Vaccine compositions comprising a saponin adjuvant
Impfstoffzusammensetzungen mit einem Saponin-adjuvans
Compositions vaccinales contenant un adjuvant de saponine

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Designated Extension States:

Priority:
13.12.2005 GB 0525321
18.05.2006 GB 0609902
12.10.2006 GB 0620336
12.10.2006 GB 0620337

Date of publication of application:

Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
06831376.6 / 1 959 992

Proprietor: GlaxoSmithKline Biologicals S.A.
1330 Rixensart (BE)

Inventor: Vandepapeliere, Pierre
B-1330 Rixensart (BE)

Representative: Robertson, James Stuart et al
GlaxoSmithKline
Global Patents CN925.1
980 Great West Road
Brentford, Middlesex TW8 9GS (GB)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to improved vaccine compositions, methods for making them, and their use in medicine. In particular the invention relates to adjuvanted vaccine compositions wherein the adjuvant is a liposomal formulation, comprising a saponin and a lipopolysaccharide.

New compositions or vaccines with an improved immunogenicity are always needed. As one strategy, adjuvants have been used to try and improve the immune response raised to any given antigen. Lipopolysaccharides (LPS) are the major surface molecule of, and occur exclusively in, the outer leaflet of the outer membrane of gram-negative bacteria. LPS impede destruction of bacteria by serum complements and phagocytic cells, and are involved in adherence for colonization. LPS are a group of structurally related complex molecules of approximately 10,000 Daltons in size and consist of three covalently linked regions

(i) an O-specific polysaccharide chain (O-antigen) at the outer region
(ii) a core oligosaccharide central region
(iii) lipid A - the innermost region which serves as the hydrophobic anchor, it comprises glucosamine disaccharide units which carry long chain fatty acids.

The biological activities of LPS, such as lethal toxicity, pyrogenicity and adjuvanticity, have been shown to be related to the lipid A moiety. In contrast, immunogenicity is associated with the O-specific polysaccharide component (O-antigen). Both LPS and lipid A have long been known for their strong adjuvant effects, but the high toxicity of these molecules has precluded their use in vaccine formulations. Significant effort has therefore been made towards reducing the toxicity of LPS or lipid A while maintaining their adjuvanticity.

The Salmonella minnesota mutant R595 was isolated in 1966 from a culture of the parent (smooth) strain (Luderitz et al. 1966 Ann. N. Y. Acad. Sci. 133:349-374). The colonies selected were screened for their susceptibility to lysis by a panel of phages, and only those colonies that displayed a narrow range of sensitivity (susceptible to one or two phages only) were selected for further study. This effort led to the isolation of a deep rough mutant strain which is defective in LPS biosynthesis and referred to as S. minnesota R595.

In comparison to other LPS, those produced by the mutant S. minnesota R595 have a relatively simple structure.

(i) they contain no O-specific region - a characteristic which is responsible for the shift from the wild type smooth phenotype to the mutant rough phenotype and results in a loss of virulence
(ii) the core region is very short - this characteristic increases the strain susceptibility to a variety of chemicals
(iii) the lipid A moiety is highly acylated with up to 7 fatty acids.

4'-monophosphoryl lipid A (MPL), which may be obtained by the acid hydrolysis of LPS extracted from a deep rough mutant strain of gram-negative bacteria, retains the adjuvant properties of LPS while demonstrating a toxicity which is reduced by a factor of more than 1000 (as measured by lethal dose in chick embryo eggs) (Johnson et al. 1987 Rev. Infect. Dis. 9 Suppl:S512-S516). LPS is typically refluxed in mineral acid solutions of moderate strength (e.g. 0.1 M HCl) for a period of approximately 30 minutes. This process results in dephosphorylation at the 1 position, and decarboxylation at the 6' position, yielding MPL.

3-O-deacylated monophosphoryl lipid A (3D-MPL), which may be obtained by mild alkaline hydrolysis of MPL, has a further reduced toxicity while again maintaining adjuvanticity, see US4,912,094 (Ribi Immunochemicals). Alkaline hydrolysis is typically performed in organic solvent, such as a mixture of chloroform/methanol, by saturation with an aqueous solution of weak base, such as 0.5 M sodium carbonate at pH 10.5.

Further information on the preparation of 3D-MPL is available in, for example, US4,912,094 and WO02/078637 (Corixa Corporation).

Quillaja saponins are a mixture of triterpene glycosides extracted from the bark of the tree Quillaja saponaria. Crude saponins have been extensively employed as veterinary adjuvants. Quill-A is a partially purified aqueous extract of the Quillaja saponin material. QS21 is a Hplc purified non toxic fraction of Quil A and its method of its production is disclosed (as QA21) in US patent No 5,057,540.

By way of example, influenza vaccines and vaccines against human papilloma virus (HPV) have been developed with adjuvants.

WO 96/33739 discloses a vaccine composition comprising an immunologically active saponin and a sterol.
There is still a need for improved vaccines.

[0013] Adjuvants containing combinations of lipopolysaccharide and Quillaja saponins have been disclosed previously, for example in EP0671948. This patent demonstrated a strong synergy when a lipopolysaccharide (3D-MPL) was combined with a Quillaja saponin (QS21). It has now been found that good adjuvant properties may be achieved with combinations of lipopolysaccharide and quillaja saponin as immunostimulants in an adjuvant composition even when the immunostimulants are present at low amounts in a human dose.

STATEMENT OF THE INVENTION

[0014] In the present invention, there is provided claim 1.

[0015] Suitably the saponin adjuvant in the form of a liposome according to the invention comprises an active fraction of the saponin derived from the bark of Quillaja Saponaria Molina, such as QS21, and a sterol, such as cholesterol, in a ratio saponin : sterol from 1:1 to 1:100 w/w.

[0016] In particular, said immunogenic composition comprises an antigen with a CD4 T cell epitope. Alternatively, said immunogenic composition comprises an antigen with a B cell epitope.

[0017] The disclosure also relates to the use of a Varicella Zoster virus antigen or antigens or antigenic preparation thereof, and an adjuvant comprising an immunologically active saponin fraction derived from the bark of Quillaja Saponaria Molina, presented in the form of a liposome and a lipopolysaccharide in the manufacture of an immunogenic composition for the prevention of Varicella Zoster virus infection and/or disease.

[0018] The disclosure also describes the use of (a) an antigen or antigenic preparation thereof, and (b) an adjuvant as hereinabove defined in the manufacture of an immunogenic composition for inducing, in a human, at least one, or at least two, or all of the following: (i) an improved CD4 T cell immune response against said antigen or antigenic preparation thereof, (ii) an improved humoral immune response against said antigen or antigenic preparation thereof, (iii) an improved B-memory cell response against said antigen or antigenic preparation thereof.

[0019] In particular said antigen is a Varicella zoster virus (VZV) antigen or antigenic preparation thereof, and said human is an immuno-compromised individual or population, such as a high risk adult, an elderly adult or an infant. Also described herein is the use of an antigen or antigenic preparation thereof and an adjuvant as herein defined in the preparation of an immunogenic composition for vaccination of human, in particular a human elderly adult, against the pathogen from which the antigen in the immunogenic composition is derived. Specifically said antigen is a Varicella Zoster virus antigen or antigens or antigenic preparation thereof.

[0020] The disclosure also describes a method of vaccination comprising delivery of an antigen or antigenic composition, in particular a Varicella Zoster virus or antigenic preparation thereof and an adjuvant as hereinabove defined to an individual or population in need thereof.

[0021] As disclosed herein the immunogenic composition is capable of inducing an improved CD4 T-cell immune response against said antigen or antigenic preparation thereof, and in particular is further capable of inducing either a humoral immune response or an improved B-memory cell response or both, compared to that obtained with the unadjuvanted antigen or antigenic composition. Specifically said CD4 T-cell immune response involves the induction of a cross-reactive CD4 T helper response. Specifically said humoral immune response involves the induction of a cross-reactive humoral immune response.

[0022] Also disclosed herein is a method or use as hereinabove defined, for protection against infection or disease caused by a pathogen which is a variant of the pathogen from which the antigen in the immunogenic composition is derived. Also disclosed is a method or use as hereinabove defined for protection against infections or disease caused by a pathogen which comprises an antigen which is a variant of that antigen in the immunogenic composition. Also disclosed herein is the use of an antigen, in particular an influenza or HPV, or antigenic preparation thereof in the manufacture of an immunogenic composition for revaccination of humans previously vaccinated with an immunogenic composition comprising an antigen, or antigenic preparation thereof, in combination with an adjuvant as herein described.

[0023] Also disclosed is a composition used for revaccination which may additionally contain an adjuvant. The disclosure further relates to the immunogenic composition for revaccination which contains an antigen which shares common CD4 T-cell epitopes with an antigen or antigenic composition used for a previous vaccination.

[0024] Other aspects and advantages of the present invention are described further in the following detailed description of the preferred embodiments thereof.

DESCRIPTION OF FIGURES

[0025]

Figure 1 - diagrammatic representation of MPL preparation
Figure 2 - Humoral response against various strains of Influenza following immunization of ferrets with experimental
formulations Hemagglutination Inhibition Test (GMT +/- IC95) before and after heterologous priming (H1N1 A/Stockholm/24/90), after immunization (H1N1 A/New Caledonia/20/99, H3N2 A/Panama/2007/99 and B/Shangdong/7/97) and after heterologous challenge (H3N2 A/Wyoming/3/2003)

Figure 3 - Ferret study Viral titration In nasal washes after challenge (Day 42)

Figure 4 - Mice study Humoral response against the three vaccine strains of influenza following immunization of mice with experimental formulations Hemagglutination Inhibition Test (GMT +/- IC95) 21 days after immunization (H1N1 A/New Caledonia/20/99, H3N2 A/Wyoming/3/2003 and B/Jiangsu/10/2003)

Figure 5 - Mice study. Cell mediated immune response. Flu-specific CD4+ T cell responses on Day 7 Post-immunization

Figure 6 - Mice study. CMI for CD4 - Pooled strain (all double) - Day 0 and Day 21

Figure 7 - GMTs at days 0 and 21 for HI antibodies

Figure 8. Incidence of local and general symptoms in humans (Total and grade 3 related) reported during the 7-day follow up period following immunisation with adjuvanted influenza virus formulations, comparing adjuvants having two different concentrations of immunostimulants

Figure 9 Humoral responses to HPV 16 and 18 L1 in mice following immunisation with adjuvanted HPV formulations, comparing adjuvants having two different concentrations of Immunostimulants

Figure 10 Cell mediated immune response in mice: Intracellular Cytokine Staining - VLP16 and 18 CD4+ T cells following immunisation with adjuvanted HPV formulations, comparing adjuvants having two different concentrations of immunostimulants

Figure 11: Production of Specific B Memory cells following immunisation with adjuvanted HPV formulations, comparing adjuvants having two different concentrations of immunostimulants

Figure 12: Preclinical comparison of adjuvanted S. pneumoniae vaccines in mice, comparing adjuvants having two different concentrations of immunostimulants

Figure 13: Guinea pig Anti-gB ELISA titers following immunisation with adjuvanted Gb vaccine, comparing adjuvants having two different concentrations of immunostimulants.

Figure 14: Guinea Pig Anti CMV neutralizing titers following immunisation with adjuvanted Gb vaccine, comparing adjuvants having two different concentrations of immunostimulants.

Figure 15: Mice Anti-gB ELISA titers following immunisation with adjuvanted gB vaccine.

Figure 16: Mice anti CMV neutralising titers following immunisation with adjuvanted gB vaccine.

Figure 17: Mice study: Cell Mediated immunity - CMV specific CD4+ and CD8+ cells following re-stimulation with a pool of gB peptides (7 days post second immunisation)

Figure 18: Mice study. Cell Mediated immunity - CMV specific CD4+ cells following re-stimulation with two different dosages of a pool of gB peptides (21 days post second immunisation).

Figure 19: Mice study. Cell Mediated immunity - CMV specific CD8+ cells following re-stimulation with two different dosages of a pool of gB peptides (21 days post second immunisation).

Figure 20: Geometric mean antibody titers (GMT) against Circumsporozoite protein CSP following immunization with adjuvanted RTS,S vaccine in mice; comparing adjuvants having immunostimulants at two different concentrations.

Figure 21: Geometric mean antibody titers (GMT) against Hepatitis B surface antigen (HBs) following immunization with adjuvanted RTS,S vaccine in mice; comparing adjuvants with immunostimulants at two different concentrations.

Figure 22: Ex vivo expression of IL-2 and/or IFN gamma by CSP-specific CD4 and CD8 T cells following immunization with an adjuvanted RTS,S immunogenic composition, comparing adjuvants with immunostimulants at two different concentrations.

Figure 23: Ex vivo expression of IL-2 and/or IFN gamma by HBs-specific CD4 and CD8 T cells following immunization with an adjuvanted trivalent split influenza vaccine (A/New Caledonia, A/Wyoming, B/Jiangsu), comparing adjuvants having immunostimulants at two different concentrations.

Figure 24: Humoral responses in mice following immunisation with adjuvanted trivalent split influenza vaccine (A/New Caledonia, A/Wyoming, B/Jiangsu), immunostimulants at two different concentrations.

Figure 25: Cell mediated immune response in mice following immunisation with adjuvanted trivalent influenza vaccine (A/New Caledonia, A/Wyoming, B/Jiangsu), immunostimulants at two different concentrations.

Figure 26: Preclinical results in mice comparing VZV gE vaccines adjuvant with AS01 B or AS01 E.

Figure 27: Viral nasal wash titres following priming and challenge with influenza virus antigens - immunisation with A/New Caledonia, A/Wyoming, B/Jiangsu either plain or adjuvanted with adjuvant compositions comprising immunostimulants at two different concentrations, in ferrets

Figure 28: Body temperature monitoring in ferrets following priming and challenge with influenza antigens. Immunisation with A/New Caledonia, A/Wyoming, B/Jiangsu either plain or adjuvanted with adjuvant compositions comprising immunostimulants at two different concentrations,

Figure 29: Anti HI titers for the A strains in the trivalent vaccine formulation following immunisation and challenge
with influenza antigen preparations. Immunisation with A/New Caledonia, A/Wyoming, B/Jiangsu either plain or adjuvanted with adjuvant compositions comprising immunostimulants at two different concentrations, *Figure 30*: Anti HI titres for B/Jiangsu and the drift strain used for challenge following immunisation and challenge with influenza antigen preparations. Immunisation with A/New Caledonia, A/Wyoming, B/Jiangsu either plain or adjuvanted with adjuvant compositions comprising immunostimulants at two different concentrations.

DETAILED DESCRIPTION

[0026] The present inventors have discovered that an adjuvant composition which comprises a saponin presented in the form of a liposome, and a lipopolysaccharide, where each immunostimulant is present at a level at or below 30 μg per human dose can improve immune responses to an antigenic preparation, whilst at the same time having lower reactogenicity than some of the prior art formulations where the immunostimulants were present at higher levels per human dose.

[0027] The present inventors have further found that an influenza formulation comprising an influenza virus or antigenic preparation thereof together with an adjuvant comprising a saponin presented in the form of a liposome, and optionally additionally with a lipid A derivative such as 3D-MPL, was capable of improving the CD4 T-cell immune response against said antigen or antigenic composition compared to that obtained with the unadjuvanted virus or antigenic preparation thereof. The formulations adjuvanted with saponin presented in the form of a liposome are advantageously used to induce anti-influenza CD4-T cell responses capable of detection of influenza epitopes presented by MHC class II molecules.

The present applicant has found that it is effective to target the cell-mediated immune system in order to increase responsiveness against homologous and drift influenza strains (upon vaccination and infection).

[0028] In another aspect of the invention, the inventors have discovered that the adjuvant composition as defined herein demonstrates immunogenicity results for both antibody production and post-vaccination frequency of influenza-specific CD4 which are equivalent to, or sometimes greater than, those generated with non-adjuvanted vaccine. This effect is in particular of value in the elderly population and can be achieved with an adjuvant as herein defined containing a lower dose of immunostimulants. In addition, reactogenicity symptoms showed a trend to be higher in the group who received the vaccine adjuvanted with the highest immunostimulants concentration compared to the group who received the adjuvanted vaccine wherein the immunostimulants is at a lower concentration.

[0029] These findings can be applied to other forms of the same antigens, and to other antigens.

Saponin adjuvant

[0030] The adjuvant composition of the invention comprises a saponin adjuvant presented in the form of a liposome, and a lipopolysaccharide, where each immunostimulant is present at a level at or below 30 μg per human dose can improve immune responses to an antigenic preparation, whilst at the same time having lower reactogenicity than some of the prior art formulations where the immunostimulants were present at higher levels per human dose.

