m), 3.80-3.89 (1H, m), 4.09-4.19 (2H, m), 4.77 (1H, q, $J = 6.4$ Hz), 6.88-7.04 (3H, m), 7.18-7.29 (3H, m).

**93(93b)**

![Image](93b.png)

$^1\text{H-NMR (CDCl}_3\text{)} \delta$: 1.22 (3H, t, $J = 7.6$ Hz), 1.37 (3H, d, $J = 6.0$ Hz), 1.72-2.06 (4H, m), 2.48-2.92 (6H, m), 2.92-3.07 (3H, m), 3.16-3.27 (1H, m), 3.27-3.52 (4H, m), 3.64-3.76 (1H, m), 4.17-4.26 (1H, m), 5.00-5.08 (1H, m), 6.87-7.02 (2H, m), 7.08 (1H, s), 7.14-7.29 (3H, m).

**94(94a)**

![Image](94a.png)

$^1\text{H-NMR (CDCl}_3\text{)} \delta$: 0.97 (3H, t, $J = 7.3$ Hz), 1.24 (3H, t, $J = 7.1$ Hz), 1.39-1.52 (1H, m), 1.59-1.85 (5H, m), 2.22 (3H, s), 2.31-2.49 (3H, m), 2.51-2.65 (2H, m), 2.65-2.75 (1H, m), 2.81-3.00 (4H, m), 3.01-3.08 (1H, m), 3.25 (1H, dd, $J = 9.4$, 6.4 Hz), 3.36 (1H, dd, $J = 9.4$, 4.4 Hz), 3.82-3.90 (1H, m), 4.14 (2H, q, $J = 7.1$ Hz), 4.48 (1H, dd, $J = 7.8$, 5.0 Hz), 6.78-6.85 (2H, m), 7.01-7.12 (2H, m), 7.14-7.20 (1H, m), 7.36-7.42 (1H, m).
<table>
<thead>
<tr>
<th>Table 99</th>
</tr>
</thead>
<tbody>
<tr>
<td>94(94b)</td>
</tr>
<tr>
<td>95(95a)</td>
</tr>
<tr>
<td>95(95b)</td>
</tr>
<tr>
<td>96(96a)</td>
</tr>
<tr>
<td>96(96b)</td>
</tr>
</tbody>
</table>
**1H-NMR (CDCl₃)** δ: 1.22-1.28 (3H, m), 1.36-1.50 (4H, m), 1.58-1.74 (3H, m), 2.31 (3H, s), 2.33-2.47 (3H, m), 2.54-2.62 (2H, m), 2.63-2.72 (1H, m), 2.77-3.07 (5H, m), 3.28 (1H, dd, J = 9.2, 6.9 Hz), 3.37 (1H, dd, J = 9.2, 3.4 Hz), 3.80-3.87 (1H, m), 4.14 (2H, q, J = 7.8 Hz), 4.73 (1H, q, J = 6.3 Hz), 6.95-7.01 (2H, m), 7.07 (1H, d, J = 8.3 Hz), 7.28-7.35 (3H, m).

**1H-NMR (CDCl₃)** δ: 1.39 (3H, d, J = 6.4 Hz), 1.71-2.05 (4H, m), 2.29 (3H, s), 2.52-2.67 (2H, m), 2.78-2.92 (3H, m), 2.93-3.08 (2H, m), 3.20-3.30 (2H, m), 3.31-3.46 (3H, m), 3.64-3.73 (1H, m), 4.16-4.25 (1H, m), 4.88 (1H, q, J = 6.3 Hz), 6.99-7.04 (2H, m), 7.06-7.10 (1H, m), 7.20-7.27 (1H, m), 7.31-7.35 (1H, m), 7.37 (1H, d, J = 8.3 Hz).

**1H-NMR (CDCl₃)** δ: 1.17-1.28 (6H, m), 1.40-1.51 (4H, m), 1.61-1.77 (3H, m), 2.27-2.47 (6H, m), 2.49-2.77 (6H, m), 2.78-2.99 (4H, m), 3.01-3.09 (1H, m), 3.24-3.39 (2H, m), 3.80-3.89 (1H, m), 4.14 (2H, q, J = 7.8 Hz), 4.73 (1H, q, J = 6.1 Hz), 6.91 (1H, d, J = 8.3 Hz), 6.99 (2H, d, J = 12.4 Hz), 7.06 (1H, d, J = 7.8 Hz), 7.17-7.23 (1H, m), 7.29-7.35 (1H, m).

**1H-NMR (CDCl₃)** δ: 1.17-1.26 (3H, m), 1.35-1.43 (3H, m), 1.75-2.07 (5H, m), 2.24-2.32 (3H, m), 2.51-2.95 (7H, m), 2.95-3.10 (2H, m), 3.20-3.48 (4H, m), 3.68-3.80 (1H, m), 4.20-4.30 (1H, m), 4.86-4.96 (1H, m), 6.96-7.06 (3H, m), 7.06-7.11 (1H, m), 7.20-7.29 (2H, m).

**1H-NMR (CDCl₃)** δ: 1.18-1.28 (6H, m), 1.41-1.50 (4H, m), 1.63-1.79 (3H, m), 2.31-2.49 (3H, m), 2.54-2.61 (2H, m), 2.66-2.76 (3H, m), 2.80-2.97 (4H, m), 3.01-3.08 (1H, m), 3.29 (1H, dd, J = 9.6, 6.4 Hz), 3.37 (1H, dd, J = 9.6, 4.1 Hz), 3.82-3.90 (1H, m), 4.13 (2H, q, J = 6.9 Hz), 4.73 (1H, q, J = 6.9 Hz), 6.85-6.94 (2H, m), 6.99-7.04 (1H, m), 7.08-7.24 (3H, m).
(continued)

99(99b)  

\[ \text{1H-NMR (CDCl}_3\text{)}: \delta: 1.16-1.26 (3H, m), 1.30-1.40 (3H, m), 1.78-2.18 (4H, m), 2.48-2.67 (2H, m), 2.67-3.05 (6H, m), 3.05-3.17 (1H, m), 3.20-3.48 (5H, m), 3.80-3.92 (1H, m), 4.31-4.43 (1H, m), 4.84-4.93 (1H, m), 6.83-6.92 (1H, m), 6.97-7.08 (2H, m), 7.10-7.19 (2H, m), 7.22-7.31 (1H, m). \]

100 (100a)  

\[ \text{1H-NMR (CDCl}_3\text{)}: \delta: 0.96 (3H, t, J = 7.8 Hz), 1.25 (3H, t, J = 7.1 Hz), 1.37-1.49 (1H, m), 1.58-1.89 (5H, m), 2.32-2.51 (3H, m), 2.56-2.63 (2H, m), 2.64-2.73 (1H, m), 2.80 (1H, dd, J = 12.6, 5.7 Hz), 2.88 (1H, dd, J = 12.6, 4.1 Hz), 2.96 (2H, q, J = 7.9 Hz), 3.00-3.07 (1H, m), 3.23 (1H, dd, J = 9.6, 6.4 Hz), 3.35 (1H, dd, J = 9.6, 4.1 Hz), 3.79-3.87 (1H, m), 4.09-4.19 (2H, m), 4.45-4.51 (1H, m), 6.96-7.01 (1H, m), 7.13-7.17 (1H, m), 7.20-7.23 (1H, m), 7.23-7.28 (1H, m), 7.29-7.37 (2H, m). \]

100 (100b)  

\[ \text{1H-NMR (CDCl}_3\text{)}: \delta: 0.81-0.98 (3H, m), 1.50-2.11 (7H, m), 2.47-2.71 (2H, m), 2.72-3.46 (9H, m), 3.58-3.75 (1H, m), 4.08-4.32 (1H, m), 4.66-4.74 (1H, m), 7.04-7.42 (6H, m). \]

[Table 101]  

101 (101a)  

\[ \text{1H-NMR (CDCl}_3\text{)}: \delta: 0.96 (3H, t, J=7.3Hz), 1.17-1.29 (6H, m), 1.40-1.52 (1H, m), 1.55-1.87 (5H, m), 2.29-2.51 (3H, m), 2.56-2.63 (2H, m), 2.63-2.76 (3H, m), 2.77-3.14 (5H, m), 3.17-3.29 (1H, m), 3.30-3.41 (1H, m), 3.79-3.88 (1H, m), 4.08-4.19 (2H, m), 4.45-4.52 (1H, m), 6.88-6.94 (1H, m), 7.01 (1H, s), 7.16 (1H, s), 7.18-7.24 (2H, m), 7.30-7.35 (1H, m). \]

101 (101b)  

\[ \text{1H-NMR (CDCl}_3\text{)}: \delta: 0.91 (3H, t, J=7.3Hz), 1.17-1.25 (3H, m), 1.53-1.66 (1H, m), 1.66-2.09 (5H, m), 2.48-2.96 (7H, m), 2.99-3.11 (2H, m), 3.12-3.45 (5H, m), 3.70-3.84 (1H, m), 4.22-4.35 (1H, m), 4.64-4.74 (1H, m), 6.96-7.01 (1H, m), 7.07-7.11 (1H, m), 7.11-7.18 (1H, m), 7.18-7.33 (3H, m). \]
1H-NMR (CDCl3) δ: 0.98 (3H, t, J = 8.0 Hz), 1.24 (3H, t, J = 7.9 Hz), 1.34-1.51 (1H, m), 1.56-1.88 (5H, m), 2.32-2.51 (3H, m), 2.52-2.65 (2H, m), 2.65-2.75 (1H, m), 2.78-3.15 (5H, m), 3.18-3.28 (1H, m), 3.29-3.44 (1H, m), 3.82-3.90 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.46-4.53 (1H, m), 6.85-6.93 (1H, m), 6.97-7.02 (1H, m), 7.07-7.16 (2H, m), 7.23-7.36 (2H, m).
104 (104b) $^1$H-NMR (CDCl$_3$) $\delta$: 0.92 (3H, t, J = 7.3 Hz), 1.53-1.65 (1H, m), 1.66-1.77 (1H, m), 1.77-1.99 (3H, m), 2.00-2.12 (1H, m), 2.48-2.59 (1H, m), 2.60-2.70 (1H, m), 2.71-2.92 (2H, m), 2.93-3.10 (3H, m), 3.11-3.48 (5H, m), 3.73-3.82 (1H, m), 4.26-4.34 (1H, m), 4.67-4.73 (1H, m), 6.89 (1H, td, J = 8.3, 2.8 Hz), 6.95-7.04 (1H, m), 7.10 (1H, dd, J = 8.3, 1.8 Hz), 7.18 (1H, dd, J = 8.3, 5.7 Hz), 7.32-7.35 (1H, m), 7.39 (1H, d, J = 8.3 Hz).

105 (105a) $^1$H-NMR (CDCl$_3$) $\delta$: 0.98 (3H, t, J = 7.5 Hz), 1.17-1.29 (6H, m), 1.39-1.52 (1H, m), 1.54-1.88 (5H, m), 2.30-2.49 (3H, m), 2.52-2.61 (2H, m), 2.64-2.79 (3H, m), 2.79-3.01 (4H, m), 3.01-3.09 (1H, m), 3.25 (1H, dd, J = 9.6, 6.4 Hz), 3.37 (1H, dd, J = 9.6, 4.1 Hz), 3.82-3.90 (1H, m), 4.13 (2H, q, J = 7.3 Hz), 4.46-4.52 (1H, m), 6.85-6.94 (2H, m), 6.98-7.03 (1H, m), 7.07-7.15 (2H, m), 7.20 (1H, d, J = 7.8 Hz).

105 (105b) $^1$H-NMR (CDCl$_3$) $\delta$: 0.92 (3H, t, J = 7.3 Hz), 1.22 (3H, t, J = 7.6 Hz), 1.53-1.78 (2H, m), 1.79-2.01 (3H, m), 2.02-2.17 (1H, m), 2.47-2.67 (2H, m), 2.67-2.84 (3H, m), 2.84-3.15 (4H, m), 3.24-3.50 (5H, m), 3.80-3.90 (1H, m), 4.32-4.42 (1H, m), 4.62-4.74 (1H, m), 6.82-6.92 (1H, m), 6.92-7.04 (2H, m), 7.11 (1H, s), 7.13-7.20 (1H, m), 7.23-7.31 (1H, m).

106 (106a) $^1$H-NMR (CDCl$_3$) $\delta$: 1.26 (3H, t, J = 7.2 Hz), 1.37-1.50 (4H, m), 1.53-1.81 (4H, m), 2.33-2.60 (5H, m), 2.66-2.76 (1H, m), 2.81 (1H, dd, J = 12.4, 6.0 Hz), 2.85-3.15 (4H, m), 3.30 (1H, dd, J = 9.6, 6.4 Hz), 3.38 (1H, dd, J = 9.6, 4.1 Hz), 3.81-3.90 (1H, m), 4.14 (2H, q, J = 7.2 Hz), 4.77 (1H, q, J = 6.3 Hz), 6.67-6.74 (1H, m), 6.96-7.04 (2H, m), 7.23-7.29 (1H, m), 7.32 (1H, d, J = 8.3 Hz).

106 (106b) $^1$H-NMR (CDCl$_3$) $\delta$: 1.32 (3H, d, J = 6.0 Hz), 1.76-2.02 (3H, m), 2.02-2.16 (1H, m), 2.47-2.66 (2H, m), 2.84-3.06 (4H, m), 3.06-3.17 (1H, m), 3.29-3.54 (5H, m), 3.80-3.91 (1H, m), 4.31-4.45 (1H, m), 4.94-5.03 (1H, m), 6.68 (1H, t, J = 8.9 Hz), 6.88 (1H, d, J = 9.2 Hz), 7.12 (1H, d, J = 8.3 Hz), 7.33-7.42 (2H, m).
| Table 103 | 1H-NMR (CDCl₃) δ: 1.18-1.29 (6H, m), 1.38-1.52 (4H, m), 1.63-1.60 (4H, m), 2.30-2.57 (5H, m), 2.61-2.76 (3H, m), 2.78-3.09 (5H, m), 3.30 (1H, dd, J = 9.6, 6.6 Hz), 3.37 (1H, dd, J = 9.6, 4.1 Hz), 3.81-3.90 (1H, m), 4.14 (2H, q, J = 7.3 Hz), 4.77 (1H, q, J = 6.3 Hz), 6.66-6.75 (1H, m), 6.88-6.95 (1H, m), 6.96-7.04 (2H, m), 7.21 (1H, d, J = 7.8 Hz), |
| 107 (107a) | ![Structure 107a](image) |
| | 1H-NMR (CDCl₃) δ: 1.22 (3H, t, J = 7.6 Hz), 1.33 (3H, d, J = 5.0 Hz), 1.80-2.01 (3H, m), 2.01-2.14 (1H, m), 2.46-2.65 (2H, m), 2.66-2.77 (2H, m), 2.80-3.05 (4H, m), 3.05-3.16 (1H, m), 3.16-3.55 (5H, m), 3.82-3.91 (1H, m), 4.32-4.40 (1H, m), 5.02 (1H, q, J = 6.3 Hz), 6.68 (1H, t, J = 9.2 Hz), 6.89 (1H, d, J = 9.6 Hz), 7.02 (1H, d, J = 8.3 Hz), 7.11 (1H, s), 7.22-7.31 (1H, m). |
| 107 (107b) | ![Structure 107b](image) |
| | 1H-NMR (CDCl₃) δ: 0.96 (3H, t, J = 7.3 Hz), 1.26 (3H, t, J = 7.3 Hz), 1.35-1.49 (1H, m), 1.54-1.89 (5H, m), 2.30-2.62 (5H, m), 2.63-2.74 (1H, m), 2.77-3.14 (5H, m), 3.26 (1H, dd, J = 9.6, 6.4 Hz), 3.38 (1H, dd, J = 9.6, 4.1 Hz), 3.60-3.88 (1H, m), 4.15 (2H, q, J = 7.3 Hz), 4.48-4.55 (1H, m), 6.91-7.01 (2H, m), 7.13-7.28 (3H, m), 7.29-7.35 (1H, m). |
| 108 (108a) | ![Structure 108a](image) |
| | 1H-NMR (CDCl₃) δ: 0.93 (3H, t, J = 7.3 Hz), 1.53-2.05 (6H, m), 2.48-2.66 (2H, m), 2.74 (1H, dd, J = 12.8, 7.8 Hz), 2.79-3.08 (4H, m), 3.08-3.21 (1H, m), 3.23-3.38 (2H, m), 3.39-3.50 (2H, m), 3.56-3.67 (1H, m), 4.11-4.29 (1H, m), 4.75-4.83 (1H, m), 6.88-6.96 (1H, m), 7.04-7.09 (1H, m), 7.11-7.22 (2H, m), 7.28-7.35 (1H, m), 7.35-7.39 (1H, m). |
| 108 (108b) | ![Structure 108b](image) |
| | 1H-NMR (CDCl₃) δ: 0.97 (3H, t, J = 7.8 Hz), 1.18-1.29 (6H, m), 1.39-1.51 (1H, m), 1.59-1.89 (5H, m), 2.29-2.50 (3H, m), 2.50-2.59 (2H, m), 2.63-2.76 (3H, m), 2.76-2.94 (2H, m), 2.94-3.09 (3H, m), 3.26 (1H, dd, J = 9.6, 6.4 Hz), 3.37 (1H, dd, J = 9.6, 3.9 Hz), 3.61-3.89 (1H, m), 4.09-4.19 (2H, m), 4.49-4.55 (1H, m), 6.88-6.98 (2H, m), 6.99-7.03 (1H, m), 7.15-7.25 (3H, m). |
| 109 (109a) | ![Structure 109a](image) |
**1H-NMR (CDCl₃) δ:**

<table>
<thead>
<tr>
<th>Compound</th>
<th>δ, J (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>109 (109b)</td>
<td>0.93 (3H, t, J = 6.6 Hz), 1.21 (3H, t, J = 7.6 Hz), 1.53-1.84 (1H, m), 1.64-1.77 (1H, m), 1.77-1.98 (3H, m), 1.99-2.10 (1H, m), 2.49-2.67 (2H, m), 2.67-2.76 (2H, m), 2.77-2.86 (1H, m), 2.88-3.09 (4H, m), 3.09-3.50 (5H, m), 3.75-3.83 (1H, m), 4.26-4.35 (1H, m), 4.75-4.84 (1H, m), 6.88-7.00 (2H, m), 7.01-7.28 (4H, m)</td>
</tr>
<tr>
<td>110 (110a)</td>
<td>0.97 (3H, t, J = 7.3 Hz), 1.26 (3H, t, J = 7.2 Hz), 1.37-1.49 (1H, m), 1.53-1.81 (5H, m), 2.35-2.56 (5H, m), 2.66-2.74 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.86-3.08 (4H, m), 3.26 (1H, dd, J = 9.6, 6.6 Hz), 3.38 (1H, dd, J = 9.6, 4.0 Hz), 3.82-3.89 (1H, m), 4.15 (2H, q, J = 7.2 Hz), 4.50-4.56 (1H, m), 6.67-6.74 (1H, m), 6.92-6.97 (1H, m), 6.99 (1H, dd, J = 8.3, 2.0 Hz), 7.24-7.28 (1H, m), 7.32 (1H, d, J = 8.0 Hz)</td>
</tr>
<tr>
<td>110 (110b)</td>
<td>0.86-0.97 (3H, m), 1.50-1.74 (2H, m), 1.75-2.01 (3H, m), 2.01-2.18 (1H, m), 2.47-2.68 (2H, m), 2.69-3.51 (10H, m), 3.76-3.88 (1H, m), 4.28-4.38 (1H, m), 4.75-4.87 (1H, m), 6.66-6.74 (1H, m), 6.84-6.91 (1H, m), 7.07-7.13 (1H, m), 7.32-7.42 (2H, m)</td>
</tr>
<tr>
<td>111 (111a)</td>
<td>0.97 (3H, t, J = 7.4 Hz), 1.19-1.28 (6H, m), 1.41-1.50 (1H, m), 1.58-1.60 (5H, m), 2.32-2.55 (5H, m), 2.62-2.74 (3H, m), 2.80-3.02 (4H, m), 3.02-3.08 (1H, m), 3.26 (1H, dd, J = 9.7, 6.3 Hz), 3.38 (1H, dd, J = 9.7, 4.0 Hz), 3.82-3.89 (1H, m), 4.09-4.18 (2H, m), 4.50-4.55 (1H, m), 6.67-6.74 (1H, m), 6.89-6.98 (2H, m), 6.99-7.02 (1H, m), 7.21 (1H, d, J = 8.0 Hz)</td>
</tr>
<tr>
<td>111 (111b)</td>
<td>0.93 (3H, t, J = 7.3 Hz), 1.22 (3H, t, J = 7.3 Hz), 1.50-1.72 (2H, m), 1.83-2.03 (3H, m), 2.07-2.20 (1H, m), 2.44-2.67 (2H, m), 2.73 (2H, q, J = 7.5 Hz), 2.81-2.98 (3H, m), 2.98-3.18 (2H, m), 3.21-3.52 (5H, m), 3.89-3.98 (1H, m), 4.38-4.47 (1H, m), 4.77-4.83 (1H, m), 6.66-6.73 (1H, m), 6.83-6.88 (1H, m), 6.98-7.02 (1H, m), 7.09-7.12 (1H, m), 7.21-7.30 (1H, m)</td>
</tr>
</tbody>
</table>
### 1H-NMR (CDCl₃)

**112 (112a)**

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.98</td>
<td>(3H, t, J = 7.3 Hz), 1.28 (3H, t, J = 7.2 Hz), 1.38-1.85 (6H, m), 2.23 (3H, s), 2.28-2.49 (3H, m), 2.52-2.60 (2H, m), 2.64-2.74 (1H, m), 2.82 (1H, dd, J = 12.4, 5.5 Hz), 2.90 (1H, dd, J = 12.4, 4.1 Hz), 2.98-3.29 (4H, m), 3.33-3.40 (1H, m), 3.79-3.90 (1H, m), 4.18 (2H, q, J = 7.2 Hz), 4.52 (1H, q, J = 6.2 Hz), 6.77-6.85 (2H, m), 7.05 (1H, t, J = 8.0 Hz), 7.19 (1H, t, J = 8.7 Hz), 7.25-7.36 (2H, m).</td>
</tr>
</tbody>
</table>

**112 (112b)**

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.96</td>
<td>(3H, t, J = 7.3 Hz), 1.55-1.75 (2H, m), 1.76-1.97 (3H, m), 1.99-2.11 (1H, m), 2.24 (3H, s), 2.62 (2H, t, J = 7.1 Hz), 2.82 (1H, dd, J = 13.1, 8.7 Hz), 2.91 (1H, dd, J = 13.1, 10.8 Hz), 2.96-3.17 (3H, m), 3.18-3.30 (1H, m), 3.30-3.48 (4H, m), 3.75-3.85 (1H, m), 4.27-4.36 (1H, m), 4.80-4.88 (1H, m), 6.88 (2H, t, J = 9.4 Hz), 7.07-7.19 (2H, m), 7.23-7.32 (2H, m).</td>
</tr>
</tbody>
</table>

**113 (113a)**

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.98</td>
<td>(3H, t, J = 7.3 Hz), 1.28 (3H, t, J = 7.3 Hz), 1.35-1.49 (1H, m), 1.55-1.85 (5H, m), 2.29-2.50 (3H, m), 2.50-2.60 (2H, m), 2.63-2.73 (1H, m), 2.81 (1H, dd, J = 12.4, 6.0 Hz), 2.88 (1H, dd, J = 12.4, 4.1 Hz), 2.99-3.11 (2H, m), 3.11-3.33 (2H, m), 3.33-3.42 (1H, m), 3.79-3.88 (1H, m), 4.17 (2H, q, J = 7.3 Hz), 4.52 (1H, dd, J = 7.3, 5.0 Hz), 6.95-7.03 (1H, m), 7.15-7.22 (1H, m), 7.22-7.37 (4H, m).</td>
</tr>
</tbody>
</table>

**114 (114a)**

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.93</td>
<td>(3H, m), 1.16-1.32 (6H, m), 1.38-1.87 (7H, m), 2.27-2.78 (7H, m), 2.79-2.96 (2H, m), 2.97-3.41 (5H, m), 3.79-3.90 (1H, m), 4.08-4.23 (2H, m), 4.47-4.56 (1H, m), 6.87-6.96 (1H, m), 6.96-7.04 (1H, m), 7.13-7.38 (4H, m).</td>
</tr>
</tbody>
</table>
114 (114b) $^1$H-NMR (CDCl$_3$) δ: 0.96 (3H, t, J = 7.3 Hz), 1.15-1.29 (3H, m), 1.55-1.75 (2H, m), 1.84-2.01 (3H, m), 2.03-2.21 (1H, m), 2.54-2.77 (4H, m), 2.85-2.95 (1H, m), 2.99-3.17 (4H, m), 3.21-3.46 (4H, m), 3.46-3.54 (1H, m), 3.90-4.01 (1H, m), 4.41-4.51 (1H, m), 4.76-4.84 (1H, m), 6.98-7.03 (1H, m), 7.09-7.12 (1H, m), 7.13-7.20 (1H, m), 7.20-7.32 (3H, m).

115 (115a) $^1$H-NMR (CDCl$_3$) δ: 0.97 (3H, t, J = 7.3 Hz), 1.26 (3H, t, J = 7.2 Hz), 1.38-1.46 (1H, m), 1.60-1.73 (4H, m), 1.74-1.86 (1H, m), 2.31-2.55 (5H, m), 2.62-2.71 (1H, m), 2.77-3.08 (5H, m), 3.24 (1H, dd, J = 9.4, 6.4 Hz), 3.38 (1H, dd, J = 9.4, 4.1 Hz), 3.80-3.88 (4H, m), 4.15 (2H, q, J = 7.2 Hz), 4.49-4.55 (1H, m), 6.77 (1H, d, J = 7.8 Hz), 6.95-7.04 (2H, m), 7.18-7.28 (2H, m), 7.30 (1H, d, J = 8.7 Hz).

115 (115b) $^1$H-NMR (CDCl$_3$) δ: 0.95 (3H, t, J = 7.4 Hz), 1.54-1.64 (1H, m), 1.65-1.74 (2H, m), 1.75-1.89 (2H, m), 1.90-2.00 (1H, m), 2.51-2.67 (3H, m), 2.76-2.85 (2H, m), 2.90-3.07 (3H, m), 3.28-3.34 (2H, m), 3.43-3.56 (2H, m), 3.81-3.84 (4H, m), 4.05-4.13 (1H, m), 4.79-4.84 (1H, m), 6.77 (1H, d, J = 7.4 Hz), 6.99 (1H, d, J = 6.9 Hz), 7.05 (1H, dd, J = 8.0, 2.3 Hz), 7.20 (1H, t, J = 8.0 Hz), 7.29-7.31 (1H, m), 7.37 (1H, d, J = 8.0 Hz).

[Table 106]

116 (116a) $^1$H-NMR (CDCl$_3$) δ: 0.92-1.01 (3H, m), 1.16-1.30 (6H, m), 1.37-1.52 (1H, m), 1.56-1.86 (5H, m), 2.25-2.56 (5H, m), 2.67-2.78 (3H, m), 2.78-3.15 (5H, m), 3.16-3.27 (1H, m), 3.34-3.40 (1H, m), 3.77-3.89 (4H, m), 4.07-4.20 (2H, m), 4.48-4.55 (1H, m), 6.73-6.79 (1H, m), 6.87-6.93 (1H, m), 6.95-7.05 (2H, m), 7.15-7.27 (2H, m).

116 (116b) $^1$H-NMR (CDCl$_3$) δ: 0.95 (3H, t, J = 7.2 Hz), 1.22 (3H, t, J = 7.2 Hz), 1.54-1.65 (1H, m), 1.65-1.93 (4H, m), 1.93-2.05 (1H, m), 2.51-2.65 (2H, m), 2.65-2.76 (3H, m), 2.78-3.04 (4H, m), 3.06-3.15 (1H, m), 3.32 (1H, dd, J = 12.9, 4.0 Hz), 3.39 (1H, dd, J = 12.9, 3.2 Hz), 3.47 (2H, d, J = 5.7 Hz), 3.60-3.67 (1H, m), 3.83 (3H, s), 4.10-4.21 (1H, m), 4.80-4.86 (1H, m), 6.73-6.77 (1H, m), 6.95-7.00 (2H, m), 7.05-7.07 (1H, m), 7.17-7.22 (1H, m), 7.23-7.27 (1H, m).
117 (117a) \(^{1}H\)-NMR (CDCl\(_3\)) \(\delta\): 0.96 (3H, t, \(J = 7.3\) Hz), 1.21-1.28 (3H, m), 1.36-1.51 (1H, m), 1.57-1.83 (5H, m), 2.31-2.50 (3H, m), 2.57 (2H, t, \(J = 7.8\) Hz), 2.66-2.75 (1H, m), 2.77-3.00 (4H, m), 3.00-3.11 (1H, m), 3.24 (1H, dd, \(J = 9.2, 6.4\) Hz), 3.35 (1H, dd, \(J = 9.2, 3.2\) Hz), 3.80-3.88 (1H, m), 4.14 (2H, q, \(J = 7.3\) Hz), 4.42-4.49 (1H, m), 6.92-7.02 (2H, m), 7.16-7.28 (2H, m), 7.29-7.35 (1H, m).

117 (117b) \(^{1}H\)-NMR (CDCl\(_3\)) \(\delta\): 0.91 (3H, t, \(J = 7.3\) Hz), 1.50-1.63 (1H, m), 1.63-2.09 (5H, m), 2.45-2.55 (1H, m), 2.59-2.80 (3H, m), 2.84-2.99 (2H, m), 3.00-3.14 (1H, m), 3.14-3.25 (1H, m), 3.26-3.48 (4H, m), 3.59-3.70 (1H, m), 4.09-4.20 (1H, m), 4.68-4.75 (1H, m), 6.98-7.15 (3H, m), 7.30-7.34 (1H, m), 7.36-7.40 (1H, m).

118 (118a) \(^{1}H\)-NMR (CDCl\(_3\)) \(\delta\): 0.96 (3H, t, \(J = 7.3\) Hz), 1.25 (3H, t, \(J = 7.1\) Hz), 1.36-1.49 (1H, m), 1.58-1.84 (5H, m), 2.23 (3H, s), 2.32-2.49 (3H, m), 2.52-2.59 (2H, m), 2.64-2.73 (1H, m), 2.77-2.98 (4H, m), 3.01-3.08 (1H, m), 3.24 (1H, dd, \(J = 9.6, 6.4\) Hz), 3.37 (1H, dd, \(J = 9.6, 4.1\) Hz), 3.81-3.89 (1H, m), 4.14 (2H, q, \(J = 7.1\) Hz), 4.41-4.47 (1H, m), 6.94-7.07 (3H, m), 7.23-7.28 (1H, m), 7.31 (1H, d, \(J = 7.8\) Hz).