[0031] A particularly suitable saponin for use in the present invention is Quil A and its derivatives. Quil A is a saponin preparation isolated from the South American tree *Quillaja Saponaria Molina* and was first described by Dalsgaard et al in 1974 ("Saponin adjuvants", Archiv fur die gesamte Virusforschung, Vol 44, Springer Verlag, Berlin, p243-254) to have adjuvant activity. Purified fragments of Quil A have been isolated by HPLC which retain adjuvant activity without the toxicity associated with Quil A (EP 0 362 278), for example QS7 and QS21 (also known as QA7 and QA21) QS-21 is a natural saponin derived from the bark of *Quillaja saponaria* Molina, which induces CD8+ cytotoxic T cells (CTLs), Th1 cells and a predominant IgG2a antibody response and is a preferred saponin in the context of the present invention.

[0032] In a suitable form of the present invention, the saponin adjuvant within the immunogenic composition is a derivative of *saponaria molina* quill A, preferably an immunologically active fraction of Quil A, such as QS-17 or QS-21. Suitably QS-21. Suitably, the compositions in accordance with the invention contain the immunologically active saponin fraction in substantially pure form. Preferably the compositions of the invention contain QS21 in substantially pure form, that is to say, the QS21 is at least 90% pure, for example at least 95% pure, or at least 98% pure.

[0033] In a specific embodiment, QS21 is provided in its less reactogenic composition where it is quenched with an exogenous sterol, such as cholesterol for example. Several particular forms of less reactogenic compositions wherein QS21 is quenched with an exogenous cholesterol exist. In a specific embodiment, the saponin /sterol is in the form of a liposome structure (WO 96/33739, Example 1) In this embodiment the liposomes suitably contain a neutral lipid, for example phosphatidylcholine, which is suitably non-crystalline at room temperature, for example egg yolk phosphatidylcholine, dioleoyl phosphatidylcholine (DOPC) or dilauryl phosphatidylcholine. The liposomes may also contain a charged lipid which increases the stability of the liposome-QS21 structure for liposomes composed of saturated lipids. In these cases the amount of charged lipid is suitably 2-20% w/w, preferably 5-10%. The ratio of sterol to phospholipid is 1-50% (mol/mol), suitably 20-25%

[0034] Suitable sterols include β-sitosterol, stigmasterol, ergosterol, ergocalciferol and cholesterol. In one particular embodiment, the adjuvant composition comprises cholesterol as sterol. These sterols are well known in the art, for example cholesterol is disclosed in the Merck Index, 11th Edn, page 341, as a naturally occurring sterol found in animal fat.

[0035] Adjuvant compositions in accordance with the invention comprising QS21 and a sterol, cholesterol in particular,
show a decreased reactogenicity when compared to compositions in which the sterol is absent, while the adjuvant effect is maintained. Reactogenicity studies may be assessed according to the methods disclosed in WO 96/33739. The sterol according to the invention is taken to mean an exogenous sterol, i.e., a sterol which is not endogenous to the organism from which the antigenic preparation is taken but is added to the antigen preparation or subsequently at the moment of formulation. Typically, the sterol may be added during subsequent formulation of the antigen preparation with the saponin adjuvant, by using, for example, the saponin in its form quenched with the sterol. Suitably the exogenous sterol is associated to the saponin adjuvant as described in WO 96/33739.

[0036] Where the active saponin fraction is QS21, the ratio of QS21 sterol will typically be in the order of 1:100 to 1:1 (w/w), suitably between 1:10 to 1:1 (w/w), and preferably 1:5 to 1:1 (w/w). Suitably excess sterol is present, the ratio of QS21:sterol being at least 1:2 (w/w). In one embodiment, the ratio of QS21:sterol is 1:5 (w/w). The sterol is suitably cholesterol.

[0037] Other useful saponins are derived from the plants Aesculus hippocastanum or Glycyphila struthium. Other saponins which have been described in the literature include Escin, which has been described in the Merck index (12th ed entry 3737) as a mixture of saponins occurring in the seed of the horse chestnut tree, Lat Aesculus hippocastanum. Its isolation is described by chromatography and purification (Fiedler, Arzneimittel-Forsch 4, 213 (1953)), and by ion-exchange resins (Erbring et al, US 3,238,190) Fractions of escin have been purified and shown to be biologically active (Yoshikawa M, et al (Chem Pharm Bull (Tokyo) 1996 Aug;44(8) 1454-1464)) Sapoailbin from Glycyphila struthium (R Vochten et al., 1968, J. Pharm Belg, 42, 213-226) has also been described in relation to ISCOM production for example [0038] A key aspect of the present invention is the fact that the immunologically active saponin, which is preferably QS21, can be used at lower amounts than had previously been thought useful, specifically between 1 and 30 µg, per human dose of the immunogenic composition.

[0039] The invention therefore provides a human dose of an immunogenic composition comprising immunologically active saponin, preferably QS21, at a level of between 1 and 30 µg.

[0040] In one embodiment, an immunogenic composition in a volume which is suitable for a human dose which human dose of the immunogenic composition comprises QS21 at a level of around 25 µg, for example between 20 - 30 µg, suitably between 21 - 29 µg or between 22 and 28 µg or between 23 and 27 µg or between 24 and 26 µg, or 25 µg. In another embodiment, the human dose of the immunogenic composition comprises QS21 at a level of around 10 µg per, for example between 5 and 15 µg, suitably between 6 and 14 µg, for example between 7 and 13 µg or between 8 and 12 µg or between 9 and 11 µg, or 10 µg.

[0041] In a further embodiment, the human dose of the immunogenic composition comprises QS21 at a level of around 5 µg, for example between 1 and 9 µg, or between 2 and 8 µg or suitably between 3 and 7 µg or 4 and 6 µg, or 5 µg.

[0042] A suitable amount of QS21 is for example any of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, µg (w/v) per human dose of the immunogenic composition.

[0043] By the term "human dose" is meant a dose which is in a volume suitable for human use. Generally this is between 0.3 and 1.5 ml. In one embodiment, a human dose is 0.5 ml. In a further embodiment, a human dose is higher than 0.5 ml, for example 0.6, 0.7, 0.8, 0.9 or 1 ml. In a further embodiment, a human dose is between 1 ml and 1.5 ml. The invention is characterised in that each human dose contains 30 µg or less, for example between 1 and 30 µg of QS21.

[0044] Described herein is an adjuvant comprising comprising between 1 and 30 µg, of QS21. Typically such an adjuvant composition will be in a human dose suitable volume. Where the adjuvant is in a liquid form to be combined with a liquid form of an antigenic composition, the adjuvant composition will be in a human dose suitable volume which is approximately half of the intended final volume of the human dose, for example a 360 µl volume for an intended human dose of 0.7ml, or a 250 µl volume for an intended human dose of 0.5 ml. The adjuvant composition is diluted when combined with the antigen composition to provide the final human dose of vaccine. The final volume of such dose will of course vary dependent on the intial volume of the adjuvant composition and the volume of antigen composition added to the adjuvant composition. Alternatively, liquid adjuvant is used to reconstitute a lyophilised antigen composition. In such instance, the human dose suitable volume of the adjuvant composition is approximately equal to the final volume of the human dose. The liquid adjuvant composition is added to the vial containing the lyophilised antigen composition. The final human dose can vary between 0.5 and 15 ml. In a particular embodiment the human dose is 0.5 ml, in this embodiment the vaccine composition of the invention will comprise a level of QS21 between 1 and 30 µg, per 0.5 ml human dose.

[0045] The dose of QS21 is suitably able to enhance an immune response to an antigen in a human. In particular a suitable QS21 amount is that which improves the immunological potential of the composition compared to the unadjuvanted composition, or compared to the composition adjuvanted with another QS21 amount, whilst being acceptable from a reactogenicity profile.

3D-MPL Adjuvant

[0046] The composition further comprises an additional adjuvant which is a lipopolysaccharide, suitably a non-toxic...
EP 2 364 722 B1

derivative of lipid A, particularly monophosphoryl lipid A or more particularly 3-Deacetylated monophosphoryl lipid A (3D-MPL)

[0047] 3D-MPL is sold under the name MPL by GlaxoSmithKline Biologicals N A. and is referred throughout the document as MPL or 3D-MPL, see, for example, US Patent Nos 4,436,727, 4,877,611, 4,866,034 and 4,912,094. 3D-MPL primarily promotes CD4+ T cell responses with an IFN-γ (Th1) phenotype. 3D-MPL can be produced according to the methods disclosed in GB 2 220 211 A. Chemically it is a mixture of 3-deacetylated monophosphoryl lipid A with 3, 4, 5 or 6 acylated chains. Preferably in the compositions of the present invention small particle 3D-MPL is used. Small particle 3D-MPL has a particle size such that it may be sterile-filtered through a 0.22 µm filter. Such preparations are described in WO 94/21292.

[0048] A key aspect of the present invention is the fact that the lipopolysaccharide, which is preferably 3D-MPL, can be used at lower amounts than had previously been thought useful, specifically between 1 and 30 µg per human dose of the immunogenic composition.

[0049] Described herein is a human dose of an immunogenic composition comprising lipopolysaccharide, preferably 3D-MPL, at a level between 1 and 30 µg.

[0050] In one embodiment, the human dose of the immunogenic composition comprises 3D-MPL at a level of around 25 µg, for example between 20 - 30 µg, suitably between 21 - 29 µg or between 22 and 28 µg or between 23 and 27 µg or between 24 and 26 µg, or 25 µg.

[0051] In another embodiment, the human dose of the immunogenic composition comprises 3D-MPL at a level of around 10 µg, for example between 5 and 15 µg, suitably between 6 and 14 µg, for example between 7 and 13 µg or between 8 and 12 µg or between 9 and 11 µg, or 10 µg.

[0052] In a further embodiment, the human dose of the immunogenic composition comprises 3D-MPL at a level of around 5 µg, for example between 1 and 9 µg, or between 2 and 8 µg or suitably between 3 and 7 µg or 4 and 6 µg, or 5 µg.

[0053] A suitable amount of 3D-MPL is, for example any of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, µg (w/v) per human dose of the immunogenic composition.

[0054] In one embodiment, the volume of the human dose is 0.5 ml. In a further embodiment, the immunogenic composition is in a volume suitable for a human dose which volume is higher than 0.5 ml, for example between 0.6, 0.7, 0.8, 0.9 or 1 ml. In a further embodiment, the human dose is between 1 ml and 1.5 ml. The invention is characterised in that each human dose contains between 1 and 30 µg of 3D-MPL.

[0055] Typically an adjuvant composition will be in a human dose suitable volume. Where the adjuvant is in a liquid form to be combined with a liquid form of an antigenic composition, the adjuvant composition will be in a human dose suitable volume which is approximately half of the intended final volume of the human dose, for example a 360 µl volume for an intended human dose of 0.7 ml, or a 250 µl volume for an intended human dose of 0.5 ml. The adjuvant composition is diluted when combined with the antigen composition to provide the final human dose of immunogenic composition. The final volume of such dose will of course vary dependent on the initial volume of the adjuvant composition and the volume of antigen composition added to the adjuvant composition. Alternatively, liquid adjuvant composition is used to reconstitute a lyophilised antigen composition. In such instances the human dose suitable volume of the adjuvant composition is approximately equal to the final volume of the human dose. The liquid adjuvant composition is added to the vial containing the lyophilised antigen composition. The final human dose can vary between 0.5 and 1.5 ml. In a particular embodiment, the human dose is 0.5 ml. In this embodiment, the vaccine composition of the invention will comprise a level of 3D-MPL between 1 and 30 µg, per 0.5 ml human dose.

[0056] The dose of 3D-MPL is suitably able to enhance an immune response to an antigen in a human. In particular, a suitable 3D-MPL amount is that which improves the immunological potential of the composition compared to the unadjuvanted composition, or compared to the composition adjuvanted with another MPL amount, whilst being acceptable from a reactogenicity profile.

[0057] Suitable compositions of the invention are those wherein liposomes are initially prepared without MPL (as described in WO 96/33739), and MPL is then added, suitably as small particles of below 100 nm particles or particles that are susceptible to sterile filtration through a 0.22 µm membrane. The MPL is therefore not contained within the vesicle membrane (known as MPL out) Compositions where the MPL is contained within the vesicle membrane (known as MPL in) also form an aspect of the invention. The antigen can be contained within the vesicle membrane or contained outside the vesicle membrane. Suitable soluble antigens are outside and hydrophobic or lipidated antigens are either contained inside or outside the membrane.

[0058] Disclosed herein is an adjuvant composition comprising both lipopolysaccharide and immunologically active saponin. In one instance, the lipopolysaccharide is 3D-MPL and the immunologically active saponin is QS21. In another instance, the adjuvant composition consists essentially of a lipopolysaccharide and immunologically active saponin in a liposomal formulation. Suitably, the adjuvant composition consists essentially of 3D-MPL and QS21, with optionally sterol which is preferably cholesterol.

[0059] Further described is an adjuvant composition comprising in a liposomal formulation lipopolysaccharide and immunologically active saponin in combination with one or more further immunostimulants or adjuvants. Suitably the
lipopolysaccharide is 3D-MPL and the immunologically active saponin is QS21

[0060] In a specific embodiment, QS21 and 3D-MPL are present in the same final concentration per human dose of the immunogenic composition. In one aspect of this embodiment, a human dose of immunogenic composition comprises a final level of 25 μg of 3D-MPL and 25 μg of QS21. In a further embodiment, a human dose of immunogenic composition comprises a final level of 10 μg each of MPL and QS21. In a further specific embodiment is provided an adjuvant composition having a volume of 250 μl and comprising a level of 25 μg of 3D-MPL and 25 μg of QS21, or 10 μg each of MPL and QS21.

[0061] Antigens used in the immunogenic compositions of the present invention are Varicella Zoster Virus (such as gp1, II and IE63).

Immunogenic properties of the immunogenic composition used for the vaccination of the present invention

[0062] In the present invention, the immunogenic composition is preferably capable of inducing an improved CD4 T-cell immune response against at least one of the component antigen(s) or antigenic composition compared to the CD4 T-cell immune response obtained with the corresponding composition which in un-adjuvanted, i.e. does not contain any exogeneous adjuvant (herein also referred to as 'plain composition').

[0063] By “improved CD4 T-cell immune response” is meant that a higher CD4 response is obtained in a mammal after administration of the adjuvanted immunogenic composition than that obtained after administration of the same composition without adjuvant.

[0064] The improved CD4 T-cell immune response may be assessed by measuring the number of cells producing any of the following cytokines:

- cells producing at least two different cytokine (CD40L, IL-2, IFNγ, TNFα)
- cells producing at least CD40L and another cytokines (IL-2, TNFα, IFNγ)
- cells producing at least IL-2 and another cytokine (CD40L, TNFα, IFNγ)
- cells producing at least IFNγ and another cytokine (IL-2, TNFα, CD40L)
- cells producing at least TNFα and another cytokine (IL-2, CD40L, IFNγ)

[0065] There will be improved CD4 T-cell immune response when cells producing any of the above cytokines will be in a higher amount following administration of the adjuvanted composition compared to the administration of the un-adjuvanted composition. Typically at least one, preferably two of the five conditions mentioned herein above will be fulfilled. In a particular embodiment, the cells producing all four cytokines will be present at a higher amount in the adjuvanted group compared to the un-adjuvanted group.

[0066] In another embodiment, the administration of said immunogenic composition induces an improved B-memory cell response in patients administered with the adjuvanted immunogenic composition compared to the B-memory cell response induced in individuals immunized with the un-adjuvanted composition. An improved B-memory cell response is intended to mean an increased frequency of peripheral blood B lymphocytes capable of differentiation into antibody-secreting plasma cells upon antigen encounter as measured by stimulation of in-vitro differentiation.

[0067] In another embodiment, the administration of said immunogenic composition induces an improved humoral response in patients administered with the adjuvanted immunogenic composition compared to the humoral response induced in individuals immunized with the un-adjuvanted composition. Said humoral immune response may be measured according to any of the procedure detailed in Example I, and especially in sections 11 (11.1), 12 (12.1) and 13 (13.5.2).

[0068] In a specific embodiment, the administration of said adjuvanted immunogenic composition induces at least two of the following responses: (i) an improved CD4 T-cell immune response, (ii) an improved B-memory cell response, (iii) an improved humoral response, against at least one of the component antigen(s) or antigenic composition compared to either immune response obtained with the corresponding composition which in un-adjuvanted, i.e. does not contain any exogeneous adjuvant (herein also referred to as ‘plain composition’).

[0069] In a still further specific embodiment, the vaccination with the composition for the first vaccination, adjuvanted, has no measurable impact on the CD8 response.

Vaccination means

[0070] The immunogenic compositions of the invention may be administered by any suitable delivery route, such as intradermal, mucosal e.g. intranasal, oral, intramuscular or subcutaneous. Other delivery routes are well known in the art.

[0071] The intramuscular delivery route is preferred for the adjuvanted immunogenic composition.

[0072] Intradermal delivery is another suitable route. Any suitable device may be used for intradermal delivery, for example short needle devices such as those described in US 4,886,499, US 5,190,521, US 5,328,483, US 5,527,288, US 4,270,537, US 5,015,235, US 5,141,496, US 5,417,662. Intradermal vaccines may also be administered by devices...

[0073] Another suitable administration route is the subcutaneous route. Any suitable device may be used for subcutaneous delivery, for example classical needle. Preferably, a needle-free jet injector service is used, such as that published in WO 01/05453, WO 01/05452, WO 01/05451, WO 01/32243, WO 01/41840, WO 01/47585, WO 01/56637, WO 01/58512, WO 01/64269, WO 01/78810, WO 01/91835, WO 01/97884, WO 02/09796, WO 02/34317. More preferably said device is pre-filled with the liquid vaccine formulation.

[0074] Alternatively, the vaccine is administered intranasally. Typically, the vaccine is administered locally to the nasopharyngeal area, preferably without being inhaled into the lungs. It is desirable to use an intranasal delivery device which delivers the vaccine formulation to the nasopharyngeal area, without or substantially without it entering the lungs.

[0075] Preferred devices for intranasal administration of the vaccines according to the invention are spray devices. Suitable commercially available nasal spray devices include Accuspray™ (Becton Dickinson). Nebulisers produce a very fine spray which can be easily inhaled into the lungs and therefore does not efficiently reach the nasal mucosa. Nebulisers are therefore not preferred.

[0076] Preferred spray devices for intranasal use are devices for which the performance of the device is not dependent upon the pressure applied by the user. These devices are known as pressure threshold devices. Liquid is released from the nozzle only when a threshold pressure is applied. These devices make it easier to achieve a spray with a regular droplet size. Pressure threshold devices suitable for use with the present invention are known in the art and are described for example in WO 91/13281 and EP 311 863 B and EP 516 636. Such devices are commercially available from Pfeiffer GmbH and are also described in Bommer, R. Pharmaceutical Technology Europe, Sept 1999.

[0077] Preferred intranasal devices produce droplets (measured using water as the liquid) in the range 1 to 200 μm, preferably 10 to 120 μm. Below 10 μm there is a risk of inhalation, therefore it is desirable to have no more than about 5% of droplets below 10 μm. Droplets above 120 μm do not spread as well as smaller droplets, so it is desirable to have no more than about 5% of droplets exceeding 120 μm.

[0078] Bi-dose delivery is a further preferred feature of an intranasal delivery system for use with the vaccines according to the invention. Bi-dose devices contain two sub-doses of a single vaccine dose, one sub-dose for administration to each nostril. Generally, the two sub-doses are present in a single chamber and the construction of the device allows the efficient delivery of a single sub-dose at a time. Alternatively, a monodose device may be used for administering the vaccines according to the invention.

[0079] Alternatively, the epidermal or transdermal vaccination route is also contemplated in the present invention.

Populations to vaccinate

[0080] The target population to vaccinate may be immuno-compromised human. Immuno-compromised humans generally are less well able to respond to an antigen, in comparison to healthy adults.

Vaccination regimes, dosing and additional efficacy criteria

[0081] Suitably the immunogenic compositions according to the present invention are a standard 0.5 ml injectable dose in most cases. Suitably the vaccine dose volume will be between 0.5 ml and 1 ml, in particular a standard 0.5 ml, or 0.7 ml vaccine dose volume.

[0082] Disclosed herein is a method of designing a vaccine for diseases known to be cured or treated through a CD4+ T cell activation, comprising

1) selecting an antigen containing CD4+ epitopes, and
2) combining said antigen with saponin adjuvant in the form of a hposome as defined herein above, wherein said vaccine upon administration in said mammal is capable of inducing an enhanced CD4 T cell response in said mammal.

[0083] For the avoidance of doubt the terms ‘comprising’, ‘comprise’ and ‘comprises’ herein is intended by the inventors to be optionally substitutable with the terms ‘consisting of’, ‘consist of’, and ‘consists of’, respectively, in every instance.

[0084] The invention will be further described by reference to the following, non-limiting, examples.
Example I describes immunological read-out methods used in mice, ferret and human studies.

Example II describes preparation of the MPL/QS21 liposomal adjuvant.

Example III describes a pre-clinical evaluation of adjuvanted and unadjuvanted influenza vaccines in ferrets.

Example IV shows a pre-clinical evaluation of adjuvanted and un-adjuvanted influenza vaccines in C57Bl/6 naive and primed mice.

Example V describes a comparison of adjuvanted influenza vaccine with 3D-MPL at two different concentrations in mice.

Example VI describes a comparison of adjuvanted influenza vaccine with 3D-MPL at two different concentrations in elderly humans.

Example VII describes the pre-clinical evaluation of adjuvanted HPV vaccines in mice.

Example VIII describes a pre-clinical evaluation of adjuvanted and non-adjuvanted cytomegaloovirus immunogenic compositions.

Example IX describes the pre-clinical evaluation of an adjuvanted RTS,S vaccine composition with 3D-MPL at two different concentrations.

Example X describes the clinical evaluation of an adjuvanted RTS,S vaccine with 3D-MPL at two different concentrations.

Example I - Immunological Read-out Methods

I.1. Mice methods

I.1.1. Hemagglutination Inhibition Test

Test procedure

Anti-Hemagglutinin antibody titers to the three influenza virus strains were determined using the hemagglutination inhibition test (HI). The principle of the HI test is based on the ability of specific anti-Influenza antibodies to inhibit hemagglutination of chicken red blood cells (RBC) by influenza virus hemagglutinin (HA). Heat inactivated sera were previously treated by Kaolin and chicken RBC to remove non-specific inhibitors. After pretreatment, two-fold dilutions of sera were incubated with 4 hemagglutination units of each influenza strain. Chicken red blood cells were then added and the inhibition of agglutination was scored. The titers were expressed as the reciprocal of the highest dilution of serum that completely inhibited hemagglutination. As the first dilution of sera was 1:20, an undetectable level was scored as a titer equal to 10.

Statistical analysis

Statistical analysis were performed on post vaccination HI titers using UNISTAT. The protocol applied for analysis of variance can be briefly described as follow:

- Log transformation of data
- Shapiro-Wilk test on each population (group) in order to verify the normality of groups distribution
- Cochran test in order to verify the homogeneity of variance between the different populations (groups)
- Two-way Analysis of variance performed on groups
- Tukey HSD test for multiple comparisons

I.1.2. Intracellular cytokine staining

This technique allows a quantification of antigen specific T lymphocytes on the basis of cytokine production: effector T cells and/or effector-memory T cells produce IFN-γ and/or central memory T cells produce IL-2. PBMCs are harvested at day 7 post-immunization.

Lymphoid cells are re-stimulated in vitro in the presence of secretion inhibitor (Brefeldine):

These cells are then processed by conventional immunofluorescent procedure using fluorescent antibodies (CD4, CD8, IFN-γ and IL-2). Results are expressed as a frequency of cytokine positive cell within CD4/CD8 T cells. Intracellular staining of cytokines of T cells was performed on PBMC 7 days after the second immunization. Blood was collected from mice and pooled in heparinated medium RPMI+ Add. For blood, RPMI + Add-diluted PBL suspensions were layered onto a Lymphocyte-Mammal gradient according to the recommended protocol (centrifuge 20 min at 2500 rpm and R.T.). The mononuclear cells at the interface were removed, washed 2x in RPMI + Add and PBMCs suspensions were adjusted to 2 x 10^6 cells/ml in RPMI 5% fetal calf serum.
In vitro antigen stimulation of PBMCs was carried out at a final concentration of 1 x 10^6 cells/ml (tube FACS) with Flu trivalent split on beads (5 µg HA/strain) or Whole Fl (1 µgHA/strain) and then incubated 2 hrs at 37°C with the addition of anti-CD28 and anti-CD49d (1 µg/ml for both).

In addition, PBMCs were also stimulated overnight with Flu trivalent split (30 µg HA/strain)- or Whole Fl (5 µgHA/strain)-pulsed BMDCs (1 x 10^5 cells/ml), which were prepared by pulsing BMDCs with Flu split (60 µg/HA strain) or Whole Flu trivalent Fl (10 µg/HA strain) for 6 hrs at 37°C. Following the antigen restimulation step, PBMC are incubated O.N. at 37°C in presence of Brefeldin (1 µg/ml) at 37°C to inhibit cytokine secretion.

IFN-γ /IL-2/CD4/CD8 staining was performed as follows: Cell suspensions were washed, resuspended in 50 µl of PBS 1% FCS containing 2% Fc blocking reagent (1/50; 2.4G2). After 10 min incubation at 4°C, 50 µl of a mixture of anti-CD4-PE (2/50) and anti-CD8 perCp (3/50) was added and incubated 30 min at 4°C. After a washing in PBS 1% FCS, cells were permeabilized by resuspending in 200 µl of Cytofix-Cytoperm (Kit BD) and incubated 20 min at 4°C. Cells were then washed with Perm Wash (Kit BD) and resuspended with 50 µl of a mix of anti- IFN-γ APC (1/50) + anti-IL-2 FITC (1/50) diluted in Perm Wash. After an incubation min 2 h max overnight at 4°C, cells were washed with Perm Wash and resuspended in PBS 1% FCS + 1% paraformaldehyde. Sample analysis was performed by FACS. Live cells were gated (FSC/SSC) and acquisition was performed on ~ 50,000 events (lymphocytes) or 35,000 events on CD4+T cells. The percentages of IFN-γ + or IL2+ were calculated on CD4+ and CD8+ gated populations.

I.2. Ferrets methods

I.2.1. Hemagglutination Inhibition Test (HI)

Anti-Hemagglutinin antibody titers to the three influenza virus strains were determined using the hemagglutination inhibition test (HI). The principle of the HI test is based on the ability of specific anti-Influenza antibodies to inhibit hemagglutination of chicken red blood cells (RBC) by influenza virus hemagglutinin (HA). Sera were first treated with a 25% neuraminidase solution (RDE) and were heat-inactivated to remove non-specific inhibitors. After pre-treatment, two-fold dilutions of sera were incubated with 4 hemagglutination units of each influenza strain. Chicken red blood cells were then added and the inhibition of agglutination was scored using tears for reading. The titers were expressed as the reciprocal of the highest dilution of serum that completely inhibited hemagglutination. As the first dilution of sera was 1:10, an undetectable level was scored as a titer equal to 5.

Statistical analysis.

Statistical analysis were performed on HI titers (Day 41, before challenge) using UNISTAT. The protocol applied for analysis of variance can be briefly described as followed:

- Log transformation of data.
- Shapiro-wilk test on each population (group) in oder to verify the normality of groups distribution.
- Cochran test in order to verify the homogeneity of variance between the different populations (groups).
- Test for interaction of one-way ANOVA.
- Tuckey-HSD Test for multiple comparisons.

I.2.2. Nasal washes

All nasal samples were first sterile filtered through Spin X filters (Costar) to remove any bacterial contamination. 50 µl of serial ten-fold dilutions of nasal washes were transferred to microtiter plates containing 50 µl of medium (10 wells/dilution). 100 µl of MDCK cells (2.4 x 10^5 cells/ml) were then added to each well and incubated at 35°C for 5-7 days. After 6-7 days of incubation, the culture medium is gently removed and 100 µl of a 1/20 WST-1 containing medium is added and incubated for another 18 hrs.

The intensity of the yellow formazan dye produced upon reduction of WST-1 by viable cells is proportional to the number of viable cells present in the well at the end of the viral titration assay and is quantified by measuring the
absorbance of each well at the appropriate wavelength (450 nanometers). The cut-off is defined as the OD average of uninfected control cells - 0.3 OD (0.3 OD correspond to +/- 3 StDev of OD of uninfected control cells). A positive score is defined when OD is < cut-off and in contrast a negative score is defined when OD is > cut-off. Viral shedding titers were determined by "Reed and Muench" and expressed as Log TCID50/ml.

I.3. Assays for assessing the immune response in humans

I.3.1. Hemagglutination Inhibition Assay

[0100] The immune response was determined by measuring HI antibodies using the method described by the WHO Collaborating Centre for influenza, Centres for Disease Control, Atlanta, USA (1991).

[0101] Antibody titre measurements were conducted on thawed frozen serum samples with a standardised and comprehensively validated micromethod using 4 hemagglutination-inhibiting units (4 HIU) of the appropriate antigens and a 0.5% fowl erythrocyte suspension. Non-specific serum inhibitors were removed by heat treatment and receptor-degrading enzyme.

[0102] The sera obtained were evaluated for HI antibody levels. Starting with an initial dilution of 1:10, a dilution series (by a factor of 2) was prepared up to an end dilution of 1:20480. The titration end-point was taken as the highest dilution step that showed complete inhibition (100%) of hemagglutination. All assays were performed in duplicate.

I.3.2. Neuraminidase Inhibition Assay

[0103] The assay was performed in fetuin-coated microtitre plates. A 2-fold dilution series of the antiserum was prepared and mixed with a standardised amount of influenza A H3N2, H1N1 or influenza B virus. The test was based on the biological activity of the neuraminidase which enzymatically releases neuraminic acid from fetuin. After cleavage of the terminal neuraminic acid 6-D-glactose-N-acetyl-galactosamin was unmasked. Horseradish peroxidase (HRP)-labelled peanut agglutinin from Arachis hypogaea, which binds specifically to the galactose structures, was added to the wells. The amount of bound agglutinin can be detected and quantified in a substrate reaction with tetramethylbenzidine (TMB). The highest antibody dilution that still inhibits the viral neuraminidase activity by at least 50% was indicated is the NI titre.

I.3.3. Neutralising Antibody Assay

[0104] Neutralising antibody measurements were conducted on thawed frozen serum samples. Virus neutralisation by antibodies contained in the serum was determined in a microneutralization assay. The sera were used without further treatment in the assay. Each serum was tested in triplicate. A standardised amount of virus was mixed with serial dilutions of serum and incubated to allow binding of the antibodies to the virus. A cell suspension, containing a defined amount of MDCK cells was then added to the mixture of virus and antiserum and incubated at 33°C. After the incubation period, virus replication was visualised by hemagglutination of chicken red blood cells. The 50% neutralisation titre of a serum was calculated by the method of Reed and Muench.

I.3.4. Cell-mediated Immunity was evaluated by Cytokine Flow Cytometry (CFC)

[0105] Peripheral blood antigen-specific CD4 and CD8 T cells can be restimulated in vitro to produce IL-2, CD40L, TNF-alpha and IFN if incubated with their corresponding antigen. Consequently, antigen-specific CD4 and CD8 T cells can be enumerated by flow cytometry following conventional immunofluorescence labelling of cellular phenotype as well as intracellular cytokines production. In the present study, Influenza vaccine antigen as well as peptides derived from specific influenza protein were used as antigen to restimulate Influenza-specific T cells. Results were expressed as a frequency of cytokine(s)-positive CD4 or CD8 T cell within the CD4 or CD8 T cell sub-population.

I.3.5. Statistical Methods

I.3.5.1. Primary endpoints

[0106] • Percentage, intensity and relationship to vaccination of solicited local and general signs and symptoms during a 7 day follow-up period (i.e. day of vaccination and 6 subsequent days) after vaccination and overall.
• Percentage, intensity and relationship to vaccination of unsolicited local and general signs and symptoms during a 21 day follow-up period (i.e. day of vaccination and 20 subsequent days) after vaccination and overall.
• Occurrence of serious adverse events during the entire study.

I.3.5.2. Secondary endpoints

For the humoral immune response:

Observed variables:

[0107]

• At days 0 and 21: serum hemagglutination-inhibition (HI) and NI antibody titres, tested separately against each of the three influenza virus strains represented in the vaccine (anti-H1N1, anti-H3N2 & anti-B-antibodies).
• At days 0 and 21: neutralising antibody titres, tested separately against each of the three influenza virus strains represented in the vaccine

Derived variables (with 95% confidence intervals):

[0108]

• Geometric mean titres (GMTs) of serum HI antibodies with 95% confidence intervals (95% CI) pre and post-vaccination
• Seroconversion rates* with 95% CI at day 21
• Conversion factors** with 95% CI at day 21
• Seroprotection rates*** with 95% CI at day 21
• Serum NI antibody GMTs' (with 95% confidence intervals) at all timepoints.

* Seroconversion rate defined as the percentage of vaccinees who have at least a 4-fold increase in serum HI titres on day 21 compared to day 0, for each vaccine strain.
**Conversion factor defined as the fold increase in serum HI GMTs on day 21 compared to day 0, for each vaccine strain.
***Protection rate defined as the percentage of vaccinees with a serum HI titre =40 after vaccination (for each vaccine strain) that usually is accepted as indicating protection.

For the cell mediated immune (CMI) response

Observed variable

[0109] At days 0 and 21: frequency of cytokine-positive CD4/CD8 cells per 10^6 in different tests. Each test quantifies the response of CD4/CD8 T cell to:

• Peptide Influenza (pf) antigen (the precise nature and origin of these antigens needs to be given/explained
• Split Influenza (sf) antigen
• Whole Influenza (wf) antigen.