118 (118b) \(^{1}H\)-NMR (CDCl\(_3\)) \(\delta\): 0.91 (3H, t, \(J = 6.9\) Hz), 1.52-1.64 (1H, m), 1.86-1.77 (1H, m), 1.77-1.99 (3H, m), 2.01-2.12 (1H, m), 2.22 (3H, s), 2.48-2.58 (1H, m), 2.60-2.70 (1H, m), 2.70-2.80 (1H, m), 2.80-2.89 (1H, m), 2.92-3.08 (3H, m), 3.23-3.48 (5H, m), 3.73-3.82 (1H, m), 4.24-4.33 (1H, m), 4.62-4.69 (1H, m), 6.93 (1H, d, \(J = 10.5\) Hz), 7.02 (1H, d, \(J = 7.8\) Hz), 7.10 (1H, d, \(J = 8.3\) Hz), 7.34 (1H, s), 7.39 (1H, d, \(J = 8.3\) Hz).

119 (119a) \(^{1}H\)-NMR (CDCl\(_3\)) \(\delta\): 0.96 (3H, t, \(J = 6.9\) Hz), 1.18-1.29 (6H, m), 1.40-1.51 (1H, m), 1.57-1.84 (5H, m), 2.23 (3H, s), 2.30-2.48 (3H, m), 2.52-2.59 (2H, m), 2.63-2.78 (3H, m), 2.79-2.95 (4H, m), 3.00-3.08 (1H, m), 3.24 (1H, dd, \(J = 9.6, 6.4\) Hz), 3.36 (1H, dd, \(J = 9.6, 4.1\) Hz), 3.81-3.89 (1H, m), 4.14 (2H, q, \(J = 7.3\) Hz), 4.41-4.47 (1H, m), 6.91 (1H, d, \(J = 8.3\) Hz), 6.96 (1H, d, \(J = 7.3\) Hz), 6.99-7.07 (2H, m), 7.20 (1H, d, \(J = 8.3\) Hz).
119 (119b)  
\[\text{1H-NMR (CDCl}_3\text{): } \delta: 0.91 (3\text{H, t, } J = 7.3 \text{ Hz}), 1.22 (3\text{H, t, } J = 8.7 \text{ Hz}), 1.51-1.64 (1\text{H, m}), 1.64-1.77 (1\text{H, m}), 1.79-2.00 (3\text{H, m}), 2.02-2.13 (1\text{H, m}), 2.21 (3\text{H, s}), 2.46-2.80 (5\text{H, m}), 2.82-2.91 (1\text{H, m}), 2.92-3.12 (3\text{H, m}), 3.25-3.49 (5\text{H, m}), 3.78-3.89 (1\text{H, m}), 4.30-4.40 (1\text{H, m}), 4.59-4.70 (1\text{H, m}), 6.91 (1\text{H, d, } J = 10.5 \text{ Hz}), 6.97-7.04 (2\text{H, m}), 7.10 (1\text{H, s}), 7.20-7.30 (1\text{H, m}).\]

120 (120a)  
\[\text{1H-NMR (CDCl}_3\text{): } \delta: 0.99 (3\text{H, t, } J = 7.8 \text{ Hz}), 1.23-1.31 (3\text{H, m}), 1.39-1.47 (1\text{H, m}), 1.60-1.86 (5\text{H, m}), 2.32-2.50 (8\text{H, m}), 2.63-2.72 (1\text{H, m}), 2.82 (1\text{H, dd, } J = 12.4, 6.0 \text{ Hz}), 2.89 (1\text{H, dd, } J = 12.4, 4.4 \text{ Hz}), 2.92-3.07 (3\text{H, m}), 3.24 (1\text{H, dd, } J = 9.4, 6.4 \text{ Hz}), 3.37 (1\text{H, dd, } J = 9.4, 3.9 \text{ Hz}), 3.81-3.88 (1\text{H, m}), 4.18 (2\text{H, q, } J = 7.3 \text{ Hz}), 4.48-4.53 (1\text{H, m}), 6.99 (1\text{H, d, } J = 8.3 \text{ Hz}), 7.05-7.10 (1\text{H, m}), 7.15 (1\text{H, t, } J = 7.6 \text{ H}), 7.23-7.28 (2\text{H, m}), 7.31 (1\text{H, d, } J = 8.3 \text{ Hz}).\]

120 (120b)  
\[\text{1H-NMR (CDCl}_3\text{): } \delta: 0.96 (3\text{H, t, } J = 7.1 \text{ Hz}), 1.57-1.76 (2\text{H, m}), 1.77-2.00 (3\text{H, m}), 2.01-2.13 (2\text{H, m}), 2.34 (3\text{H, s}), 2.42-2.52 (1\text{H, m}), 2.53-2.63 (1\text{H, m}), 2.80-3.12 (5\text{H, m}), 3.18-3.33 (1\text{H, m}), 3.33-3.47 (3\text{H, m}), 3.77-3.85 (1\text{H, m}), 4.30-4.39 (1\text{H, m}), 4.71-4.79 (1\text{H, m}), 7.04-7.16 (3\text{H, m}), 7.16-7.21 (1\text{H, m}), 7.32-7.41 (2\text{H, m}).\]

121 (121a)  
\[\text{1H-NMR (CDCl}_3\text{): } \delta: 0.96 (3\text{H, t, } J = 7.3 \text{ Hz}), 1.18-1.29 (6\text{H, m}), 1.41-1.51 (1\text{H, m}), 1.56-1.82 (5\text{H, m}), 2.30-2.49 (3\text{H, m}), 2.57 (2\text{H, t, } J = 8.0 \text{ Hz}), 2.65-2.75 (3\text{H, m}), 2.79-2.99 (4\text{H, m}), 3.00-3.16 (1\text{H, m}), 3.24 (1\text{H, dd, } J = 9.6, 6.4 \text{ Hz}), 3.35 (1\text{H, dd, } J = 9.6, 4.1 \text{ Hz}), 3.80-3.88 (1\text{H, m}), 4.14 (2\text{H, q, } J = 7.3 \text{ Hz}), 4.43-4.48 (1\text{H, m}), 6.89-7.03 (3\text{H, m}), 7.17-7.24 (2\text{H, m}).\]

121 (121b)  
\[\text{1H-NMR (CDCl}_3\text{): } \delta: 0.91 (3\text{H, t, } J = 7.3 \text{ Hz}), 1.22 (3\text{H, t, } J = 7.3 \text{ Hz}), 1.50-1.62 (1\text{H, m}), 1.64-1.77 (1\text{H, m}), 1.77-1.98 (3\text{H, m}), 1.98-2.09 (1\text{H, m}), 2.46-2.56 (1\text{H, m}), 2.57-2.86 (5\text{H, m}), 2.88-2.97 (1\text{H, m}), 2.98-3.10 (2\text{H, m}), 3.21-3.46 (5\text{H, m}), 3.71-3.82 (1\text{H, m}), 4.21-4.31 (1\text{H, m}), 4.67-4.74 (1\text{H, m}), 6.96-7.06 (2\text{H, m}), 7.06-7.14 (2\text{H, m}), 7.22-7.30 (1\text{H, m}).\]
**Table 108**

<table>
<thead>
<tr>
<th>1H-NMR (CDCl₃) δ</th>
<th>1H-NMR (CDCl₃) δ</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>122 (122a)</strong></td>
<td><strong>122 (122b)</strong></td>
</tr>
<tr>
<td>0.99 (3H, t, J = 7.8 Hz), 1.18-1.31 (6H, m), 1.40-1.50 (1H, m), 1.59-1.85 (5H, m), 2.30-2.53 (8H, m), 2.62-2.76 (3H, m), 2.80-3.07 (5H, m), 3.23 (1H, dd, J = 9.4, 6.6 Hz), 3.37 (1H, dd, J = 9.4, 4.1 Hz), 3.81-3.89 (1H, m), 4.18 (2H, q, J = 7.2 Hz), 4.47-4.53 (1H, m), 6.91 (1H, dd, J = 8.0, 2.1 Hz), 6.98-7.03 (1H, m), 7.05-7.10 (1H, m), 7.12-7.23 (2H, m), 7.24-7.30 (1H, m).</td>
<td></td>
</tr>
<tr>
<td><strong>122 (122b)</strong></td>
<td></td>
</tr>
<tr>
<td>0.97 (3H, t, J = 7.0 Hz), 1.22 (3H, t, J = 7.3 Hz), 1.57-1.76 (2H, m), 1.77-1.97 (3H, m), 1.99-2.10 (1H, m), 2.35 (3H, s), 2.42-2.62 (2H, m), 2.73 (2H, q, J = 7.5 Hz), 2.77-2.86 (1H, m), 2.86-2.98 (2H, m), 2.98-3.13 (2H, m), 3.17-3.30 (1H, m), 3.31-3.48 (4H, m), 3.77-3.86 (1H, m), 4.30-4.38 (1H, m), 4.75-4.82 (1H, m), 6.96-7.00 (1H, m), 7.04-7.15 (3H, m), 7.17-7.22 (1H, m), 7.24-7.29 (1H, m).</td>
<td></td>
</tr>
<tr>
<td><strong>123 (123a)</strong></td>
<td></td>
</tr>
<tr>
<td>0.93 (3H, t, J = 6.9 Hz), 1.24 (3H, t, J = 7.3 Hz), 1.32-1.50 (2H, m), 1.52-1.59 (2H, m), 1.65-1.80 (4H, m), 2.22 (3H, s), 2.32-2.47 (3H, m), 2.57 (2H, t, J = 8.5 Hz), 2.66-2.72 (1H, m), 2.83 (1H, dd, J = 12.6, 5.7 Hz), 2.89-2.98 (3H, m), 3.01-3.06 (1H, m), 3.23 (1H, dd, J = 9.2, 6.4 Hz), 3.35 (1H, dd, J = 9.2, 4.4 Hz), 3.82-3.88 (1H, m), 4.13 (2H, q, J = 7.3 Hz), 4.55 (1H, dd, J = 8.3, 3.7 Hz), 6.80 (1H, d, J = 5.5 Hz), 6.82 (1H, s), 7.06 (2H, m), 7.16 (1H, dd, J = 8.3, 2.3 Hz), 7.39 (1H, d, J = 2.3 Hz).</td>
<td></td>
</tr>
<tr>
<td><strong>123 (123b)</strong></td>
<td></td>
</tr>
<tr>
<td>0.91 (3H, t, J = 7.2 Hz), 1.22-1.36 (2H, m), 1.43-1.54 (2H, m), 1.65-1.73 (1H, m), 1.87-2.01 (3H, m), 2.08-2.15 (1H, m), 2.24 (3H, s), 2.52-2.58 (1H, m), 2.64-2.69 (1H, m), 2.78-2.84 (1H, m), 2.93 (1H, dd, J = 13.2, 9.2 Hz), 2.98-3.05 (2H, m), 3.10-3.15 (1H, m), 3.32 (1H, dd, J = 10.9, 6.3 Hz), 3.38-3.44 (3H, m), 3.87-3.92 (1H, m), 4.38-4.43 (1H, m), 4.72 (1H, dd, J = 7.7, 4.3 Hz), 6.88-6.93 (2H, m), 7.11-7.17 (4H, m).</td>
<td></td>
</tr>
<tr>
<td><strong>124 (124a)</strong></td>
<td></td>
</tr>
<tr>
<td>0.92 (3H, t, J = 7.2 Hz), 1.25 (3H, t, J = 7.2 Hz), 1.31-1.40 (1H, m), 1.42-1.48 (1H, m), 1.50-1.57 (2H, m), 1.62-1.80 (4H, m), 2.22 (3H, s), 2.33-2.40 (2H, m), 2.43 (1H, dd, J = 12.6, 7.4 Hz), 2.57-2.61 (2H, m), 2.65-2.71 (1H, m), 2.81 (1H, dd, J = 12.6, 5.7 Hz), 2.89 (1H, dd, J = 13.2, 4.0 H), 2.91-2.99 (2H, m), 3.01-3.05 (1H, m), 3.22 (1H, dd, J = 9.5, 6.6 Hz), 3.34 (1H, dd, J = 9.5, 4.0 Hz), 3.80-3.85 (1H, m), 4.15 (2H, q, J = 7.2 Hz), 4.55 (1H, dd, J = 7.2 Hz), 6.88-6.93 (2H, m), 7.11-7.17 (4H, m).</td>
<td></td>
</tr>
</tbody>
</table>
\[ J = 8.6, 4.0 \text{ Hz}, \] 6.80 (1H, d, J = 3.4 Hz), 6.82 (1H, s), 7.05 (1H, t, J = 8.0 Hz), 7.15 (1H, d, J = 2.3 Hz), 7.21 (1H, dd, J = 8.0, 2.3 Hz), 7.34 (1H, d, J = 8.6 Hz).

\[ J = 8.6, 4.0 \text{ Hz}, \] 6.80 (1H, d, J = 3.4 Hz), 6.82 (1H, s), 7.05 (1H, t, J = 8.0 Hz), 7.15 (1H, d, J = 2.3 Hz), 7.21 (1H, dd, J = 8.0, 2.3 Hz), 7.34 (1H, d, J = 8.6 Hz).

\[ 1^1\text{H-NMR (CDCl}_3\text{)} \delta: 0.90 (3H, t, J = 7.1 \text{ Hz}), 1.22-1.33 (1H, m), 1.42-1.54 (2H, m), 1.64-1.74 (1H, m), 1.71-1.94 (3H, m), 2.00-2.04 (1H, m), 2.23 (3H, s), 2.50-2.57 (1H, m), 2.61-2.69 (1H, m), 2.73-2.80 (2H, m), 2.87-2.98 (2H, m), 3.03-3.13 (1H, m), 3.17-3.24 (1H, m), 3.32 (2H, dd, J = 13.3, 3.7 Hz), 3.37-3.42 (2H, m), 3.63-3.71 (1H, m), 4.15-4.22 (1H, m), 4.79-4.83 (1H, m), 6.87 (2H, t, J = 9.4 Hz), 7.10 (1H, t, J = 7.8 Hz), 7.15 (1H, dd, J = 8.3, 2.3 Hz), 7.22 (1H, d, J = 2.3 Hz), 7.26 (1H, d, J = 8.3 Hz).

\[ 1^1\text{H-NMR (CDCl}_3\text{)} \delta: 0.93 (3H, t, J = 7.1 \text{ Hz}), 1.28 (3H, t, J = 6.9 \text{ Hz}), 1.33-1.47 (1H, m), 1.48-1.61 (3H, m), 1.71-1.85 (4H, m), 2.23 (3H, s), 2.46-2.62 (5H, m), 2.86-3.02 (3H, m), 3.04-3.09 (1H, m), 3.12-3.18 (1H, m), 3.22-3.30 (2H, m), 3.34 (1H, dd, J = 9.6, 4.1 Hz), 3.92-3.98 (1H, m), 4.16 (2H, q, J = 6.9 Hz), 4.60 (1H, dd, J = 8.3, 3.7 Hz), 6.81 (1H, s), 6.84 (2H, d, J = 5.5 Hz), 7.07 (1H, t, J = 8.0 Hz), 7.19 (1H, t, J = 7.8 Hz), 7.30 (1H, t, J = 7.8 Hz).

\[ 1^1\text{H-NMR (CDCl}_3\text{)} \delta: 0.90 (3H, t, J = 6.9 \text{ Hz}), 1.22-1.40 (1H, m), 1.41-1.54 (2H, m), 1.61-1.71 (1H, m), 1.87-2.03 (3H, m), 2.10-2.17 (1H, m), 2.23 (3H, s), 2.63-2.67 (2H, m), 2.99-3.15 (4H, m), 3.21-3.34 (2H, m), 3.37-3.42 (2H, m), 3.47-3.53 (2H, m), 3.96-4.02 (1H, m), 4.45-4.50 (1H, m), 4.78 (1H, dd, J = 8.0, 3.9 Hz), 6.90 (2H, dd, J = 11.9, 9.2 Hz), 7.09-7.18 (2H, m), 7.23 (1H, d, J = 7.3 Hz), 7.27 (1H, d, J = 7.3 Hz).

\[ 1^1\text{H-NMR (CDCl}_3\text{)} \delta: 1.25 (3H, t, J = 7.1 \text{ Hz}), 1.44 (3H, d, J = 6.4 \text{ Hz}), 1.49-1.57 (1H, m), 1.68-1.81 (3H, m), 2.31 (3H, s), 2.33 (3H, s), 2.43 (1H, dd, J = 12.8, 9.6 Hz), 2.49-2.65 (4H, m), 2.76-2.85 (1H, m), 2.89 (1H, t, J = 6.2 Hz), 2.95 (3H, t, J = 8.0 Hz), 3.16-3.23 (1H, m), 3.28-3.38 (2H, m), 3.89-3.94 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.74 (1H, q, J = 6.4 Hz), 6.95 (1H, d, J = 7.8 Hz), 6.98 (1H, s), 7.07 (1H, d, J = 7.8 Hz), 7.11 (1H, d, J = 7.8 Hz), 7.15 (1H, s), 7.30 (1H, d, J = 7.8 Hz).
1H-NMR (CDCl3) δ: 1.38 (3H, d, J = 6.3 Hz), 1.82-2.02 (4H, m), 2.05-2.10 (1H, m), 2.29 (3H, s), 2.33 (3H, s), 2.56-2.66 (1H, m), 2.83-2.89 (1H, m), 2.93 (1H, dd, J = 13.2, 10.3 Hz), 2.98-3.03 (2H, m), 3.16-3.22 (1H, m), 3.33-3.45 (5H, m), 3.85-3.90 (1H, m), 4.34-4.38 (1H, m), 4.86 (1H, q, J = 6.3 Hz), 7.01 (1H, s), 7.02-7.05 (2H, m), 7.16 (1H, d, J = 7.4 Hz), 7.20-7.22 (2H, m).

1H-NMR (CDCl3) δ: 1.25 (3H, t, J = 7.3 Hz), 1.43 (3H, d, J = 6.4 Hz), 1.54-1.61 (1H, m), 1.71-1.85 (3H, m), 2.33 (3H, s), 2.47 (1H, dd, J = 13.1, 9.4 Hz), 2.54-2.62 (4H, m), 2.85-2.99 (5H, m), 3.23-3.35 (3H, m), 3.92-3.97 (1H, m), 4.14 (2H, q, J = 7.3 Hz), 4.74 (1H, q, J = 6.4 Hz), 6.96 (1H, d, J = 7.8 Hz), 7.12 (1H, d, J = 7.8 Hz), 7.15 (2H, s), 7.22 (1H, d, J = 8.3 Hz), 7.35 (1H, d, J = 8.3 Hz).

1H-NMR (CDCl3) δ: 1.25 (3H, t, J = 7.1 Hz), 1.40-1.44 (1H, m), 1.44 (3H, d, J = 6.4 Hz), 1.63-1.73 (3H, m), 2.31 (3H, s), 2.35-2.46 (3H, m), 2.56-2.60 (2H, m), 2.64-2.71 (1H, m), 2.80 (1H, dd, J = 12.4, 6.0 Hz), 2.90 (1H, dd, J = 13.3, 4.1 Hz), 2.95 (2H, t, J = 8.0 Hz), 3.01-3.06 (1H, m), 3.28 (1H, dd, J = 9.6, 6.6 Hz), 3.36 (1H, dd, J = 9.6, 4.1 Hz), 3.80-3.86 (1H, m), 4.15 (2H, q, J = 7.1 Hz), 4.73 (1H, q, J = 6.4 Hz), 6.87 (1H, d, J = 8.0 Hz), 6.95 (1H, s), 6.98 (1H, s), 7.07 (1H, d, J = 7.8 Hz), 7.25 (1H, t, J = 7.8 Hz), 7.31 (1H, d, J = 7.8 Hz).
1H-NMR (CDCl₃) δ: 0.96 (3H, t, J = 7.3 Hz), 1.25 (3H, t, J = 7.3 Hz), 1.41-1.50 (1H, m), 1.61-1.83 (5H, m), 2.32 (3H, s), 2.34-2.46 (3H, m), 2.59 (2H, t, J = 8.0 Hz), 2.64-2.70 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.87 (1H, dd, J = 13.1, 3.9 Hz), 2.95 (2H, q, J = 7.6 Hz), 3.00-3.06 (1H, m), 3.24 (1H, dd, J = 9.4, 6.6 Hz), 3.35 (1H, dd, J = 9.4, 3.9 Hz), 3.80-3.86 (1H, m), 4.15 (2H, q, J = 7.3 Hz), 4.48 (1H, t, J = 6.4 Hz), 6.93 (1H, d, J = 7.3 Hz), 7.10 (1H, d, J = 7.8 Hz), 7.14 (2H, d, J = 5.0 Hz), 7.21 (1H, d, J = 3.3 Hz), 7.33 (1H, d, J = 8.3 Hz).

1H-NMR (CDCl₃) δ: 0.91 (3H, t, J = 6.2 Hz), 1.56-1.65 (1H, m), 1.68-1.77 (1H, m), 1.87-2.00 (3H, m), 2.10-2.17 (1H, m), 2.34 (3H, s), 2.55-2.62 (1H, m), 2.66-2.73 (1H, m), 2.79-2.86 (1H, m), 2.94 (1H, t, J = 10.8 Hz), 3.00-3.16 (3H, m), 3.31-3.44 (5H, m), 3.88-3.94 (1H, m), 4.40-4.44 (1H, m), 4.65 (1H, t, J = 5.3 Hz), 7.05 (1H, d, J = 7.3 Hz), 7.16-7.24 (5H, m).

1H-NMR (CDCl₃) δ: 1.26 (3H, t, J = 7.2 Hz), 1.43 (3H, d, J = 6.4 Hz), 1.54-1.62 (1H, m), 1.76-1.87 (3H, m), 2.58 (3H, t, J = 8.0 Hz), 2.62-2.69 (2H, m), 2.93 (3H, t, J = 7.6 Hz), 2.97-3.07 (2H, m), 3.30-3.37 (3H, m), 3.97-4.03 (1H, m), 4.12 (2H, q, J = 7.2 Hz), 4.74 (1H, q, J = 6.4 Hz), 6.88-6.94 (2H, m), 6.99 (1H, d, J = 10.1 Hz), 7.09-7.14 (2H, m), 7.30 (1H, t, J = 8.0 Hz).

1H-NMR (CDCl₃) δ: 1.36 (3H, d, J = 6.3 Hz), 1.81-1.86 (1H, m), 1.90-2.01 (2H, m), 2.03-2.09 (1H, m), 2.55-2.60 (2H, m), 2.79-2.85 (1H, m), 2.92-3.01 (3H, m), 3.15-3.21 (1H, m), 3.35 (1H, dd, J = 10.9, 5.7 Hz), 3.40-3.47 (4H, m), 3.81-3.86 (1H, m), 4.31-4.36 (1H, m), 4.69 (1H, q, J = 6.3 Hz), 6.88 (1H, t, J = 8.3 Hz), 7.00 (1H, d, J = 8.0 Hz), 7.03 (1H, dd, J = 10.3, 2.9 Hz), 7.07 (1H, dd, J = 9.7, 1.7 Hz), 7.15 (1H, dd, J = 8.3, 5.4 Hz), 7.34 (1H, t, J = 8.0 Hz).

1H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 7.1 Hz), 1.43 (3H, d, J = 6.4 Hz), 1.44-1.48 (1H, m), 1.66-1.76 (3H, m), 2.40-2.50 (3H, m), 2.57-2.62 (2H, m), 2.72-2.77 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.89-3.01 (3H, m), 3.06-3.11 (1H, m), 3.26-3.36 (2H, m), 3.82-3.88 (1H, m), 4.15 (2H, q, J = 7.1 Hz), 4.73 (1H, q, J = 6.4 Hz), 6.89 (1H, d, J = 8.3 Hz), 6.96 (1H, d, J = 10.1 Hz), 7.15 (1H, s), 7.21-7.26 (1H, m), 7.28 (1H, d, J = 8.3 Hz), 7.36 (1H, d, J = 8.3 Hz).
131 (131b) 

\[ \begin{align*} \text{δ} & : 1.36 (3H, d, J = 6.4 Hz), \\
& : 1.80-2.01 (3H, m), 2.03-2.09 (1H, m), 2.52-2.67 (2H, m), 2.80-3.11 (5H, m), 3.29-3.43 (5H, m), \\
& : 3.74-3.80 (1H, m), 4.26-4.32 (1H, m), 4.88 (1H, q, J = 6.4 Hz), 7.00 (1H, d, J = 7.8 Hz), 7.06 (1H, d, J = 9.6 Hz), 7.17 (1H, d, J = 8.3 Hz), 7.20 (1H, s), 7.27 (1H, d, J = 8.3 Hz), 7.34 (1H, t, J = 7.8 Hz). \end{align*} \]

132 (132a) 

\[ \begin{align*} \text{δ} & : 1.26 (3H, t, J = 7.3 Hz), 1.41 (3H, d, J = 6.4 Hz), 1.56-1.64 (1H, m), 1.75-1.88 (3H, m), 2.33 (3H, s), 2.52-2.57 (4H, m), 2.58-2.68 (1H, m), 2.87-3.03 (5H, m), 3.31-3.38 (3H, m), \\
& : 3.97-4.03 (1H, m), 4.12 (2H, q, J = 7.3 Hz), 4.79 (1H, q, J = 6.4 Hz), 6.68-6.74 (1H, m), 6.94-6.99 (2H, m), 7.13 (1H, d, J = 7.8 Hz), 7.17 (1H, s). \end{align*} \]

132 (132b) 

\[ \begin{align*} \text{δ} & : 1.32 (3H, d, J = 6.0 Hz), 1.86-2.06 (3H, m), 2.10-2.18 (1H, m), 2.33 (3H, s), 2.54-2.67 (2H, m), 2.83-3.01 (3H, m), 3.12 (1H, dd, J = 13.3, 9.6 Hz), 3.26-3.32 (1H, m), 3.33-3.40 (2H, m), 3.42-3.50 (2H, m), 3.51-3.58 (1H, m), \\
& : 3.96-4.03 (1H, m), 4.42-4.47 (1H, m), 4.94 (1H, q, J = 6.0 Hz), 6.66-6.71 (1H, m), 6.88 (1H, d, J = 9.4 Hz), 7.06 (1H, d, J = 7.6 Hz), 7.16 (1H, d, J = 8.3 Hz), 7.22 (1H, s), 7.26 (1H, s). \end{align*} \]

133 (133a) 

\[ \begin{align*} \text{δ} & : 1.25 (3H, t, J = 7.3 Hz), 1.41 (3H, d, J = 6.4 Hz), 1.55-1.65 (1H, m), 1.78-1.88 (3H, m), 2.48-2.76 (5H, m), 2.87-3.07 (5H, m), 3.31-3.38 (3H, m), 3.99-4.04 (1H, m), 4.13 (2H, q, J = 7.3 Hz), 4.79 (1H, q, J = 6.4 Hz), 6.69-6.74 (1H, m), 6.92-6.96 (2H, m), 7.00 (1H, dd, J = 9.6, 1.8 Hz), 7.30 (1H, t, J = 8.0 Hz). \end{align*} \]