Derived variables:

[0110]

• cells producing at least two different cytokines (CD40L, IL-2, IFNγ, TNFα)
• cells producing at least CD40L and another cytokine (IL-2, TNFα, IFNγ)
• cells producing at least IL-2 and another cytokine (CD40L, TNFα, IFNγ)
• cells producing at least IFNγ and another cytokine (IL-2, TNFα, CD40L)
• cells producing at least TNFα and another cytokine (IL-2, CD40L, IFNγ)

1.3.5.3. Analysis of immunogenicity

[0111] The immunogenicity analysis was based on the total vaccinated cohort. For each treatment group, the following parameters (with 95% confidence intervals) were calculated:
- Geometric mean titres (GMTs) of HI and NI antibody titres at days 0 and 21
- Geometric mean titres (GMTs) of neutralising antibody titres at days 0 and 21.
- Conversion factors at day 21.
- Seroconversion rates (SC) at day 21 defined as the percentage of vaccinees that have at least a 4-fold increase in serum HI titres on day 21 compared to day 0.
- Protection rates at day 21 defined as the percentage of vaccinees with a serum HI titre =1:40.
- The frequency of CD4/CD8 T-lymphocytes secreting in response was summarised (descriptive statistics) for each vaccination group, at each timepoint (Day 0, Day 21) and for each antigen (Peptide influenza (pf), split influenza (sf) and whole influenza (wf)).
- Descriptive statistics in individual difference between timepoint (Post-Pre) responses for each vaccination group and each antigen (pf, sf, and wf) at each 5 different tests.
- A non-parametric test (Kruskall-Wallis test) was used to compare the location differences between the 3 groups and the statistical p-value was calculated for each antigen at each 5 different tests. All significance tests were two-tailed. P-values less than or equal to 0.05 were considered as statistically significant.

Example II - Preparation of the MPL/QS21 liposomal adjuvant

II.3 Preparation of MPL liquid suspension

[0112] The MPL (as used throughout the document it is an abbreviation for 3D-MPL, i.e. 3-O-deacylated monophosphoryl lipid A) liquid bulk is prepared from 3D-MPL lyophilized powder. MPL liquid bulk is a stable concentrated (around 1 mg/ml) aqueous dispersion of the raw material, which is ready-to-use for vaccine or adjuvant formulation. A schematic representation of the preparation process is given in Figure 1.

[0113] For a maximum batch size of 12g, MPL liquid bulk preparation is carried over in sterile glass containers. The dispersion of MPL consists of the following steps:

- suspend the MPL powder in water for injection
- desaggregate any big aggregates by heating (thermal treatment)
- reduce the particle size between 100 nm and 200 nm by microfluidization
- prefilter the preparation on a Sartoclean Pre-filter unit, 0.8/0.65μm
- sterile filter the preparation at room temperature (Sartobran P unit, 0.22 μm)

[0114] MPL powder is lyophilized by microfluidisation resulting in a stable colloidal aqueous dispersion (MPL particles of a size susceptible to sterile filtration). The MPL lyophilized powder is dispersed in water for injection In order to obtain a coarse 10 mg/ml suspension. The suspension then undergoes a thermal treatment under stirring. After cooling to room temperature, the microfluidization process is started in order to decrease the particle size. Microfluidization is conducted using Microfluidics apparatus M110EH, by continuously circulating the dispersion through a microfluidization interaction chamber, at a defined pressure for a minimum amount of passages (number of cycles: n_{min}). The microfluidization duration, representing the number of cycles, is calculated on basis of the measured flow rate and the dispersion volume. On a given equipment at a given pressure, the resulting flow rate may vary from one interaction chamber to another, and throughout the lifecycle of a particular interaction chamber. In the present example the interaction chamber used is of the type F20Y Microfluidics. As the microfluidization efficiency is linked to the couple pressure - flow rate, the processing time may vary from one batch to another. The time required for 1 cycle is calculated on basis of the flow rate. The time needed to obtain n cycles is calculated as follows:

\[n \times \frac{\text{quantity of MPL to treat (ml)}}{\text{flow rate (ml/min)}} \]

[0115] The number of cycles is thus adapted accordingly. Minimum amount of cycles to perform (n_{min}) are described for the preferred equipment and interaction chambers used. The total amount of cycles to run is determined by the result of a particle size measurement performed after n_{min} cycles. A particle size limit (d_{lim}) is defined, based on historical data. The measurement is realized by photon correlation spectroscopy (PCS) technique, and d_{lim} is expressed as an unimodal result (Z_{average}). Under this limit, the microfluidization can be stopped after n_{min} cycles. Above this limit, microfluidization is continued until satisfactory size reduction is obtained, for maximum another 50 cycles.

[0116] If the filtration does not take place immediately after microfluidization, the dispersed MPL is stored at +2 to +8°C awaiting transfer to the filtration area.

[0117] After microfluidization, the dispersion is diluted with water for injection, and sterile filtered through a 0.22μm
filter under laminal flow. The final MPL concentration is 1 mg/ml (0.80-1.20 mg/ml).

II.2 Preparation of MPL/QS21 liposomal adjuvant

[0118] This adjuvant, named AS01, comprises 3D-MPL and QS21 in a quenched form with cholesterol, and was made as described in WO 96/33739, incorporated herein by reference. In particular the AS01 adjuvant was prepared essentially as Example 1.1 of WO 96/33739. The AS01 B adjuvant comprises: liposomes, which in turn comprise dioleoyl phosphatidylcholine (DOPC), cholesterol and 3D MPL [in an amount of 1000 μg DOPC, 250 μg cholesterol and 50 μg 3D-MPL, each value given approximately per vaccine dose], QS21 [50 μg/dose], phosphate NaCl buffer and water to a volume of 0.5 ml.

[0119] The AS01E adjuvant comprises the same ingredients than AS01 B but at a lower concentration in an amount of 500 μg DOPC, 125 μg cholesterol, 25 μg 3D-MPL and 25 μg QS21, phosphate NaCl buffer and water to a volume of 0.5 ml.

[0120] In the process of production of liposomes containing MPL the DOPC (Dioleyl phosphatidylcholine), cholesterol and MPL are dissolved in ethanol. A lipid film is formed by solvent evaporation under vacuum. Phosphate Buffer Saline (9 mM Na₂HPO₄, 41 mM KH₂PO₄, 100 mM NaCl) at pH 6.1 is added and the mixture is submitted to prehomogenization followed by high pressure homogenisation at 15,000 psi (around 15 to 20 cycles). This leads to the production of liposomes which are sterile filtered through a 0.22 μm membrane in an aseptic (class 100) area. The sterile product is then distributed in sterile glass containers and stored in a cold room (+2 to +8°C).

[0121] In this way the liposomes produced contain MPL in the membrane (the "MPL in" embodiment of WO 96/33739).

[0122] QS21 is added in aqueous solution to the desired concentration.

Example III - Pre-clinical evaluation of adjuvanted and unadjuvanted influenza vaccines in ferrets

III.1. Rationale and objectives

[0123] Influenza infection in the ferret model closely mimics human influenza, with regards both to the sensitivity to infection and the clinical response.

[0124] The ferret is extremely sensitive to infection with both influenza A and B viruses without prior adaptation of viral strains. Therefore, it provides an excellent model system for studies of protection conferred by administered influenza vaccines.

[0125] This study investigated the efficacy of various Trivalent Split vaccines, adjuvanted or not, to reduce disease symptoms (body temperature) and viral shedding in nasal secretions of ferrets challenged with homologous strains.

[0126] The objective of this experiment was to demonstrate the efficacy of an adjuvanted influenza vaccine compared to the plain (un-adjuvanted) vaccine.

[0127] The end-points were:

1) Primary end-point: reduction of viral shedding in nasal washes after homologous challenge:

2) Secondary end-points: Analysis of the humoral response by HI titers.

III.2. Experimental design

III.2.1. Treatment/group (Table 1)

[0128] Female ferrets (Mustela putorius furo) aged 14-20 weeks were obtained from MISAY Consultancy (Hampshire, UK). Ferrets were primed on day 0 with heterosubtypic strain H1N1 A/Stockholm/24/90 (4 Log TCID₅₀/ml). On day 21, ferrets were injected intramuscularly with a full human dose (500 μg vaccine dose, 15 μg HA/strain) of a combination of H1N1 A/New Caledonia/20/99, H3N2 A/Panama/2007/99 and B/Shangdong/7/97. Ferrets were then challenged on day 42 by intranasal route with an heterosubtypic strain H3N2 A/Wyoming/3/2003 (4.5 Log TCID₅₀/ml).
III.2.2. Preparation of the vaccine formulations (Table 2)

Formulation 1: Trivalent Split Plain (un-adjuvanted) formulation:

PBS 10 fold concentrated (pH 7.4 when one fold concentrated) as well as a mixture containing Tween 80, Triton X-100 and VES (quantities taking into account the detergents present in the strains) are added to water for injection. After 5 min stirring, 15μg of each strain H1N1, H3N2 and 17.5μg of B strain are added with 10 min stirring between each addition. The formulation is stirred for minimum 15 minutes and stored at 4°C if not administered directly.

Formulation 2: Trivalent Split influenza adjuvanted with MPL/QS21 in liposomes:

PBS 10 fold concentrated (pH 7.4 when one fold concentrated) as well as a mixture containing Tween 80, Triton X-100 and VES (quantities taking into account the detergents present in the strains) are added to water for injection. After 5 min stirring, 15μg of each strain H1N1, H3N2 and 17.5μg of B strain are added with 10 min stirring between each addition. The formulation is stirred for 15 minutes. A premix of so called "DQS21-MPLin" is added to the formulation which is then stirred for minimum 15 minutes. The DQS21-MPLin premix is a mixture of liposomes (made of DOPC 40mg/ml, cholesterol 10mg/ml, MPL 2mg/ml) and the immunostimulant QS21. This premix is incubated for a minimum of 15 minutes prior to addition to the trivalent split mixture. The concentration of MPL and QS21 in the final formulation is 50μg per 500μl. The formulation is stored at 4°C if not administered directly.

Remark: In each formulation, PBS 10 fold concentrated is added to reach isotonicity and is 1 fold concentrated in the final volume. H2O volume is calculated to reach the targeted volume.

<p>| Table 2: Final composition of formulations 1 and 2 (Formulations prepared with split strains (for 500μl)) |</p>
<table>
<thead>
<tr>
<th>Formulation</th>
<th>Antigen</th>
<th>Tween 80</th>
<th>Triton X-100</th>
<th>VES</th>
<th>DOPC</th>
<th>Cholesterol</th>
<th>MPL</th>
<th>QS21</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H1N1:15μg, H3N2: 15μg, B: 17.5μg</td>
<td>375μg</td>
<td>55μg</td>
<td>50μg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>H1N1:15μg, H3N2: 15μg, B: 17.5μg</td>
<td>375μg</td>
<td>55μg</td>
<td>50μg</td>
<td>1mg</td>
<td>250μg</td>
<td>50μg</td>
<td>50μg</td>
</tr>
</tbody>
</table>

III.2.3. Read-outs (Table 3)

Table 3

<table>
<thead>
<tr>
<th>Readout</th>
<th>Timepoint</th>
<th>Sample-type</th>
<th>Analysis method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral shedding</td>
<td>D+1 to D+7 Post challenge</td>
<td>Nasal washes</td>
<td>Titration</td>
</tr>
<tr>
<td>Anti-HI antibodies (HI titers)</td>
<td>Pre, Post priming, Post immunization, Post challenge</td>
<td>Sera</td>
<td>Hemagglutination inhibition test</td>
</tr>
</tbody>
</table>
III.3. Results

[0133] A schematic representation of the results is given in Figures 1 and 2.

III.3.1. Humoral immunity (Figure 1).

[0134] Haemagglutination inhibition activity against the H3N2 vaccine strains (vaccine strain A/Panama/2007/99 and challenge strain A/Wyoming/3/2003) was detected in sera from 6 animals per group at Day 17 after intranasal heterologous priming and at Day 21 Post-immunization and Day 13 Post-challenge.

[0135] Anti-Hemagglutinin antibody titers to the three influenza virus strains were determined using the hemagglutination inhibition test (HI) as detailed under Example I.2.1. The conclusions are as follows:

> For the two A/H3N2 strains and for all groups, a boost of HI titers was observed in all vaccinated groups after immunization.
> Post-immunization with A/Panama/2007/99, statistically significant higher anti-A/Panama/2007/99 HI titers were observed when the Trivalent Split vaccine was adjuvanted with MPL/QS21 in liposomes compared to the Trivalent Split Plain vaccine.
> After immunization with A/Panama/2007/99, only the Trivalent Split adjuvanted with MPL/QS21 in liposomes was able to significantly increase HI titers to the heterologous strain A/Wyoming/3/2003 (cross-reactivity before challenge with this drift strain).
> After challenge with A/Wyoming/3/2003, an significant increase of anti-A/Wyoming/3/2003 HI titers was observed for both Trivalent Split Plain and Trivalent Split adjuvanted with MPL/QS21 in liposomes.
> For A/New Caledonia/20/99 and B/Shangdong/7/97 strains, statistically significant higher HI titers were observed when the Trivalent Split was adjuvanted with MPL/QS21 in liposomes compared to the Trivalent Split Plain vaccine.

III.3.2. Viral shedding (Figure 3).

[0136] Viral titration of nasal washes was performed on 6 animals per group as detailed under Example I.2.3. The nasal washes were performed by administration of 5 ml of PBS in both nostrils in awake animals. The inoculation was collected in a Petri dish and placed into sample containers at -80°C.

> Two days after challenge, statistically significant lower viral shedding was observed with Trivalent Split adjuvanted with MPL/QS21 in liposomes compared to Trivalent Split Plain.
> On Day 49 (7 days Post-challenge), no virus was detected in nasal washes.

III.3.3. Conclusion of the experiment

[0137] Higher humoral responses (HI titers) were observed with Trivalent Split adjuvanted with MPL/QS21 in liposomes compared to the Trivalent Split Plain for all 4 strains.

[0138] After immunization with A/Panama/2007/99, only the Trivalent Split adjuvanted with MPL/QS21 in liposomes was able to significantly increase HI titers to the heterologous strain A/Wyoming/3/2003 (cross-reactivity before challenge with this strain).
[0139] MPL/QS21 in liposomes formulations showed added benefit in terms of protective efficacy in ferrets (lower viral shedding after heterologous challenge). The cross-reaction observed after immunization with Trivalent Split MPL/QS21 in liposomes against the drift strain used for the challenge seemed to correlate with the protection effect observed in these ferrets.

Example IV - Pre-clinical evaluation of adjuvanted and unadjuvanted influenza vaccines in C57BI/6 primed mice

IV.1. Experimental design and objective

[0140] C57BI/6 mice primed with heterologous strains were used for this experiment.

[0141] The purpose was to compare the humoral (HI titers) and CMI (ICS, intracellular cytokine staining) immune responses induced by a GlaxoSmithKline commercially available Trivalent split vaccine (Fluarix™) versus a Trivalent subunit vaccine (Chiron’s vaccine Agrippal™) as well as the CMI response obtained with these vaccines adjuvanted with Liposomes containing 3D-MPL alone, DQS21 (QS21 in liposomes, i.e. detoxified QS21) alone or MPL/QS21 in liposomes. In the example hereinbelow, formulations were prepared starting from the split monobulks to reach the same composition than in the Fluarix vaccine and not from commercially available Fluarix doses. The formulations obtained were called
"Fluarix like".

IV.1.1. Treatment/group

Female C57Bl/6 mice aged 6-8 weeks were obtained from Harlan Horst, Netherlands. Mice were primed on day 0 with heterosubtypic strains (5 µg HA whole inactivated H1N1 A/Beijing/262/95, H3N2 A/Panama/2007/99, B/Shanghai/7/97). On day 28, mice were injected intramuscularly with 1.5 µg HA Trivalent split (A/New Caledonia/20/99, A/Wyoming/3/2003, B/Jiangsu/10/2003) plain or adjuvanted (see groups in Tables 4 to 6 below).

Table 4

<table>
<thead>
<tr>
<th>Gr</th>
<th>Antigen / Formulation</th>
<th>Other treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trivalent splits* / Plain (un-adjuvanted) = Fluarix like</td>
<td>Heterologous priming D0</td>
</tr>
<tr>
<td>2</td>
<td>Trivalent split* / Liposomes containing 3D-MPL</td>
<td>Heterologous priming D0</td>
</tr>
<tr>
<td>3</td>
<td>Trivalent split* / DQS21</td>
<td>Heterologous priming D0</td>
</tr>
<tr>
<td>4</td>
<td>Trivalent split* / MPL/QS21 in liposomes</td>
<td>Heterologous priming D0</td>
</tr>
<tr>
<td>5</td>
<td>Agripal™ (sub-unit)</td>
<td>Heterologous priming D0</td>
</tr>
<tr>
<td>6</td>
<td>Agripal™ (sub-unit) / Liposomes containing 3D-MPL</td>
<td>Heterologous priming D0</td>
</tr>
<tr>
<td>7</td>
<td>Agripal™ (sub-unit) / DQS21</td>
<td>Heterologous priming D0</td>
</tr>
<tr>
<td>8</td>
<td>Agripal™ (sub-unit) / MPL/QS21 in liposomes</td>
<td>Heterologous priming D0</td>
</tr>
<tr>
<td>9</td>
<td>PBS</td>
<td>Heterologous priming D0</td>
</tr>
</tbody>
</table>

* Fluarix like. 16 mice/group

IV.1.2. Preparation of the vaccine formulations

Formulation for group 1:

PBS 10 fold concentrated (pH 7.4 when one fold concentrated) as well as a mixture containing Tween 80, Triton X-100 and VES (quantities taking into account the detergents present in the strains) are added to water for injection.

After 5 min stirring, 15µg of each strain H1N1, H3N2 and 15µg of B strain are added with 10 min stirring between each addition. The formulation is stirred for minimum 15 minutes and stored at 4°C if not administered directly.

Formulation for group 2:

PBS 10 fold concentrated (pH 7.4 when one fold concentrated) as well as a mixture containing Tween 80, Triton X-100 and VES (quantities taking into account the detergents present in the strains) are added to water for injection.

After 5 min stirring, 15µg of each strain H1N1, H3N2 and 15µg of B strain are added with 10 min stirring between each addition. Concentrated liposomes containing 3D-MPL (made of DOPC 40mg/ml, Cholesterol 10mg/ml, 3D-MPL 2mg/ml) are added to reach a final MPL concentration of 50 µg per dose. The formulation is then stirred minimum 15 minutes and stored at 4°C if not administered directly.

Formulation for group 3:

PBS 10 fold concentrated (pH 7.4 when one fold concentrated) as well as a mixture containing Tween 80, Triton X-100 and VES (quantities taking into account the detergents present in the strains) are added to water for injection.

After 5 min stirring, 15µg of each strain H1N1, H3N2 and 15µg of B strain are added with 10 min stirring between each addition. A premix made of liposomes (made of DOPC 40mg/ml, Cholesterol 10mg/ml) and QS21 called "DQS21" is then added to reach a QS21 concentration of 50µg per dose. This premix is incubated at least for 15 minutes prior to addition to the trivalent split mixture. The formulation is stirred for minimum 15 minutes and stored at 4°C if not administered directly.
Formulation for group 4:

[0146] PBS 10 fold concentrated (pH 7.4 when one fold concentrated) as well as a mixture containing Tween 80, Triton X-100 and VES (quantities taking into account the detergents present in the strains) are added to water for injection. After 5 min stirring, 15μg of each strain H1N1, H3N2 and 15μg of B strain are added with 10 min stirring between each addition. The formulation is stirred for 15 minutes. A mixture made of liposomes containing 3D-MPL (made of DOPC 40mg/ml, Cholesterol 10mg/ml, 3D-MPL 2mg/ml) and QS21 is then added to reach QS21 and MPL concentrations of 50μg per dose. This mixture is incubated at least for 15 minutes prior to addition to the trivalent split mixture. The so called "trivalent split MPL/QS21 in liposomes" formulation is stirred for minimum 15 minutes and stored at 4°C if not administered directly.

[0147] Remark: In groups 1 to 4, PBS 10 fold concentrated is added to reach isotonicity and is 1 fold concentrated in the final volume. H2O volume is calculated to reach the targeted volume.

Formulation for group 5:

[0148] One Aggripal™ dose is mixed with equal volume of PBS mod pH 7.4. The formulation is stirred for minimum 15 minutes and stored at 4°C if not administered directly.

Formulation for group 6:

[0149] PBS pH 7.4 and one Aggripal™ dose are mixed. Liposomes containing 3D-MPL (made of DOPC 40mg/ml, Cholesterol 10mg/ml, 3D-MPL 2mg/ml) are then added under stirring to reach the equivalent of 50μg of MPL per dose. The formulation is stirred for minimum 15 minutes and stored at 4°C if not administered directly.

Remark: PBS is added to reach isotonicity in the final volume. Aggripal is half the formulation volume.

Formulation for group 7:

[0150] PBS pH 7.4 and one Aggripal™ dose are mixed. A premix of liposomes (made of DOPC 40mg/ml, Cholesterol 10mg/ml) and QS21 so called "DQS21" is then added under stirring to reach the equivalent of 50μg of QS21. This premix is incubated for at least 15 minutes prior to addition. The formulation is stirred minimum 15 minutes and stored at 4°C if not administered directly.

Remark: PBS is added to reach isotonicity in the final volume. Aggripal™ is half the formulation volume.

Formulation for group 8:

[0151] PBS pH 7.4 and one Aggripal™ dose are mixed. A premix of so called "DQS21-MPLin" is added under stirring to the formulation. The DQS21-MPLin premix is a mixture of liposomes (made of DOPC 40mg/ml, cholesterol 10mg/ml, MPL 2mg/ml) and the immunostimulant QS21. This premix is incubated for at least 15 minutes prior to addition to the Aggripa/PBS mixture. The quantity of MPL and QS21 in the formulation is 50μg each. The formulation is stirred minimum 15 minutes and stored at 4°C if not administered directly.

Remark: PBS is added to reach isotonicity in the final volume. Aggripal is half the formulation volume.

<table>
<thead>
<tr>
<th>Group</th>
<th>Antigen</th>
<th>Tween 80</th>
<th>Triton X-100</th>
<th>VES</th>
<th>DOPC</th>
<th>Cholesterol</th>
<th>MPL</th>
<th>QS21</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H1N1: 15μg H3N2: 15μg B: 17.5μg</td>
<td>750μg</td>
<td>110μg</td>
<td>100μg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Identical to 1</td>
<td>Identical to 1</td>
<td>110μg</td>
<td>100μg</td>
<td>1mg</td>
<td>250μg</td>
<td>50μg</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Identical to 1</td>
<td>Identical to 1</td>
<td>110μg</td>
<td>100μg</td>
<td>1mg</td>
<td>250μg</td>
<td>-</td>
<td>50μg</td>
</tr>
<tr>
<td>4</td>
<td>Identical to 1</td>
<td>Identical to 1</td>
<td>110μg</td>
<td>100μg</td>
<td>1mg</td>
<td>250μg</td>
<td>50μg</td>
<td>50μg</td>
</tr>
</tbody>
</table>
IV.1.3. Read-outs (Table 7)

Table 6: Final composition of the formulations 5 to 8 prepared with Aggripal™ vaccine (1 ml)

<table>
<thead>
<tr>
<th>Group</th>
<th>Antigen</th>
<th>DOPC</th>
<th>Cholesterol</th>
<th>MPL</th>
<th>QS21</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1 dose of Aggripal vaccine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Identical to 5</td>
<td>1mg</td>
<td>250µg</td>
<td>50µg</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Identical to 5</td>
<td>1mg</td>
<td>250µg</td>
<td>-</td>
<td>50µg</td>
</tr>
<tr>
<td>8</td>
<td>Identical to 5</td>
<td>1mg</td>
<td>250µg</td>
<td>50µg</td>
<td>50µg</td>
</tr>
</tbody>
</table>

IV. 2. Results

IV.2.1. Humoral response (HI titers 21 days post immunization).

Humoral responses by HI titers - Figure 4.

Haemagglutination inhibition activity against the three vaccine strains (A/New Caledonia/20/99, A/Wyoming/3/2003, B/Jiangsu/10/2003) was detected in sera from 8 animals per group at Day 21 Post-immunization.

> Compared to mice immunized with PBS, an increase in HI titers was observed after immunization with all Flu vaccine candidates tested for all three strains (Trivalent split or Trivalent subunit vaccine).

> For all three strains, statistically significant higher HI titers were observed in mice immunized with Trivalent split adjuvanted with DQS21 alone or MPL/QS21 in liposomes compared to mice immunized with Trivalent split Flu plain or adjuvanted with Liposomes containing 3D-MPL alone. The ranking for the humoral response was as follow: (MPL/QS21 in liposomes = DQS21 alone) > (Liposomes containing 3D-MPL alone = Plain) > PBS

> For all three strains, statistically significant higher HI titers were observed in mice immunized with Trivalent subunit adjuvanted with DQS21 alone, Liposomes containing 3D-MPL alone or MPL/QS21 in liposomes compared to mice immunized with Trivalent split plain. The ranking for the humoral response was as follow: (MPL/QS21 in liposomes = DQS21 alone = Liposomes containing 3D-MPL alone) > Plain > PBS.

> Trivalent split and Trivalent subunit induced similar HI titers when formulations were not adjuvanted or adjuvanted with DQS21 alone or MPL/QS21 in liposomes.

IV.2.2. Cell-mediated immune response (ICS at day 7 post immunization).

CD4 T cell responses - Figure 5

PBMCs from 8 mice per group were harvested at Day 7 Post-immunization and tested in 4 pools of 2 mice/group.

In terms of Flu whole virus-specific total CD4+ T cells (expressing IL-2, IFN-γ and both cytokines):

> Whatever the formulation, identical CD4+ T cell responses were observed between the Trivalent split and Trivalent subunit vaccines.

> Higher CD4+ T cell responses were observed for Trivalent formulations (split or subunit) adjuvanted with MPL/QS21 in liposomes when compared to Trivalent formulations (split or subunit) plain or adjuvanted with Liposomes containing 3D-MPL alone or DQS21 alone.
EP 2 364 722 B1

> For the cellular response induced by a Trivalent formulation (split or subunit), there is a synergic effect of Liposomes containing 3D-MPL + DQS21 compared to DQS21 alone or Liposomes containing 3D-MPL alone.

> The ranking for the cellular response was as follow: MPL/QS21 in liposomes > (Liposomes containing 3D- MPL alone = DQS21 alone = Plain = PBS).

IV.3. Summary of results and conclusions

[0156]

> For all three strains, statistically significant higher HI titers were observed in mice immunized with Trivalent formulations (split or subunit) adjuvanted with DQS21 alone or MPL/QS21 in liposomes compared to mice immunized with Trivalent formulations (split or subunit) plain. Liposomes containing 3D-MPL alone seemed to induced higher humoral response when formulated with Trivalent subunit than Trivalent split.

> Whatever the formulation, similar CD4+ T cell responses were obtained for Trivalent split (Fluarix) and Trivalent subunit (Agrippal).

> Trivalent formulations (split or subunit) adjuvanted with MPL/QS21 in liposomes induced higher CD4+ T cell responses compared to Trivalent formulations (split or subunit) plain or adjuvanted with Liposomes containing 3D-MPL alone or QS21 in liposomes (DQS21) alone.

Example V - preclinical comparison of a vaccine containing a split influenza antigen preparation adjuvanted with 3D-MPL/QS21 in a liposomal formulation (3D-MPL at two different concentrations)

V.1 - mice.

V.1.1 - experimental design and objective.

[0157] C57B1/6 mice primed with heterologous strains were used for this experiment. The purpose was to analyse the humoral (HI titers) and CMI (ICS, intracellular cytokine staining) immune responses induced by a GlaxoSmithKline commercially available Trivalent split vaccine (Fluarix™) in un-adjuvanted form, and when adjuvanted with liposomes containing two different concentrations of 3D-MPL and QS21.

V.1.2 Treatment/Group

[0158] Female C57B1/6 mice aged 8 weeks were obtained from Harlan Horst, Netherlands. Mice were primed intranasally on day 0 with heterosubtypic strains (whole inactivated A/Beijing/262/95, H3N2 A/Panama/2007/99, B/Shandong/7/97). On day 28, mice were injected intramuscularly with Trivalent Split (A/New Caledonia,A/Wyoming, B/Jiangsu) plain or adjuvanted with two different concentrations of immunostimulants in liposomal formulations (see groups in table 8 below).

<table>
<thead>
<tr>
<th>Group</th>
<th>Antigen(s) + dosage</th>
<th>Formulation + dosage</th>
<th>Other treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trivalent Split Flu - 1.5 µg/strain/ 50 µl</td>
<td>Plain</td>
<td>Heterologous priming D0 whole inactivated 5µg/20µl intranasally</td>
</tr>
<tr>
<td>2</td>
<td>Trivalent Split Flu - 1.5 µg/strain/ 50 µl</td>
<td>Liposomes containing 3D-MPL 50µg per 0.5ml dose</td>
<td>Heterologous priming D0 whole inactivated 5µg/20µl intranasally</td>
</tr>
<tr>
<td>3</td>
<td>Trivalent Split Flu - 1.5 µg/strain/ 50 µl</td>
<td>DQS21 50µg per 0.5ml dose</td>
<td>Heterologous priming D0 whole inactivated 5µg/20µl intranasally</td>
</tr>
<tr>
<td>4</td>
<td>Trivalent Split Flu - 1.5 µg/strain/ 50 µl</td>
<td>MPL and QS21 25µg per 0.5ml dose</td>
<td>Heterologous priming D0 whole inactivated 5µg/20µl intranasally</td>
</tr>
<tr>
<td>5</td>
<td>Trivalent Split Flu - 1.5 µg/strain/ 50 µl</td>
<td>MPL and QS21 50µg per 0.5ml dose</td>
<td>Heterologous priming D0 whole inactivated 5µg/20µl intranasally</td>
</tr>
<tr>
<td>6</td>
<td>PBS</td>
<td>None</td>
<td>Heterologous priming D0 whole inactivated 5µg/20µl intranasally</td>
</tr>
</tbody>
</table>
Formulations were prepared as in example IV.

Humoral responses by HI titers - Figure 24.

Hemagglutination inhibition activity against the 3 vaccine strains was detected in sera from 9 animals/group on day 21 post immunisation.

- Compared to mice immunized with PBS, an increase in HI titres was observed after immunization with all Flu vaccine candidates tested for all three strains.
- For all three strains, statistically significant higher HI titers were observed in mice immunized with Trivalent Split adjuvant with MPL and QS21 at either concentration compared to mice immunized with the Trivalent Flu Split Plain (p value max = 0.03)
- No statistically significant difference was observed between the two liposomal adjuvant groups.

Cell-mediated immune response (ICS at day 7 post-immunisation) - Figure 25.

PBMC’s from 9 mice/group were harvested 7 days post-immunisation and tested in three pools of 3 mice/group. In terms of whole Flu virus-specific CD4+ T cells expressing IL-2, IFN-γ or both cytokines:

- As can be seen from figure 25 the highest IFN-γ CD4+ T cell-specific responses were obtained after immunization with trivalent split adjuvanted with the highest concentration of immunostimulants. However, IL2 and IL2+ IFN-γ T cell responses were similar between the two concentrations of immunostimulants.

Example VI - Clinical trial in an elderly population aged over 65 years with a vaccine containing a split influenza antigen preparation adjuvanted with MPL/QS21 in a liposomal formulation (3D-MPL at two different concentrations)

VI.1. Study design and objectives

An open, randomized phase I/II study to demonstrate the non inferiority in term of cellular mediated immune response of GlaxoSmithKline Biologicals influenza candidate vaccines containing various adjuvants administered in elderly population (aged 65 years and older) as compared to Fluarix™ (known as α-Rix™ in Belgium) administered in adults (18-40 years)

Four parallel groups were assigned:

- 75 adults (aged 18-40 years) in one control group receiving one dose of Fluarix™ (Fluarix group)
- 200 elderly subjects (aged 65 years and older) randomized 3:3:2 into three groups:
 - one group with 75 subjects receiving influenza vaccine adjuvanted with AS01 B
 - One group with 75 subjects receiving influenza vaccine adjuvanted with AS01 E
 - Reference Flu group with 50 subjects receiving one dose of Fluarix™

Primary Objective

The primary objective is to demonstrate the non inferiority 21 days post-vaccination of the influenza adjuvanted vaccines administered in elderly subjects (aged 65 years and older) as compared to Fluarix™ administered in adults (aged 18-40 years) in terms of frequency of influenza-specific CD4 T-lymphocytes producing at least two different cytokines (CD40L, IL-2, TNF-α, IFN-γ).

Secondary objectives

The secondary objectives are:

1) To evaluate the safety and reactogenicity of vaccination with candidate influenza vaccines adjuvanted during 21 days following the intramuscular administration of the vaccine in elderly subjects (aged 65 years and older). Fluarix™ is used as reference.
2) To evaluate the humoral immune response (anti-haemagglutinin titre) 21, 90 and 180 days after vaccination with
influenza candidate vaccines adjuvanted. Fluarix™ is used as reference. ’

Tertiary Objective

[0167] The tertiary objective is to evaluate the cell mediated immune response (production of IFN-γ, IL-2, CD40L, and TNF-α and memory B-cell response) 21, 90 and 180 days after vaccination with adjuvanted influenza-vaccines. Fluarix™ is used as reference.