133 (133b) 

\[ \begin{align*} \text{δ} & : 1.33 (3H, d, J = 6.0 Hz), 1.84-1.93 (1H, m), 1.94-2.04 (2H, m), 2.08-2.17 (1H, m), 2.51-2.65 (2H, m), 2.82-2.90 (1H, m), 2.93-3.09 (3H, m), 3.22-3.29 (1H, m), 3.37 (1H, dd, J = 11.0, 6.0 Hz), 3.43-3.48 (3H, m), 3.49-3.55 (1H, m), 3.91-3.97 (1H, m), 4.38-4.43 (1H, m), 4.96 (1H, q, J = 6.0 Hz), 6.69 (1H, t, J = 9.4 Hz), 6.88 (1H, d, J = 9.6 Hz), 7.02 (1H, d, J = 8.3 Hz), 7.09 (1H, d, J = 9.6 Hz), 7.35 (1H, t, J = 7.8 Hz). \end{align*} \]
| 134 (134a) | 1H-NMR (CDCl₃) δ: 0.97 (3H, t, J = 7.3 Hz), 1.24 (3H, t, J = 7.1 Hz), 1.44-1.52 (1H, m), 1.60-1.83 (5H, m), 2.38 (1H, dd, J = 13.3, 9.6 Hz), 2.43-2.50 (2H, m), 2.57 (2H, t, J = 8.3 Hz), 2.71-2.76 (1H, m), 2.84-3.00 (4H, m), 3.07-3.12 (1H, m), 3.26 (1H, dd, J = 9.6, 6.4 Hz), 3.37 (1H, dd, J = 9.6, 4.1 Hz), 3.86-3.91 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.49 (1H, t, J = 6.2 Hz), 6.89 (1H, td, J = 8.3, 2.8 Hz), 6.94 (1H, d, J = 7.8 Hz), 7.08-7.14 (4H, m). |
| 134 (134b) | 1H-NMR (CDCl₃) δ: 0.92 (3H, t, J = 7.3 Hz), 1.55-1.65 (1H, m), 1.66-1.77 (1H, m), 1.86-2.01 (3H, m), 2.08-2.16 (1H, m), 2.34 (3H, s), 2.53-2.60 (1H, m), 2.63-2.70 (1H, m), 2.77-2.84 (1H, m), 2.94-3.06 (3H, m), 3.12-3.19 (1H, m), 3.31-3.48 (5H, m), 3.89-3.96 (1H, m), 4.41-4.47 (1H, m), 4.86 (1H, t, J = 6.2 Hz), 6.89 (1H, td, J = 8.3, 2.8 Hz), 6.99 (1H, dd, J = 10.1, 2.8 Hz), 7.05 (1H, dd, J = 7.6, 1.6 Hz), 7.16 (2H, dd, J = 8.7, 6.4 Hz), 7.22 (1H, s). |
| 135 (135a) | 1H-NMR (CDCl₃) δ: 0.98 (3H, t, J = 7.3 Hz), 1.24 (3H, t, J = 6.9 Hz), 1.40-1.46 (1H, m), 1.62-1.82 (5H, m), 2.36-2.48 (3H, m), 2.57 (2H, t, J = 8.5 Hz), 2.66-2.73 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.88-2.96 (3H, m), 3.02-3.07 (1H, m), 3.25 (1H, dd, J = 9.2, 6.4 Hz), 3.37 (1H, dd, J = 9.2, 4.1 Hz), 3.82-3.88 (1H, m), 4.14 (2H, q, J = 6.9 Hz), 4.49 (1H, t, J = 6.2 Hz), 6.87-6.92 (2H, m), 6.96 (1H, d, J = 10.1 Hz), 7.09-7.14 (2H, m), 7.26 (1H, t, J = 8.0 Hz). |
| 135 (135b) | 1H-NMR (CDCl₃) δ: 0.91 (3H, t, J = 7.3 Hz), 1.56-1.63 (1H, m), 1.66-1.77 (1H, m), 1.85-2.02 (3H, m), 2.09-2.16 (1H, m), 2.52-2.60 (1H, m), 2.62-2.69 (1H, m), 2.76-2.83 (1H, m), 2.95-3.19 (4H, m), 3.32 (1H, dd, J = 10.8, 6.6 Hz), 3.40-3.48 (4H, m), 3.87-3.93 (1H, m), 4.39-4.45 (1H, m), 4.65 (1H, t, J = 6.4 Hz), 6.89 (1H, td, J = 8.3, 2.8 Hz), 6.98 (1H, dd, J = 10.3, 3.0 Hz), 7.01 (1H, d, J = 7.8 Hz), 7.08 (1H, d, J = 9.6 Hz), 7.16 (1H, dd, J = 8.5, 5.7 Hz), 7.35 (1H, t, J = 7.8 Hz). |
| 136 (136a) | 1H-NMR (CDCl₃) δ: 0.95 (3H, t, J = 7.6 Hz), 1.25 (3H, t, J = 7.1 Hz), 1.46-1.57 (1H, m), 1.60-1.87 (5H, m), 2.31 (3H, s), 2.33 (3H, s), 2.39-2.46 (1H, m), 2.50-2.55 (2H, m), 2.58 (2H, dt, J = 11.5, 4.0 Hz), 2.74-2.84 (1H, m), 2.89-2.98 (4H, m), 3.17-3.22 (1H, m), 3.25 (1H, dd, J = 9.6, 6.0 Hz), 3.36 (1H, dd, J = 9.6, 4.1 Hz), 3.89-3.94 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.47 (1H, dd, J = 7.6, 5.3 Hz), 6.95 (1H, d, J = 7.8 Hz), 6.97 (1H, s), 7.05 (1H, d, J = 7.8 Hz), 7.11 (1H, d, J = 7.3 Hz), 7.15 (1H, s), 7.25 (1H, d, J = 6.4 Hz). |
(continued)

| 136 (136b) | 1H-NMR (CDCl₃) δ: 0.90 (3H, t, J = 7.3 Hz), 1.56-1.66 (1H, m), 1.70-2.01 (4H, m), 2.04-2.08 (1H, m), 2.28 (3H, s), 2.33 (3H, s), 2.55-2.67 (2H, m), 2.79-2.86 (1H, m), 2.89-3.06 (3H, m), 3.11-3.17 (1H, m), 3.30-3.43 (5H, m), 3.81-3.88 (1H, m), 4.32-4.37 (1H, m), 4.62 (1H, t, J = 6.6 Hz), 7.02 (3H, t, J = 8.9 Hz), 7.16 (2H, dd, J = 7.8, 2.8 Hz), 7.20 (1H, s) |

| 137 (137a) | 1H-NMR (CDCl₃) δ: 0.94 (3H, t, J = 6.9 Hz), 1.26 (3H, t, J = 7.1 Hz), 1.61-1.68 (2H, m), 1.77-1.95 (5H, m), 2.61 (3H, t, J = 7.8 Hz), 2.64-2.82 (2H, m), 2.89-3.11 (5H, m), 3.25-3.34 (2H, m), 4.00-4.06 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.49 (1H, t, J = 6.2 Hz), 6.93 (1H, d, J = 8.3 Hz), 7.00 (1H, d, J = 9.6 Hz), 7.16 (1H, s), 7.21 (1H, d, J = 8.3 Hz), 7.27-7.32 (2H, m) |

| 137 (137b) | 1H-NMR (CDCl₃) δ: 0.87 (3H, t, J = 7.3 Hz), 1.55-1.63 (1H, m), 1.58-1.79 (1H, m), 1.84-1.91 (1H, m), 1.95-2.04 (2H, m), 2.11-2.17 (1H, m), 2.59-2.73 (2H, m), 2.78-2.85 (1H, m), 2.95-3.06 (2H, m), 3.13 (1H, dd, J = 13.3, 9.2 Hz), 3.27-3.33 (2H, m), 3.37-3.46 (3H, m), 3.56-3.63 (1H, m), 3.90-3.97 (1H, m), 4.34-4.39 (1H, m), 4.60 (1H, t, J = 6.4 Hz), 7.00 (1H, d, J = 7.8 Hz), 7.06 (1H, d, J = 10.1 Hz), 7.17 (2H, d, J = 7.3 Hz), 7.22 (1H, d, J = 8.3 Hz), 7.33 (1H, t, J = 8.0 Hz) |

| 138 (138a) | 1H-NMR (CDCl₃) δ: 0.96 (3H, t, J = 7.3 Hz), 1.27 (3H, t, J = 7.1 Hz), 1.54-1.59 (1H, m), 1.62-1.69 (1H, m), 1.72-1.85 (4H, m), 2.33 (3H, s), 2.44-2.52 (1H, m), 2.54-2.61 (4H, m), 2.84-2.91 (1H, m), 2.93-3.03 (4H, m), 3.26-3.31 (2H, m), 3.35-3.38 (1H, m), 3.94-3.98 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.51-4.55 (1H, m), 6.93-6.98 (2H, m), 7.13 (1H, d, J = 7.8 Hz), 7.16-7.23 (3H, m) |

| 138 (138b) | 1H-NMR (CDCl₃) δ: 0.91 (3H, t, J = 7.1 Hz), 1.57-1.63 (1H, m), 1.67-1.76 (1H, m), 1.84-1.99 (3H, m), 2.05-2.11 (1H, m), 2.34 (3H, s), 2.54-2.65 (2H, m), 2.90-3.01 (4H, m), 3.12-3.19 (1H, m), 3.34-3.51 (5H, m), 3.83-3.89 (1H, m), 4.35-4.40 (1H, m), 4.77 (1H, t, J = 6.4 Hz), 6.93 (1H, t, J = 9.2 Hz), 7.03 (1H, d, J = 7.8 Hz), 7.11 (1H, d, J = 7.8 Hz), 7.17 (2H, d, J = 7.3 Hz), 7.20 (1H, s) |
[Table 114]

139 (139a) 
\[ \text{\textsuperscript{1}H-NMR (CDCl\textsubscript{3}) } \delta : 0.95 (3H, t, J = 7.3 Hz), 1.26 (3H, t, J = 6.6 Hz), 1.53-1.60 (1H, m), 1.81-1.70 (1H, m), 1.75-1.84 (4H, m), 2.04 (3H, s), 2.53-2.68 (5H, m), 2.93-3.05 (5H, m), 3.26-3.31 (2H, m), 3.34-3.37 (1H, m), 3.95-4.00 (1H, m), 4.13 (2H, q, J = 6.6 Hz), 4.53 (1H, t, J = 6.2 Hz), 6.91 (1H, d, J = 8.7 Hz), 6.97 (2H, t, J = 10.1 Hz), 7.14 (1H, d, J = 7.8 Hz), 7.21 (1H, t, J = 6.9 Hz), 7.26-7.31 (1H, m).

139 (139b) 
\[ \text{\textsuperscript{1}H-NMR (CDCl\textsubscript{3}) } \delta : 0.89 (3H, t, J = 7.3 Hz), 1.56-1.64 (1H, m), 1.89-1.76 (1H, m), 1.81-1.87 (1H, m), 1.89-2.02 (2H, m), 2.06-2.12 (1H, m), 2.57-2.65 (2H, m), 2.91-3.03 (4H, m), 3.15-3.23 (1H, m), 3.34-3.50 (5H, m), 4.34-4.39 (1H, m), 4.74 (1H, t, J = 6.6 Hz), 6.92 (1H, t, J = 8.5 Hz), 6.99 (1H, d, J = 8.0 Hz), 7.05 (1H, d, J = 9.6 Hz), 7.09 (1H, d, J = 6.9 Hz), 7.16-7.21 (1H, m), 7.34 (1H, t, J = 8.0 Hz).

140 (140a) 
\[ \text{\textsuperscript{1}H-NMR (CDCl\textsubscript{3}) } \delta : 0.97 (3H, t, J = 7.3 Hz), 1.25 (3H, t, J = 7.1 Hz), 1.42-1.51 (1H, m), 1.60-1.79 (5H, m), 2.32 (3H, s), 2.34-2.42 (2H, m), 2.46 (1H, dd, J = 12.4, 7.3 Hz), 2.50-2.55 (2H, m), 2.66-2.72 (1H, m), 2.83 (1H, dd, J = 12.8, 6.0 Hz), 2.85-3.00 (3H, m), 3.02-3.07 (1H, m), 3.26 (1H, dd, J = 9.6, 6.4 Hz), 3.38 (1H, dd, J = 9.6, 4.1 Hz), 3.83-3.88 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.53 (1H, t, J = 6.2 Hz), 6.68-6.73 (1H, m), 6.95 (2H, t, J = 7.1 Hz), 7.10 (1H, d, J = 7.8 Hz), 7.14 (1H, s).

140 (140b) 
\[ \text{\textsuperscript{1}H-NMR (CDCl\textsubscript{3}) } \delta : 0.94 (3H, t, J = 7.1 Hz), 1.53-1.59 (1H, m), 1.64-1.68 (1H, m), 1.73-1.92 (3H, m), 1.97-2.04 (1H, m), 2.32 (3H, s), 2.48-2.63 (2H, m), 2.73 (1H, dd, J = 12.6, 7.6 Hz), 2.85-3.19 (5H, m), 3.33 (1H, dd, J = 13.3, 4.1 Hz), 3.39 (1H, d, J = 11.5 Hz), 3.47-3.50 (2H, m), 3.62-3.69 (1H, m), 4.16-4.21 (1H, m), 4.88-4.92 (1H, m), 6.69 (1H, t, J = 8.0 Hz), 6.90 (1H, d, J = 9.6 Hz), 7.00 (1H, d, J = 7.8 Hz), 7.15 (1H, d, J = 7.8 Hz), 7.18 (1H, s).

141 (141a) 
\[ \text{\textsuperscript{1}H-NMR (CDCl\textsubscript{3}) } \delta : 0.97 (3H, t, J = 7.6 Hz), 1.25 (3H, t, J = 7.1 Hz), 1.39-1.46 (1H, m), 1.60-1.81 (5H, m), 2.36-2.42 (2H, m), 2.47 (1H, dd, J = 12.6, 7.1 Hz), 2.50-2.55 (2H, m), 2.67-2.74 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.87-3.00 (3H, m), 3.02-3.07 (1H, m), 3.25 (1H, dd, J = 9.6, 6.4 Hz), 3.37 (1H, dd, J = 9.6, 4.1 Hz), 3.82-3.88 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.53 (1H, t, J = 6.0 Hz), 6.68-6.74 (1H, m), 6.88 (1H, d, J = 8.0 Hz), 6.93-6.98 (2H, m), 7.27 (1H, t, J = 7.8 Hz).
(continued)

1H-NMR (CDCl$_3$) $\delta$: 0.93 (3H, t, $J = 7.3$ Hz), 1.53-1.93 (5H, m), 1.95-2.04 (1H, m), 2.48-2.61 (2H, m), 2.74 (1H, dd, $J = 12.8, 7.8$ Hz), 2.86-2.97 (4H, m), 3.14-3.19 (1H, m), 3.33-3.39 (2H, m), 3.41-3.51 (2H, m), 3.61-3.68 (1H, m), 4.14-4.21 (1H, m), 4.85 (1H, t, $J = 6.2$ Hz), 6.67-6.72 (1H, m), 6.88 (1H, d, $J = 9.2$ Hz), 6.96 (1H, dd, $J = 8.3, 1.4$ Hz), 7.03 (1H, dd, $J = 9.9, 2.1$ Hz), 7.33 (1H, t, $J = 7.8$ Hz).

1H-NMR (CDCl$_3$) $\delta$: 0.97 (3H, t, $J = 7.3$ Hz), 1.28 (3H, t, $J = 7.3$ Hz), 1.54-1.59 (1H, m), 1.62-1.71 (1H, m), 1.73-1.84 (5H, m), 2.33 (3H, s), 2.45-2.52 (1H, m), 2.54-2.61 (4H, m), 2.64-3.20 (5H, m), 3.26 (1H, dd, $J = 9.6, 6.0$ Hz), 3.35 (1H, dd, $J = 9.6, 4.6$ Hz), 3.92-3.98 (1H, m), 4.17 (2H, q, $J = 7.3$ Hz), 4.53 (1H, dd, $J = 7.8, 5.0$ Hz), 6.96 (1H, d, $J = 7.8$ Hz), 7.12 (1H, d, $J = 7.8$ Hz), 7.15 (1H, s), 7.20 (1H, d, $J = 7.8$ Hz), 7.29-7.31 (2H, m).

1H-NMR (CDCl$_3$) $\delta$: 0.96 (3H, t, $J = 7.3$ Hz), 1.28 (3H, t, $J = 7.3$ Hz), 1.52-1.86 (8H, m), 2.52-2.66 (4H, m), 2.90-3.20 (5H, m), 3.27 (1H, dd, $J = 9.4, 6.2$ Hz), 3.35 (1H, dd, $J = 9.4, 4.4$ Hz), 3.94-3.99 (1H, m), 4.17 (2H, q, $J = 7.3$ Hz), 4.53 (1H, dd, $J = 7.6, 5.3$ Hz), 6.91 (1H, d, $J = 8.3$ Hz), 6.98 (1H, d, $J = 10.1$ Hz), 7.19 (1H, t, $J = 7.8$ Hz), 7.28 (3H, t, $J = 9.2$ Hz).

1H-NMR (CDCl$_3$) $\delta$: 0.91 (3H, t, $J = 7.3$ Hz), 1.57-1.73 (2H, m), 1.83-2.00 (3H, m), 2.07-2.12 (1H, m), 2.33 (3H, s), 2.62 (2H, t, $J = 7.1$ Hz), 2.96 (2H, t, $J = 11.2$ Hz), 3.02-3.27 (3H, m), 3.33-3.42 (4H, m), 3.53 (1H, d, $J = 12.4$ Hz), 3.90-3.96 (1H, m), 4.42-4.47 (1H, m), 4.79 (1H, d, $J = 6.0$ Hz), 7.04 (1H, d, $J = 7.8$ Hz), 7.16 (2H, d, $J = 7.3$ Hz), 7.21 (1H, s), 7.24-7.26 (2H, m).

[Table 115]

1H-NMR (CDCl$_3$) $\delta$: 0.96 (3H, t, $J = 7.3$ Hz), 1.28 (3H, t, $J = 7.3$ Hz), 1.52-1.86 (8H, m), 2.52-2.66 (4H, m), 2.90-3.20 (5H, m), 3.27 (1H, dd, $J = 9.4, 6.2$ Hz), 3.35 (1H, dd, $J = 9.4, 4.4$ Hz), 3.94-3.99 (1H, m), 4.17 (2H, q, $J = 7.3$ Hz), 4.53 (1H, dd, $J = 7.6, 5.3$ Hz), 6.91 (1H, d, $J = 8.3$ Hz), 6.98 (1H, d, $J = 10.1$ Hz), 7.19 (1H, t, $J = 7.8$ Hz), 7.28 (3H, t, $J = 9.2$ Hz).
1H-NMR (CDCl₃) δ: 0.95 (3H, t, J = 7.3 Hz), 1.26 (3H, t, J = 7.1 Hz), 1.51-1.67 (7H, m), 1.71-1.86 (4H, m), 2.33 (3H, s), 2.58 (2H, t, J = 7.6 Hz), 2.84-3.01 (4H, m), 3.26 (1H, dd, J = 9.6, 6.0 Hz), 3.34 (1H, dd, J = 10.1, 4.6 Hz), 3.95-4.01 (1H, m), 4.12 (2H, q, J = 7.1 Hz), 4.48 (1H, t, J = 6.0 Hz), 6.94-7.00 (2H, m), 7.12-7.20 (3H, m).

144 (144b) 1H-NMR (CDCl₃) δ: 0.89 (3H, t, J = 7.3 Hz), 1.53-1.60 (1H, m), 1.66-1.75 (1H, m), 1.86-2.03 (3H, m), 2.09-2.16 (1H, m), 2.34 (3H, s), 2.53-2.67 (2H, m), 2.73-2.80 (1H, m), 2.92-3.05 (2H, m), 3.20-3.27 (1H, m), 3.30-3.41 (4H, m), 3.48 (2H, d, J = 11.0 Hz), 3.91-3.97 (1H, m), 4.38-4.43 (1H, m), 4.66 (1H, t, J = 6.2 Hz), 6.97-7.05 (2H, m), 7.10 (1H, dd, J = 11.9, 8.3 Hz), 7.17 (1H, d, J = 7.8 Hz), 7.21 (1H, s).

145 (145a) 1H-NMR (CDCl₃) δ: 0.95 (3H, t, J = 7.3 Hz), 1.26 (3H, t, J = 7.1 Hz), 1.57-1.68 (1H, m), 1.71-1.88 (5H, m), 2.46-2.64 (5H, m), 2.84-3.02 (5H, m), 3.23-3.29 (2H, m), 3.33 (1H, dd, J = 9.6, 4.6 Hz), 3.93-3.99 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.47 (1H, t, J = 6.4 Hz), 6.92 (1H, t, J = 8.3 Hz), 6.97-7.00 (2H, m), 7.17 (1H, dd, J = 11.9, 8.3 Hz), 7.29 (1H, t, J = 7.8 Hz).

145 (145b) 1H-NMR (CDCl₃) δ: 0.88 (3H, t, J = 7.3 Hz), 1.51-1.61 (1H, m), 1.66-1.75 (1H, m), 1.83-2.04 (3H, m), 2.07-2.16 (1H, m), 2.52-2.66 (2H, m), 2.72-2.79 (1H, m), 2.95-3.02 (3H, m), 3.17-3.24 (1H, m), 3.33 (2H, dd, J = 11.2, 6.2 Hz), 3.39 (2H, dd, J = 10.1, 3.7 Hz), 3.86-3.93 (1H, m), 4.34-4.39 (1H, m), 4.66 (1H, t, J = 6.2 Hz), 6.97-7.02 (2H, m), 7.05-7.12 (2H, m), 7.35 (1H, t, J = 7.8 Hz).

[Table 116]
| Table 117 |
|------------------|------------------|
| 1H-NMR (CDCl₃) δ: 1.22 (3H, t, J = 7.4 Hz), 1.35 (3H, d, J = 6.2 Hz), 1.77-1.97 (3H, m), 1.99-2.07 (1H, m), 2.21 (3H, s), 2.48-2.55 (1H, m), 2.57-2.63 (1H, m), 2.72 (2H, q, J = 7.4 Hz), 2.76-2.87 (2H, m), 2.89-3.06 (3H, m), 3.25-3.32 (2H, m), 3.32-3.38 (2H, m), 3.44 (1H, dd, J = 10.3, 5.7 Hz), 3.73-3.79 (1H, m), 4.25-4.31 (1H, m), 4.89 (1H, q, J = 6.2 Hz), 6.96 (1H, d, J = 10.9 Hz), 6.99-7.02 (2H, m), 7.10 (1H, d, J = 1.7 Hz), 7.27 (1H, d, J = 6.9 Hz). |
| 1H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 7.0 Hz), 1.26 (3H, d, J = 6.6 Hz), 1.41 (3H, d, J = 6.1 Hz), 1.43-1.51 (1H, m), 1.64-1.77 (3H, m), 2.35 (1H, dd, J = 13.2, 9.7 Hz), 2.39-2.47 (2H, m), 2.55-2.59 (2H, m), 2.68-2.74 (3H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.87-2.94 (3H, m), 3.02-3.06 (1H, m), 3.28 (1H, dd, J = 9.7, 6.3 Hz), 3.35 (1H, dd, J = 9.7, 4.0 Hz), 3.81-3.87 (1H, m), 4.14 (2H, q, J = 7.0 Hz), 4.70 (1H, q, J = 6.1 Hz), 6.91 (1H, dd, J = 8.3, 2.0 Hz), 6.96 (1H, dd, J = 11.2, 7.7 Hz), 7.01 (1H, d, J = 2.3 Hz), 7.21 (1H, d, J = 8.0 Hz), 7.25 (1H, dd, J = 11.7, 8.3 Hz). |
| 1H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 7.1 Hz), 1.34 (3H, d, J = 6.3 Hz), 1.79-1.99 (3H, m), 2.01-2.10 (1H, m), 2.48-2.55 (1H, m), 2.57-2.64 (1H, m), 2.73 (2H, q, J = 7.7 Hz), 2.73-2.80 (1H, m), 2.88 (1H, dd, J = 13.2, 9.2 Hz), 2.93-3.03 (2H, m), 3.04-3.10 (1H, m), 3.29-3.39 (4H, m), 3.42 (1H, dd, J = 10.9, 5.7 Hz), 3.78-3.84 (1H, m), 4.28-4.34 (1H, m), 4.88 (1H, q, J = 6.3 Hz), 6.98-7.03 (2H, m), 7.09-7.14 (2H, m), 7.28 (1H, d, J = 8.0 Hz). |
| 1H-NMR (CDCl₃) δ: 1.36 (3H, d, J = 6.2 Hz), 1.67-1.78 (1H, m), 1.79-2.01 (3H, m), 2.21 (3H, s), 2.46-2.63 (2H, m), 2.72-2.82 (2H, m), 2.83-3.03 (3H, m), 3.14-3.26 (2H, m), 3.30-3.40 (2H, m), 3.44 (1H, dd, J = 10.5, 6.0 Hz), 3.57-3.64 (1H, m), 4.11-4.19 (1H, m), 4.89 (1H, q, J = 6.2 Hz), 6.94-7.06 (4H, m), 7.32 (1H, t, J = 7.8 Hz). |
1H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 7.3 Hz), 1.39-1.48 (1H, m), 1.41 (3H, d, J = 6.4 Hz), 1.64-1.75 (3H, m), 2.37-2.48 (3H, m), 2.52-2.63 (2H, m), 2.68-2.75 (1H, m), 2.80 (1H, dd, J = 12.6, 5.7 Hz), 2.87-2.95 (3H, m), 3.01-3.07 (1H, m), 3.28 (1H, dd, J = 9.4, 6.6 Hz), 3.35 (1H, dd, J = 9.6, 3.7 Hz), 3.81-3.87 (1H, m), 4.14 (2H, q, J = 7.3 Hz), 4.70 (1H, q, J = 6.4 Hz), 6.88 (1H, dd, J = 8.0, 1.6 Hz), 6.94-6.99 (2H, m), 7.24 (1H, dd, J = 11.5, 8.3 Hz), 7.27 (1H, t, J = 7.8 Hz).

1H-NMR (CDCl₃) δ: 1.34 (3H, d, J = 6.3 Hz), 1.74-2.05 (4H, m), 2.46-2.64 (2H, m), 2.73-3.05 (5H, m), 3.22-3.44 (5H, m), 3.67-3.75 (1H, m), 4.19-4.26 (1H, m), 4.88 (1H, q, J = 6.3 Hz), 6.96-7.08 (3H, m), 7.12 (1H, dd, J = 11.5, 8.3 Hz), 7.34 (1H, t, J = 8.0 Hz).

1H-NMR (CDCl₃) δ: 1.28 (3H, t, J = 7.1 Hz), 1.41-1.50 (1H, m), 1.44 (3H, d, J = 6.2 Hz), 1.63-1.76 (3H, m), 2.31-2.47 (3H, m), 2.32 (3H, s), 2.53-2.59 (2H, m), 2.65-2.73 (1H, m), 2.81 (1H, dd, J = 12.4, 6.0 Hz), 2.88 (1H, dd, J = 12.8, 4.1 Hz), 2.96-3.10 (2H, m), 3.13-3.21 (1H, m), 3.29 (1H, dd, J = 9.6, 6.4 Hz), 3.36 (1H, dd, J = 9.4, 3.9 Hz), 3.80-3.87 (1H, m), 4.17 (2H, q, J = 7.1 Hz), 4.77 (1H, q, J = 6.2 Hz), 6.93 (1H, d, J = 7.8 Hz), 7.10 (1H, dd, J = 7.8 Hz), 7.14 (1H, br s), 7.20 (1H, t, J = 7.8 Hz), 7.29 (1H, d, J = 7.8 Hz), 7.37 (1H, d, J = 7.8 Hz).

1H-NMR (CDCl₃) δ: 1.38 (3H, d, J = 6.4 Hz), 1.71-2.02 (4H, m), 2.33 (3H, s), 2.58-2.63 (2H, m), 2.74-2.87 (2H, m), 2.91-2.99 (1H, m), 3.08-3.14 (2H, m), 3.14-3.22 (1H, m), 3.28-3.34 (2H, m), 3.38-3.51 (3H, m), 3.65-3.73 (1H, m), 4.20-4.27 (1H, m), 5.07 (1H, q, J = 6.4 Hz), 7.02 (1H, dd, J = 7.8, 1.8 Hz), 7.13-7.18 (2H, m), 7.20 (1H, d, J = 1.8 Hz), 7.30 (1H, td, J = 7.7, 1.2 Hz).

1H-NMR (CDCl₃) δ: 1.28 (3H, t, J = 7.1 Hz), 1.40-1.47 (1H, m), 1.44 (3H, d, J = 6.4 Hz), 1.63-1.75 (3H, m), 2.35-2.47 (3H, m), 2.53-2.59 (2H, m), 2.66-2.73 (1H, m), 2.80 (1H, dd, J = 12.4, 6.0 Hz), 2.88 (1H, dd, J = 13.3, 4.1 Hz), 2.97-3.10 (2H, m), 3.13-3.22 (1H, m), 3.29 (1H, dd, J = 9.4, 6.6 Hz), 3.36 (1H, dd, J = 9.6, 4.1 Hz), 3.80-3.87 (1H, m), 4.17 (2H, q, J = 7.1 Hz), 4.77 (1H, q, J = 6.4 Hz), 6.99 (1H, dd, J = 8.3, 1.8 Hz), 7.20 (1H, t, J = 7.8 Hz), 7.26 (1H, s), 7.30 (1H, d, J = 8.3 Hz), 7.32 (1H, d, J = 7.8 Hz), 7.37 (1H, d, J = 8.7 Hz).
[Table 118]

<table>
<thead>
<tr>
<th>Number</th>
<th>Structure</th>
<th>¹H-NMR (CDCl₃) δ:</th>
</tr>
</thead>
<tbody>
<tr>
<td>151 (151b)</td>
<td><img src="image1" alt="Structure" /></td>
<td>1.37 (3H, d, J = 6.3 Hz), 1.67-1.77 (1H, m), 1.79-2.01 (3H, m), 2.58-2.64 (2H, m), 2.75 (1H, dd, J = 12.8, 8.3 Hz), 2.79-2.93 (2H, m), 3.08-3.19 (3H, m), 3.27 (1H, dd, J = 13.1, 3.4 Hz), 3.32 (1H, dd, J = 13.3, 4.6 Hz), 3.39-3.49 (2H, m), 3.58-3.66 (1H, m), 4.15-4.22 (1H, m), 5.05 (1H, q, J = 6.3 Hz), 7.08 (1H, dd, J = 8.3, 1.8 Hz), 7.16 (1H, t, J = 8.0 Hz), 7.28 (1H, dd, J = 7.8, 1.4 Hz), 7.30-7.34 (2H, m), 7.38 (1H, d, J = 8.3 Hz).</td>
</tr>
<tr>
<td>152 (152a)</td>
<td><img src="image2" alt="Structure" /></td>
<td>1.21 (3H, t, J = 7.6 Hz), 1.28 (3H, t, J = 7.1 Hz), 1.42-1.50 (1H, m), 1.44 (3H, d, J = 6.4 Hz), 1.63-1.68 (3H, m), 2.32-2.46 (3H, m), 2.53-2.59 (2H, m), 2.65-2.74 (3H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.89 (1H, dd, J = 13.3, 4.1 Hz), 2.96-3.10 (2H, m), 3.13-3.22 (1H, m), 3.29 (1H, dd, J = 9.4, 6.6 Hz), 3.36 (1H, dd, J = 9.4, 3.9 Hz), 3.81-3.87 (1H, m), 4.17 (2H, q, J = 7.1 Hz), 4.77 (1H, q, J = 6.4 Hz), 6.91 (1H, dd, J = 8.3, 2.3 Hz), 7.01 (1H, d, J = 2.3 Hz), 7.20 (1H, t, J = 7.8 Hz), 7.21 (1H, d, J = 7.8 Hz), 7.29 (1H, dd, J = 7.8, 1.4 Hz), 7.37 (1H, dd, J = 7.8, 1.4 Hz).</td>
</tr>
<tr>
<td>152 (152b)</td>
<td><img src="image3" alt="Structure" /></td>
<td>1.22 (3H, t, J = 7.5 Hz), 1.38 (3H, t, J = 7.1 Hz), 1.44-1.47 (1H, m), 1.44 (3H, d, J = 6.4 Hz), 1.74-1.94 (4H, m), 2.56-2.62 (2H, m), 2.72 (2H, q, J = 7.5 Hz), 2.77-2.91 (2H, m), 2.95-3.03 (1H, m), 3.08-3.14 (2H, m), 3.17-3.26 (1H, m), 3.29-3.42 (3H, m), 3.43-3.51 (1H, m), 3.70-3.76 (1H, m), 4.23-4.30 (1H, m), 5.05 (1H, q, J = 6.4 Hz), 6.99 (1H, dd, J = 8.0, 2.1 Hz), 7.09 (1H, d, J = 1.8 Hz), 7.15 (1H, t, J = 7.8 Hz), 7.25-7.32 (3H, m).</td>
</tr>
<tr>
<td>153 (153a)</td>
<td><img src="image4" alt="Structure" /></td>
<td>1.28 (3H, t, J = 7.1 Hz), 1.40-1.47 (1H, m), 1.44 (3H, d, J = 6.4 Hz), 1.64-1.75 (3H, m), 2.36-2.47 (3H, m), 2.54-2.59 (2H, m), 2.65-2.73 (1H, m), 2.80 (1H, dd, J = 12.8, 6.0 Hz), 2.90 (1H, dd, J = 13.5, 4.4 Hz), 2.97-3.11 (2H, m), 3.13-3.22 (1H, m), 3.28 (1H, dd, J = 9.4, 6.6 Hz), 3.36 (1H, dd, J = 9.4, 3.9 Hz), 3.79-3.86 (1H, m), 4.17 (2H, q, J = 7.1 Hz), 4.77 (1H, q, J = 6.4 Hz), 6.88 (1H, d, J = 7.8 Hz), 6.96 (1H, dd, J = 10.1, 1.8 Hz), 7.20 (1H, t, J = 7.8 Hz), 7.23 (1H, d, J = 9.2 Hz), 7.29 (1H, dd, J = 8.3, 1.4 Hz), 7.36 (1H, d, J = 7.8 Hz).</td>
</tr>
<tr>
<td>153 (153b)</td>
<td><img src="image5" alt="Structure" /></td>
<td>1.38 (3H, d, J = 6.4 Hz), 1.67-1.77 (1H, m), 1.79-2.01 (3H, m), 2.57-2.63 (2H, m), 2.75 (1H, dd, J = 12.8, 8.3 Hz), 2.80-2.94 (2H, m), 3.08-3.19 (3H, m), 3.25 (1H, dd, J = 13.1, 3.4 Hz), 3.33 (1H, dd, J = 13.3, 4.6 Hz), 3.37-3.48 (2H, m), 3.58-3.66 (1H, m), 4.15-4.22 (1H, m), 5.03 (1H, q, J = 6.4 Hz), 6.97 (1H, dd, J = 8.3, 1.4 Hz), 7.04 (1H, dd, J = 9.6, 1.8 Hz), 7.16 (1H, t, J = 7.8 Hz), 7.26-7.35 (3H, m).</td>
</tr>
</tbody>
</table>
Example 156

(156b) Ethyl 3-{4-chloro-5-fluoro-2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}propanoate

[0335] Ethyl (2E)-3-{4-chloro-5-fluoro-2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}prop-2-enoate (320 mg, 0.61 mmol) which had been obtained in Example 156(156a) was dissolved in ethanol (20 mL), added with rhodium/alumina (96 mg), and stirred at room temperature for 45 minutes under a hydrogen atmosphere. The reaction solution was filtered through Celite. The solvent was distilled off under reduced pressure. The residue was purified by basic silica gel column chromatography (n-hexane/ethyl acetate = 1/1) to give the title compound as a colorless oily substance (310 mg, yield 97%).
Further, in Example 156(156a), the production was carried out in the same manner as described above. Compounds of Examples 157 to 167 described below were produced with reference to the steps that are described in Example 156 above.