VI.2. Vaccine composition and administration

[0168] Two different adjuvants have been used:

1. AS01 B a liposome-based adjuvant containing 50 µg MPL and QS21
2. AS01 E a two-fold diluted formulation of AS01 B

Control: full dose of Fluarix™ by IM administration.

[0169] All vaccines are intended for intramuscular administration. The strains used in the five vaccines are the ones that have been recommended by the WHO for the 2005-2006 Northern Hemisphere season, i.e. A/New Caledonia/20/99 (H1N1), A/New York/7/2004 (H3N2) and B/Jiangsu/10/2003.

[0170] The three inactivated split virion antigens (monovalent bulks) used in formulation of the adjuvanted influenza candidate vaccine, are exactly the same as the active ingredients used in formulation of the commercial Fluarix™/α-Rix™ - GSK Bio’s split virion inactivated influenza vaccine. They are derived from egg-grown viruses. The influenza strains are the recommended ones for the 2005/2006 season, as used in the formulation of the commercial Fluarix™/α-Rix™ 2005/2006.

[0171] The strains used in the three vaccines are the ones that have been recommended by the WHO for the 2005-2006 Northern Hemisphere season i.e.

• A/New Caledonia/20/99 (H1N1) IVR-116
• A/New York/55/2004 (H3N2) NYMC X-157
• B/Jiangsu/10/2003

[0172] Like Fluarix™/α-Rix™ the adjuvanted vaccine contains 15 µg haemagglutinin (HA) of each influenza virus strain per dose.

VI.2.1. Description of the AS01B adjuvanted vaccine lots

[0173] The AS01 B-adjuvanted influenza candidate vaccine is a 2 components vaccine consisting of a concentrated trivalent inactivated split virion antigens presented in a glass vial and of a glass vial containing the AS01 B adjuvant. At the time of injection, the content of the adjuvant vial is withdrawn and injected into the vial that contains the concentrated trivalent inactivated split virion antigens. After mixing the content is withdrawn into the syringe and the needle is replaced by an intramuscular needle. The used needle is replaced by an intramuscular needle and the volume is corrected to 1 mL. One dose of the reconstituted AS01 B-adjuvanted influenza candidate vaccine corresponds to 1 mL.

[0174] The AS01B-adjuvanted influenza candidate vaccine is a preservative-free vaccine.

VI.2.2. Composition of the AS01B adjuvanted clinical lot

[0175] One dose of the reconstituted AS01 B-adjuvanted influenza vaccine corresponds to 1 mL. Its composition is given in Table 8. It contains 15 µg HA of each influenza virus strain as in the registered Fluarix™/α-Rix® vaccine.

Table 8 - Composition (influenza and adjuvant components) of the reconstituted AS01B adjuvanted influenza candidate vaccine

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity per dose</th>
<th>Analytical Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVE INGREDIENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inactivated split virions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A/New Caledonia/20/99 (H1N1) IVR-116</td>
<td>15 µg HA</td>
<td>Ph. Eur. 158</td>
</tr>
<tr>
<td>- A/New York/55/2004 (H3N2) NYMC X-157</td>
<td>15 µg HA</td>
<td>Ph. Eur. 158</td>
</tr>
</tbody>
</table>
VI.2.3. Production method of the AS01B adjuvanted vaccine lot

The manufacturing of the AS01B-adjuvanted influenza vaccine consists of three main steps:

- Formulation of the trivalent final bulk (2 x concentrated) without adjuvant and filling in the antigen container
- Preparation of the AS01B adjuvant
- Extemporaneous reconstitution of the AS01B adjuvanted split virus vaccine.

Formulation of the trivalent final bulk without adjuvant and filling in the antigen container

The volumes of the three monovalent bulks are based on the HA content measured in each monovalent bulk prior to the formulation and on a target volume of 1320 ml. Concentrated phosphate buffered saline PO4 Na/K2 (80 μl/dose) and a pre-mixture of Tween 80, Triton X-100 and α-tocopheryl hydrogen succinate are diluted in water for injection. The three concentrated monobulks (A/New Caledonia/20/99 IVR-116, A/New York/55/2004 NYMC X-157, B/Jiangsu/10/2003) are then successively diluted in the resulting phosphate buffered saline / Tween 80 - Triton X-100 - α-tocopheryl hydrogen succinate solution (pH 7.8, 81 mM NaCl, 1.56 mM KCl, 4.79 mM Na2HPO4, 0.87 mM KH2PO4, 7.2 mM NaH2PO4, 72.8 mM K2HPO4, 750 mg/ml Tween 80, 110 μg/ml Triton X-100 and 100 μg/ml α-tocopheryl hydrogen succinate) in order to have a final concentration of 30 μg HA of A (H1N1 and H3N2) strains per ml of trivalent final bulk (15 μg HA/A strain /500 μl trivalent final bulk) and 35 μg HA of B strain (17.5 μg HA/B strain /500 μl trivalent final bulk). Between addition of each monovalent bulk, the mixture is stirred for 10-30 minutes at room temperature. After addition of the last monovalent bulk and 15-30 minutes of stirring, the pH is checked and adjusted to 7.65 ± 0.25 with HCl or NaOH.

Preparation of AS01B adjuvant and filling in the adjuvant container

Component	**Quantity per dose**	**Analytical Reference**
ACTIVE INGREDIENTS
- B/Jiangsu/10/2003 | 15 μg HA | Ph. Eur. 158

AS01B ADJUVANT

- Liposomes
 • dioleoyl phosphatidylcholine (DOPC)
 • Cholesterol
 • MPL
 1000 μg | GSK Bio 3217
 250 μg | Ph. Eur. 0993
 50 μg | GSK Bio 2972

- QS21
 50 μg | GSK Bio 3034

Component	**Quantity per dose**	**Analytical Reference**
ACTIVE INGREDIENTS
- B/Jiangsu/10/2003 | 15 μg HA Ph. Eur. 158

AS01B ADJUVANT

- Liposomes
 • dioleoyl phosphatidylcholine (DOPC)
 • Cholesterol
 • MPL
 1000 μg | GSK Bio 3217
 250 μg | Ph. Eur. 0993
 50 μg | GSK Bio 2972

- QS21
 50 μg | GSK Bio 3034
distributed in sterile glass containers and stored in the cold room (+2 to +8°C).

[0183] Sterile bulk preparation of liposomes is mixed with sterile QS21 bulk solution. After 30 min stirring, this mixture is added to a mixture of water for injection and phosphate 500mM, NaCl 1 M pH 6.1 when diluted 10 times. Quantity of the phosphate 500mM, NaCl 1 M pH 6.1 when diluted 10 times, is calculated to reach isotonicity in the final volume. The pH is checked. The adjuvant is then sterile filtered (0.22 μm) and aseptically distributed into vials. The vials are stored at +2 to +8°C.

[0184] The AS01 B diluent is an opalescent colorless liquid, free from foreign particles, contained in a sterile, type 1 glass vial. The target fill for each vial is 0.7 ml in order to meet the specification (≥ 0.5 ml).

Extemporaneous reconstitution of the AS01B adjuvanted split virus vaccine

[0185] At the time of injection, the content of the vial containing the adjuvant is withdrawn and is injected into the vial that contains the concentrated trivalent inactivated split virion antigens. After mixing, the content is withdrawn into the syringe and the needle is replaced by an intramuscular needle, and the volume is corrected to 1 ml. One dose of the reconstituted AS01B-adjuvanted influenza candidate vaccine corresponds to 1 mL.

VI.2.4. Description of the AS01 E adjuvanted vaccine lots

[0186] The AS01 E adjuvanted influenza candidate vaccine is a 3 components vaccine consisting of a concentrated trivalent inactivated split virion antigens presented in a glass vial, a glass vial containing the AS01 B adjuvant and a glass vial containing the diluent (sodium chloride solution for injection) for the two-fold dilution of AS01 B.

[0187] To prepare the AS01 E adjuvant the content of the diluent vial is withdrawn with a syringe and injected into the vial containing the AS01 B adjuvant, followed by mixing. At the time of injection, 600 μl AS01 E adjuvant is withdrawn with a syringe from the AS01 E vial and injected into the vial that contains the concentrated trivalent inactivated split virion antigens. After mixing the content is withdrawn into the syringe and the needle is replaced by an intramuscular needle. One dose of the reconstituted AS01 B-adjuvanted influenza candidate vaccine corresponds to 1 mL.

[0188] The AS01 E-adjuvanted influenza candidate vaccine is a preservative-free vaccine.

VI.2.5. Composition of the AS01E adjuvanted clinical lot

[0189] One dose of the reconstituted AS01 E-adjuvanted influenza vaccine corresponds to 1 mL. Its composition is given in Table 9. It contains 15 μg HA of each influenza virus strain as in the registered Fluarix™/α-Rix® vaccine.

Table 9 Composition (influenza and adjuvant components) of the reconstituted AS01E adjuvanted influenza candidate vaccine

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity per dose</th>
<th>Analytical Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVE INGREDIENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inactivated split virions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A/New Caledonia/20/99 (H1N1) IVR-116</td>
<td>15 μg HA</td>
<td>Ph. Eur. 158</td>
</tr>
<tr>
<td>- A/New York/55/2004 (H3N2) NYMC X-157</td>
<td>15 μg HA</td>
<td>Ph. Eur. 158</td>
</tr>
<tr>
<td>- B/Jiangsu/10/2003</td>
<td>15 μg HA</td>
<td>Ph. Eur. 158</td>
</tr>
<tr>
<td>AS01B ADJUVANT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Liposomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• dioleoyl phosphatidylcholine (DOPC)</td>
<td>500 μg</td>
<td>GSK Bio 3217</td>
</tr>
<tr>
<td>• Cholesterol</td>
<td>125 μg</td>
<td>Ph. Eur. 0993</td>
</tr>
<tr>
<td>• MPL</td>
<td>25 μg</td>
<td>GSK Bio 2972</td>
</tr>
<tr>
<td>- QS21</td>
<td>25 μg</td>
<td>GSK Bio 3034</td>
</tr>
</tbody>
</table>

VI.2.6. Production method of the AS01E adjuvanted vaccine lot

[0190] The manufacturing of the AS01B-adjuvanted influenza vaccine consists of three main steps:
Formulation of the trivalent final bulk (2 x concentrated) without adjuvant and filling in the antigen container

Preparation of the AS01 B adjuvant

Preparation of the AS01 E adjuvant followed by extemporaneous reconstitution of the AS01 E adjuvanted split virus vaccine.

Formulation of the trivalent final bulk without adjuvant and filling in the antigen container

[0191] Reference is made to section V.2.3 for the AS01 B adjuvanted influenza vaccine.

Preparation of AS01B adjuvant bulk and filling in the adjuvant container

[0192] Reference is made to section V.2.3 for the AS01 B adjuvanted influenza vaccine.

Extemporaneous reconstitution of the AS01E adjuvanted split virus vaccine

[0193] To prepare the AS01 E adjuvant the content of the diluent vial is withdrawn with a syringe and injected into the vial containing the AS01 B adjuvant, followed by mixing. At the time of injection, 600 µl AS01E adjuvant is withdrawn with a syringe from the AS01E vial and injected into the vial that contains the concentrated trivalent inactivated split virion antigens. After mixing the content is withdrawn into the syringe and the needle is replaced by an intramuscular needle.

One dose of the reconstituted AS01E-adjuvanted influenza candidate vaccine corresponds to 1 mL.

[0194] Four scheduled visits per subject: at days 0, 21, 90 and 180 with blood sample collected at each visit to evaluate immunogenicity.

Vaccination schedule: one injection of influenza vaccine at day 0

VI.2.7 - Immunological assays

Haemagglutination - inhibition assay

[0195] The immune response is determined by measuring Haemagglutination inhibition (HI) antibodies using the method described by the WHO collaborating Centre for influenza, Centres for Diseases Control, Atlanta, USA (1991). Antibody titre measurements were conducted on thawed frozen serum samples with a standardised and comprehensively validated micromethod using 4 haemagglutination-inhibiting units (4 HIU) of the appropriate antigens and a 0.5% fowl erythrocyte suspension. Non-specific serum inhibitors were removed by heat treatment and receptor-destroying enzyme. The sera obtained were evaluated for HI antibody levels. Starting with an initial dilution of 1:10, a dilution series (by a factor of 2) was prepared up to an end dilution of 1:20480. The titration end-point was taken as the highest dilution step that shows complete inhibition (100%) of haemagglutination. All assays were performed in duplicate.

[0196] Cytokine Flow Cytometry (CFC) used to evaluate the frequency of cytokine(s) - positive CD4 or CD8 T lymphocytes.

[0197] Peripheral blood antigen-specific CD4 and CD8 T cells can be restimulated in vitro to produce CD40L, IL-2, TNF-α and IFN-γ if incubated with their corresponding antigen. Consequently, antigen-specific CD4 and CD8 T cells can be enumerated by flow cytometry following conventional immunofluorescence labelling of cellular phenotype as well as intracellular cytokines production. In the present study, influenza vaccine antigens will be used as antigens to restimulate influenza-specific T cells. Results will be expressed as a frequency of cytokine(s)-positive CD4 or CD8 T cell within the CD4 or CD8 T cell sub-population.

ELISPOT used to evaluate frequency of memory B-cell

[0198] The B cell Elispot technology allows the quantification of memory B cells specific to a given antigen. Memory B cells can be induce to differentiate into plasma cells in-vitro following cultivation with CpG for 5 days. In-vitro generated antigen-specific plasma cells can therefore be enumerated using the B-cell elispot assay. Briefly, in-vitro generated plasma cells are incubated in culture plates coated with antigen. Antige-specific plasma cells will form antibody/antigen spots, which can be detected by conventional immuno-enzymatic procedure. In the present study, influenza vaccine strains or anti-human immunoglobulin are used to coat culture plates in order to enumerate anti-influenza or IgG secreting plasma cells, respectively. Results are expressed as a frequency of antigen-specific plasma within a million of IgG-producing plasma cells.
Exploratory Characterisation of PBMCs

[0199] The expression of selected surfact/activation markers (i.e. CD4, CD8, CD45RO, CD45 RA, CD28, CD27 or some KIR) can be performed. The function of vaccine-induced T lymphocytes can be addressed by the analysis of homing markers (i.e. CCR7, CXCR5), of cytokines (T helper 1 or T helper 2 cytokines), or by analysing the expression of factors associated with regulatory functions such as Foxp3, CTLA-4, or TGFβ. In particular, the CD8+CD28- population or other regulatory T cell populations can be analysed in relation the humoral, B and T cell responses to the vaccine antigen.

VI.3. Immunogenicity results

VI.3.1. CMI endpoints and results

[0200] In order to characterize the CMI response after vaccination with the adjuvanted influenza vaccines, CD4 and CD8 T-lymphocytes were restimulated in vitro using antigens from the three vaccine strains (used individually or pooled). Influenza-specific CD4/CD8 T-lymphocytes were enumerated by flow cytometry following conventional immunofluorescence labelling of intracellular cytokines production (IL-2, IFN-γ, TNF-α and CD40L).

Evaluation of the primary endpoint.

[0201] At day 21: CMI response in all subjects in terms of frequency of influenza-specific CD4 T-lymphocyte per 10^6 in tests producing at least two different cytokines (IL-2, IFN-γ, TNF-α and CD40L).

[0202] For the evaluation of CMI response, frequency of influenza-specific CD4 are analysed as follows:

[0203] Using the non-inferiority approach, the non inferiority of at least one influenza adjuvanted candidate vaccine (administered to elderly aged ≥ 65 years - the group termed Flu elderly or Flu ELD) compared to Fluarix™ (administered to adults aged 18 - 40 years - the group termed Flu Young or Flu YNG) was reached when the upper limit of two-sided 98.75% confidence interval on Geometric Mean (GM) ratio (between the Fluarix™ (18-40 years) group and the influenza adjuvanted candidate vaccine (≥ 65 years group) in terms of frequency of influenza-specific CD4 T-cells producing at least two cytokines at day 21) was below 2.0

\[UL_{98.75\% CI} \left(\frac{GM_{\text{Fluarix adjuv}}} {GM_{\text{Fluarix adjuv}}\text{adjacent}} \right) < 2 \]

[0204] The 98.75% CI of GM ratios, 21 days after vaccination, was computed using an analysis of covariance (ANCPVA) model on the logarithm 10 transformation of the frequencies. The ANCOVA model included the vaccine group as fixed effect (Fluarix™ (18-40 years) versus the influenza adjuvanted candidate vaccine (≥ 65 years)) and the pre-vaccination frequency as a regressor. The GM ratio and their 98.75% CI are derived as exponential-transformation of the corresponding group contrast in the model. The 98.75% CI for the adjusted GM is obtained by exponential-transformation of the 98.75% CI for the group least square mean of the above ANCOVA model.

Results - Inferential analysis (Table 10)

[0205] The adjusted GM and GM ratios (with their 98.75% CI) of influenza-specific CD4 T-lymphocyte producing at least two cytokines (IL-2, IFN-γ, TNF-α and CD40L) at day 21, after in vitro restimulation with "pooled antigens II", are presented in Table 10. For each adjuvanted influenza vaccine, the upper limit of two-sided 98.75% CI of GM ratio is far below the clinical limit of 2.0. This shows the non-inferiority of both adjuvanted influenza vaccines administered to elderly subjects compared to the Fluarix™ vaccine administered in adults aged between 18 and 40 years in term of post-vaccination frequency of influenza-specific CD4.
Results - Descriptive analysis (Figure 6)

The main findings were:

1) Before vaccination the CMI response is higher in young adults than in elderly
2) After vaccination:
 - there was a booster effect of the influenza vaccine on the CMI response in young adults (18-40 years)
 - the CMI response in the elderly having received the adjuvanted influenza vaccine is comparable to the CMI response of young adults.

The difference between pre and post-vaccination in CD4 T-lymphocytes responses for all cytokines investigated (IL-2, CD40L, TNF-α and IFN-γ) was significantly higher with the adjuvanted vaccines compared to Fluarix™ for all tests.

Analysis of the tertiary objective:

In order to evaluate the tertiary end point, the frequency of influenza-specific CD4/CD8 T-lymphocytes and memory B-cells were measured at days 0, 21, 90 and 180.

- The frequency of influenza-specific cytokine-positive CD4/CD8 T-lymphocytes was summarised (descriptive statistics) for each vaccination group at days 0 and 21, for each antigen.
- A Non-parametric test (Wilcoxon test) was used to compare the location of difference between the two groups (influenza adjuvanted vaccine versus Fluarix™) and the statistical p-value is calculated for each antigen at each different test.
- Descriptive statistics in individual difference between day 21/day 0 (Post-/Pre-vaccination) responses is calculated for each vaccination group and each antigen at each different test.
- A Non-parametric test (Wilcoxon test) is used to compare the individual difference Post-/Pre-vaccination) and the statistical p-value will be calculated for each antigen at each different test.

The p-values from Wilcoxon test used to compare the difference in the frequency of influenza-specific CD4 T-lymphocytes are presented in Table 11.

Results - Evaluation of the tertiary end-point (Table 11)

The main conclusions are:

- Pre-vaccination GM frequencies of influenza-specific CD4 T cells were similar in all groups of elderly subjects but superior in the adults aged between 18 and 40 years.
- In elderly subjects, post-vaccination (day 21) frequency of influenza-specific CD4 T lymphocytes was significantly
higher after vaccination with adjuvanted vaccines than with Fluarix™.

- Post-vaccination frequency of influenza-specific CD4 T lymphocytes remained lower in elderly subjects vaccinated with AS01 B or AS01 E adjuvanted vaccines than in adults aged between 18 and 40 years vaccinated with Fluarix™.
- Pre-vaccination and post vaccination GM frequency of influenza-specific CD8 T cell was essentially similar in all groups.

Table 11 Inferential statistics: p-values from Kruskal-Wallis Tests for CD4 T cells at each time point (ATP Cohort for immunogenicity)

<table>
<thead>
<tr>
<th>Test description</th>
<th>P-value</th>
<th>AS01B vs. Flu YNG</th>
<th>AS01E vs. Flu YNG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>day 0</td>
<td>day 21</td>
</tr>
<tr>
<td>ALL DOUBLES</td>
<td><0.0001</td>
<td>0.0070</td>
<td></td>
</tr>
<tr>
<td>CD4OL</td>
<td><0.0001</td>
<td>0.0056</td>
<td></td>
</tr>
<tr>
<td>IFNγ</td>
<td><0.0001</td>
<td>0.0009</td>
<td></td>
</tr>
<tr>
<td>IL2</td>
<td><0.0001</td>
<td>0.0029</td>
<td></td>
</tr>
<tr>
<td>TFNα</td>
<td><0.0001</td>
<td>0.0295</td>
<td></td>
</tr>
</tbody>
</table>

Results - Evaluation of the Humoral immune response endpoints

Observed variables:

[0211] At days 0, 21, 90 and 180: serum haemagglutination-inhibition (HI) antibody titres, tested separately against each of the three influenza virus strains represented in the vaccine (anti-H1N1, anti-H3N2 & anti-B-antibodies).

[0212] The cut-off value for HI antibody against all vaccine antigens was defined by the laboratory before the analysis (and equals 1:10). A seronegative subject is a subject whose antibody titre is below the cut-off value. A seropositive subject is a subject whose antibody titre is greater than or equal to the cut-off value. Antibody titre below the cut-off of the assay is given an arbitrary value of half the cut-off.

[0213] Based on the HI antibody titres, the following parameters are calculated:

- Geometric mean titres (GMTs) of HI antibody at days 0 and 21, calculated by taking the anti-log of the mean of the log titre transformations.
- Seroconversion factors (SF) at day 21 defined as the fold increase in serum HI GMTs on day 21 compared to day 0.
- Seroconversion rates (SC) at day 21 defined as the percentage of vaccinees with either a pre-vaccination HI titre <1:10 and a post-vaccination titre ≥ 1:40, or a pre-vaccination titre ≥ 1:10 and a minimum 4-fold increase at post-vaccination titre.
- Seroprotection rates (SPR) at day 21 defined as the percentage of vaccinees with a serum HI titre ≥1:40.

[0214] The 95% CI for GM is obtained within each group separately. The 95% CI for the mean of log-transformed titre is first obtained assuming that log-transformed titres are normally distributed with unknown variance. The 95% CI for the GM is then obtained by exponential-transformation of the 95% CI for the mean of log-transformed titre.

[0215] Missing serological result for a particular antibody measurement is not replaced. Therefore a subject without serological result at a given time point do not contribute to the analysis of the assay for that time point.
Humoral immune response results (Figure 7 and Table 12)

Pre-vaccination GMTs of HI antibodies for all 3 vaccine strains were within the same range in the 4 treatment groups. After vaccination, there is clear impact of the 2 adjuvants which increase the humoral response in elderly, compared to standard Fluarix in the same population (Figure 7, shown on a linear scale, but same impact obviously seen if shown on a logarithmic scale).

GMTs are

- significantly higher for H1N1 for AS01 E
- significantly higher for H3N2 for both adjuvants.
- No significant difference was observed in terms of post-vaccination GMTs between the two groups of subjects having received the adjuvanted vaccines.

Twenty one days after vaccination, the subjects of Fluarix (18-40 years) had a higher HI response for New Caledonia and B/Jiangsu strains.

As shown in Table 12 the adjuvanted influenza vaccines exceeded the requirements of the European authorities for annual registration of split virion influenza vaccines ("Note for Guidance on Harmonization of Requirements for Influenza Vaccines for the immunological assessment of the annual strain changes" [CPMP/BWP/214/96]) in subjects aged over 60 years.

After vaccination, there was a statistically difference in terms of seroprotection rates of HI antibodies between Fluarix (≥65 years) group and

- Flu/AS01 B and Flu/AS01E for A/H1N1/ New Caledonia strain

For each vaccine strain, the seroprotection rates for the 2 influenza adjuvanted vaccine groups are in the same range compared to Fluarix (18-40 years) group.

For each vaccine strain, the seroconversion rates for the 2 influenza adjuvanted vaccine groups are in the same range compared to Fluarix (18-40 years) group excepted for New Caledonia strain.

Table 12 Seroprotection rates seroconversion rates and conversion factors at day 21 (ATP cohort for immunogenicity)

<table>
<thead>
<tr>
<th>Strains</th>
<th>Group</th>
<th>N</th>
<th>Seroprotection rate (HI titre ≥ 40) %</th>
<th>Seroconversion rate (≥ 4-fold increase) [95% CI] %</th>
<th>Conversion factor [95% CI] %</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU standard (>60 years)</td>
<td>≥60%</td>
<td>>30%</td>
<td>>2.0</td>
<td>35.1 [21.9-56.4]</td>
<td></td>
</tr>
<tr>
<td>EU standard (<60 years)</td>
<td>>70%</td>
<td>>40%</td>
<td>>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/New Caledonia (H1N1)</td>
<td>Flu Yng</td>
<td>75</td>
<td>100 [95.20-100]</td>
<td>77.3 [66.2-86.2]</td>
<td>35.1 [21.9-56.4]</td>
</tr>
<tr>
<td></td>
<td>Flu Elderly</td>
<td>49</td>
<td>71.4 [56.74-83.4]</td>
<td>30.6 [18.3-45.4]</td>
<td>3.7 [2.4-5.7]</td>
</tr>
<tr>
<td></td>
<td>Flu/AS01B</td>
<td>75</td>
<td>97.3 [90.70-99.68]</td>
<td>48.0 [36.5-59.8]</td>
<td>4.5 [3.3-6.1]</td>
</tr>
<tr>
<td></td>
<td>Flu/AS01E</td>
<td>75</td>
<td>93.3 [85.12-97.80]</td>
<td>52.0 [40.2-63.7]</td>
<td>5.0 [3.6-6.9]</td>
</tr>
<tr>
<td>A/New York (H3N2)</td>
<td>Flu Yng</td>
<td>75</td>
<td>93.3 [85.12-97.80]</td>
<td>76.0 [64.7-85.1]</td>
<td>9.2 [7.1-11.8]</td>
</tr>
<tr>
<td></td>
<td>Flu Elderly</td>
<td>49</td>
<td>81.6 [67.98-91.24]</td>
<td>69.4 [54.6-81.7]</td>
<td>8.2 [5.7-11.8]</td>
</tr>
<tr>
<td></td>
<td>Flu/AS01B</td>
<td>75</td>
<td>96.0 [88.75-99.17]</td>
<td>85.3 [75.3-92.4]</td>
<td>13.1 [10.9-17.1]</td>
</tr>
<tr>
<td></td>
<td>Flu/AS01E</td>
<td>75</td>
<td>93.3 [85.12-97.80]</td>
<td>80.0 [69.2-88.4]</td>
<td>14.5 [10.4-20.2]</td>
</tr>
<tr>
<td>B/Jiangsu (B)</td>
<td>Flu Yng</td>
<td>75</td>
<td>100 [95.20-100]</td>
<td>81.3 [70.7-89.5]</td>
<td>13.9 [10.1-19.1]</td>
</tr>
<tr>
<td></td>
<td>Flu Elderly</td>
<td>49</td>
<td>93.9 [83.13-98.72]</td>
<td>44.9 [30.7-59.8]</td>
<td>4.3 [3.0-6.1]</td>
</tr>
<tr>
<td></td>
<td>Flu/AS01B</td>
<td>75</td>
<td>100 [95.20-100]</td>
<td>65.3 [53.5-76.0]</td>
<td>5.2 [4.2-6.5]</td>
</tr>
<tr>
<td></td>
<td>Flu/AS01E</td>
<td>75</td>
<td>97.3 [90.70-99.68]</td>
<td>70.7 [59.0-80.8]</td>
<td>6.7 [5.1-8.9]</td>
</tr>
</tbody>
</table>

N= total number of subject; %= Percentage of subjects with titre at day 21 within the specified range; CI = confidence interval
VI.3.2. Immunogenicity conclusions

• Pre-vaccination frequency of influenza-specific CD4 was significantly inferior in elderly adults compared to adults aged between 18 and 40 years. After vaccination with Fluarix™, post-vaccination frequency (day 21) remained inferior in elderly adults compared to younger ones. On the contrary, the non-inferiority in term of frequency of post-vaccination frequency of influenza-specific CD4 after vaccination with adjuvanted vaccines of elderly subjects was demonstrated compared to vaccination with Fluarix™ in adults aged between 18 and 40 years.

• Regarding the humoral immune response in term of HI antibody response, all influenza vaccines fulfilled the requirements of the European authorities for annual registration of influenza inactivated vaccines ["Note for Guidance on Harmonisation of Requirements for Influenza Vaccines for the immunological assessment of the annual strain changes" (CPMP/BWP/214/96)]. In elderly adults, adjuvanted vaccines mediated at least a trend for a higher humoral immune response to influenza haemagglutinin than Fluarix™. Significant difference between the humoral immune response against each vaccine strain mediated in elderly subjects by adjuvanted vaccines compared to Fluarix™ are summarised in Table 13. Compared to adults aged between 18 and 40 years vaccinated with Fluarix™, elderly subjects vaccinated with the adjuvanted vaccines showed a trend for higher post-vaccination GMTs and seroconversion factor at day 21 against the A/New York strain.

Table 13 Influenza strains for which significantly higher humoral immune response (based on non-overlapping of 95% CI) was observed in elderly subjects vaccinated with the different adjuvanted vaccines compared to Fluarix in the same population.

<table>
<thead>
<tr>
<th>Post-vacc GMT</th>
<th>Seroconversion Factor</th>
<th>Seroprotection rate</th>
<th>Seroconversion Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>FluAS01B</td>
<td>A/New York</td>
<td></td>
<td>A/New Caledonia</td>
</tr>
<tr>
<td>FluAS01F</td>
<td>A/New Caledonia</td>
<td></td>
<td>A/New Caledonia</td>
</tr>
</tbody>
</table>

Post-vacc GMT= Geometric Mean Titre at post-vaccination

VI.4 Reactogenicity conclusions

VI.4.1. Recording of Adverse events (AE)

Solicited symptoms (see Table 14) occurring during a 7-day follow-up period (day of vaccination and 6 subsequent days) were recorded. Unsolicited symptoms occurring during a 21-day follow-up period (day of vaccination and 20+3 subsequent days) were also recorded. Intensity of the following AEs was assessed as described in Table 15.

Table 14 Solicited local/general adverse events

<table>
<thead>
<tr>
<th>Solicited local AEs</th>
<th>Solicited general AEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain at the injection site</td>
<td>Fatigue</td>
</tr>
<tr>
<td>Redness at the injection site</td>
<td>Fever</td>
</tr>
<tr>
<td>Swelling at the injection site</td>
<td>Headache</td>
</tr>
<tr>
<td>Haematoma</td>
<td>Muscle ache</td>
</tr>
<tr>
<td>Shivering</td>
<td></td>
</tr>
<tr>
<td>Joint pain in the arm of the injection site</td>
<td>Shivering</td>
</tr>
<tr>
<td>Joint pain at other locations</td>
<td></td>
</tr>
</tbody>
</table>

N.B. Temperature was recorded in the evening. Should additional temperature measurements performed at other times of day, the highest temperature was recorded.
The maximum intensity of local injection site redness/swelling is scored as follows: 0 is 0 mm; 1 is > 0 - ≤ 20 mm; 2 is > 20 - ≤ 50 mm; 3 is > 50 mm.

The maximum intensity of fever is scored as follows: 1 is >37.5 - ≤ 38.0°C; 2 is >38.0 - ≤ 39.0°C; 3 is >39.0

The investigator makes an assessment of intensity for all other AEs, i.e. unsolicited symptoms, including SAEs reported during the study. The assessment is based on the investigator’s clinical judgement. The intensity of each AE recorded is assigned to one of the following categories:

1 (mild) = An AE which is easily tolerated by the subject, causing minimal discomfort and not interfering with everyday activities;
2 (moderate) = An AE which is sufficiently discomforting to interfere with normal everyday activities;
3 (severe) = An AE which prevents normal, everyday activities (in adults/adolescents, such an AE would, for

Table 15 Intensity scales for solicited symptoms in adults

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Intensity grade</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain at injection site</td>
<td>0</td>
<td>Absent</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>on touch</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>when limb is moved</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>prevents normal activity</td>
</tr>
<tr>
<td>Redness at injection site</td>
<td></td>
<td>Record greatest surface diameter in mm</td>
</tr>
<tr>
<td>Swelling at injection site</td>
<td></td>
<td>Record greatest surface diameter in mm</td>
</tr>
<tr>
<td>Haematoma at injection site</td>
<td></td>
<td>Record greatest surface diameter in mm</td>
</tr>
<tr>
<td>Fever*</td>
<td>0</td>
<td>Absent</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>is easily tolerated</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>interferes with normal activity</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>prevents normal activity</td>
</tr>
<tr>
<td>Headache</td>
<td>0</td>
<td>Absent</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>is easily tolerated</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>interferes with normal activity</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>prevents normal activity</td>
</tr>
<tr>
<td>Fatigue</td>
<td>0</td>
<td>Absent</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>is easily tolerated</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>interferes with normal activity</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>prevents normal activity</td>
</tr>
<tr>
<td>Joint pain at the injection site and other locations</td>
<td>0</td>
<td>Absent</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>is easily tolerated</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>interferes with normal activity</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>prevents normal activity</td>
</tr>
<tr>
<td>Muscle ache</td>
<td>0</td>
<td>Absent</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>is easily tolerated</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>interferes with normal activity</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>prevents normal activity</td>
</tr>
<tr>
<td>Shivering</td>
<td>0</td>
<td>Absent</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>is easily tolerated</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>interferes with normal activity</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>prevents normal activity</td>
</tr>
</tbody>
</table>

*Fever is defined as axillary temperature ≥ 37.5°C (99.5°F)
VI.4.2. Recording of Adverse events (AE)

In elderly subjects, the reactogenicity observed with adjuvanted vaccines, in terms of both local and general symptoms was higher than with Fluarix™. Not only the incidence but also the intensity of symptoms was increased after vaccination with adjuvanted vaccines (Figure 8). Grade 3 symptoms showed a trend to be higher in the group who received the vaccine adjuvanted with the highest immunostimulants (MPL, QS21) concentration compared to the group who received the adjuvanted vaccine wherein the immunostimulants is at a lower concentration. In all cases, symptoms however resolved rapidly.