**Table 120**

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Structure</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>156 (156a)</td>
<td><img src="image1" alt="Structure Image" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.34 (3H, t, $J = 7.1$ Hz), 1.42 (3H, d, $J = 6.4$ Hz), 1.44-1.53 (1H, m), 1.64-1.77 (3H, m), 2.23 (3H, s), 2.33-2.49 (3H, m), 2.67-2.75 (1H, m), 2.82 (1H, dd, $J = 12.8$, 6.0 Hz), 2.89 (1H, dd, $J = 13.3$, 4.6 Hz), 3.00-3.07 (1H, m), 3.33 (1H, dd, $J = 9.6$, 6.4 Hz), 3.40 (1H, dd, $J = 9.6$, 4.1 Hz), 3.82-3.88 (1H, m), 4.27 (2H, q, $J = 7.1$ Hz), 4.79 (1H, q, $J = 6.4$ Hz), 6.30 (1H, d, $J = 16.0$ Hz), 6.79-6.83 (2H, m), 7.05 (1H, t, $J = 8.0$ Hz), 7.29 (1H, d, $J = 10.1$ Hz), 7.58 (1H, d, $J = 6.9$ Hz), 7.91 (1H, d, $J = 16.0$ Hz).</td>
</tr>
<tr>
<td>156 (156b)</td>
<td><img src="image2" alt="Structure Image" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.25 (3H, t, $J = 7.2$ Hz), 1.41 (3H, d, $J = 6.3$ Hz), 1.43-1.50 (1H, m), 1.65-1.75 (3H, m), 2.22 (3H, s), 2.33-2.46 (3H, m), 2.56-2.59 (2H, m), 2.68-2.74 (1H, m), 2.81 (1H, dd, $J = 12.6$, 5.7 Hz), 2.86-2.93 (3H, m), 3.01-3.06 (1H, m), 3.28 (1H, dd, $J = 9.7$, 6.3 Hz), 3.36 (1H, dd, $J = 9.7$, 4.0 Hz), 3.81-3.87 (1H, m), 4.14 (2H, q, $J = 7.2$ Hz), 4.70 (1H, q, $J = 6.3$ Hz), 6.79-6.83 (2H, m), 7.05 (1H, t, $J = 7.7$ Hz), 7.19 (1H, d, $J = 7.4$ Hz), 7.23 (1H, d, $J = 10.3$ Hz).</td>
</tr>
<tr>
<td>156 (156c)</td>
<td><img src="image3" alt="Structure Image" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.35 (3H, d, $J = 6.3$ Hz), 1.68-1.97 (4H, m), 2.23 (3H, s), 2.47-2.54 (1H, m), 2.58-2.65 (1H, m), 2.70-2.81 (3H, m), 2.84-2.91 (1H, m), 3.00-3.06 (1H, m), 3.10-3.18 (1H, m), 3.22 (1H, dd, $J = 12.9$, 3.2 Hz), 3.26-3.49 (4H, m), 3.53-3.60 (1H, m), 4.08-4.14 (1H, m), 5.01 (1H, q, $J = 6.3$ Hz), 6.84-6.89 (2H, m), 7.10 (1H, t, $J = 7.7$ Hz), 7.14 (1H, d, $J = 10.3$ Hz), 7.24-7.27 (1H, m).</td>
</tr>
</tbody>
</table>

**Table 121**

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Structure</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>157 (157a)</td>
<td><img src="image4" alt="Structure Image" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.28-1.35 (3.0H, m), 1.41-1.74 (8.0H, m), 2.20-2.23 (3.0H, m), 2.24-2.43 (2.5H, m), 2.50 (0.5H, dd, $J = 12.4$, 6.9 Hz), 2.60-2.68 (1.0H, m), 2.72 (0.5H, dd, $J = 12.4$, 6.4 Hz), 2.78-2.93 (1.5H, m), 2.97-3.04 (0.5H, m), 3.08-3.14 (0.5H, m), 3.20 (0.5H, dd, $J = 9.2$, 6.0 Hz), 3.30 (0.5H, dd, $J = 9.2$, 4.1 Hz), 3.38 (0.5H, dd, $J = 9.2$, 6.0 Hz), 3.49 (0.5H, dd, $J = 9.2$, 4.1 Hz), 3.77-3.89 (1.0H, m), 4.20-4.29 (2.0H, m), 5.25-5.32 (1.0H, m), 6.21-6.26 (1.0H, m), 6.75-6.83 (2.0H, m), 6.99-7.06 (1.0H, m), 7.18-7.23 (1.0H, m), 7.35-7.39 (1.0H, m), 7.45 (1.0H, d, $J = 7.8$ Hz), 8.55-8.62 (1.0H, m).</td>
</tr>
</tbody>
</table>
157 (157b) 1H-NMR (CDCl₃) δ: 1.22-1.27 (3.0H, m), 1.39-1.78 (8.0H, m), 2.20-2.23 (3.0H, m), 2.36-2.92 (8.0H, m), 3.11-3.41 (4.5H, m), 3.50-3.55 (0.5H, m), 3.82-3.93 (1.0H, m), 4.11-4.18 (2.0H, m), 5.20-5.28 (1.0H, m), 6.76-6.85 (2.0H, m), 6.99-7.08 (1.0H, m), 7.09-7.16 (2.0H, m), 7.18-7.24 (1.0H, m).

157 (157c) 1H-NMR (CDCl₃) δ: 1.51-1.54 (3.0H, m), 1.66-1.97 (4.0H, m), 2.22 (3.0H, s), 2.50-2.79 (4.0H, m), 2.89-3.04 (2.5H, m), 3.06-3.50 (5.5H, m), 3.64-3.74 (1.0H, m), 4.17-4.25 (1.0H, m), 5.23-5.28 (1.0H, m), 6.81-6.86 (2.0H, m), 7.04-7.13 (2.0H, m), 7.16-7.21 (2.0H, m).

158 (158a) 1H-NMR (CDCl₃) δ: 1.34 (3H, t, J = 7.1 Hz), 1.41-1.49 (4H, m), 1.54-1.75 (3H, m), 2.33-2.48 (3H, m), 2.64-2.73 (1H, m), 2.83 (1H, dd, J = 12.4, 6.0 Hz), 2.90 (1H, dd, J = 13.3, 4.1 Hz), 3.00-3.07 (1H, m), 3.28-3.35 (1H, m), 3.36-3.42 (1H, m), 3.81-3.89 (1H, m), 4.27 (2H, q, J = 7.1 Hz), 4.84 (1H, q, J = 6.6 Hz), 6.34 (1H, d, J = 15.6 Hz), 7.04-7.11 (2H, m), 7.18-7.33 (3H, m), 7.37-7.44 (1H, m), 7.44-7.51 (1H, m), 7.53-7.58 (1H, m), 8.12 (1H, d, J = 15.6 Hz).

158 (158b) 1H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 7.1 Hz), 1.37-1.50 (4H, m), 1.54-1.78 (3H, m), 2.34-2.48 (3H, m), 2.56-2.64 (2H, m), 2.64-2.73 (1H, m), 2.78-2.86 (1H, m), 2.87-2.95 (1H, m), 2.95-3.09 (2H, m), 3.24-3.32 (1H, m), 3.34-3.40 (1H, m), 3.81-3.89 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.73-4.81 (1H, m), 7.04-7.12 (2H, m), 7.13-7.30 (3H, m), 7.41-7.51 (2H, m), 7.51-7.59 (1H, m), 7.63-7.72 (1H, m).

158 (158c) 1H-NMR (CDCl₃) δ: 1.41 (3H, d, J = 6.4 Hz), 1.61-1.94 (4H, m), 2.51-2.69 (3H, m), 2.71-2.91 (3H, m), 3.00-3.16 (2H, m), 3.17-3.32 (2H, m), 3.39-3.53 (3H, m), 3.91-4.24 (1H, m), 5.00 (1H, q, J = 6.4 Hz), 7.10-7.15 (2H, m), 7.17-7.29 (5H, m), 7.36-7.42 (1H, m).
159 (159a) **1H-NMR (CDCl₃)**: δ: 1.34 (3H, t, J = 7.1 Hz), 1.46 (4H, d, J = 6.4 Hz), 1.84-1.75 (2H, m), 2.35-2.50 (4H, m), 2.66-2.75 (1H, m), 2.81-2.88 (1H, m), 2.88-2.95 (1H, m), 3.02-3.10 (1H, m), 3.29-3.43 (2H, m), 3.82-3.90 (1H, m), 4.27 (2H, q, J = 7.1 Hz), 4.83 (1H, q, J = 6.4 Hz), 6.34 (1H, d, J = 15.6 Hz), 6.86-6.91 (1H, m), 6.84-7.00 (1H, m), 7.23-7.32 (2H, m), 7.37-7.49 (2H, m), 7.53-7.58 (1H, m), 8.13 (1H, d, J = 15.6 Hz).

159 (159b) EI-MS: m/z = 492 [M+H]+

159 (159c) **1H-NMR (CDCl₃)**: δ: 1.41 (3H, d, J = 6.4 Hz), 1.68-2.01 (4H, m), 2.53-2.69 (2H, m), 2.72-2.96 (4H, m), 3.03-3.14 (1H, m), 3.14-3.28 (2H, m), 3.30-3.46 (3H, m), 3.30-3.48 (2H, m), 3.56-3.65 (1H, m), 4.10-4.18 (1H, m), 4.91-4.98 (1H, m), 6.96-7.01 (1H, m), 7.01-7.05 (1H, m), 7.18-7.24 (3H, m), 7.29-7.39 (2H, m).

160 (160a) **1H-NMR (CDCl₃)**: δ: 1.34 (3H, t, J = 7.3 Hz), 1.39-1.47 (4H, m), 1.64-1.75 (3H, m), 2.34-2.50 (3H, m), 2.65-2.74 (1H, m), 2.77-2.91 (2H, m), 3.00-3.07 (1H, m), 3.31 (1H, dd, J = 9.4, 6.6 Hz), 3.38 (1H, dd, J = 9.4, 3.9 Hz), 3.80-3.88 (1H, m), 4.27 (2H, q, J = 7.3 Hz), 4.79 (1H, q, J = 6.4 Hz), 6.34 (1H, d, J = 15.6 Hz), 6.97-7.01 (1H, m), 7.28-7.45 (4H, m), 7.50-7.55 (1H, m), 8.03 (1H, d, J = 15.6 Hz).

160 (160b) **1H-NMR (CDCl₃)**: δ: 1.25 (3H, t, J = 7.1 Hz), 1.38-1.47 (4H, m), 1.64-1.75 (3H, m), 2.34-2.47 (3H, m), 2.56-2.62 (2H, m), 2.65-2.74 (1H, m), 2.76-2.91 (2H, m), 2.92-3.00 (2H, m), 3.00-3.07 (1H, m), 3.24-3.31 (1H, m), 3.34 (1H, dd, J = 9.4, 3.9 Hz), 3.79-3.87 (1H, m), 4.09-4.18 (2H, m), 4.73 (1H, q, J = 6.4 Hz), 6.99 (1H, dd, J = 8.3, 2.3 Hz), 7.14-7.17 (1H, m), 7.20-7.28 (2H, m), 7.29-7.35 (1H, m), 7.35-7.39 (1H, m).
**Table 123**

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (CDCl₃) δ:</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 (160c)</td>
<td>1.31-1.41 (3H, m), 1.74-2.10 (4H, m), 2.47-2.67 (2H, m), 2.75-3.13 (5H, m), 3.17-3.43 (5H, m), 3.73-3.83 (1H, m), 4.25-4.36 (1H, m), 4.86 (1H, q, J = 6.4 Hz), 7.08-7.21 (3H, m), 7.21-7.28 (1H, m), 7.33-7.41 (2H, m).</td>
</tr>
<tr>
<td>161 (161a)</td>
<td>1.26 (3H, t, J = 7.1 Hz), 1.34 (3H, t, J = 7.1 Hz), 1.41-1.52 (4H, m), 1.82-1.78 (4H, m), 2.31-2.49 (3H, m), 2.65-2.75 (3H, m), 2.79-2.92 (2H, m), 3.00-3.07 (1H, m), 3.31 (1H, dd, J = 9.6, 6.4 Hz), 3.38 (1H, dd, J = 9.6, 4.1 Hz), 3.80-3.88 (1H, m), 4.27 (2H, q, J = 7.1 Hz), 4.79 (1H, q, J = 6.4 Hz), 6.34 (1H, d, J = 16.0 Hz), 6.88-6.94 (1H, m), 6.98-7.03 (1H, m), 7.20 (1H, d, J = 8.3 Hz), 7.36 (1H, dd, J = 8.3, 2.3 Hz), 7.42 (1H, d, J = 8.3 Hz), 7.49-7.53 (1H, m), 8.02 (1H, d, J = 16.0 Hz).</td>
</tr>
<tr>
<td>161 (161b)</td>
<td>1.17-1.29 (6H, m), 1.38-1.52 (4H, m), 1.51-1.79 (3H, m), 2.30-2.48 (3H, m), 2.54-2.64 (2H, m), 2.64-2.77 (3H, m), 2.77-3.09 (5H, m), 3.24-3.42 (2H, m), 3.79-3.89 (1H, m), 4.08-4.20 (2H, m), 4.69-4.77 (1H, m), 6.88-6.94 (1H, m), 6.98-7.03 (1H, m), 7.18-7.29 (3H, m), 7.35-7.42 (1H, m).</td>
</tr>
<tr>
<td>161 (161c)</td>
<td>1.16-1.30 (3H, m), 1.30-1.46 (3H, m), 1.79-2.18 (4H, m), 2.46-2.78 (4H, m), 2.79-3.18 (5H, m), 3.19-3.51 (5H, m), 3.78-4.00 (1H, m), 4.28-4.46 (1H, m), 4.80-4.93 (1H, m), 6.88-7.36 (6H, m).</td>
</tr>
<tr>
<td>162 (162a)</td>
<td>1.35 (3H, t, J = 7.1 Hz), 1.38-1.46 (4H, m), 1.62-1.74 (3H, m), 2.30-2.46 (6H, m), 2.63-2.72 (1H, m), 2.79 (1H, dd, J = 12.4, 6.0 Hz), 2.87 (1H, dd, J = 12.4, 4.1 Hz), 2.99-3.06 (1H, m), 3.24 (1H, dd, J = 9.6, 6.6 Hz), 3.34 (1H, dd, J = 9.6, 3.7 Hz), 3.78-3.86 (1H, m), 4.29 (2H, q, J = 7.1 Hz), 4.71 (1H, q, J = 6.4 Hz), 5.97 (1H, d, J = 16.0 Hz), 6.99 (1H, dd, J = 7.3, 2.1 Hz), 7.15 (1H, d, J = 7.3 Hz), 7.24-7.32 (3H, m), 7.36 (1H, d, J = 7.3 Hz), 7.87 (1H, d, J = 16.0 Hz).</td>
</tr>
</tbody>
</table>
**1H-NMR (CDCl₃)** δ: 1.28 (3H, t, J = 7.3 Hz), 1.39-1.49 (4H, m), 1.57-1.76 (4H, m), 2.29-2.54 (8H, m), 2.64-2.74 (1H, m), 2.77-3.13 (5H, m), 3.24-3.32 (1H, m), 3.33-3.40 (1H, m), 3.89-3.89 (1H, m), 4.18 (2H, q, J = 7.3 Hz), 4.77 (1H, q, J = 6.0 Hz), 6.97-7.02 (1H, m), 7.06-7.11 (1H, m), 7.13-7.20 (1H, m), 7.22-7.34 (3H, m).

**[Table 124]**

<table>
<thead>
<tr>
<th>162 (162c)</th>
<th>1H-NMR (CDCl₃) δ: 1.39 (3H, d, J = 6.4 Hz), 1.70-2.07 (5H, m), 2.35 (3H, s), 2.42-2.61 (2H, m), 2.76-3.10 (4H, m), 3.12-3.50 (5H, m), 3.70-3.79 (1H, m), 4.23-4.32 (1H, m), 4.98 (1H, q, J = 6.3 Hz), 7.05-7.16 (3H, m), 7.18-7.27 (1H, m), 7.27-7.40 (2H, m).</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 (163a)</td>
<td>1H-NMR (CDCl₃) δ: 1.21 (3H, t, J = 7.6 Hz), 1.35 (3H, t, J = 7.1 Hz), 1.39-1.52 (4H, m), 1.59-1.80 (3H, m), 2.30-2.46 (6H, m), 2.63-2.76 (3H, m), 2.81 (1H, dd, J = 12.4, 6.0 Hz), 2.89 (1H, dd, J = 12.4, 6.6 Hz), 3.09-3.07 (1H, m), 3.25 (1H, dd, J = 10.5, 5.3 Hz), 3.33 (1H, dd, J = 10.5, 3.9 Hz), 3.79-3.87 (1H, m), 4.28 (2H, q, J = 7.1 Hz), 4.70 (1H, q, J = 6.4 Hz), 5.97 (1H, d, J = 16.0 Hz), 6.88-6.94 (1H, m), 6.98-7.03 (1H, m), 7.15 (1H, d, J = 7.8 Hz), 7.17-7.24 (1H, m), 7.24-7.31 (2H, m), 7.37 (1H, d, J = 7.8 Hz), 7.86 (1H, d, J = 16.0 Hz).</td>
</tr>
<tr>
<td>163 (163b)</td>
<td>1H-NMR (CDCl₃) δ: 1.21 (3H, t, J = 7.1 Hz), 1.28 (3H, t, J = 7.1 Hz), 1.41-1.52 (4H, m), 1.61-1.79 (3H, m), 2.29-2.54 (8H, m), 2.64-2.76 (3H, m), 2.80-3.09 (5H, m), 3.25-3.32 (1H, m), 3.32-3.42 (1H, m), 3.82-3.90 (1H, m), 4.18 (2H, q, J = 7.1 Hz), 4.76 (1H, q, J = 6.3 Hz), 6.88-6.94 (1H, m), 6.97-7.04 (1H, m), 7.06-7.11 (1H, m), 7.13-7.24 (2H, m), 7.28-7.35 (1H, m).</td>
</tr>
<tr>
<td>163 (163c)</td>
<td>1H-NMR (CDCl₃) δ: 1.15-1.32 (4H, m), 1.34-1.43 (3H, m), 1.74-1.98 (3H, m), 1.98-2.11 (1H, m), 2.35 (3H, s), 2.39-2.60 (1H, m), 2.72 (2H, q, J = 7.3 Hz), 2.80-3.12 (5H, m), 3.13-3.49 (5H, m), 3.76-3.88 (1H, m), 4.28-4.38 (1H, m), 4.94-5.03 (1H, m), 6.98-7.02 (1H, m), 7.02-7.15 (3H, m), 7.16-7.29 (2H, m).</td>
</tr>
</tbody>
</table>
1H-NMR (CDCl₃): δ 1.34 (3H, t, J = 7.1 Hz), 1.38-1.44 (1H, m, 1.47 (3H, d, J = 6.4 Hz), 1.57-1.80 (3H, m), 2.34-2.48 (3H, m), 2.63-2.72 (1H, m), 2.82 (1H, dd, J = 12.4, 6.4 Hz), 2.88 (1H, dd, J = 10.4, 4.1 Hz), 3.00-3.07 (1H, m), 3.30 (1H, dd, J = 9.4, 6.4 Hz), 3.38 (1H, dd, J = 9.4, 3.9 Hz), 3.80-3.86 (1H, m), 3.88 (3H, s), 4.27 (2H, q, J = 7.1 Hz), 4.85 (1H, q, J = 6.6 Hz), 6.55 (1H, d, J = 16.2 Hz), 6.86 (1H, d, J = 8.3 Hz), 6.99 (1H, dd, J = 8.3, 1.8 Hz), 7.13 (1H, d, J = 8.3 Hz), 7.24-7.37 (3H, m), 7.94 (1H, d, J = 16.2 Hz).

1H-NMR (CDCl₃): δ 1.37 (3H, d, J = 6.4 Hz), 1.68-1.94 (3H, m), 1.94-2.07 (1H, m), 2.51-2.64 (2H, m), 2.73-3.04 (5H, m), 3.14-3.24 (1H, m), 3.28-3.48 (4H, m), 3.62-3.70 (1H, m), 3.82 (3H, s), 4.16-4.24 (1H, m), 5.00 (1H, q, J = 6.3 Hz), 6.76 (1H, d, J = 8.3 Hz), 6.97-7.02 (1H, m), 7.09 (1H, dd, J = 8.3, 2.3 Hz), 7.16-7.25 (1H, m), 7.32-7.34 (1H, m), 7.38 (1H, d, J = 8.3 Hz).

1H-NMR (CDCl₃): δ 1.26 (3H, t, J = 7.3 Hz), 1.34 (3H, d, J = 6.4 Hz), 1.68-1.94 (3H, m), 1.94-2.07 (1H, m), 2.51-2.64 (2H, m), 2.73-3.04 (5H, m), 3.14-3.24 (1H, m), 3.28-3.48 (4H, m), 3.62-3.70 (1H, m), 3.82 (3H, s), 4.16-4.24 (1H, m), 5.00 (1H, q, J = 6.3 Hz), 6.76 (1H, d, J = 8.3 Hz), 6.97-7.02 (1H, m), 7.09 (1H, dd, J = 8.3, 2.3 Hz), 7.16-7.25 (1H, m), 7.32-7.34 (1H, m), 7.38 (1H, d, J = 8.3 Hz).

1H-NMR (CDCl₃): δ 1.26 (3H, t, J = 7.3 Hz), 1.34 (3H, d, J = 6.4 Hz), 1.40-1.51 (4H, m), 1.58-1.78 (3H, m), 2.28-2.48 (3H, m), 2.60-2.76 (3H, m), 2.79-2.93 (2H, m), 3.01-3.08 (1H, m), 3.29 (1H, dd, J = 9.4, 6.4 Hz), 3.38 (1H, dd, J = 9.4, 3.9 Hz), 3.80-3.91 (4H, m), 4.27 (2H, q, J = 7.3 Hz), 4.85 (1H, q, J = 6.4 Hz), 6.55 (1H, d, J = 15.6 Hz), 6.85 (1H, d, J = 8.3 Hz), 6.91 (1H, dd, J = 8.3, 1.8 Hz), 6.98-7.03 (1H, m), 7.13 (1H, d, J = 7.8 Hz), 7.20 (1H, d, J = 7.8 Hz), 7.34 (1H, t, J = 7.8 Hz), 7.93 (1H, d, J = 15.6 Hz).

1H-NMR (CDCl₃): δ 1.18-1.30 (6H, m), 1.38-1.52 (4H, m), 1.58-1.78 (3H, m), 2.29-2.56 (5H, m), 2.61-2.76 (3H, m), 2.79-3.09 (5H, m), 3.24-3.43 (2H, m), 3.78-3.90 (4H, m), 4.08-4.20 (2H, m), 4.74-4.82 (1H, m), 6.77 (1H, d, J = 8.3 Hz), 6.91 (1H, d, J = 8.3 Hz), 7.01 (1H, s), 7.04-7.10 (1H, m), 7.17-7.28 (2H, m).
165 (165c) 1H-NMR (CDCl₃): δ: 1.22 (3H, t, J = 7.3 Hz), 1.37 (3H, d, J = 5.5 Hz), 1.67-2.07 (4H, m), 2.48-2.63 (2H, m), 2.64-2.88 (4H, m), 2.89-3.04 (3H, m), 3.06-3.24 (H, m), 3.25-3.52 (4H, m), 3.61-3.75 (1H, m), 3.82 (3H, s), 4.17-4.26 (1H, m), 4.97-5.06 (1H, d, J = 8.3 Hz), 6.95-7.05 (2H, m), 7.08 (1H, s), 7.15-7.31 (2H, m).

166 (166a) 1H-NMR (CDCl₃): δ: 1.34 (3H, t, J = 7.1 Hz), 1.45 (3H, d, J = 6.4 Hz), 1.53-1.63 (1H, m), 1.74-1.85 (3H, m), 2.33 (3H, s), 2.47-2.53 (1H, m), 2.58-2.65 (2H, m), 2.89-3.03 (3H, m), 3.26-3.40 (3H, m), 3.97-4.02 (1H, m), 4.27 (2H, q, J = 7.1 Hz), 4.80 (1H, q, J = 6.4 Hz), 6.30 (1H, d, J = 15.6 Hz), 6.97-7.02 (2H, m), 7.12-7.18 (3H, m), 7.56 (1H, t, J = 6.6 Hz), 8.01 (1H, d, J = 15.6 Hz), 1H-NMR (CDCl₃): δ: 1.24 (3H, t, J = 7.6 Hz).

(166b) 1H-NMR (CDCl₃): δ: 1.36 (3H, d, J = 6.4 Hz), 1.64-1.76 (3H, m), 2.32 (3H, s), 2.35-2.48 (3H, m), 2.57 (2H, dd, J = 8.9, 7.1 Hz), 2.67-2.74 (1H, m), 2.83 (1H, dd, J = 12.6, 5.7 Hz), 2.87 (1H, d, J = 4.1 Hz), 2.90-2.96 (2H, m), 3.02-3.07 (1H, m), 3.30 (1H, dd, J = 9.4, 6.6 Hz), 3.37 (1H, dd, J = 9.4, 4.1 Hz), 3.83-3.89 (1H, m), 4.14 (2H, q, J = 7.6 Hz), 4.73 (1H, q, J = 6.4 Hz), 6.89 (1H, td, J = 8.3, 2.8 Hz), 6.94 (1H, d, J = 6.4 Hz), 7.10-7.17 (4H, m).

166 (166c) 1H-NMR (CDCl₃): δ: 1.36 (3H, d, J = 6.4 Hz), 1.85-2.02 (3H, m), 2.08-2.14 (1H, m), 2.34 (3H, s), 2.51-2.58 (1H, m), 2.64-2.71 (1H, m), 2.79-2.86 (1H, m), 2.93 (1H, dd, J = 13.1, 8.9 Hz), 2.98-3.05 (2H, m), 3.08-3.14 (1H, m), 3.35-3.47 (5H, m), 3.85-3.92 (1H, m), 4.36-4.41 (1H, m), 4.91 (1H, q, J = 6.4 Hz), 6.90 (1H, td, J = 8.3, 2.8 Hz), 7.02-7.07 (2H, m), 7.17 (2H, t, J = 7.1 Hz), 7.23 (1H, s).

167 (167a) 1H-NMR (CDCl₃): δ: 1.34 (3H, t, J = 7.1 Hz), 1.48 (3H, d, J = 6.0 Hz), 1.53-1.85 (4H, m), 2.33 (3H, s), 2.45-2.66 (3H, m), 2.87-3.04 (3H, m), 3.26-3.36 (3H, m), 3.88 (3H, s), 3.93-4.00 (1H, m), 4.27 (2H, q, J = 7.1 Hz), 4.82 (1H, q, J = 6.0 Hz), 6.59 (1H, d, J = 16.0 Hz), 6.87 (1H, d, J = 8.7 Hz), 6.98 (1H, d, J = 7.8 Hz), 7.11 (2H, t, J = 10.1 Hz), 7.18 (1H, s), 7.34 (1H, t, J = 7.8 Hz), 7.98 (1H, d, J = 16.0 Hz).
Example 168

(168b) Ethyl 3-{2-[(1R)-1-((2R)-3-[2(S)-2-(4-chloro-3-fluorobenzyl)pyrrolidin-1-yl]-2-hydroxypropyl)oxy]ethyl}-6-methoxy phenyl]propanoate

[0343] A solution of ethyl (2E)-3-{2-[(1R)-1-((2R)-3-[2(S)-2-(4-chloro-3-fluorobenzyl)pyrrolidin-1-yl]-2-hydroxypropyl)oxy]ethyl]-6-methoxy phenyl]prop-2-enolate (516 mg, 992.3 μmol), which had been obtained in Example 168(168a), in mixture of tetrahydrofuran (10 mL) and ethanol (2 mL) was added with nickel (II) chloride hexahydrate (117.9 mg, 496.1 μmol) and 7,7,8,8-tetracyanoquinodimethane (101.3 mg, 496.1 μmol), and stirred for 5 minutes under ice cooling. After stirring, a solution of sodium borohydride (150 mg, 3.97 mmol) in mixture of tetrahydrofuran (5 mL) and ethanol (1 mL) was added dropwise slowly thereto under ice cooling. Upon the completion of the dropwise addition, the mixture was stirred for 1 hour at room temperature, added with water (20 mL), and filtered. The solvent was distilled off under reduced pressure. The residue was extracted with ethyl acetate (40 mL x 2). After that, the organic layers were washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 1/2) to give the title compound as a colorless oily substance (253 mg, yield 49%).

Further, in Example 168(168a), the production was carried out in the same manner as the example above. Compounds of Examples 169 to 177 described below were produced with reference to the steps that are described in Example 168 above.

[0344]
**1H-NMR (CDCl3) δ:**
- 168 (168b): 1.28 (3H, t, J = 7.0 Hz), 1.42-1.46 (1H, m), 1.45 (3H, d, J = 6.4 Hz), 1.61-1.72 (3H, m), 2.35-2.47 (3H, m), 2.50-2.54 (2H, m), 2.66-2.71 (1H, m), 2.79-2.84 (1H, m), 2.88-2.98 (2H, m), 2.99-3.08 (2H, m), 3.26-3.31 (1H, m), 3.36-3.41 (1H, m), 3.81-3.87 (1H, m), 3.83 (3H, s), 4.16 (2H, q, J = 7.0 Hz), 4.78 (1H, q, J = 6.4 Hz), 6.79 (1H, d, J = 8.3 Hz), 6.88 (1H, d, J = 8.7 Hz), 6.97 (1H, d, J = 10.1 Hz), 7.06 (1H, d, J = 7.8 Hz), 7.21-7.28 (2H, m).

168 (168c):
- 1H-NMR (CDCl3) δ: 1.36 (3H, d, J = 6.4 Hz), 1.70-1.92 (3H, m), 1.94-2.03 (1H, m), 2.54-2.63 (2H, m), 2.69 (1H, d, d, J = 12.8, 7.8 Hz), 2.87-2.97 (2H, m), 2.95-2.99 (2H, m), 3.08-3.15 (1H, m), 3.29 (1H, d, d, J = 12.8, 3.2 Hz), 3.35 (1H, d, d, J = 13.5, 4.4 Hz), 3.47 (2H, d, d, J = 5.5 Hz), 3.55-3.62 (1H, m), 3.83 (3H, s), 4.12-4.17 (1H, m), 5.02 (1H, d, d, J = 6.4 Hz), 6.77 (1H, d, J = 8.3 Hz), 6.97 (1H, d, J = 8.3 Hz), 7.00-7.04 (2H, m), 7.21 (1H, t, J = 8.0 Hz), 7.32 (1H, t, J = 8.0 Hz).

169 (169a):
- 1H-NMR (CDCl3) δ: 1.36 (3H, t, J = 7.1 Hz), 1.43 (3H, d, J = 6.4 Hz), 1.63-1.84 (4H, m), 2.33 (6H, s), 2.43 (1H, t, J = 11.2 Hz), 2.50-2.55 (2H, m), 2.78-2.83 (1H, m), 2.87-2.97 (2H, m), 3.15-3.22 (1H, m), 3.24-3.29 (1H, m), 3.30-3.34 (1H, m), 3.87-3.92 (1H, m), 4.29 (2H, q, J = 7.1 Hz), 4.70 (1H, q, J = 6.4 Hz), 5.97 (1H, d, J = 16.0 Hz), 6.96 (1H, d, J = 7.8 Hz), 7.11 (1H, d, J = 6.4 Hz), 7.17 (1H, s), 7.25-7.30 (1H, m), 7.35 (1H, d, J = 7.8 Hz), 8.77 (1H, d, J = 16.0 Hz).

169 (169b):
- 1H-NMR (CDCl3) δ: 1.28 (3H, t, J = 7.1 Hz), 1.41-1.50 (1H, m), 1.45 (3H, d, J = 6.4 Hz), 1.54-1.59 (2H, m), 1.63-1.74 (3H, m), 1.83 (3H, s), 2.35 (3H, s), 2.36-2.49 (4H, m), 2.65-2.71 (1H, m), 2.82 (1H, d, d, J = 12.6, 5.7 Hz), 2.89 (1H, d, d, J = 13.1, 3.9 Hz), 2.93-3.06 (2H, m), 3.28 (1H, d, d, J = 9.4, 6.6 Hz), 3.36 (1H, d, d, J = 9.4, 4.1 Hz), 3.82-3.88 (1H, m), 4.18 (2H, q, J = 7.1 Hz), 4.77 (1H, q, J = 6.4 Hz), 6.94 (1H, d, J = 7.8 Hz), 7.09 (2H, t, J = 6.4 Hz), 7.14 (1H, s), 7.17 (1H, t, J = 7.8 Hz), 7.31 (1H, d, J = 6.9 Hz).

169 (169c):
- 1H-NMR (CDCl3) δ: 1.38 (3H, d, J = 6.0 Hz), 1.76-1.96 (3H, m), 2.33 (3H, s), 2.35 (3H, s), 2.42-2.65 (4H, m), 2.80-2.88 (1H, m), 2.91-3.07 (3H, m), 3.22-3.29 (1H, m), 3.34-3.42 (3H, m), 3.47 (1H, d, d, J = 11.0, 5.5 Hz), 3.75-3.81 (1H, m), 4.29-4.34 (1H, m), 5.01 (1H, q, J = 6.0 Hz), 7.04 (1H, d, J = 7.8 Hz), 7.07 (1H, d, J = 7.3 Hz), 7.12 (1H, d, J = 7.3 Hz), 7.16 (1H, d, J = 7.8 Hz), 7.21-7.26 (2H, m).
\[ \delta: 1.36 (3H, t, J = 7.2\text{Hz}), 1.40-1.46 (1H, m), 1.42 (3H, d, J = 6.4\text{Hz}), 1.63-1.71 (3H, m), 2.33 (3H, s), 2.35-2.45 (3H, m), 2.64-2.71 (1H, m), 2.79 (1H, dd, J = 12.4, 6.0\text{Hz}), 2.89 (1H, dd, J = 13.3, 4.1\text{Hz}), 3.00-3.05 (1H, m), 3.24 (1H, dd, J = 9.4, 6.6\text{Hz}), 3.33 (1H, dd, J = 9.4, 3.7\text{Hz}), 3.78-3.84 (1H, m), 4.29 (2H, q, J = 7.2\text{Hz}), 4.70 (1H, q, J = 6.4\text{Hz}), 5.97 (1H, d, J = 16.5\text{Hz}), 6.87 (1H, d, J = 8.3\text{Hz}), 6.96 (1H, d, J = 10.1\text{Hz}), 7.15 (1H, d, J = 7.3\text{Hz}), 7.24 (1H, d, J = 7.8\text{Hz}), 7.28 (1H, d, J = 7.8\text{Hz}), 7.36 (1H, d, J = 7.8\text{Hz}), 7.87 (1H, d, J = 16.5\text{Hz}). \]

\[ \delta: 1.28 (3H, t, J = 7.1\text{Hz}), 1.39-1.45 (1H, m), 1.45 (3H, d, J = 6.4\text{Hz}), 1.64-1.71 (3H, m), 2.35 (3H, s), 2.37-2.49 (5H, m), 2.65-2.72 (1H, m), 2.80 (1H, dd, J = 12.4, 6.0\text{Hz}), 2.88-2.98 (2H, m), 3.00-3.06 (2H, m), 3.28 (1H, dd, J = 9.4, 6.6\text{Hz}), 3.36 (1H, dd, J = 9.4, 3.7\text{Hz}), 3.81-3.87 (1H, m), 4.18 (2H, q, J = 7.1\text{Hz}), 4.76 (1H, q, J = 6.4\text{Hz}), 6.88 (1H, d, J = 7.3\text{Hz}), 6.96 (1H, d, J = 10.1\text{Hz}), 7.09 (1H, d, J = 7.3\text{Hz}), 7.97 (1H, t, J = 7.6\text{Hz}), 7.25 (1H, t, J = 8.3\text{Hz}), 7.30 (1H, d, J = 7.3\text{Hz}). \]

\[ \delta: 1.39 (3H, s, J = 6.0\text{Hz}), 1.79-2.00 (3H, m), 2.35 (3H, s), 2.43-2.59 (2H, m), 2.73 (1H, dd, J = 13.1, 8.0\text{Hz}), 2.81-2.97 (3H, m), 3.04-3.17 (2H, m), 3.27 (1H, dd, J = 13.1, 3.0\text{Hz}), 3.34 (1H, dd, J = 13.1, 4.4\text{Hz}), 3.41-3.49 (2H, m), 3.57-3.63 (1H, m), 4.14-4.20 (1H, m), 5.02 (1H, q, J = 6.0\text{Hz}), 6.97 (1H, d, J = 8.3\text{Hz}), 7.03 (1H, d, J = 9.6\text{Hz}), 7.07 (1H, d, J = 7.3\text{Hz}), 7.13 (1H, t, J = 7.8\text{Hz}), 7.24-7.26 (1H, m), 7.32 (1H, t, J = 7.8\text{Hz}). \]

\[ \delta: 0.93 (3H, t, J = 7.4\text{Hz}), 1.34 (3H, t, J = 6.9\text{Hz}), 1.52-1.89 (8H, m), 2.33 (3H, s), 2.46-2.57 (1H, m), 2.57-2.71 (1H, m), 2.92-3.09 (2H, m), 3.29-3.36 (2H, m), 3.88 (3H, s), 3.96-4.03 (1H, m), 4.22-4.30 (1H, m), 4.26 (2H, q, J = 6.9\text{Hz}), 4.55 (1H, t, J = 6.6\text{Hz}), 6.61 (1H, d, J = 16.0\text{Hz}), 6.87 (1H, d, J = 8.6\text{Hz}), 6.98 (1H, d, J = 7.4\text{Hz}), 7.03 (1H, d, J = 7.4\text{Hz}), 7.12 (1H, d, J = 7.4\text{Hz}), 7.18 (1H, s), 7.32 (1H, t, J = 8.0\text{Hz}), 8.01 (1H, d, J = 16.0\text{Hz}). \]
1H-NMR (CDCl₃) δ: 0.97 (3H, t, J = 7.3 Hz), 1.27 (3H, t, J = 7.3 Hz), 1.44-1.49 (1H, m), 1.50-1.73 (4H, m), 1.74-1.84 (1H, m), 2.30-2.40 (2H, m), 2.32 (3H, s), 2.43 (1H, dd, J = 12.4, 6.9 Hz), 2.50 (2H, t, J = 8.3 Hz), 2.62-2.69 (1H, m), 2.83 (1H, dd, J = 12.6, 5.7 Hz), 2.88-2.96 (2H, m), 2.99-3.07 (2H, m), 3.25 (1H, dd, J = 9.6, 6.4 Hz), 3.38 (1H, dd, J = 9.6, 4.1 Hz), 3.81-3.87 (1H, m), 3.82 (3H, s), 4.16 (2H, q, J = 7.3 Hz), 4.52 (2H, dd, J = 7.8, 5.0 Hz), 6.77 (1H, d, J = 7.3 Hz), 6.93 (1H, dd, J = 7.6, 1.6 Hz), 7.01 (1H, d, J = 7.8 Hz), 7.10 (1H, d, J = 7.8 Hz), 7.14 (1H, s), 7.21 (1H, t, J = 8.0 Hz).

1H-NMR (CDCl₃) δ: 0.95 (3H, t, J = 7.3 Hz), 1.56-1.91 (5H, m), 1.97-2.04 (1H, m), 2.34 (3H, s), 2.54-2.65 (2H, m), 2.71 (1H, dd, J = 12.6, 8.0 Hz), 2.85-2.93 (2H, m), 2.98 (2H, t, J = 6.6 Hz), 3.10-3.18 (1H, m), 3.33 (1H, dd, J = 13.8, 4.1 Hz), 3.40 (1H, dd, J = 12.6, 2.8 Hz), 3.46 (2H, d, J = 5.5 Hz), 3.64-3.71 (1H, m), 3.83 (3H, s), 4.19-4.25 (1H, m), 4.82 (1H, dd, J = 8.0, 5.3 Hz), 6.76 (1H, d, J = 7.8 Hz), 6.99 (2H, dd, J = 152, 8.3 Hz), 7.14-7.21 (3H, m).

13C-NMR (CDCl₃) δ: 0.92 (3H, t, J = 7.3 Hz), 1.35 (3H, t, J = 7.1 Hz), 1.47-1.54 (1H, m), 1.60-1.82 (6H, m), 2.32 (3H, s), 2.33 (3H, s), 2.35.2.53 (2H, m), 2.73-2.79 (1H, m), 2.85-2.95 (2H, m), 3.10-3.19 (1H, m), 3.22 (1H, dd, J = 9.2, 6.2 Hz), 3.34 (1H, dd, J = 9.2, 4.1 Hz), 3.84-3.90 (1H, m), 4.29 (2H, q, J = 7.1 Hz), 4.46 (1H, dd, J = 7.8, 5.0 Hz), 5.96 (1H, d, J = 16.5 Hz), 6.94 (1H, d, J = 7.3 Hz), 7.10 (1H, d, J = 7.8 Hz), 7.15 (2H, d, J = 6.4 Hz), 7.29 (2H, m), 7.87 (1H, d, J = 16.5 Hz).

1H-NMR (CDCl₃) δ: 0.99 (3H, t, J = 7.3 Hz), 1.28 (3H, t, J = 7.1 Hz), 1.41-1.48 (1H, m), 1.63-1.72 (4H, m), 1.77-1.84 (1H, m), 2.32 (3H, s), 2.35 (3H, s), 2.39-2.49 (3H, m), 2.63-2.69 (1H, m), 2.83 (1H, dd, J = 12.4, 6.0 Hz), 2.89 (1H, dd, J = 13.5, 3.9 Hz), 2.95-3.06 (3H, m), 3.24 (1H, dd, J = 9.2, 6.9 Hz), 3.37 (1H, dd, J = 9.2, 3.7 Hz), 3.81-3.87 (1H, m), 4.18 (2H, q, J = 7.1 Hz), 4.50 (1H, q, J = 7.1 Hz), 6.93 (1H, d, J = 7.8 Hz), 7.09 (2H, t, J = 7.1 Hz), 7.14 (1H, s), 7.16 (1H, d, J = 7.3 Hz), 7.27 (1H, d, J = 5.0 Hz).

[Table 130]
(continued)

173 (173a) 1H-NMR (CDCl3) δ: 0.95 (3H, t, J = 7.3 Hz), 1.34 (3H, t, J = 7.1 Hz), 1.39-1.45 (1H, m), 1.63-1.77 (4H, m), 1.79-1.86 (1H, m), 2.33-2.41 (2H, m), 2.45 (1H, dd, J = 12.4, 6.9 Hz), 2.64-2.70 (1H, m), 2.83 (1H, dd, J = 12.4, 6.2 Hz), 2.90 (1H, dd, J = 13.3, 4.1 Hz), 3.01-3.06 (1H, m), 3.26 (1H, dd, J = 9.6, 6.4 Hz), 3.39 (1H, dd, J = 9.6, 4.1 Hz), 3.80-3.85 (1H, m), 3.88 (3H, s), 4.27 (2H, q, J = 7.1 Hz), 4.60 (1H, dd, J = 7.8, 5.5 Hz), 6.58 (1H, d, J = 16.0 Hz), 6.85-6.88 (2H, m), 6.96 (1H, d, J = 10.1 Hz), 7.08 (1H, d, J = 7.8 Hz), 7.25 (1H, t, J = 7.8 Hz), 7.33 (1H, t, J = 8.0 Hz), 7.96 (1H, d, J = 16.0 Hz).

173 (173b) 1H-NMR (CDCl3) δ: 0.96 (3H, t, J = 7.3 Hz), 1.27 (3H, t, J = 7.1 Hz), 1.39-1.45 (1H, m), 1.62-1.71 (4H, m), 1.76-1.84 (1H, m), 2.34-2.52 (5H, m), 2.64-2.70 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.88-3.06 (4H, m), 3.24 (1H, dd, J = 9.4, 6.6 Hz), 3.38 (1H, dd, J = 9.4, 3.9 Hz), 3.81-3.88 (1H, m), 3.82 (3H, s), 4.15 (2H, q, J = 7.1 Hz), 4.52 (1H, dd, J = 7.8, 5.0 Hz), 6.77 (1H, d, J = 8.3 Hz), 6.87 (1H, d, J = 8.3 Hz), 6.95 (1H, d, J = 10.1 Hz), 7.00 (1H, d, J = 7.8 Hz), 7.21 (1H, t, J = 7.1 Hz), 7.25 (1H, t, J = 7.1 Hz).

173 (173c) 1H-NMR (CDCl3) δ: 0.93 (3H, t, J = 7.3 Hz), 1.57-1.74 (2H, m), 1.84-1.99 (3H, m), 2.09-2.16 (1H, m), 2.60 (2H, t, J = 6.9 Hz), 2.89-3.03 (3H, m), 3.05-3.16 (2H, m), 3.34-3.50 (5H, m), 3.82 (3H, s), 3.87-3.94 (1H, m), 4.38-4.44 (1H, m), 4.73 (1H, dd, J = 7.6, 5.3 Hz), 6.76 (1H, d, J = 7.6 Hz), 6.92 (1H, d, J = 7.8 Hz), 7.00 (1H, d, J = 8.3 Hz), 7.05 (1H, d, J = 9.6 Hz), 7.19 (1H, t, J = 8.0 Hz), 7.34 (1H, t, J = 7.8 Hz).

174 (174a) 1H-NMR (CDCl3) δ: 1.34 (3H, t, J = 7.1 Hz), 1.41-1.50 (1H, m), 1.42 (3H, d, J = 6.3 Hz), 1.63-1.75 (3H, m), 2.27 (3H, s), 2.32 (3H, s), 2.34-2.43 (2H, m), 2.45 (1H, dd, J = 12.6, 7.4 Hz), 2.66-2.72 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.87 (1H, dd, J = 13.2, 4.0 Hz), 3.01-3.06 (1H, m), 3.32 (1H, dd, J = 9.5, 6.6 Hz), 3.40 (1H, dd, J = 9.7, 4.0 Hz), 3.82-3.88 (1H, m), 4.26 (2H, q, J = 7.1 Hz), 4.80 (1H, q, J = 6.3 Hz), 6.28 (1H, d, J = 15.8 Hz), 6.94 (1H, d, J = 8.0 Hz), 1.79 (1H, t, J = 8.0 Hz), 7.09-7.15 (3H, m), 7.39 (1H, d, J = 8.0 Hz), 7.98 (1H, d, J = 16.8 Hz).
<table>
<thead>
<tr>
<th>Compound</th>
<th>¹H-NMR (CDCl₃) δ</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>174 (174b)</td>
<td>1.25 (3H, t, J = 7.2 Hz), 1.41-1.50 (1H, m), 1.42 (3H, d, J = 6.4 Hz), 1.64-1.75 (3H, m), 2.23 (3H, s), 2.32 (3H, s), 2.33-2.42 (2H, m), 2.43 (1H, dd, J = 12.6, 6.9 Hz), 2.50-2.61 (2H, m), 2.66-2.72 (1H, m), 2.82 (1H, dd, J = 12.3, 6.0 Hz), 2.86-2.92 (3H, m), 3.01-3.06 (1H, m), 3.28 (1H, dd, J = 9.5, 4.0 Hz), 3.82-3.88 (1H, m), 4.14 (2H, q, J = 7.2 Hz), 4.69 (1H, q, J = 6.4 Hz), 6.93-6.97 (2H, m), 7.07 (1H, d, J = 10.9 Hz), 7.10 (1H, d, J = 8.0 Hz), 7.14 (1H, d, J = 1.1 Hz).</td>
<td></td>
</tr>
<tr>
<td>174 (174c)</td>
<td>1.26 (3H, t, J = 7.2 Hz), 1.41-1.50 (1H, m), 1.42 (3H, d, J = 6.4 Hz), 1.64-1.75 (3H, m), 2.23 (3H, s), 2.32 (3H, s), 2.33-2.42 (2H, m), 2.43 (1H, dd, J = 12.6, 6.9 Hz), 2.50-2.61 (2H, m), 2.66-2.72 (1H, m), 2.82 (1H, dd, J = 12.3, 6.0 Hz), 2.86-2.92 (3H, m), 3.01-3.06 (1H, m), 3.28 (1H, dd, J = 9.5, 4.0 Hz), 3.82-3.88 (1H, m), 4.14 (2H, q, J = 7.2 Hz), 4.69 (1H, q, J = 6.4 Hz), 6.93-6.97 (2H, m), 7.07 (1H, d, J = 10.9 Hz), 7.10 (1H, d, J = 8.0 Hz), 7.14 (1H, d, J = 1.1 Hz).</td>
<td></td>
</tr>
<tr>
<td>175 (175a)</td>
<td>1.34 (3H, t, J = 7.1 Hz), 1.38-1.49 (1H, m), 1.43 (3H, d, J = 6.4 Hz), 1.64-1.74 (3H, m), 2.27 (3H, s), 2.35-2.43 (2H, m), 2.46 (1H, dd, J = 12.6, 7.4 Hz), 2.66-2.73 (1H, m), 2.81 (1H, dd, J = 12.3, 6.0 Hz), 2.88 (1H, dd, J = 13.2, 4.0 Hz), 3.01-3.06 (1H, m), 3.32 (1H, dd, J = 9.5, 6.6 Hz), 3.40 (1H, dd, J = 9.5, 3.7 Hz), 3.82-3.88 (1H, m), 4.26 (2H, q, J = 7.1 Hz), 4.80 (1H, q, J = 6.4 Hz), 6.28 (1H, d, J = 15.8 Hz), 6.99 (1H, dd, J = 8.3, 2.0 Hz), 7.12 (1H, d, J = 10.3 Hz), 7.26 (1H, s), 7.31 (1H, d, J = 8.6 Hz), 7.39 (1H, d, J = 7.4 Hz), 7.98 (1H, d, J = 15.8 Hz).</td>
<td></td>
</tr>
<tr>
<td>175 (175b)</td>
<td>1.26 (3H, t, J = 7.2 Hz), 1.38-1.50 (1H, m), 1.42 (3H, d, J = 6.7 Hz), 1.64-1.74 (3H, m), 2.23 (3H, s), 2.35-2.43 (2H, m), 2.44 (1H, dd, J = 12.6, 6.9 Hz), 2.50-2.60 (2H, m), 2.66-2.73 (1H, m), 2.81 (1H, dd, J = 12.6, 5.7 Hz), 2.86-2.92 (3H, m), 3.01-3.06 (1H, m), 3.28 (1H, dd, J = 9.5, 6.6 Hz), 3.36 (1H, dd, J = 9.7, 4.0 Hz), 3.82-3.87 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.69 (1H, q, J = 6.7 Hz), 6.96 (1H, d, J = 8.0 Hz), 6.99 (1H, dd, J = 8.0, 1.7 Hz), 7.07 (1H, d, J = 10.9 Hz), 7.26 (1H, s), 7.31 (1H, d, J = 8.0 Hz).</td>
<td></td>
</tr>
<tr>
<td>175 (175c)</td>
<td>1.35 (3H, d, J = 6.4 Hz), 1.76-1.99 (3H, m), 2.00-2.09 (1H, m), 2.21 (3H, s), 2.49-2.56 (1H, m), 2.58-2.64 (1H, m), 2.74-2.81 (1H, m), 2.88 (1H, dd, J = 12.9, 8.9 Hz), 2.92-3.00 (2H, m), 3.01-3.08 (1H, m), 3.28-3.41 (3H, m), 3.44 (1H, dd, J = 10.9, 5.7 Hz), 3.73-3.80 (1H, m), 4.26-4.32 (1H, m), 4.86 (1H, q, J = 6.4 Hz), 6.96 (1H, d, J = 10.3 Hz), 7.01 (1H, d, J = 7.4 Hz), 7.11 (1H, dd, J = 8.3, 2.0 Hz), 7.36 (1H, d, J = 2.3 Hz), 7.39 (1H, d, J = 8.0 Hz).</td>
<td></td>
</tr>
</tbody>
</table>
**Table 132**

| 176 (176a) | 1H-NMR (CCl₃) δ: 1.34 (3H, t, J = 7.2 Hz), 1.42 (3H, d, J = 6.3 Hz), 1.43-1.50 (1H, m), 1.65-1.76 (3H, m), 2.32 (3H, s), 2.33-2.44 (2H, m), 2.46 (1H, dd, J = 12.3, 7.2 Hz), 2.67-2.74 (1H, m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.87 (1H, dd, J = 13.2, 4.6 Hz), 3.01-3.06 (1H, m), 3.33 (1H, dd, J = 9.5, 6.6 Hz), 3.40 (1H, dd, J = 9.5, 6.6 Hz), 3.82 (1H, dd, J = 12.6, 5.7 Hz), 4.27 (2H, q, J = 7.2 Hz), 4.80 (1H, q, J = 8.3 Hz), 6.27 (1H, d, J = 15.8 Hz), 6.94 (1H, dd, J = 7.7, 1.4 Hz), 7.11 (1H, d, J = 7.4 Hz), 7.14 (1H, d, J = 1.7 Hz), 7.31 (1H, dd, J = 10.9, 8.0 Hz), 7.35 (1H, dd, J = 11.2, 7.7 Hz), 7.93 (1H, d, J = 15.8 Hz). |
| 176 (176b) | 1H-NMR (CDCl₃) δ: 1.25 (3H, t, J = 7.2 Hz), 1.41 (3H, d, J = 6.2 Hz), 1.41-1.50 (1H, m), 1.64-1.76 (3H, m), 2.32 (3H, s), 2.33-2.46 (3H, m), 2.52-2.62 (2H, m), 2.67-2.74 (1H, m), 2.81 (1H, dd, J = 12.6, 5.7 Hz), 2.85-2.94 (3H, m), 3.01-3.06 (1H, m), 3.28 (1H, dd, J = 9.5, 6.6 Hz), 3.35 (1H, dd, J = 9.5, 6.6 Hz), 3.82-3.87 (1H, m), 4.14 (2H, q, J = 6.2 Hz), 4.70 (1H, q, J = 6.2 Hz), 6.94 (1H, dd, J = 7.7, 2.0 Hz), 6.96 (1H, dd, J = 11.2, 7.7 Hz), 7.11 (1H, d, J = 8.0 Hz), 7.14 (1H, d, J = 1.7 Hz), 7.25 (1H, dd, J = 11.5, 8.6 Hz). |
| 176 (176c) | 1H-NMR (CDCl₃) δ: 1.35 (3H, d, J = 6.4 Hz), 1.72-2.01 (4H, m), 2.33 (3H, s), 2.47-2.54 (1H, m), 2.56-2.63 (1H, m), 2.74-2.85 (3H, m), 2.93-3.05 (2H, m), 3.18-3.36 (4H, m), 3.43 (1H, dd, J = 10.3, 5.7 Hz), 3.63-3.71 (1H, m), 4.17-4.23 (1H, m), 4.93 (1H, q, J = 6.4 Hz), 6.99-7.04 (2H, m), 7.12-7.17 (2H, m), 7.21 (1H, d, J = 1.1 Hz). |
| 177 (177a) | 1H-NMR (CDCl₃) δ: 1.34 (3H, t, J = 7.0 Hz), 1.40-9.48 (1H, m), 1.42 (3H, d, J = 6.6 Hz), 1.65-1.75 (3H, m), 2.35-2.44 (2H, m), 2.47 (1H, dd, J = 12.8, 7.4 Hz), 2.68-2.74 (1H, m), 2.81 (1H, dd, J = 12.3, 6.0 Hz), 2.88 (1H, dd, J = 13.5, 4.3 Hz), 3.01-3.06 (1H, m), 3.33 (1H, dd, J = 9.5, 6.6 Hz), 3.40 (1H, dd, J = 9.5, 3.7 Hz), 3.81-3.88 (1H, m), 4.27 (2H, q, J = 7.0 Hz), 4.80 (1H, q, J = 6.6 Hz), 6.27 (1H, d, J = 16.0 Hz), 7.00 (1H, dd, J = 8.0, 1.7 Hz), 7.26 (1H, s), 7.28-7.37 (3H, m), 7.94 H, d, J = 16.0 Hz). |
| 177 (177b) | 1H-NMR (CDCl₃) δ: 1.25 (6H, d, J = 6.4 Hz), 1.72-2.01 (4H, m), 2.33 (3H, s), 2.47-2.54 (1H, m), 2.56-2.63 (1H, m), 2.74-2.85 (3H, m), 2.93-3.05 (2H, m), 3.18-3.36 (4H, m), 3.43 (1H, dd, J = 10.3, 5.7 Hz), 3.63-3.71 (1H, m), 4.17-4.23 (1H, m), 4.93 (1H, q, J = 6.4 Hz), 6.99-7.04 (2H, m), 7.12-7.17 (2H, m), 7.21 (1H, d, J = 1.1 Hz). |
Example 178

(2R)-1-[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]-3-[(1R)-1-{2-[2-(2H-tetrazol-5-yl)ethyl]phenyl}ethoxy]propan-2-ol (178a) 5-Ethenyl-2-[(2-trimethylsilyl)ethoxy]methyl-2H-tetrazole

(178b) 5-[(E)-2-(2-[(1R)-1-[(2R)-oxiran-2-yl methoxy]ethyl]phenyl)ethenyl]-2-[(2-trimethylsilyl)ethoxy]methyl-2H-tetrazole

(178c) (2R)-1-[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]-3-[(1R)-1-{2-[2-(2H-tetrazol-5-yl)ethyl]phenyl}ethoxy]propan-2-ol formate

(2R)-1-[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]-3-[(1R)-1-{2-[2-(2H-tetrazol-5-yl)ethyl]phenyl}ethoxy]propan-2-ol (530 mg, 0.887 mmol) which had been obtained in Example 178 (178b) was dissolved in tetrahydrofuran (3.5 mL), added with a 1.0 M solution of tetrabutylammonium fluoride in tetrahydrofuran (2.92 mL, 2.92 mmol), and stirred for 27 hours at 45˚C. The reaction solution was cooled to room temperature and the...
solvent was distilled off under reduced pressure. The resultant was added with ethyl acetate and 1 N aqueous hydrochloride solution for neutralization and extracted with ethyl acetate. The solvent was removed under reduced pressure. The residue was purified by reverse phase HPLC (column: Develosil (NOMURA CHEMICAL) 28 mm x 10 cm; flow rate: 25 mL/min; mobile phase: 0.1% aqueous formic acid solution: 0.1% acetonitrile formate solution, 55 : 45, V/V) to give the title compound as a colorless amorphous substance (229 mg, yield 50%).

Example 179

3-[(1R)-1-(((2R)-3-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy]ethyl][phenyl]-2,2-dimethylpropanoic acid

(179a) Methyl 3-[(1R)-1-(((2R)-2-[tert-butyl(dimethyl)silyl]oxy)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]propyl]oxy][ethyl][phenyl]propanoate

[0356] A solution of methyl 3-[(1R)-1-(((2R)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl)-2-hydroxypropyl)oxy]ethyl][phenyl]propanoate (596 mg, 1.30 mmol) which had been obtained in Example 2(2a), in N,N-dimethyl formamide was added with imidazole (221 mg, 3.25 mmol) and tert-butyl (chloro)dimethylsilane (294 mg, 1.95 mmol), and stirred at room temperature. After stirring for 24 hours, the reaction solution was added with ethyl acetate and washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 85/15) to give the title compound as a pale yellow oily substance (676 mg, yield 91%).

(179b) Methyl 3-[(1R)-1-(((2R)-2-[tert-butyl(dimethyl)silyl]oxy)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]propyl]oxy][ethyl][phenyl]-2-methylpropanoate

[0357] To disisopropylamine (0.45 mL, 3.23 mmol), a 2.69 M solution of n-butyl lithium in hexane (1.20 mL, 3.23 mmol) was added at -78˚C followed by stirring for 15 minutes. After adding anhydrous tetrahydrofuran (2 mL), the mixture was further stirred for 15 minutes at -78˚C. Subsequently, a solution of methyl 3-[(1R)-1-(((2R)-2-[tert-butyl(dimethyl)silyl]oxy)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]propyl]oxy][ethyl][phenyl]propanoate (615 mg, 1.08 mmol), which had been obtained in Example 179(179a), in tetrahydrofuran (1 mL) was added thereto and stirred at - 78˚C for 0.5 hours. After adding methyl iodide (0.6 mL, 6.46 mmol), the mixture was stirred at room temperature for 17 hours. Upon the completion of the reaction, water was added. After extracting the mixture with ethyl acetate, the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 85/15) to give the title compound as a colorless oily substance (446 mg, yield 70%).

(179c) Methyl 3-[(1R)-1-(((2R)-2-[tert-butyl(dimethyl)silyl]oxy)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]propyl]oxy][ethyl][phenyl]-2,2-dimethylpropanoate

[0358] To disisopropylamine (0.21 mL, 1.52 mmol), a 2.69 M solution of n-butyl lithium in hexane (0.57 mL, 1.52 mmol) was added at -78C followed by stirring for 15 minutes. After adding anhydrous tetrahydrofuran (1.5 mL), the mixture was further stirred for 15 minutes at -78˚C. Subsequently, a solution of methyl 3-[(1R)-1-(((2R)-2-[tert-butyl(dimethyl)silyl]oxy)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]propyl]oxy][ethyl][phenyl]-2,2-dimethylpropanoate (445 mg, 0.76 mmol), which had been obtained in Example 179(179b), in tetrahydrofuran (1 mL) was added thereto and stirred at -78˚C for 1 hour. After adding methyl iodide (0.14 mL, 2.28 mmol), the mixture was stirred at room temperature for 17 hours. Upon the completion of the reaction, water was added. After extracting the mixture with ethyl acetate, the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 85/15) to give the title compound as a pale yellow oily substance (309 mg, yield 68%).

(179d) Methyl 3-[(1R)-1-(((2R)-2-[tert-butyl(dimethyl)silyl]oxy)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]propyl]oxy][ethyl][phenyl]-2,2-dimethylpropanoate

[0359] A solution of methyl 3-[(1R)-1-(((2R)-2-[tert-butyl(dimethyl)silyl]oxy)-3-((2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]propyl]oxy][ethyl][phenyl]-2,2-dimethylpropanoate (308 mg, 0.51 mmol), which had been obtained in Example 179(179c), in THF (3.1 mL) was added with 1 M solution of tetrabutylammonium fluoride in tetrahydrofuran (0.72 mL, 0.72 mmol), and stirred at room temperature. After stirring for 2 hours, a 1 M solution of tetrabutylammonium fluoride in tetrahydrofuran (1.5 mL, 1.50 mmol) was added and further stirred for 48 hours. Upon the completion of the reaction, water (5 mL) was added and the mixture was extracted with ethyl acetate. The solvent was removed under reduced pressure. The residue was purified silica gel chromatography (n-hexane/ethyl acetate = 3/7) to give the title compound.
as a pale yellow oily substance (206 mg, yield 83%).

(179e) 3-{2-[(1R)-1-(((2R)-3-[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl)oxy]ethyl}phenyl]-2,2-dimethylpropanoic acid

[0360] By using methyl 3-{2-[(1R)-1-(((2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl)oxy]ethyl}phenyl]-2,2-dimethylpropanoate which had been obtained in Example 179(179d), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as an amorphous substance (quantitative).

Example 180

(2-{2-[(1R)-1-(((2R)-3-[(2S)-2-(3-Fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl)oxy]ethyl}phenyl}ethoxy)acetic acid

(180a) (2R)-1-[(1R)-1-(2-Bromo phenyl)ethoxy]-3-[[2S]-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]propan-2-ol

[0361] By using (2R)-2-[(1R)-1-(2-bromophenyl)ethoxy]methyl]oxirane described in WO 2004/106280 and (2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidine which had been obtained in Example 1(1e), the reaction was carried out in the same manner as the method described in Example 1(1f) to give the title compound as a colorless oily substance (yield 92%).

(180b) (2S)-1-[[2R]-3-[(1R)-1-(2-bromophenyl)ethoxy]-2-[(tert-butyl(dimethyl)silyl)oxy]propyl]-2-(3-fluoro-4-methylbenzyl)pyrrolidine

[0362] By using (2R)-1-[(1R)-1-(2-bromophenyl)ethoxy]-3-[[2S]-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]propan-2-ol which had been obtained in Example 180(180a), the reaction was carried out in the same manner as the method described in Example 179(179a) to give the title compound as a colorless oily substance (yield 85%).

(180c) (2S)-1-[(2R)-3-[(1R)-1-(2-ethenylphenyl)ethoxy]propyl]-2-(3-fluoro-4-methylbenzyl)pyrrolidine

[0363] (2S)-1-[(2R)-3-[(1R)-1-(2-bromophenyl)ethoxy]-2-[(tert-butyl(dimethyl)silyl)oxy]propyl]-2-(3-fluoro-4-methylbenzyl)pyrrolidine (1712 mg, 3.03 mmol), which had been obtained in Example 180 (180b), was dissolved in 1,4-dioxane (30 mL), added with tributyl(vinyl) tin (1.33 mL, 4.55 mL) and tetrakistriphenylphosphine palladium (347 mg, 0.30 mmol), and stirred for 16 hours at 100˚C. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 4/1) and basic silica gel column chromatography (n-hexane/ethyl acetate = 4/1) to give the title compound as a colorless oily substance (1210 mg, yield 78%).

(180d) 2-{2-[(1R)-1-(((2R)-2-[(tert-butyl(dimethyl)silyl)oxy]propyl]oxy)ethyl]phenyl}ethanol

[0364] (2S)-1-[(2R)-2-[(tert-butyl(dimethyl)silyl)oxy]-3-[(1R)-1-(2-ethenylphenyl)ethoxy]propyl]-2-(3-fluoro-4-methylbenzyl)pyrrolidine (1.20 g, 2.35 mmol), which had been obtained in Example 180(180c), was dissolved in tetrahydrofuran (20 mL) and added with a 0.5 M solution of 9-borabicyclo[3,3,1]nonane in tetrahydrofuran (5.6 mL, 2.82 mmol). After raising the temperature to room temperature, the mixture was stirred for 16 hours. Separately, the reaction solution was added dropwise in small portions to a solution in which sodium perborate hydrate (1.40 g, 14 mmol) was dissolved in water (20 mL), and the resulting mixture was stirred at room temperature for 2 hours. The reaction solution was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by basic silica gel chromatography (n-hexane/ethyl acetate = 3/1) to give the title compound as a colorless oily substance (1.05 g, yield 84%).

(180e) Ethyl (2-{2-[(1R)-1-(((2R)-2-[(tert-butyl(dimethyl)silyl)oxy]propyl]oxy)ethyl]phenyl}ethoxy)acetate

[0365] 2-{2-[(1R)-1-(((2R)-2-[(tert-butyl(dimethyl)silyl)oxy]-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]propyl]oxy)ethyl]phenyl}ethanol (545 mg, 1.03 mmol), which had been obtained in Example 180(180d), was dissolved in methylene chloride (5 mL), added with rhodium diacetate dimer (46 mg, 0.10 mmol) and ethylidiaoacetate (267 µL, 2.58
mmol) at 0°C, and stirred for 1.5 hours. Ethanol was added to the reaction solution to terminate the reaction. The solvent was distilled off under reduced pressure. The residue was purified by basic silica gel chromatography (n-hexane/ethyl acetate = 4/1) to give the title compound as a colorless oily substance (565 mg, yield 89%).

(180f) Ethyl (2-{2-[(1R)-1-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl}phenyl)ethoxy)acetate

[0366] By using ethyl (2-{2-[(1R)-1-([(2R)-2-[(tert-butyl(dimethyl)silyl]oxy]-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]propyl]oxy}ethyl)phenyl)ethoxy)acetate which had been obtained in Example 180(180e), the reaction was carried out in the same manner as the method described in Example 179(179d) to give the title compound as a colorless oily substance (yield 45%).

(180g) (2-{2-[(1R)-1-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl}phenyl)ethoxy)acetic acid

[0367] By using ethyl (2-{2-[(1R)-1-[(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl]oxy]ethyl}phenyl)ethoxy)acetate which had been obtained in Example 180(180f), the reaction was carried out in the same manner as the method described in Example 1(1g) to give the title compound as a white amorphous substance (yield 44%).

[0368] The structures and physicochemical data of the compounds that are described in Examples 178 to 180 are given below.

[0369]

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Structure</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>178 (178a)</td>
<td><img src="https://example.com/structure178a.png" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: -0.01 (9H, s), 0.93-0.98 (2H, m), 3.68-3.73 (2H, m), 5.72 (1H, dd, J = 11.0, 1.4 Hz), 5.86 (2H, s), 6.45 (1H, dd, J = 17.9, 1.4 Hz), 6.84 (1H, dd, J = 17.9, 11.0 Hz).</td>
</tr>
<tr>
<td>178 (178b)</td>
<td><img src="https://example.com/structure178b.png" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 0.00 (9H, s), 0.95-1.00 (2H, m), 1.49 (3H, d, J = 6.4 Hz), 2.53 (1H, dd, J = 5.0, 2.8 Hz), 2.75 (1H, dd, J = 5.0, 4.1 Hz), 3.14-3.18 (1H, m), 3.30 (1H, dd, J = 11.0, 6.0 Hz), 3.61 (1H, dd, J = 11.5, 3.2 Hz), 3.71-3.76 (2H, m), 4.95 (1H, q, J = 6.6 Hz), 5.89 (2H, s), 7.06 (1H, d, J = 16.0 Hz), 7.32 (1H, td, J = 7.6, 1.4 Hz), 7.39 (1H, td, J = 7.5, 1.2 Hz), 7.51 (1H, dd, J = 7.6, 1.1 Hz), 7.63 (1H, d, J = 7.8 Hz), 8.15 (1H, d, J = 16.0 Hz).</td>
</tr>
</tbody>
</table>

[0370]

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Structure</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>178 (178c)</td>
<td><img src="https://example.com/structure178c.png" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 0.00 (9H, s), 0.94-1.00 (2H, m), 1.39-1.46 (1H, m), 1.49 (3H, d, J = 6.6 Hz), 1.61-1.73 (3H, m), 2.22 (3H, d, J = 1.4 Hz), 2.31-2.40 (2H, m), 2.44 (1H, dd, J = 12.4, 6.9 Hz), 2.63-2.71 (1H, m), 2.83 (1H, dd, J = 12.4, 6.0 Hz), 2.89 (1H, dd, J = 13.3, 4.9 Hz), 3.00-3.05 (1H, m), 3.35 (1H, dd, J = 9.4, 6.6 Hz), 3.43 (1H, dd, J = 9.4, 3.9 Hz), 3.71-3.75 (2H, m), 3.83-3.89 (1H, m), 4.91 (1H, q, J = 6.6 Hz), 5.87 (2H, s), 6.78-6.82 (2H, m), 7.04 (1H, t, J = 7.8 Hz), 7.07 (1H, d, J = 16.3 Hz), 7.32 (1H, td, J = 7.5, 9.5 Hz), 7.39 (1H, td, J = 7.3, 1.4 Hz), 7.49 (1H, dd, J = 7.6, 1.1 Hz), 7.64 (1H, d, J = 7.8 Hz), 8.19 (1H, d, J = 16.3 Hz).</td>
</tr>
</tbody>
</table>
(continued)

178 (178d)  \[\text{1H-NMR (CDCl}_3\text{)} \delta: -0.01(9H, s), 0.92-0.97(2H, m), 1.42-1.50(1H, m), 1.47(3H, d, J = 6.4 Hz), 1.61-1.74(3H, m), 2.22(3H, d, J = 1.4 Hz), 2.33-2.45(3H, m), 2.64-2.72(1H, m), 2.83(1H, dd, J = 12.4, 6.0 Hz), 2.90(1H, dd, J = 13.3, 4.1 Hz), 3.01-3.07(1H, m), 3.14-3.26(4H, m), 3.31(1H, dd, J = 9.2, 6.4 Hz), 3.39(1H, dd, J = 9.4, 3.9 Hz), 3.66-3.71(2H, m), 3.82-3.89(1H, m), 4.82(1H, q, J = 6.4 Hz), 5.83(2H, s), 6.79-6.83(2H, m), 7.04(1H, t, J = 7.8 Hz), 7.19-7.29(3H, m), 7.46(1H, d, J = 8.3 Hz).\]

178 (178e)  \[\text{1H-NMR (CDCl}_3\text{)} \delta: 1.41(3H, d, J = 6.4 Hz), 1.83-2.12(4H, m), 2.23(3H, d, J = 1.4 Hz), 2.90(1H, dd, J = 14.4, 11.2 Hz), 2.98(1H, dd, J = 12.8, 9.6 Hz), 3.06-3.40(10H, m), 3.79-3.87(1H, m), 4.30-4.36(1H, m), 4.80(1H, q, J = 6.4 Hz), 6.85-6.90(2H, m), 7.11(1H, t, J = 7.8 Hz), 7.18-7.31(4H, m), 8.64(1H, s).\]

179 (179a)  \[\text{1H-NMR (CDCl}_3\text{)} \delta: 0.09(3H, s), 0.11(3H, s), 0.92(9H, s), 1.36-1.39(1H, m), 1.41(3H, d, J = 6.3 Hz), 1.56-1.65(3H, br m), 2.13(1H, q, J = 8.4 Hz), 2.19(1H, dd, J = 12.0, 4.6 Hz), 2.22(3H, d, J = 1.1 Hz), 2.30(1H, dd, J = 13.5, 8.9 Hz), 2.45-2.51(1H, br m), 2.56-2.66(2H, m), 2.88(1H, dd, J = 13.5, 3.7 Hz), 2.93-3.01(3H, m), 3.03-3.06(1H, m), 3.25(1H, dd, J = 9.7, 5.7 Hz), 3.46(1H, dd, J = 9.7, 2.9 Hz), 3.68(3H, s), 3.84-3.89(1H, br m), 4.72(1H, q, J = 6.3 Hz), 6.79-6.82(2H, m), 7.01(1H, t, J = 8.0 Hz), 7.14(1H, dd, J = 8.3, 0.9 Hz), 7.19(1H, td, J = 7.3, 1.5 Hz), 7.24(1H, td, J = 7.4, 1.5 Hz), 7.49(1H, dd, J = 7.7, 1.4 Hz).\]

179 (179b)  \[\text{1H-NMR (CDCl}_3\text{)} \delta: 0.08(3.0H, s), 0.11(3.0H, s), 0.91(4.5H, s), 0.92(4.5H, s), 1.17-1.22(3.0H, m), 1.36-1.42(3.5H, m), 1.56-1.66(4.0H, m), 2.13(1.0H, ddd, J = 16.9, 8.6, 2.6 Hz), 2.19(1.0H, dd, J = 12.6, 5.2 Hz), 2.22(3.0H, d, J = 1.1 Hz), 2.27-2.33(1.0H, m), 2.45-2.51(1.0H, br m), 2.67-2.79(1.5H, m), 2.88(1.0H, dd, J = 13.5, 3.2 Hz), 2.92-3.08(3.0H, m), 3.24-3.30(1.0H, m), 3.43(0.5H, dd, J = 9.5, 3.2 Hz), 3.46(0.5H, dd, J = 9.7, 2.9 Hz), 3.61(3.0H, s), 3.83-3.89(1.0H, m), 4.73(1.0H, q, J = 6.3 Hz), 6.77-6.83(2.0H, m), 7.00-7.04(1.0H, m), 7.09(1.0H, td, J = 4.7, 2.3 Hz), 7.13-7.18(1.0H, m), 7.24(1.0H, t, J = 7.4 Hz), 7.49-7.52(1.0H, m).\]
179 (179c)  
$^{1}H$-NMR (CDCl$_3$) $\delta$: 0.08 (3H, s), 0.11 (3H, s), 0.92 (9H, s), 1.20 (3H, s), 1.22 (3H, s), 1.32-1.42 (1H, m), 1.36 (3H, d, J = 6.0 Hz), 1.53-1.67 (3H, m), 2.10-2.21 (2H, m), 2.22 (3H, s), 2.31 (1H, dd, J = 13.3, 9.2 Hz), 2.45-2.52 (1H, m), 2.87 (1H, dd, J = 12.8, 4.1 Hz), 2.92-3.06 (4H, m), 3.28 (1H, dd, J = 9.6, 6.0 Hz), 3.46 (1H, dd, J = 9.6, 2.7 Hz), 3.70 (3H, s), 3.82-3.88 (1H, br m), 4.79 (1H, q, J = 6.4 Hz), 6.79-6.83 (2H, br m), 6.99-7.04 (2H, br m), 7.14 (1H, td, J = 7.4, 1.2 Hz), 7.21-7.25 (1H, m), 7.53 (1H, dd, J = 7.6, 1.6 Hz).

179 (179d)  
$^{1}H$-NMR (CDCl$_3$) $\delta$: 1.21 (3H, s), 1.22 (3H, s), 1.41 (3H, d, J = 6.3 Hz), 1.43-1.49 (1H, m), 1.63-1.74 (3H, m), 2.23 (3H, d, J = 1.7 Hz), 2.34-2.44 (3H, m), 2.66-2.72 (1H, br m), 2.82 (1H, dd, J = 12.6, 5.7 Hz), 2.90 (1H, dd, J = 13.2, 4.6 Hz), 2.91 (1H, d, J = 14.3 Hz), 3.01 (1H, d, J = 14.3 Hz), 3.00-3.05 (1H, br m), 3.31 (1H, dd, J = 9.2, 6.3 Hz), 3.35 (1H, dd, J = 9.2, 4.3 Hz), 3.70 (3H, s), 3.80-3.85 (1H, br m), 4.83 (1H, q, J = 6.5 Hz), 6.81 (1H, d, J = 2.9 Hz), 6.82 (1H, s), 7.02-7.07 (2H, m), 7.17 (1H, td, J = 7.4, 1.1 Hz), 7.26 (1H, td, J = 8.0, 1.1 Hz).

179 (179e)  
$^{1}H$-NMR (CDCl$_3$) $\delta$: 1.21 (3H, s), 1.34 (3H, d, J = 6.3 Hz), 1.39 (3H, s), 1.62-1.77 (1H, m), 1.70-1.77 (1H, m), 1.79-1.91 (2H, m), 2.24 (3H, d, J = 1.7 Hz), 2.44 (1H, d, J = 13.7 Hz), 2.59 (1H, dd, J = 12.3, 6.0 Hz), 2.67 (1H, q, J = 9.0 Hz), 2.75 (1H, dd, J = 13.7, 10.3 Hz), 2.93-2.99 (1H, br m), 3.22-3.31 (3H, m), 3.44-3.49 (1H, br m), 3.54 (2H, d, J = 4.6 Hz), 4.02-4.06 (1H, br m), 5.21 (1H, q, J = 6.5 Hz), 6.83-6.88 (2H, m), 7.10 (1H, t, J = 8.0 Hz), 7.16-7.16 (2H, m), 7.20-7.24 (1H, m), 7.42 (1H, d, J = 7.4 Hz).

[Table 137]

180 (180a)  
$^{1}H$-NMR (CDCl$_3$) $\delta$: 1.43-1.51 (4H, m), 1.63-1.76 (3H, m), 2.23 (3H, s), 2.34-2.48 (3H, m), 2.65-2.73 (1H, m), 2.82 (1H, dd, J = 12.4, 6.0 Hz), 2.90 (1H, dd, J = 13.3, 4.1 Hz), 3.02-3.08 (1H, m), 3.32 (1H, dd, J = 9.4, 6.4 Hz), 3.41 (1H, dd, J = 9.4, 3.9 Hz), 3.82-3.89 (1H, m), 4.86 (1H, q, J = 6.3 Hz), 6.78-6.83 (2H, m), 7.05 (1H, t, J = 8.0 Hz), 7.11-7.15 (1H, m), 7.34 (1H, t, J = 7.6 Hz), 7.48-7.53 (2H, m).

180 (180b)  
$^{1}H$-NMR (CDCl$_3$) $\delta$: 0.10 (3H, s), 0.11 (3H, s), 0.92 (9H, s), 1.38-1.43 (4H, m), 1.57-1.68 (3H, m), 2.15-2.23 (5H, m), 2.32 (1H, dd, J = 13.3, 9.2 Hz), 2.47-2.54 (1H, m), 2.90 (1H, dd, J = 13.3, 4.1 Hz), 2.98-3.11 (2H, m), 3.31 (1H, dd, J = 9.9, 5.7 Hz), 3.49 (1H, dd, J = 9.9, 5.7 Hz), 3.80-3.89 (1H, m), 4.81 (1H, q, J = 6.4 Hz), 6.78-6.83 (2H, m), 7.02 (1H, t, J = 7.8 Hz), 7.11 (1H, td, J = 7.7, 1.7 Hz), 7.32 (1H, td, J = 7.7, 1.1 Hz), 7.50 (1H, dd, J = 8.0, 1.1 Hz), 7.55 (1H, dd, J = 7.7, 1.7 Hz).
180 (180c)  
\[^{1}H\text{-NMR (CDCl}_3\text{)} \delta: 0.09-0.12 (6H, m), 0.92 (9H, s),
1.22-1.42 (3H, m), 1.57-1.67 (4H, m), 2.12-2.22 (5H, m), 2.30 (1H, dd, J = 13.5, 9.2 Hz),
2.46-2.51 (1H, m), 2.88 (1H, dd, J = 13.5, 3.7 Hz), 2.98 (1H, dd, J = 12.0, 9.2 Hz),
3.04-3.09 (1H, m), 3.26 (1H, dd, J = 9.7, 5.7 Hz), 3.50 (1H, dd, J = 9.7, 2.9 Hz),
3.86-3.91 (1H, m), 4.76 (1H, q, J = 6.5 Hz), 5.29 (1H, dd, J = 10.9, 1.7 Hz),
5.61 (1H, dd, J = 17.2, 1.7 Hz), 6.77-6.82 (2H, m), 7.00 (1H, t, J = 8.0 Hz),
7.07 (1H, dd, J = 17.2, 10.9 Hz), 7.21-7.30 (2H, m), 7.45-7.48 (2H, m).

180 (180d)  
\[^{1}H\text{-NMR (CDCl}_3\text{)} \delta: 0.09 (3H, s), 0.11 (3H, s), 0.92
(9H, s), 1.36-1.44 (4H, m), 1.55-1.68 (4H, m),
2.08-2.18 (2H, m), 2.22 (3H, s), 2.32 (1H, dd, J = 13.2, 9.2 Hz),
2.43-2.50 (1H, m), 2.86-3.01 (5H, m), 3.30 (1H, dd, J = 9.7, 5.7 Hz),
3.50 (1H, dd, J = 9.7, 2.9 Hz), 3.82-3.91 (3H, m), 4.77 (1H, q, J = 6.3 Hz),
6.78-6.83 (2H, m), 7.02 (1H, t, J = 8.0 Hz), 7.17-7.19 (1H, m), 7.21 (1H, td, J = 7.2, 1.7 Hz),
7.24-7.28 (1H, m), 7.49-7.52 (1H, m).

180 (180e)  
\[^{1}H\text{-NMR (CDCl}_3\text{)} \delta: 0.09 (3H, s), 0.11 (3H, s), 0.91
(9H, s), 1.27 (3H, t, J = 7.2 Hz), 1.41 (3H, d, J = 6.4 Hz),
1.57-1.66 (4H, m), 2.10-2.23 (5H, m), 2.29 (1H, dd, J = 13.1, 9.4 Hz),
2.44-2.52 (1H, m), 2.88 (1H, dd, J = 13.1, 3.7 Hz), 2.96-3.07 (4H, m), 3.25 (1H, dd, J = 9.6, 6.0 Hz),
3.44 (1H, dd, J = 9.6, 2.8 Hz), 3.71-3.76 (2H, m), 3.83-3.90 (1H, m), 4.08 (2H, s), 4.21 (2H, q,
J = 7.2 Hz), 4.74 (1H, q, J = 6.4 Hz), 6.78-6.85 (2H, m), 7.01 (1H, t, J = 8.0 Hz), 7.18-7.25 (3H, m),
7.50 (1H, d, J = 7.3 Hz).

[0373]  

[Table 138]  

180 (180f)  
\[^{1}H\text{-NMR (CDCl}_3\text{)} \delta: 1.27 (3H, t, J = 7.0 Hz), 1.42-1.52
(4H, m), 1.61-1.75 (3H, m), 2.22 (3H, s), 2.33-2.45 (3H, m), 2.65-2.72 (1H, m), 2.83 (1H, dd, J = 12.6, 5.7 Hz),
2.90 (1H, dd, J = 13.3, 4.1 Hz), 2.99-3.07 (3H, m), 3.29 (1H, dd, J = 9.6, 6.6 Hz), 3.36 (1H, dd, J = 9.6, 4.1 Hz),
3.72-3.76 (2H, m), 3.81-3.88 (1H, m), 4.08 (2H, s), 4.21 (2H, q, J = 7.0 Hz), 4.80 (1H, q, J = 6.4 Hz),
6.79-6.83 (2H, m), 7.02-7.08 (1H, m), 7.19-7.28 (3H, m), 7.44 (1H, d, J = 7.8 Hz).
Reference example 1

**Tert-butyl (2S,4R)-4-(benzyloxy)-2-[methoxy(methyl)carbonyl]pyrrolidine-1-carboxylate**

A solution of (4R)-4-(benzyloxy)-1-(tert-butoxycarbonyl)-L-proline (6.43 g, 20.0 mmol), dimethylhydroxylamine hydrochloride (2.34 g, 24.0 mmol), and diisopropylethylamine (4.18 mL, 24.0 mmol) in dichloromethane (65 mL) was added with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (4.60 g, 24.0 mmol) and 1-hydroxybenzotriazole hydrate (3.68 g, 24.0 mmol) under ice cooling and stirred at room temperature for 16 hours. The reaction solution was added with saturated aqueous sodium hydrogen carbonate solution (10 mL) and water (50 mL) for quenching followed by extraction with dichloromethane. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 45/55) to give the title compound as a colorless oily substance (7.15 g, yield 98%).

Reference example 2

**[(3R,5R)-5-(3-Fluoro-4-methylbenzyl)pyrrolidin-3-ol hydrochloride**

By adding 2 M hydrochloric acid/ethanol solution (15 mL) to (2R,4R)-4-(benzyloxy)-2-(3-fluoro-4-methylbenzyl) pyrrolidine (1.45 g, 4.84 mmol) which had been synthesized according to Example 1(1e)-20, a suspension was prepared. Methanol (10 mL) was added thereto to yield a homogenous solution. 20% Palladium hydroxide-carbon (wet, 50 wt%, 483 mg) was added thereto for hydrogenation under atmospheric pressure for 16 hours. The reaction solution was filtered. The solvent was distilled off under reduced pressure. The residue was filtered and washed with diethyl ether to give the title compound as a white solid (1.13 g, yield 95%).

Reference example 3

**1-(2-Bromo-3-ethoxy phenyl)ethanone**

By adding 2 M hydrochloric acid/ethanol solution (15 mL) to (2R,4R)-4-(benzyloxy)-2-(3-fluoro-4-methylbenzyl) pyrrolidine (1.45 g, 4.84 mmol) which had been synthesized according to Example 1(1e)-20, a suspension was prepared. Methanol (10 mL) was added thereto to yield a homogenous solution. 20% Palladium hydroxide-carbon (wet, 50 wt%, 483 mg) was added thereto for hydrogenation under atmospheric pressure for 16 hours. The reaction solution was filtered. The solvent was distilled off under reduced pressure. The residue was filtered and washed with diethyl ether to give the title compound as a white solid (1.13 g, yield 95%).
Under a nitrogen atmosphere, 2-bromo-N, 3-dimethoxy-N-methylbenzamide (16.8 g, 61.5 mmol) which had been obtained in Reference example 3(3a) was dissolved in tetrahydrofuran (300 mL), and added dropwise with a 1.0 M solution of methyl magnesium bromide in tetrahydrofuran (123 mL, 123 mmol) at 0°C. Upon the completion of the dropwise addition, the temperature of the reaction solution was raised to room temperature and stirred for 15 hours. The reaction solution was added with ethyl acetate and 1 N hydrochloric acid for fractionation, and the aqueous layer was extracted with ethyl acetate. The organic layers were combined, washed with saturated sodium hydrogen carbonate, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (hexane : ethyl acetate, 100 : 0 - 60 : 40, V/V) to give the title compound as a colorless oily substance (12.7 g, yield 90%).

Under a nitrogen atmosphere, 1-(2-bromo-3-methoxy phenyl)ethanone (30.5 g, 229 mmol) which had been obtained in Reference example 3(3b) was dissolved in methylene chloride (500 mL), and added dropwise with a 1.0 M solution of tribromo phosphine in dichloromethane (293 mL, 293 mmol) at -80°C over 5 hours. Upon the completion of the dropwise addition, the mixture was stirred for 17 hours at -40°C. Subsequently, the reaction solution was cooled to -80°C and added dropwise with methanol (500 mL). Upon the completion of the dropwise addition, the temperature was raised to -40°C followed by stirring for 3 hours. The temperature of the reaction solution was raised to room temperature. The solvent was distilled off under reduced pressure until the solution turned green. After adding ethanol, the mixture was extracted with ethyl acetate/hexane (1 : 1, V/V). After neutralization with a saturated aqueous solution of sodium hydrogen carbonate, the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (hexane : ethyl acetate, 100 : 0 - 55 : 45, V/V) to give the title compound as a colorless oily substance (13.5 g, yield 47%).

Under a nitrogen atmosphere, 1-(2-bromo-3-hydroxy phenyl)ethanone (6.50 g, 30.2 mmol), which had been obtained in Reference example 3(3c), and potassium carbonate (8.36 g, 60.5 mmol) were dissolved in N,N-dimethyl formamide (60 mL), and stirred at room temperature for 10 minutes. Subsequently, ethyl iodide (3.14 mL, 39.3 mmol) was added to the mixture, which was then further stirred for 21 hours. Ethyl acetate/hexane (1 : 1, V/V) and water were added to the reaction solution for fractionation, and the aqueous layer was extracted with ethyl acetate/hexane (1 : 1, V/V). The organic layers were combined, washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (hexane : ethyl acetate, 100 : 0 - 85 : 15, V/V) to give the title compound as a colorless oily substance (4.89 g, yield 67%).

Under a nitrogen atmosphere, 1-(2-bromo-3-hydroxy phenyl)ethanone (6.50 g, 30.2 mmol), which had been obtained in Reference example 3(3c), and copper(I) iodide (2.51 g, 13.2 mmol) were dissolved in acetonitrile (150 mL), followed by addition of a solution of difluoro(fluorosulfonyl)acetic acid (50.0 g, 281 mmol) dissolved in acetonitrile (50 mL) over 1 hour and 30 minutes under heating at 55°C. Upon the completion of the dropwise addition, the reaction solution was stirred at 55°C for 3 hours, cooled to room temperature, added with water, and then extracted with ethyl acetate/hexane (2 : 1, V/V). The organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (neutral silica gel, hexane : ethyl acetate, 100 : 0 - 75 : 25, V/V and basic silica gel, hexane : ethyl acetate, 100 : 0 - 50 : 50, V/V) to give the title compound as a colorless oily substance (1.53 g, yield 18%).

Under a nitrogen atmosphere, 4-Fluoro-2-methoxy aniline (8.25 g, 58.5 mmol) was dissolved in methylene chloride (200 mL) and added with
N-bromosuccinimide (11.4 g, 64.3 mmol) at -78˚C followed by stirring for 2 hours. The mixture was further stirred at 0˚C for 1.5 hours. The reaction solution was concentrated under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 4/1) to give the title compound as a colorless oily substance (4.80 g, yield 37%).

(5b) 1-(2-Amino-5-fluoro-3-methoxy phenyl)ethanone

[0382] To a solution of 2-bromo-4-fluoro-6-methoxy aniline (4.80 g, 21.8 mmol), which had been obtained in Reference example 5(5a), in 1,4-dioxane (200 mL), tributyl (1-ethoxy vinyl) tin (11.1 mL, 32.7 mmol) and tetrakistriphenylphosphine palladium (2.52 g, 2.18 mmol) were added, and the mixture was stirred for 16 hours at 100˚C. After cooling the reaction solution to room temperature, 1 N aqueous hydrogen chloride solution (100 mL) was added and stirred further for 2 hours. The reaction solution was concentrated under reduced pressure, neutralized by adding 1 N aqueous sodium hydroxide solution, and then extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 4/1) to give the title compound as a yellow solid substance (2.80 g, yield 70%).

(5c) 1-(2-Bromo-5-fluoro-3-methoxy phenyl)ethanone

[0383] 1-(2-Amino-5-fluoro-3-methoxy phenyl)ethanone (2.66 g, 14.2 mmol), which had been obtained in Reference example 5(5b), was suspended in 10% aqueous hydrogen bromide solution (22 mL). Then, a 9% aqueous sodium nitrite solution (11 mL, 14.4 mmol) was slowly added dropwise thereto at 0˚C. After stirring the mixture solution for 1 hour at 0˚C, a solution in which copper bromide(I) (2.24 g, 15.7 mmol) was dissolved in 47% aqueous hydrogen bromide solution (15 mL) was added thereto, and the mixture was refluxed with heating at 110˚C for 2 hours. The reaction solution was cooled to room temperature and extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 4/1) to give the title compound as a pale yellow solid (2.15 g, yield 61%).

Reference example 6

1-(2-Bromo-3-fluoro-4-methylphenyl)ethanone

(6a) 6-Bromo-2-fluoro-3-methylaniline

[0384] By using 2-fluoro-3-methylaniline, the reaction was carried out in the same manner as the method described in Reference example 5(5a) to give the title compound as a pale red solid (yield 60%).

(6b) 2-Fluoro-3-methylaniline

[0385] 6-Bromo-2-fluoro-3-methylaniline (9.00 g, 44.1 mmol), which had been obtained in Reference example 6(6a), was dissolved in 1 : 1 mixture (130 mL) of N,N-dimethyl formamide and methanol, and added with [1,1'-bis(diphenyl-phosphino)ferrocene]palladium(II)dichloride-dichloromethane complex (10.8 g, 13.2 mmol) and N,N-diisopropylethylamine (23 mL, 132.3 mmol). The mixture was vigorously stirred at 65˚C for 2 hours under a carbon monoxide atmosphere. The reaction solution was cooled to room temperature, added with ethyl acetate and water, filtered using Millicup (registered trademark)-LH, and washed with ethyl acetate. The filtered solution was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 4/1) to give the title compound as a pale red solid (5.70 g, yield 71%).

(6c) 2-Bromo-3-fluoro-N-methoxy-N, 4-dimethylbenzamide

[0386] 2-Fluoro-3-methylaniline (5.70 g, 31.1 mmol), which had been obtained in Reference example 6(6b), was dissolved in acetonitrile (75 mL), added with t-butyl nitrite (4.85 mL) and copper bromide (II) (7.65 g, 34.3 mmol) at 0˚C, and stirred at 65˚C for 2 hours. After cooling to room temperature, 1 N aqueous hydrochloride solution was added to the mixture, which was then extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was dissolved in a mixture solution of tetrahydrofuran - methanol - water (4 : 1 : 1, 200 mL), added with lithium hydroxide monohydrate
(1.38 g, 33.0 mmol), and stirred at room temperature for 4 hours. The mixture was neutralized by adding 1 N aqueous hydrochloride solution, and then extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 3/2) to give the title compound as a colorless oily substance (5.58 g, yield 65%).

(6d) 1-(2-Bromo-3-fluoro-4-methylphenyl)ethanone

[0387] By using 2-bromo-3-fluoro-N-methoxy-N,4-dimethylbenzamide which had been obtained in Reference example 6(6c), the reaction was carried out in the same manner as the method described in Reference example 3(3b) to give the title compound as a colorless oily substance (yield 92%).

Reference example 7

1-(2-Bromo-3-chloro phenyl)butan-1-one

(7a) (2-Bromo-3-chloro phenyl)methanol

[0388] A solution of 2-bromo-4-chloro benzoic acid (5.0 g, 21.24 mmol) in tetrahydrofuran (100 mL) was added with 0.99 M solution of borane-tetrahydrofuran complex in tetrahydrofuran (32.2 mL, 21.24 mmol) and stirred at room temperature for 4 hours. The reaction solution was distilled under reduced pressure to remove the solvent, and then slowly added with water (50 mL) under ice cooling. The mixture obtained was extracted with dichloromethane (50 mL x 2). After that, the organic layers were washed with saturated sodium hydrogen carbonate (50 mL). The organic layers were combined, washed with saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to give the title compound as a white solid (4.73 g, quantitative).

(7b) 2-Bromo-3-chlorobenzaldehyde

[0389] A solution of (2-bromo-3-chlorophenyl)methanol (4.73 g, 21.24 mmol), which had been obtained in Reference example 7(7a), in methylene chloride (120 mL) was added with 1,1,1-tris(acetoxy)-1,1-dihydro-1,2-benziodoxol-3-(1H)-one (10.8 g, 25.49 mmol) under ice cooling, and stirred at room temperature for 2 hours. The reaction solution was added with saturated aqueous sodium hydrogen carbonate solution (60 mL) and saturated aqueous sodium thiosulfate solution (30 mL), and then stirred at room temperature for 0.5 hours. The mixture obtained was extracted with dichloromethane (90 mL x 2). After that, the organic layers were combined and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 5/1) to give the title compound as a white solid (4.36 g, yield 94%).

(7c) 1-(2-Bromo-3-chloro phenyl)butan-1-ol

[0390] Under an argon atmosphere, zinc chloride (0.68 g, 4.97 mmol) was added to a 2.0 M solution of n-propyl magnesium chloride in diethyl ether (12.42 mL, 24.93 mmol), and the mixture was stirred at room temperature. After stirring for 0.5 hours, a solution of 2-bromo-3-chlorobenzaldehyde (4.36 g, 19.87 mmol), which had been obtained in Reference example 7(7b), in tetrahydrofuran (10 mL) was added dropwise thereto. After stirring for 2 hours under ice cooling, a saturated aqueous ammonium chloride solution (20 mL) was added thereto. The mixture obtained was extracted with ethyl acetate (20 mL x 2). After that, the organic layers were washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 5/1) to give the title compound as a white solid (3.23 g, yield 62%).

(7d) 1-(2-Bromo-3-chloro phenyl)butan-1-one

[0391] By using 1-(2-bromo-3-chlorophenyl)butan-1-ol which had been obtained in Reference example 7(7c), the reaction was carried out in the same manner as the method described in Reference example 7(7a) to give the title compound as a yellow oily substance (yield 94%).
With reference to Chirality, 2005, 17, 476-480, 1.06 M solution of diethyl zinc in hexane (18.6 ml, 19.7 mmol) was added dropwise under ice cooling to a solution of 1-[(S)-(2-methoxy phenyl){[(1S)-1-phenylethyl]amino}methyl]-2-naphthol (0.38 g, 0.99 mmol) in toluene (5 ml). The mixture was stirred at room temperature for 1 hour. After stirring, the mixture was added with 2-bromo-5-fluorobenzaldehyde (2.0 g, 9.85 mmol) under ice cooling and stirred at room temperature for 16 hours. The reaction solution was added with 1 N aqueous hydrochloride solution and extracted with dichloromethane. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (hexane/ethyl acetate = 5/1) to give the title compound as a transparent oily substance (1.81 g, yield 79%).

1-Bromo-2-[(1R)-1-cyclopropylethyl]benzene and 1-bromo-2-[(1S)-1-cyclopropylethyl]benzene

2-Bromobenzaldehyde (3.00 g, 16.2 mmol) was dissolved in tetrahydrofuran (50 mL) and added with 1 M solution of cyclopropyl magnesium bromide in tetrahydrofuran (19 mL, 19.0 mmol) at room temperature, and stirred for 3 hours. The reaction solution was added with 1 N aqueous hydrochloride solution and extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (n-hexane/ethyl acetate = 7/3) to give the title compound as a colorless oily mixture of racemates (3.00 g). The mixture of racemates was subjected to optical resolution based on supercritical liquid chromatography (column: CHIRALPAK AD-H, 2 x 25 cm; mobile phase: 10% MeOH in CO2; flow rate: 20 mL/min) to give 1-bromo-2-[(1R)-1-cyclopropylethyl]benzene (1.22 g, RT: 8.5 min, yield 33%) and 1-bromo-2-[(1S)-1-cyclopropylethyl]benzene (1.20 g, RT: 12.5 min, yield 33%), both the subject compound, each as a colorless oily substance.

Ethyl 3-(5-chloro-2-{(1R)-1-[{(2R)-oxiran-2-yl methoxy}ethyl]phenyl}propanoate

Ethyl (2E)-3-(5-chloro-2-{(1R)-1-[{(2R)-oxiran-2-yl methoxy}ethyl]phenyl}acrylate (822 mg, 2.65 mmol), which had been obtained in Example 3(3c)-15, was dissolved in ethanol (25 mL), added with rhodium/alumina (246 mg), and stirred for 5 hours at room temperature under hydrogen atmosphere. The reaction solution was filtered using Celite. The solvent was distilled off under reduced pressure to give the title compound as a colorless oily substance (816 mg, yield 99%).

The structures and physicochemical data of the compounds that are described in the Reference examples are given below.

Further, the structures and physicochemical data of the compounds that are produced according to the same methods as the methods described in the Reference examples are given in the following table. Specifically, the compounds of Reference example No. 1-2 to 1-5 are produced according to the same method as the method described in Reference example 1. Also, compounds described with a number in which a number is added behind the hyphen indicate that the compounds are produced according to the same steps as those described in the Reference examples.
<table>
<thead>
<tr>
<th>Reference Example No.</th>
<th>Structure</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><img src="image1.png" alt="Structure 1" /></td>
<td>$^1$H-NMR (CDCl$_3$) δ: 1.42 (4.5H, s), 1.46 (4.5H, s), 2.00-2.06 (1.0H, m), 2.31-2.42 (1.0H, m), 3.20 (3.0H, s), 3.58 (0.5H, dd, J = 11.5, 2.3 Hz), 3.62-3.70 (1.0H, m), 3.71 (1.5H, s), 3.76 (0.5H, dt, J = 11.6, 1.9 Hz), 3.79 (1.5H, s), 4.18-4.19 (0.5H, m), 4.22-4.26 (0.5H, m), 4.46-4.57 (2.0H, m), 4.77 (0.5H, t, J = 7.2 Hz), 4.85 (0.5H, t, J = 6.6 Hz), 7.28-7.37 (5.0H, m).</td>
</tr>
<tr>
<td>1-2</td>
<td><img src="image2.png" alt="Structure 2" /></td>
<td>$^1$H-NMR (CDCl$_3$) δ: 1.43 (4.5H, s), 1.47 (4.5H, s), 1.99-2.04 (0.5H, m), 2.06-2.13 (0.5H, m), 2.51-2.62 (1.0H, m), 3.21 (3.0H, s), 3.62 (0.5H, dt, J = 13.0, 3.0 Hz), 3.69 (0.5H, dd, J = 13.2, 2.9 Hz), 3.74 (1.5H, s), 3.81 (1.5H, s), 3.83-3.97 (1.0H, m), 4.81 (0.5H, t, J = 8.3 Hz), 4.90 (0.5H, t, J = 8.0 Hz), 5.21 (1.0H, dt, J = 52.5, 3.6 Hz).</td>
</tr>
<tr>
<td>1-3</td>
<td><img src="image3.png" alt="Structure 3" /></td>
<td>$^1$H-NMR (CDCl$_3$) δ: 1.05 (3.0H, t, J = 6.4 Hz), 1.36-1.54 (1.0H, m), 1.41 (4.5H, s), 1.46 (4.5H, s), 2.14-2.28 (1.0H, m), 2.35-2.45 (1.0H, m), 2.95-3.04 (1.0H, m), 3.20 (3.0H, s), 3.66-3.82 (1.0H, m), 3.69 (1.5H, s), 3.78 (1.5H, s), 4.59 (0.5H, t, J = 8.3 Hz), 4.67 (0.5H, t, J = 8.3 Hz).</td>
</tr>
<tr>
<td>1-4</td>
<td><img src="image4.png" alt="Structure 4" /></td>
<td>$^1$H-NMR (CDCl$_3$) δ: 1.02 (3.0H, dd, J = 6.9, 4.1 Hz), 1.41 (4.5H, s), 1.46 (4.5H, s), 1.73-1.88 (1.0H, m), 1.93-2.02 (1.0H, m), 2.36-2.53 (1.0H, m), 2.92 (0.5H, dd, J = 10.1, 8.7 Hz), 2.98 (0.5H, dd, J = 10.1, 8.3 Hz), 3.19 (3.0H, s), 3.66-3.81 (1.0H, m), 3.71 (1.5H, s), 3.78 (1.5H, s), 4.64 (0.5H, dd, J = 8.7, 2.5 Hz), 4.73 (0.5H, d, J = 8.7 Hz).</td>
</tr>
<tr>
<td>1-5</td>
<td><img src="image5.png" alt="Structure 5" /></td>
<td>$^1$H-NMR (CDCl$_3$) δ: 1.44 (4.5H, s), 1.47 (4.5H, s), 2.21-2.40 (2.0H, m), 3.23 (3.0H, s), 3.37 (0.5H, t, J = 10.0 Hz), 3.44 (0.5H, t, J = 10.1 Hz), 3.53-3.71 (1.0H, m), 3.73 (1.5H, s), 3.80 (1.5H, s), 4.03 (0.5H, dd, J = 10.5, 8.3 Hz), 4.10 (0.5H, dd, J = 10.5, 8.3 Hz), 4.79 (0.5H, d, J = 7.8 Hz), 4.90 (0.5H, d, J = 8.7 Hz), 7.24-7.24 (3.0H, m), 7.39-7.33 (2.0H, m).</td>
</tr>
<tr>
<td>Reference Example No.</td>
<td>Structure</td>
<td>Data</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>2</td>
<td><img src="image" alt="Structure" /></td>
<td>$^1$H-NMR (CD$_3$OD) $\delta$: 1.87 (1H, ddd, J = 14.8, 10.4, 3.1 Hz), 2.11 (1H, tdd, J = 8.7, 4.5, 2.1 Hz), 2.24 (3H, d, J = 1.8 Hz), 3.03 (2H, d, J = 7.3 Hz), 3.17 (1H, dt, J = 12.5, 1.6 Hz), 3.47 (1H, dd, J = 12.4, 4.1 Hz), 4.06 (1H, td, J = 12.6, 6.7 Hz), 4.54 (1H, t, J = 4.1 Hz), 7.02 (2H, d, J = 9.2 Hz), 7.23 (1H, t, J = 7.8 Hz).</td>
</tr>
</tbody>
</table>

### Table 140

<table>
<thead>
<tr>
<th>Reference Example No.</th>
<th>Structure</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(3a)</td>
<td><img src="image" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 3.11 (0.8H, br s), 3.39 (2.2H, s), 3.48 (2.2H, s), 3.92 (3.8H, s), 6.90-6.94 (2H, m), 7.32 (1H, t, J = 8.0 Hz).</td>
</tr>
<tr>
<td>3(3b)</td>
<td><img src="image" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 2.61 (3H, s), 3.93 (3H, s), 6.95-6.98 (2H, m), 7.33 (1H, t, J = 8.0 Hz).</td>
</tr>
<tr>
<td>3(3c)</td>
<td><img src="image" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 2.62 (3H, s), 5.94 (1H, s), 7.11 (1H, dd, J = 7.9, 1.6 Hz), 7.14 (1H, dd, J = 7.9, 1.6 Hz), 7.29 (1H, t, J = 7.9 Hz).</td>
</tr>
<tr>
<td>3(3d)</td>
<td><img src="image" alt="Structure" /></td>
<td>$^1$H-NMR (CDCl$_3$) $\delta$: 1.49 (3H, t, J = 7.2 Hz), 2.61 (3H, s), 4.13 (2H, q, J = 6.9 Hz), 6.92-6.95 (2H, m), 7.30 (1H, t, J = 7.7 Hz).</td>
</tr>
</tbody>
</table>
### 3(3d)-2

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (CDCl₃) δ</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.39 (6H, d, J = 5.7 Hz), 2.61 (3H, s), 4.55-4.62 (1H, m), 6.92 (1H, dd, J = 8.0, 1.4 Hz), 6.97 (1H, dd, J = 8.0, 1.4 Hz), 7.26 (1H, t, J = 8.0 Hz).</td>
<td></td>
</tr>
</tbody>
</table>

### 4

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (CDCl₃) δ</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.63 (3H, s), 6.55 (1H, t, J = 7.3 Hz), 7.26 (1H, dd, J = 7.7, 1.4 Hz), 7.29-7.32 (1H, m), 7.39 (1H, t, J = 7.7 Hz).</td>
<td></td>
</tr>
</tbody>
</table>

### 3(3a)-2

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (CDCl₃) δ</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.28 (3H, d, J = 1.7 Hz), 3.15 (0.3H, s), 3.37 (2.7H, s), 3.50 (2.7H, s), 3.88 (0.3H, s), 6.99 (1H, d, J = 8.6 Hz), 7.40 (1H, d, J = 6.9 Hz).</td>
<td></td>
</tr>
</tbody>
</table>

### 3(3b)-3

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (CDCl₃) δ</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.19 (0.5H, s), 3.35 (2.5H, s), 3.58 (2.5H, s), 3.93 (0.5H, s), 7.52 (1H, d, J = 8.3 Hz), 7.58 (1H, s), 7.73 (1H, d, J = 8.3 Hz).</td>
<td></td>
</tr>
</tbody>
</table>

### 3(3a)-4

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (CDCl₃) δ</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.37 (3H, d, J = 2.4 Hz), 3.34 (3H, br s), 3.55 (3H, br s), 7.12 (1H, t, J = 7.4 Hz), 7.39 (1H, d, J = 8.3 Hz).</td>
<td></td>
</tr>
<tr>
<td>3(3b)-4</td>
<td>( ^1H\text{-NMR (CDCl}_3 \delta: 1.49 (3H, d, J = 6.9 Hz), 1.83 (1H, d, J = 4.6 Hz), 2.33 (3H, d, J = 2.3 Hz), 5.12-5.18 (1H, m), 7.21 (1H, t, J = 8.0 Hz), 7.34 (1H, d, J = 8.3 Hz).}</td>
<td></td>
</tr>
<tr>
<td>5(5a)</td>
<td>( ^1H\text{-NMR (CDCl}_3 \delta: 3.84 (3H, s), 4.00 (2H, br s), 6.54 (1H, dd, J = 10.3, 2.6 Hz), 6.81 (1H, dd, J = 8.3, 2.6 Hz).}</td>
<td></td>
</tr>
<tr>
<td>5(5b)</td>
<td>( ^1H\text{-NMR (CDCl}_3 \delta: 2.54 (3H, s), 3.87 (3H, s), 6.43 (2H, br s), 6.66 (1H, dd, J = 9.6, 2.3 Hz), 7.00 (1H, dd, J = 10.3, 2.3 Hz).}</td>
<td></td>
</tr>
<tr>
<td>5(5c)</td>
<td>( ^1H\text{-NMR (CDCl}_3 \delta: 2.60 (3H, s), 3.91 (3H, s), 6.68-6.73 (2H, m).}</td>
<td></td>
</tr>
<tr>
<td>6(6a)</td>
<td>( ^1H\text{-NMR (CDCl}_3 \delta: 2.29 (3H, d, J = 2.9 Hz), 3.68 (2H, br s), 6.52 (1H, t, J = 8.6 Hz), 7.09 (1H, dd, J = 8.6, 1.7 Hz).}</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{[0400]}\]

<p>| 6(6b) | ( ^1H\text{-NMR (CDCl}_3 \delta: 2.51 (3H, d, J = 2.6 Hz), 3.84 (3H, s), 4.00-4.10 (2H, br m), 6.58 (1H, t, J = 8.6 Hz), 7.62 (1H, d, J = 8.6 Hz).} |
| 6(6c) | ( ^1H\text{-NMR (CDCl}_3 \delta: 2.28 (3H, s), 3.25-3.60 (6H, br m), 6.97 (1H, d, J = 8.0 Hz), 7.42 (1H, t, J = 7.2 Hz).} |</p>
<table>
<thead>
<tr>
<th>Reaction (a)</th>
<th>Structure</th>
<th>NMR (CDCl₃) δ:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6(6d)</td>
<td><img src="image1" alt="Structure" /></td>
<td>2.45 (3H, d, J = 2.3 Hz), 2.57 (3H, s), 7.33 (1H, d, J = 8.0 Hz), 7.44-7.49 (1H, m).</td>
</tr>
<tr>
<td>7(7a)</td>
<td><img src="image2" alt="Structure" /></td>
<td>2.05 (1H, t, J = 6.4 Hz), 4.78 (2H, d, J = 6.4 Hz), 7.30 (1H, d, J = 7.3 Hz), 7.41 (2H, d, J = 7.8 Hz).</td>
</tr>
<tr>
<td>7(7b)</td>
<td><img src="image3" alt="Structure" /></td>
<td>7.40 (1H, t, J = 7.8 Hz), 7.71 (1H, d, J = 7.8 Hz), 7.82 (1H, d, J = 7.8 Hz), 10.40 (1H, s).</td>
</tr>
<tr>
<td>7(7c)</td>
<td><img src="image4" alt="Structure" /></td>
<td>0.97 (3H, t, J = 7.3 Hz), 1.40-1.68 (3H, m), 1.71-1.79 (1H, m), 1.99-2.01 (1H, m), 5.12-5.16 (1H, m), 7.29 (1H, d, J = 7.3 Hz), 7.38 (1H, d, J = 7.8 Hz), 7.47 (1H, d, J = 7.8 Hz).</td>
</tr>
<tr>
<td>7(7d)</td>
<td><img src="image5" alt="Structure" /></td>
<td>1.00 (3H, t, J = 7.6 Hz), 1.75 (2H, td, J = 14.7, 7.3 Hz), 2.86 (2H, t, J = 7.1 Hz), 7.14 (1H, d, J = 7.3 Hz), 7.31 (1H, t, J = 7.8 Hz), 7.51 (1H, d, J = 7.8 Hz).</td>
</tr>
<tr>
<td>7(7a)-2</td>
<td><img src="image6" alt="Structure" /></td>
<td>2.43 (3H, s), 4.77 (2H, d, J = 6.4 Hz), 7.18-7.25 (2H, m), 7.30 (1H, d, J = 7.3 Hz).</td>
</tr>
<tr>
<td>7(7b)-2</td>
<td><img src="image7" alt="Structure" /></td>
<td>Tetrahedron, 2008, 64, 11852-11859.</td>
</tr>
<tr>
<td>7(7c)-2</td>
<td>(\text{1H-NMR (CDCl}_3): } 0.97 (3H, \text{t, } J = 7.3 \text{ Hz}), 1.39-1.59 (2H, \text{m}), 1.59-1.70 (1H, \text{m}), 1.72-1.80 (1H, \text{m}), 1.94 (1H, \text{d, } J = 3.7 \text{ Hz}), 2.42 (3H, \text{s}), 5.14-5.18 (1H, \text{m}), 7.15 (1H, \text{d, } J = 7.3 \text{ Hz}), 7.23 (1H, \text{t, } J = 7.6 \text{ Hz}), 7.38 (1H, \text{d, } J = 7.3 \text{ Hz})</td>
<td></td>
</tr>
</tbody>
</table>
(continued)

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (CDCl₃) δ</th>
<th>Additional Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>7(7d)-4</td>
<td>2.64 (3H, s), 7.40 (1H, dd, J = 10.3, 8.0 Hz), 7.47 (1H, dd, J = 9.5, 7.2 Hz).</td>
<td></td>
</tr>
<tr>
<td>7(7a)-5</td>
<td>1.95 (1H, t, J = 6.2 Hz), 2.25 (3H, s), 4.68 (2H, d, J = 6.2 Hz), 7.17 (1H, d, J = 10.1 Hz), 7.36 (1H, d, J = 6.9 Hz).</td>
<td></td>
</tr>
<tr>
<td>7(7b)-5</td>
<td>2.34 (3H, s), 7.50 (1H, d, J = 6.9 Hz), 7.56 (1H, d, J = 9.2 Hz), 10.25 (1H, s).</td>
<td></td>
</tr>
<tr>
<td>7(7b)-6</td>
<td>7.14-7.18 (1H, m), 7.47-7.50 (1H, m), 10.34 (1H, d, J = 2.9 Hz).</td>
<td></td>
</tr>
<tr>
<td>7(7c)-6</td>
<td>1.47 (3H, d, J = 6.3 Hz), 1.98 (1H, d, J = 3.4 Hz), 5.21-5.27 (1H, m), 6.82 (1H, td, J = 8.2, 3.1 Hz), 7.19-7.23 (1H, m).</td>
<td></td>
</tr>
<tr>
<td>7(7d)-6</td>
<td>2.63 (3H, s), 6.98-7.03 (2H, m).</td>
<td></td>
</tr>
<tr>
<td>7(7c)-7</td>
<td>1.02 (3H, t, J = 7.3 Hz), 1.61-1.72 (1H, m), 1.78-1.88 (1H, m), 2.00 (H, d, J = 3.7 Hz), 5.01-5.05 (1H, m), 6.82 (1H, td, J = 8.2, 2.9 Hz), 7.16 (1H, dq, J = 9.5, 1.5 Hz).</td>
<td></td>
</tr>
</tbody>
</table>
### 7(7d)-7

<table>
<thead>
<tr>
<th>1H-NMR (CDCl₃) δ: 1.22 (3H, t, J = 7.3 Hz), 2.91 (2H, q, J = 7.3 Hz), 6.90-6.93 (1H, m), 6.97 (1H, td, J = 8.0, 2.9 Hz).</th>
</tr>
</thead>
</table>

### 7(7b)-8

<table>
<thead>
<tr>
<th>H-NMR (CDCl₃): 1.43 (3H, t, J = 6.9 Hz), 4.07 (2H, q, J = 6.9 Hz), 7.02 (1H, dd, J = 8.8, 3.1 Hz), 7.40 (1H, d, J = 3.1 Hz), 7.52 (1H, d, J = 8.8 Hz), 10.31 (1H, s).</th>
</tr>
</thead>
</table>

### 7(7c)-8

<table>
<thead>
<tr>
<th>1H-NMR (CDCl₃): 1.41 (3H, t, J = 7.0 Hz), 1.47 (3H, d, J = 6.4 Hz), 1.95 (1H, d, J = 3.7 Hz), 4.03 (2H, q, J = 7.0 Hz), 5.18 (1H, qd, J = 6.4, 3.7 Hz), 6.68 (1H, dd, J = 8.7, 3.0 Hz), 7.15 (1H, d, J = 3.0 Hz), 7.38 (1H, d, J = 8.7 Hz).</th>
</tr>
</thead>
</table>

### Table 145

#### 7(7d)-8

<table>
<thead>
<tr>
<th>1H-NMR (CDCl₃): 1.41 (3H, t, J = 7.1 Hz), 2.62 (3H, s), 4.02 (2H, q, J = 7.1 Hz), 6.84 (1H, dd, J = 8.9, 3.2 Hz), 6.97 (1H, d, J = 3.2 Hz), 7.47 (1H, d, J = 8.9 Hz).</th>
</tr>
</thead>
</table>

#### 7(7c)-9

<table>
<thead>
<tr>
<th>1H-NMR (CDCl₃): 0.98 (3H, q, J = 7.5 Hz), 1.18-1.30 (1H, m), 1.42-1.59 (1H, m), 1.61-1.81 (2H, m), 1.98 (1H, br s), 5.10-5.15 (1H, m), 7.02-7.07 (1H, m), 7.30-7.38 (2H, m).</th>
</tr>
</thead>
</table>

#### 7(7d)-9

<table>
<thead>
<tr>
<th>1H-NMR (CDCl₃): 1.00 (3H, t, J = 7.6 Hz), 1.75 (2H, td, J = 14.7, 7.6 Hz), 2.89 (2H, t, J = 7.3 Hz), 7.13-7.21 (2H, m), 7.32-7.37 (1H, m).</th>
</tr>
</thead>
</table>

#### 7(7c)-10

<table>
<thead>
<tr>
<th>1H-NMR (CDCl₃): 0.96 (3H, t, J = 7.3 Hz), 1.35-1.54 (2H, m), 1.55-1.58 (1H, m), 1.63-1.77 (1H, m), 1.88-1.91 (1H, m), 2.31 (3H, s), 5.03-5.07 (1H, m), 7.14 (1H, d, J = 7.8 Hz), 7.34 (1H, s), 7.41 (1H, d, J = 7.8 Hz).</th>
</tr>
</thead>
<tbody>
<tr>
<td>7(7d)-10</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>7(7c)-11</td>
</tr>
<tr>
<td>7(7d)-11</td>
</tr>
<tr>
<td>7(7c)-12</td>
</tr>
<tr>
<td>7(7d)-12</td>
</tr>
</tbody>
</table>

[Table 146]

<p>| 7(7c)-13 | 1H-NMR (CDCl₃) δ: 1.33 (3H, d, J = 6.0 Hz), 1.33 (3H, d, J = 6.0 Hz), 1.47 (3H, d, J = 6.0 Hz), 1.94 (1H, d, J = 3.2 Hz), 4.50-4.59 (1H, m), 5.14-5.21 (1H, m), 6.67 (1H, dd, J = 8.7, 3.2 Hz), 7.14 (1H, d, J = 3.2 Hz), 7.37 (1H, d, J = 8.7 Hz). |
| 7(7d)-13 | 1H-NMR (CDCl₃) δ: 1.33 (6H, d, J = 6.3 Hz), 2.62 (3H, s), 4.49-4.57 (1H, m), 6.82 (1H, dd, J = 8.7, 3.0 Hz), 6.97 (1H, d, J = 3.0 Hz), 7.46 (1H, d, J = 8.7 Hz). |</p>
<table>
<thead>
<tr>
<th>Chemical</th>
<th>NMR Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>7(7c)-14</td>
<td>$^1$H-NMR (CDCl$_3$): $\delta$: 0.97 (3H, t, $J = 7.3$ Hz), 1.36-1.80 (4H, m), 1.98 (1H, br s), 5.02-5.05 (1H, m), 6.85 (1H, dq, $J = 9.9, 2.9$ Hz), 7.30 (1H, dd, $J = 9.9, 3.2$ Hz), 7.46 (1H, dd, $J = 8.7, 5.5$ Hz).</td>
</tr>
<tr>
<td>7(7d)-14</td>
<td>$^1$H-NMR (CDCl$_3$): $\delta$: 1.00 (3H, t, $J = 7.3$ Hz), 1.74 (2H, td, $J = 14.7, 7.3$ Hz), 2.88 (2H, t, $J = 7.1$ Hz), 7.01 (1H, td, $J = 8.1, 3.2$ Hz), 7.08 (1H, dd, $J = 8.1, 3.2$ Hz), 7.56 (1H, dd, $J = 8.7, 4.6$ Hz).</td>
</tr>
<tr>
<td>7(7c)-15</td>
<td>$^1$H-NMR (CDCl$_3$): $\delta$: 1.62 (3H, d, $J = 6.7$ Hz), 2.48 (1H, dd, $J = 9.4, 5.5$ Hz), 5.31-5.38 (1H, m), 7.01-7.13 (2H, m), 7.33-7.36 (1H, m).</td>
</tr>
<tr>
<td>7(7c)-16</td>
<td>$^1$H-NMR (CDCl$_3$): $\delta$: 1.64 (3H, d, $J = 6.9$ Hz), 3.00 (1H, d, $J = 10.3$ Hz), 5.55-5.61 (1H, m), 7.05 (1H, t, $J = 8.0$ Hz), 7.33 (1H, d, $J = 8.0$ Hz), 7.49 (1H, d, $J = 8.0$ Hz).</td>
</tr>
<tr>
<td>7(7c)-17</td>
<td>$^1$H-NMR (CDCl$_3$): $\delta$: 1.62-1.85 (3H, m), 2.43 (1H, dd, $J = 9.2, 4.0$ Hz), 5.30-5.36 (1H, m), 6.99 (1H, dd, $J = 17.5, 8.9$ Hz), 7.28-7.31 (1H, m).</td>
</tr>
<tr>
<td>7(7c)-18</td>
<td>$^1$H-NMR (CDCl$_3$): $\delta$: 1.02 (3H, t, $J = 8.3$ Hz), 1.61-1.74 (1H, m), 1.77-1.89 (1H, m), 4.92-5.00 (1H, m), 6.81-6.90 (1H, m), 7.24-7.33 (1H, m), 7.43-7.51 (1H, m). Optical purity: 99.9% ee</td>
</tr>
</tbody>
</table>

[0405]
| 8-2 | ![Image](image1.png) | $^1$H-NMR (CDCl$_3$) $\delta$: 1.01 (3H, t, $J = 7.3$ Hz), 1.64-1.77 (1H, m), 1.78-1.90 (1H, m), 2.01 (1H, d, $J = 3.7$ Hz), 5.00-5.08 (1H, m), 7.00-7.08 (1H, m), 7.25-7.38 (2H, m). Optical purity: 87.3%ee |
| 8-3 | ![Image](image2.png) | $^1$H-NMR (CDCl$_3$) $\delta$: 0.99 (3H, t, $J = 7.5$ Hz), 1.65-1.87 (2H, m), 1.90-1.94 (1H, m), 2.31 (3H, s), 4.94-5.01 (1H, m), 7.13 (1H, d, $J = 7.8$ Hz), 7.35 (1H, s), 7.40 (1H, d, $J = 7.8$ Hz). Optical purity: 90.1%ee |
| 8-4 | ![Image](image3.png) | $^1$H-NMR (CDCl$_3$) $\delta$: 1.01 (3H, t, $J = 7.3$ Hz), 1.64-1.77 (1H, m), 1.79-1.90 (1H, m), 1.99 (1H, d, $J = 3.7$ Hz), 3.90 (3H, s), 5.05-5.12 (1H, m), 6.83 (1H, d, $J = 8.3$ Hz), 7.16 (1H, d, $J = 7.8$ Hz), 7.25-7.33 (1H, m). Optical purity: 92.8%ee |
| 8-5 | ![Image](image4.png) | $^1$H-NMR (CDCl$_3$) $\delta$: 1.01 (3H, t, $J = 7.3$ Hz), 1.25 (1H, t, $J = 8.3$ Hz), 1.59-1.75 (1H, m), 1.78-1.90 (1H, m), 2.42 (3H, s), 5.05-5.11 (1H, m), 7.15 (1H, d, $J = 7.3$ Hz), 7.20-7.27 (1H, m), 7.36 (1H, d, $J = 7.3$ Hz). Optical purity: 99.8%ee |
| 8-6 | ![Image](image5.png) | $^1$H-NMR (CDCl$_3$) $\delta$: 1.01 (3H, t, $J = 7.3$ Hz), 1.62-1.74 (2H, m), 1.76-1.88 (1H, m), 4.92-4.99 (1H, m), 7.10 (1H, dd, $J = 8.7$, 2.8 Hz), 7.43 (1H, d, $J = 8.7$ Hz), 7.54 (1H, s). Optical purity: 99.8%ee |
| 8-7 | ![Image](image6.png) | $^1$H-NMR (CDCl$_3$) $\delta$: 0.99 (3H, t, $J = 7.3$ Hz), 1.61-1.74 (1H, m), 1.74-1.86 (1H, m), 2.01 (1H, d, $J = 3.7$ Hz), 4.94-5.00 (1H, m), 7.32 (1H, dd, $J = 8.3$, 1.8 Hz), 7.48 (1H, d, $J = 8.3$ Hz), 7.53 (1H, d, $J = 1.8$ Hz). Optical purity: 89.1%ee |
| 8-8 | ![Image](image7.png) | $^1$H-NMR (CDCl$_3$) $\delta$: 0.97-1.07 (3H, m), 1.61-1.75 (1H, m), 1.78-1.92 (1H, m), 1.95-2.03 (1H, m), 5.02-5.12 (1H, m), 7.22-7.33 (1H, m), 7.34-7.51 (2H, m). Optical purity: 88.1%ee |
8-9

**8-9**

1H-NMR (CDCl3) δ: 1.00 (3H, t, J = 7.3 Hz), 1.59-1.71 (1H, m), 1.74-1.85 (1H, m), 1.97 (1H, d, J = 3.7 Hz), 4.90-4.95 (1H, m), 7.35 (1H, dd, J = 9.6, 7.3 Hz), 7.40 (1H, dd, J = 11.5, 8.3 Hz). Optical purity: 87.2%ee

8-10

<table>
<thead>
<tr>
<th>8-10</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Image" /></td>
</tr>
<tr>
<td>1H-NMR (CDCl3) δ: 1.00 (3H, t, J = 7.3 Hz), 1.62-1.73 (1H, m), 1.75-1.85 (1H, m), 1.93 (1H, d, J = 3.7 Hz), 2.24 (3H, s), 4.90-4.95 (1H, m), 7.20 (1H, d, J = 10.5 Hz), 7.33 (1H, d, J = 6.9 Hz). Optical purity: 86.6%ee</td>
</tr>
</tbody>
</table>

9 R-isomer

<table>
<thead>
<tr>
<th>9 R-isomer</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image2.png" alt="Image" /></td>
</tr>
<tr>
<td>1H-NMR (CDCl3) δ: 0.44-0.57 (3H, m), 0.59-0.66 (1H, m), 1.24-1.35 (1H, m), 2.06 (1H, d, J = 3.2 Hz), 4.64 (1H, dd, J = 7.6, 3.4 Hz), 7.12-7.17 (1H, m), 7.33-7.37 (1H, m), 7.54 (1H, dd, J = 8.0, 1.1 Hz), 7.62 (1H, dd, J = 8.0, 1.8 Hz). Optical purity: 99.5%ee</td>
</tr>
</tbody>
</table>

9 S-isomer

<table>
<thead>
<tr>
<th>9 S-isomer</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image3.png" alt="Image" /></td>
</tr>
<tr>
<td>1H-NMR (CDCl3) δ: 0.44-0.57 (3H, m), 0.59-0.66 (1H, m), 1.24-1.35 (1H, m), 2.06 (1H, d, J = 3.2 Hz), 4.64 (1H, dd, J = 7.6, 3.4 Hz), 7.12-7.17 (1H, m), 7.33-7.37 (1H, m), 7.54 (1H, dd, J = 8.0, 1.1 Hz), 7.62 (1H, dd, J = 8.0, 1.8 Hz). Optical purity: 98.9%ee</td>
</tr>
</tbody>
</table>

10

<table>
<thead>
<tr>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image4.png" alt="Image" /></td>
</tr>
<tr>
<td>1H-NMR (CDCl3) δ: 1.25 (3H, t, J = 7.3 Hz), 1.44 (3H, d, J = 6.5 Hz), 2.50 (1H, dd, J = 4.9, 2.6 Hz), 2.57-2.61 (2H, m), 2.76 (1H, t, J = 4.3 Hz), 2.92-2.97 (2H, m), 3.12-3.21 (2H, m), 3.58 (1H, dd, J = 11.2, 2.6 Hz), 4.15 (2H, q, J = 7.1 Hz), 4.79 (1H, q, J = 6.5 Hz), 7.14 (1H, d, J = 2.3 Hz), 7.22 (1H, dd, J = 8.6, 2.3 Hz), 7.39 (1H, d, J = 8.0 Hz).</td>
</tr>
</tbody>
</table>

10-2

<table>
<thead>
<tr>
<th>10-2</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image5.png" alt="Image" /></td>
</tr>
<tr>
<td>1H-NMR (CDCl3) δ: 1.24 (3H, t, J = 7.3 Hz), 1.44 (3H, d, J = 6.3 Hz), 2.50 (1H, dd, J = 4.6, 2.6 Hz), 2.55-2.59 (2H, m), 2.77 (1H, t, J = 4.6 Hz), 2.91-2.95 (2H, m), 3.15-3.22 (2H, m), 3.61 (1H, dd, J = 10.6, 2.0 Hz), 4.13 (2H, q, J = 7.3Hz), 4.79 (1H, q, J = 6.5 Hz), 7.08 (1H, d, J = 8.3 Hz), 7.17 (1H, dd, J = 8.3, 2.3 Hz), 7.44 (1H, d, J = 2.3 Hz).</td>
</tr>
</tbody>
</table>
**EP 2 374 794 A1**

(continued)

| 10-3 | ![Molecule](image1) | $^1$H-NMR (CDCl$_3$) δ: 1.26 (3H, t, J = 7.4 Hz), 1.42 (3H, d, J = 6.3 Hz), 1.58-1.64 (2H, m), 1.68-1.74 (2H, m), 2.35 (2H, t, J = 7.2 Hz), 2.48-2.50 (1H, m), 2.58-2.65 (2H, m), 2.74-2.77 (1H, m), 3.11-3.18 (2H, m), 3.55-3.58 (1H, m), 4.13 (2H, q, J = 7.4 Hz), 4.75 (1H, q, J = 6.3 Hz), 7.12 (1H, d, J = 2.3 Hz), 7.20 (1H, dd, J = 8.6, 2.3 Hz), 7.38 (1H, d, J = 8.0 Hz). |
| 10-4 | ![Molecule](image2) | $^1$H-NMR (CDCl$_3$) δ: 1.25 (3H, d, J = 7.1 Hz), 1.42-1.50 (3H, m), 2.47-2.54 (1H, m), 2.54-2.67 (2H, m), 2.74-2.78 (1H, m), 2.92-3.03 (2H, m), 3.10-3.26 (2H, m), 3.54-3.62 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 4.83 (1H, q, J = 6.4 Hz), 7.12-7.30 (3H, m), 7.42-7.49 (1H, m). |
| 10-5 | ![Molecule](image3) | $^1$H-NMR (CDCl$_3$) δ: 1.26 (3H, t, J = 7.1 Hz), 1.41-1.49 (3H, m), 2.47-2.64 (3H, m), 2.73-2.81 (1H, m), 2.90-3.09 (2H, m), 3.10-3.19 (1H, m), 3.19-3.27 (1H, m), 3.54-3.64 (1H, m), 4.16 (2H, t, J = 7.1 Hz), 4.83 (1H, q, J = 6.4 Hz), 6.91-6.98 (1H, m), 7.18-7.28 (2H, m). |

| [0407] |

| 10-6 | ![Molecule](image4) | $^1$H-NMR (CDCl$_3$) δ: 0.99 (3H, t, J = 7.4 Hz), 1.24 (3H, t, J = 7.1 Hz), 1.56-1.70 (1H, m), 1.72-1.82 (1H, m), 2.47-2.51 (1H, m), 2.51-2.63 (2H, m), 2.73-2.78 (1H, m), 2.86-3.00 (2H, m), 3.13-3.19 (2H, m), 3.59-3.65 (1H, m), 4.09-4.17 (2H, m), 4.54-4.58 (1H, m), 7.08 (1H, d, J = 8.4 Hz), 7.17 (1H, dd, J = 8.4, 2.1 Hz), 7.40 (1H, d, J = 2.3 Hz). |
| 10-7 | ![Molecule](image5) | $^1$H-NMR (CDCl$_3$) δ: 0.97 (3H, t, J = 7.3 Hz), 1.25 (3H, t, J = 7.1 Hz), 1.58-1.71 (1H, m), 1.71-1.84 (1H, m), 2.47-2.51 (1H, m), 2.55-2.62 (2H, m), 2.73-2.77 (1H, m), 2.86-3.04 (2H, m), 3.09-3.19 (2H, m), 3.56-3.61 (1H, m), 4.15 (2H, q, J = 7.1 Hz), 4.55 (1H, dd, J = 7.8, 5.0 Hz), 7.13-7.16 (1H, m), 7.19-7.23 (1H, m), 7.33-7.37 (1H, m). |
| 10-8 | ![Molecule](image6) | $^1$H-NMR (CDCl$_3$) δ: 1.24 (3H, t, J = 7.1 Hz), 1.44 (3H, d, J = 7.3 Hz), 2.47-2.61 (3H, m), 2.73-2.81 (1H, m), 2.93 (2H, t, J = 8.0 Hz), 3.07-3.24 (2H, m), 3.54-3.64 (1H, m), 4.13 (2H, q, J = 7.1 Hz), 4.80 (1H, q, J = 6.4 Hz), 6.85-6.93 (1H, m), 7.08-7.20 (2H, m). |
EP 2 374 794 A1

(continued)

10-9

$^1$H-NMR (CDCl$_3$) $\delta$: 1.26 (3H, t, $J$ = 7.1 Hz), 1.45 (3H, d, $J$ = 6.4 Hz), 2.31 (3H, s), 2.49-2.51 (1H, m), 2.55-2.60 (2H, m), 2.75 (1H, t, $J$ = 4.6 Hz), 2.94 (2H, t, $J$ = 8.0 Hz), 3.12-3.16 (1H, m), 3.21 (1H, dd, $J$ = 11.2, 6.2 Hz), 3.56 (1H, dd, $J$ = 11.2, 3.0 Hz), 4.15 (2H, q, $J$ = 7.1 Hz), 4.79 (1H, q, $J$ = 6.4 Hz), 6.98 (1H, s), 7.07 (1H, d, $J$ = 8.3 Hz), 7.34 (1H, d, $J$ = 7.8 Hz).

10-10

$^1$H-NMR (CDCl$_3$) $\delta$: 1.26 (3H, t, $J$ = 7.1 Hz), 1.42 (3H, d, $J$ = 6.4 Hz), 2.50-2.56 (3H, m), 2.78 (1H, t, $J$ = 4.4 Hz), 2.85-3.01 (2H, m), 3.14-3.18 (1H, m), 3.21 (1H, dd, $J$ = 11.2, 6.2 Hz), 3.62 (1H, dd, $J$ = 11.2, 2.5 Hz), 4.14 (2H, q, $J$ = 7.1 Hz), 4.83 (1H, q, $J$ = 6.4 Hz), 6.68-6.73 (1H, m), 7.01 (1H, d, $J$ = 9.6 Hz).

10-11

$^1$H-NMR (CDCl$_3$) $\delta$: 0.98 (3H, t, $J$ = 7.6 Hz), 1.26 (3H, t, $J$ = 7.3 Hz), 1.59-1.72 (1H, m), 1.74-1.87 (1H, m), 2.30 (3H, s), 2.49 (1H, dd, $J$ = 5.0, 2.3 Hz), 2.54-2.61 (2H, m), 2.74 (1H, t, $J$ = 4.6 Hz), 2.86-3.02 (2H, m), 3.09-3.21 (2H, m), 3.56 (1H, dd, $J$ = 11.0, 2.8 Hz), 4.14 (2H, q, $J$ = 7.3 Hz), 4.54 (1H, dd, $J$ = 6.0, 5.3 Hz), 6.97 (1H, s), 7.05 (1H, d, $J$ = 8.3 Hz), 7.29 (1H, d, $J$ = 7.8 Hz).

10-12

$^1$H-NMR (CDCl$_3$) $\delta$: 0.99 (3H, t, $J$ = 7.3 Hz), 1.21-1.29 (3H, m), 1.55-1.83 (2H, m), 2.48-2.53 (1H, m), 2.53-2.63 (2H, m), 2.74-2.80 (1H, m), 2.84-3.00 (2H, m), 3.09-3.21 (2H, m), 3.57-3.66 (1H, m), 4.07-4.18 (2H, m), 4.53-4.60 (1H, m), 6.88 (1H, dd, $J$ = 8.3, 2.8 Hz), 7.08-7.15 (2H, m).

10-13

$^1$H-NMR (CDCl$_3$) $\delta$: 0.98 (3H, t, $J$ = 7.8 Hz), 1.26 (3H, t, $J$ = 7.8 Hz), 1.57-1.72 (1H, m), 1.72-1.85 (1H, m), 2.46-2.63 (3H, m), 2.72-2.79 (1H, m), 2.90-3.08 (2H, m), 3.09-3.23 (2H, m), 3.55-3.62 (1H, m), 4.08-4.22 (2H, m), 4.55-4.62 (1H, m), 6.89-6.98 (1H, m), 7.16-7.25 (2H, m).

10-14

$^1$H-NMR (CDCl$_3$) $\delta$: 0.99 (3H, t, $J$ = 7.3 Hz), 1.26 (3H, t, $J$ = 7.1 Hz), 1.58-1.79 (2H, m), 2.45-2.59 (3H, m), 2.77 (1H, t, $J$ = 4.4 Hz), 2.85-3.01 (2H, m), 3.13-3.21 (2H, m), 3.62 (1H, d, $J$ = 9.2 Hz), 4.14 (2H, q, $J$ = 7.1 Hz), 4.60 (1H, dd, $J$ = 7.8, 5.0 Hz), 6.67-6.73 (1H, m), 6.97 (1H, d, $J$ = 10.1 Hz).
10-15  
\[ \text{EP2 374 794 A1} \]  
\[ \text{(continued)} \]  
\[ \begin{align*}  
\text{1H-NMR (CDCl}_3\text{)} & \delta: 1.00 (3H, t, J = 7.3 Hz), 1.28 (3H, t, J = 7.1 Hz), \\
& 1.62-1.83 (2H, m), 2.45-2.63 (3H, m), 2.70-2.81 (1H, m), 2.98-3.10 \\
& (1H, m), 3.10-3.22 (3H, m), 3.56-3.62 (1H, m), 4.18 (2H, q, J = 7.1 \\
& Hz), 4.59 (1H, q, J = 6.4 Hz), 7.18 (1H, t, J = 8.0 Hz), 7.25-7.31 (1H, \\
& m), 7.34 (1H, d, J = 7.8 Hz).  
\end{align*} \]  

10-16  
\[ \text{1H-NMR (CDCl}_3\text{)} \delta: 0.98 (3H, t, J = 7.3 Hz), 1.27 (3H, t, J = 7.2 Hz),  \\
1.57-1.72 (1H, m), 1.73-1.85 (1H, m), 2.44-2.55 (3H, m), 2.74 (1H, \\
t, J = 4.6 Hz), 2.87-3.06 (2H, m), 3.10-3.17 (1H, m), 3.21 (1H, dd, J \\
= 11.2, 6.0 Hz), 3.55 (1H, dd, J = 11.2, 3.0 Hz), 3.82 (3H, s), 4.15  \\
(2H, q, J = 7.2 Hz), 4.58 (1H, dd, J = 7.8, 5.0 Hz), 6.77 (1H, d, J =  \\
8.3 Hz), 7.03 (1H, d, J = 8.3 Hz), 7.21 (1H, t, J = 8.3 Hz).  
\]  

10-17  
\[ \text{1H-NMR (CDCl}_3\text{)} \delta: 1.01 (3H, t, J = 7.3 Hz), 1.28 (3H, t, J = 7.3 Hz),  \\
1.61-1.72 (1H, m), 1.72-1.85 (1H, m), 2.34 (3H, s), 2.37-2.54 (3H, \\
m), 2.72-2.76 (1H, m), 2.90-3.05 (2H, m), 3.10-3.22 (2H, m), 3.56  \\
(1H, dd, J = 11.0, 2.8 Hz), 4.18 (2H, q, J = 7.3 Hz), 4.57 (1H, dd, J \\
= 7.8, 4.6 Hz), 7.07 (1H, d, J = 8.3 Hz), 7.15 (1H, t, J = 8.3 Hz),  \\
7.25-7.30 (1H, m).  
\]  

10-18  
\[ \text{1H-NMR (CDCl}_3\text{)} \delta: 0.94 (3H, t, J = 6.6 Hz), 1.24 (3H, t, J = 7.1 Hz),  \\
1.34-1.46 (1H, m), 1.52-1.59 (2H, m), 1.71-1.79 (1H, m), 2.48 (1H, \\
d, J = 4.6 Hz), 2.55-2.60 (2H, m), 2.76 (1H, t, J = 3.7 Hz), 2.88-2.97  \\
(2H, m), 3.11-3.17 (2H, m), 3.62 (1H, dd, J = 14.2, 6.0 Hz), 4.13 (2H, \\
q, J = 7.1 Hz), 4.64 (1H, dd, J = 8.9, 3.0 Hz), 7.08 (1H, d, J = 8.3  \\
Hz), 7.16 (1H, t, J = 4.1 Hz), 7.40 (1H, s).  
\]  

10-19  
\[ \text{1H-NMR (CDCl}_3\text{)} \delta: 0.94 (3H, t, J = 6.0 Hz), 1.26 (3H, t, J = 7.0 Hz),  \\
1.32-1.44 (1H, m), 1.50-1.57 (2H, m), 1.72-1.79 (1H, m), 2.49-2.50  \\
(1H, m), 2.57-2.62 (2H, m), 2.73-2.76 (1H, m), 2.88-3.01 (2H, m),  \\
3.11-3.17 (2H, m), 3.56-3.61 (1H, m), 4.15 (2H, q, J = 7.0 Hz),  \\
4.62-4.66 (1H, m), 7.14 (1H, s), 7.21 (1H, d, J = 8.3 Hz), 7.36 (1H, \\
d, J = 8.3 Hz).  
\]  

[0409]
Claims

1. A compound represented by the following Formula (I) or a pharmaceutically acceptable salt thereof:
[in the formula, each substituent group is defined as follows.

R\(^1\): a hydrogen atom, a hydroxy group, a halogen atom, a C1-C6 alkyl group, a C1-C6 alkoxy group, a halogeno C1-C6 alkyl group, a halogeno C1-C6 alkoxy group, or an aryl group,
R\(^{2a}\) and R\(^{2b}\): identical or different from each other, a hydrogen atom, a halogen atom, a C1-C6 alkyl group, a C1-C6 alkoxy group, a halogeno C1-C6 alkyl group, a halogeno C1-C6 alkoxy group, or a cyano group,
R\(^3\): a C1-C6 alkyl group or a halogeno C1-C6 alkyl group,
A: a single bond, a substituted phenylene group, or a vinylene group,
B: a single bond, an oxygen atom, or a sulfur atom,
Ar: an aryl group which is optionally substituted by a group selected from the group consisting of a halogen atom, a cyano group, a C1-C6 alkyl group, a C1-C6 alkoxy group, a halogeno C1-C6 alkyl group, and a halogeno C1-C6 alkoxy group,
Z: -COOH, -SO\(_2\)NHR\(^Z\), or a tetrazolyl group,
R\(^Z\): a hydrogen atom or a C1-C6 alkyl group, and
m: 0, 1, 2, 3, 4, 5, or 6].

2. The compound according to Claim 1 or a pharmaceutically acceptable salt thereof, wherein R\(^1\) represents a hydrogen atom.

3. The compound according to Claim 1 or 2 or a pharmaceutically acceptable salt thereof, wherein R\(^{2a}\) and R\(^{2b}\), which are identical or different from each other, represent a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a methyl group, a methoxy group, an ethoxy group, a trifluoromethyl group, or a trifluoromethoxy group.

4. The compound according to any one of Claims 1 to 3 or a pharmaceutically acceptable salt thereof, wherein A is a single bond and B is a single bond.

5. The compound according to any one of Claims 1 to 3 or a pharmaceutically acceptable salt thereof, wherein A is a vinylene group and B is a single bond.

6. The compound according to any one of Claims 1 to 5 or a pharmaceutically acceptable salt thereof, wherein Ar is a phenyl group which is optionally substituted by a group selected from a methyl group, an ethyl group, a fluorine atom, and a chlorine atom.

7. The compound according to any one of Claims 1 to 6 or a pharmaceutically acceptable salt thereof, wherein n is 0 or 1.

8. The compound according to any one of Claims 1 to 7 or a pharmaceutically acceptable salt thereof, wherein m is 2, 3, or 4.

9. The compound according to any one of Claims 1 to 8 or a pharmaceutically acceptable salt thereof, wherein R\(^3\) represents a methyl group or an ethyl group.

10. The compound according to any one of Claims 1 to 9 or a pharmaceutically acceptable salt thereof, wherein Z represents -COOH.
11. A compound selected from the following group of compounds, or a pharmaceutically acceptable salt thereof:

(2E)-3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}prop-2-enoic acid,
3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}propanoic acid,
3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]-6-methylphenyl}propanoic acid,
3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]-5-methylphenyl}propanoic acid,
3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]-4-methylphenyl}propanoic acid,
3-{2-fluoro-6-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}propanoic acid,
3-{3-fluoro-6-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}propanoic acid,
3-{4-fluoro-2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}propanoic acid,
3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)azetidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}propanoic acid,
3-{2-chloro-6-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}butanoic acid,
3-{4-fluoro-2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]phenyl}propionic acid,
3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-chloro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]-4,5-difluorophenyl}propanoic acid,
3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-chloro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]-4,5-difluorophenyl}propanoic acid,
3-{2-[(1R)-1-{{(2R)-3-[(2S)-2-(3-fluoro-4-methylbenzyl)pyrrolidin-1-yl]-2-hydroxypropyl}oxy}ethyl]-4,5-difluorophenyl}propanoic acid.

12. The compound according to any one of Claims 1 to 11 or a pharmaceutically acceptable salt thereof, for use as a calcium receptor antagonist.

13. A pharmaceutical composition which comprises the compound according to any one of Claims 1 to 11 or a pharmaceutically acceptable salt thereof as an effective component.

14. The pharmaceutical composition according to Claim 13, for use as a calcium receptor antagonist.

15. The pharmaceutical composition according to Claim 13, for use for treatment or prevention of a disorder associated
with abnormal bone or mineral homeostasis.

16. The pharmaceutical composition according to Claim 15, wherein the disorder associated with abnormal bone or mineral homeostasis is hypoparathyroidism; osteosarcoma; periodontitis; bone fracture healing; deformative arthritis; rheumatoid arthritis; Paget's disease; humoral hypercalcemia syndrome accompanying malignant tumor and bone fracture healing; or osteoporosis.

17. The pharmaceutical composition according to Claim 15, wherein the disorder associated with abnormal bone or mineral homeostasis is osteoporosis.

18. A method of improving bone metabolism which is characterized in that an effective amount of the pharmaceutical composition described in Claim 13 is administered to a mammal.

19. A method of preventing or treating osteoporosis which is characterized in that an effective amount of the pharmaceutical composition described in Claim 13 is administered to a mammal.
**INTERNATIONAL SEARCH REPORT**

**A. CLASSIFICATION OF SUBJECT MATTER**

See extra sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

C07D205/04, A61K31/397, A61K31/40, A61K31/41, A61P1/02, A61P3/14, A61P5/16, A61P19/00, A61P19/02, A61P19/10, A61P29/00, A61P35/00, C07D207/08, C07D207/10, C07D207/12, C07D403/12

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyu Shinan Koho 1922-1996 Jitsuyu Shinan Toroku Koho 1996-2010

Kokai Jitsuyu Shinan Koho 1971-2010 Toroku Jitsuyu Shinan Koho 1994-2010

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAPLUS/REGISTRY (STN)

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

☑ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

- "A" Special categories of cited documents:
  - "A" document defining the general state of the art which is not considered to be of particular relevance
  - "B" earlier application or patent but published on or after the international filing date
  - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
  - "O" document relating to an oral disclosure, use, exhibition or other means of public知晓 prior to the international filing date but later than the priority date claimed
  - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
  - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
  - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
  - "Z" document member of the same patent family

Date of the actual completion of the international search
22 February, 2010 (22.02.10)

Date of mailing of the international search report
02 March, 2010 (02.03.10)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
Continuation of A. CLASSIFICATION OF SUBJECT MATTER
(International Patent Classification (IPC))
C07D205/04(2006.01)i, A61K31/397(2006.01)i, A61K31/40(2006.01)i, A61K31/41(2006.01)i, A61P1/02(2006.01)i, A61P3/14(2006.01)i, A61P5/18(2006.01)i, A61P19/00(2006.01)i, A61P19/02(2006.01)i, A61P19/10(2006.01)i, A61P29/00(2006.01)i, A61P35/00(2006.01)i, C07D207/08(2006.01)i, C07D207/10(2006.01)i, C07D207/12(2006.01)i, C07D403/12(2006.01)i

(According to International Patent Classification (IPC) or to both national classification and IPC)
# INTERNATIONAL SEARCH REPORT

## Box No. II  Observations where certain claims were found unsearchable (Continuation of Item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **X** Claims Nos.: 18, 19
   - because they relate to subject matter not required to be searched by this Authority, namely:
   
   Claims 18 and 19 involve methods for treatment of the human body or animal body by surgery or therapy and thus relate to a subject matter on which this International Searching Authority is not required to carry out a search under Article 17(2)(a).

2. □ Claims Nos.:
   - because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.:
   - because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

## Box No. III  Observations where unity of invention is lacking (Continuation of Item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

### Remark on Protest

- □ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.
- □ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- □ No protest accompanied the payment of additional search fees.
Continuation of Box No.II-1 of continuation of first sheet (2)

the provision of PCT Rule 67.1(iv) that PCT Rule 43bis.1(b) applies mutatis mutandis.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• WO 2004106295 A [0011] [0033]
• WO 0214259 A [0039]
• WO 04106280 A [0040]
• WO 001049649 A [0135] [0361]
• US 2007167506 A1 [0139]
• WO 2008025509 A [0163]
• WO 2004094362 A [0194] [0198] [0207]
• WO 200910530 A [0351]

Non-patent literature cited in the description

• Endocrinology, 1982, vol. 110, 506-512 [0012]
• Endocrinology, 1993, vol. 132, 823-831 [0012]
• ORGANIC FUNCTIONAL GROUP PREPARATIONS. ACADEMIC PRESS, INC, 1989 [0018]
• Comprehensive Organic Transformations. VCH Publishers Inc, 1989 [0018]
• T. W. Greene ; P.G. Wuts. Protective groups in Organic Synthesis. 1999 [0018]
• Protective groups in Organic Synthesis. 1999 [0025]
• Organic Synthesis. 1999 [0032]
• J. Jacques. Enantiomers, Racemates and Resolution. John Wiley And Sons, Inc, [0108]
• Chirality, 2005, vol. 17, 476-480 [0392]
• Tetrahedron, 2008, vol. 64, 11852-11859 [0400]