Example VII: Pre-clinical evaluation of adjuvanted HPV vaccines in Mice.

This study used a bivalent antigenic composition from human papillomavirus (HPV), combining virus like particles (VLPs) formed from L1 of HPV 16 and L1 from HPV 18 as the antigen. The objective of the study was to compare the efficacy of this antigenic preparation when formulated with AS01 B and a 1/5 dilution of AS01B, benchmarked against the current adjuvant found in GSK’s cervical cancer vaccine, AS04 (MPL on alum).

VII.1 - Vaccination

Mice (n = 12 per group) were injected at 0 and 28 days with vaccine formulations composed of HPV16/18 L1 (2 μg or 0.5μg each) derived from Hi-5 80/80L process and formulated with AS04 (50 μg MPL formulated with alum or AS01 B (50 μg QS21 - 50 μg MPL in 0.5ml) 1/10 and 1/50 Human dose. As the studies were carried out in mice, 1/10 human dose can be taken to be equivalent to the AS01 B human formulation, i.e. 50 μg QS21 and 50 μg MPL in 0.5ml and 1/50 can be taken to be a 1/5 dilution of the AS01 B human formulation i.e. 10 μg QS21 and 10 μg MPL in 0.5ml.

Blood samples were taken at 14 and 45 days post dose II to assay for total anti-L1 type specific antibodies in individual sera. Intracellular cytokines staining were measured at days 7 and 14 post II on PBMC and at day 45 post II using spleen cells.

VII.2 - Anti-HPV 16/18 L1 ELISA

Quantification of anti-HPV-16 and HPV-18 L1 antibodies was performed by ELISA using HPV-16 and HPV-18 L1 as coating. Antigens were diluted at a final concentration of 0.5 μg/ml in PBS and were adsorbed overnight at 4°C to the wells of 96-wells microtiter plates (Maxisorp Immuno-plate, Nunc, Denmark). The plates were then incubated for 1 hr at 37°C with PBS containing 1% Bovine Serum Albumine (saturation buffer). Sera diluted in buffer containing PBS + 0.1% Tween20 + 1% BSA were added to the HPV L1-coated plates and incubated for 1 hr 30 min at 37°C. The plates were washed four times with PBS 0.1% Tween20 and biotin-conjugated anti-mouse Ig (Dako, UK) diluted at 1/1000 in saturation buffer was added to each well and incubated for 1 hr at 37°C. After a washing step, streptavidin-horseradish peroxidase (Dako, UK), diluted 1/3000 in saturation buffer was added for an additional 30 min at 37°C. Plates were washed as indicated above and incubated for 20 min at room temperature with a solution of 0.04% o-phenylenediamine (Sigma) 0.03% H2O2 in 0.1% Tween20, 0.05M citrate buffer pH 4.5. The reaction was stopped with 2N H2SO4 and read at 492/620 nm. ELISA titers were calculated from a reference by SoftMaxPro (using a four parameters equation) and expressed in EU/ml.

VII.3 - Intracellular cytokines staining (ICS)

Intracellular staining of cytokines of T cells was performed on PBL at days 7 and 14 post II and on spleen cells at day 45 after the second immunisation. PBMCs (1 pool/group) or spleen cells (4 pools of 3 organs per group) were collected from mice. In vitro antigen stimulation of spleen cells were carried out at a final concentration of 5 x10^6 cells/ml (microplate 96 wells) with VLP 16 or 18, (5μg/ml) + CD49d CD28 antibodies (1μg/ml) and then incubated 3H at 37°C. Following the antigen restimulation step, cells were incubated overnight in presence of Brefeldin (1μg/ml) at 37°C to inhibit cytokine secretion. Cell staining was performed as follows: cell suspensions were washed, resuspended in 50μl of PBS 1% FCS containing 2% Fc blocking reagent (1/50; 2.4G2). After 10 min incubation at 4°C, 50μl of a mixture of anti-CD4-APC (1/50) and anti-CD8 perCp (1/50) was added and incubated 30 min at 4°C. After a washing in PBS 1% FCS, cells were permeabilized by resuspending in 200μl of Cytofix-Cytoperm (Kit BD) and incubated 20 min at 4°C. Cells were then washed with Perm Wash (Kit BD) and resuspended with 50μl of anti-IF-γ APC (1/50) + anti-IL-2 FITC (1/50) diluted in PermWash. After 2H incubation at 4°C, cells were washed with Perm Wash and resuspended in PBS 1% FCS + 1% paraformaldehyde. Sample analysis was performed by FACS. Live cells were gated (FSC/SSC) and
acquisition was performed on ~ 20,000 events (lymphocytes). The percentages of IFγ+ or IL2+ were calculated on CD4+ and CD8+ gated populations.

VII.4 - B cell memory

0233 Forty-five days after the second immunisation, mice were sacrificed, spleens cells were separated by a lymphoprep gradient (Cedarlane). B cells were then resuspended in RPMI 1640 medium (Gibco) containing additives (sodium pyruvate 1mM, MEM non-essential amino acids, Pen/Strep, Glutamine and β-2 mercaptoethanol), 5% foetal calf serum, 50U/ml rhIL-2 (eBioscience) and 3µg/ml CpG. Cells were cultured five days at a final concentration of 10⁶ cells/ml, in 5 ml per flat-bottomed 6 wells. After an activation step with ethanol, nitrocellulose plates (Multiscreen-IP; Millipore) were coated with 10µg/ml of VLPs or with Goat anti-mouse Ig (GAM; Sigma) diluted 1/200 in PBS. After a saturation step with complete medium, 100µl of 2.10⁶ cells/ml were added to VLPs coated plates and 100µl of 10⁶ and 5.10⁵ cells/ml were added to GAM plates. After an incubation time of 2hrs at 37°C, plates were stored overnight at 4°C. Plates were washed four times with PBS 0.1% Tween20 and anti-mouse Ig Biot diluted 1/200 in PBS 1% BSA 5% FCS (dilution buffer) was distributed to plates and incubated for 2 hrs at 37°C. After a washing step, Extravidin HRP (Sigma) diluted 1/550 in dilution buffer was added for an additional 1 hr at 37°C. Plates were washed as above and incubated for 10 min at room temperature with a solution of AEC (Sigma). Reaction is stopped by rinsing plates gently under tap water. When plates are dried, read with KS400.

VII.5 - Statistical analysis

0234 The formulation means were compared using a one-way analysis of variance (ANOVA 1). The analysis was conducted on log10 transformed data for normalization purpose. When a significant difference between process means was detected (p-value ≤ 0.05), pair wise comparisons among means were performed at a 0.05 significant level (Student-Newman-Keuls multiple comparison test).

VII.6 - results

0235 Mice were immunized as in VII.1 above. The following groups were used:

<table>
<thead>
<tr>
<th>Group</th>
<th>Antigen</th>
<th>Adjuvant</th>
<th>Adjuvant dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HPV 16-18 L1 2µg</td>
<td>AS04</td>
<td>1/10 human dose (equivalent to 50 µg MPL per 0.5ml HD)</td>
</tr>
<tr>
<td>2</td>
<td>HPV 16-18 L1 0.5µg</td>
<td>AS04</td>
<td>1/50 human dose (equivalent to 10 µg MPL per 0.5ml HD)</td>
</tr>
<tr>
<td>3</td>
<td>HPV 16-18 L1 2µg</td>
<td>AS04</td>
<td>1/10 human dose (equivalent to 50 µg MPL per 0.5ml HD)</td>
</tr>
<tr>
<td>4</td>
<td>HPV 16-18 L1 0.5µg</td>
<td>AS04</td>
<td>1/50 human dose (equivalent to 10 µg MPL per 0.5ml HD)</td>
</tr>
<tr>
<td>5</td>
<td>HPV 16-18 L1 2µg</td>
<td>AS01B</td>
<td>1/10 human dose (equivalent to 50 µg MPL per 0.5ml HD)</td>
</tr>
<tr>
<td>6</td>
<td>HPV 16-18 L1 0.5µg</td>
<td>AS01B</td>
<td>1/50 human dose (equivalent to 10 µg MPL per 0.5ml HD)</td>
</tr>
<tr>
<td>7</td>
<td>HPV 16-18 L1 2µg</td>
<td>AS01B</td>
<td>1/10 human dose (equivalent to 50 µg MPL per 0.5ml HD)</td>
</tr>
<tr>
<td>8</td>
<td>HPV 16-18 L1 0.5µg</td>
<td>AS01B</td>
<td>1/50 human dose (equivalent to 10 µg MPL per 0.5ml HD)</td>
</tr>
</tbody>
</table>

VII.6.1 - humoral responses

0236 No significant dose range was observed for the two tested doses of antigens with either dilution of adjuvant for either anti HPV 16-L1 antibody titers or anti HPV 18-L1 antibody titers (figure 9)

0237 No significant dose range was observed for the two tested doses of each adjuvant whatever the dose of antigen for anti HPV 16-L1 antibody titers.

0238 When looking at anti HPV 18-L1 antibody titers, a slight increase in titer was seen for AS01 B (1/10 HD) compared to AS01 B (1/50 HD) as measured at day 14 post II (2.5 fold dose range, p value = 0.0035), however this range was observed only for 2µg antigen and not for 0.5 µg antigen (p value = 0.0867). By day 45 post II, no significant dose range was seen for the two tested doses of each adjuvant whatever the dose of antigen.
VII.6.2 - Cellular responses

Intracellular Cytokine Staining

[0239] No dose range effect of antigen was observed for the two tested doses of antigens whatever the dose of adjuvant for HPV 18-L1. Similar frequencies of VLP16 specific CD4+ T cells were obtained with the two tested doses of antigens with different doses of adjuvants. (figure 10).

[0240] A slight dosage effect (2.6 fold, p value = 0.0009 for HPV 18-L1, 2 fold, p value = 0.0187 for HPV 16-L1) was seen for AS01B (1/10 HD) compared to AS01B (1/50 HD), however this range was observed only for 2µg antigen and not for 0.5 µg antigen.

Specific B Memory Cells

[0241] No dose range effect of antigen was observed for the two tested doses of antigens whatever the dose of adjuvant for HPV 16 or 18 L1 (figure 11)

[0242] No dose range effect of adjuvant was observed for the two tested doses of adjuvants whatever the dose of antigen for HPV 17 or 18 L1.

[0243] As can be seen from the above results, a 1/5 dilution of AS01 B produces a formulation which has equivalent efficacy in immunogenic compositions to AS01 B itself.

Example VIII: Preclinical evaluation of adjuvanted *S. pneumoniae* vaccines in mice.

[0244] The pneumococcal vaccine used in this study was an 11-valent adjuvanted pneumococcal conjugate vaccines (11 PCV/AS) consisting of a mixture of 11 pneumococcal polysaccharide conjugates adjuvanted either with AS01 B or AS01E. The conjugates consist of the *S. pneumoniae* serotypes 1, 3, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F purified polysaccharides, each individually conjugated to a carrier protein, either diphtheria toxoid (DT), tetanus toxoid (TT) or protein D from *H. influenzae* (PD). The vaccines are presented as a freeze-dried powder to be reconstituted with one of the liquid adjuvants.

11 PCV/AS is produced as follows:

[0245] The activation and coupling conditions are specific for each polysaccharide. These are given in the table below. Sized polysaccharide (except for PS5, 6B and 23F) was dissolved in NaCl 2M or in water for injection (WFI). The optimal polysaccharide concentration was evaluated for all the serotypes. All serotypes except serotype 18C were conjugated directly to the carrier protein as detailed below.

[0246] From a 100 mg/ml stock solution in acetonitrile or acetonitrile/water 50%/50% solution, CDAP (CDAP/PS ratio 0.75 mg/mg PS) was added to the polysaccharide solution. 1.5 minute later, 0.2M-0.3M NaOH was added to obtain the specific activation pH. The activation of the polysaccharide was performed at this pH during 3 minutes at 25 °C. Purified protein (protein D or DT) (the quantity depends on the initial PS/carrier protein ratio) was added to the activated polysaccharide and the coupling reaction was performed at the specific pH for up to 2 hour (depending upon serotype) under pH regulation. In order to quench un-reacted cyanate ester groups, a 2M glycine solution was then added to the mixture. The pH was adjusted to the quenching pH (pH 9.0). The solution was stirred for 30 minutes at 25 °C and then overnight at 2-8 °C with continuous slow stirring.

Preparation of 18C:

[0247] 18C was linked to the carrier protein via a linker - Adipic acid dihydrazide (ADH) Polysaccharide serotype 18C was microfluidized before conjugation.

Derivatization of tetanus toxoid with EDAC

[0248] For derivatization of the tetanus toxoid, purified TT was diluted at 25 mg/ml in 0.2M NaCl and the ADH spacer was added in order to reach a final concentration of 0.2M. When the dissolution of the spacer was complete, the pH was adjusted to 6.2. EDAC (1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide) was then added to reach a final concentration of 0.02M and the mixture was stirred for 1 hour under pH regulation. The reaction of condensation was stopped by increasing pH up to 9.0 for at least 30 minutes at 25°C. Derivatized TT was then dialyzed (10 kDa CO membrane) in order to remove residual ADH and EDAC reagent.

[0249] TT_{AH} bulk was finally sterile filtered until coupling step and stored at -70°C.
Chemical coupling of TTAH to PS 18C

[0250] Details of the conjugation parameters can be found in Table 1.
[0251] 2 grams of microfluidized PS were diluted at the defined concentration in water and adjusted to 2M NaCl by NaCl powder addition.
[0252] CDAP solution (100 mg/ml freshly prepared in 50/50 v/v acetonitrile/WFI) was added to reach the appropriate CDAP/PS ratio.
[0253] The pH was raised up to the activation pH 9.0 by the addition of 0.3M NaOH and was stabilised at this pH until addition of TTAH.
[0254] After 3 minutes, derivatized TTAH (20 mg/ml in 0.2 M NaCl) was added to reach a ratio TTAH/PS of 2; the pH was regulated to the coupling pH 9.0. The solution was left one hour under pH regulation.
[0255] For quenching, a 2M glycine solution, was added to the mixture PS/TTAH/CDAP.
[0256] The pH was adjusted to the quenching pH (pH 9.0).
[0257] The solution was stirred for 30 min at 25 °C, and then left overnight at 2-8°C with continuous slow stirring.

Purification of the conjugates:

[0258] The conjugates were purified by gel filtration using a Sephacryl 500HR gel filtration column equilibrated with 0.15M NaCl (S500HR for 18C) to remove small molecules (including DMAP) and unconjugated PS and protein. Based on the different molecular sizes of the reaction components, PS-PD, PS-TT or PS-DT conjugates are eluted first, followed by free PS, then by free PD or free DT and finally DMAP and other salts (NaCl, glycine).
[0259] Fractions containing conjugates are detected by UV 280 nm. Fractions are pooled according to their Kd, sterile filtered (0.22µm) and stored at +2-8°C. The PS/Protein ratios in the conjugate preparations were determined.

Specific activation/coupling/quenching conditions of PS S. pneumoniae-Protein D/TT/DT conjugates

[0260]

<table>
<thead>
<tr>
<th>Serotype</th>
<th>1 fluid</th>
<th>3 fluid</th>
<th>4 fluid</th>
<th>5 fluid</th>
<th>6B fluid</th>
<th>7F fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS conc. (mg/ml)</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
<td>7.1</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>PS dissolution</td>
<td>WFI</td>
<td>NaCl 2M</td>
<td>WFI</td>
<td>NaCl 2M</td>
<td>NaCl 2M</td>
<td>NaCl 2M</td>
</tr>
<tr>
<td>PD conc. (mg/ml)</td>
<td>10.0</td>
<td>5.0</td>
<td>10.0</td>
<td>5.0</td>
<td>5.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Initial PS/PD Ratio (w/w)</td>
<td>1.5/1</td>
<td>1/1</td>
<td>1.5/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1.2/1</td>
</tr>
<tr>
<td>CDAP conc. (mg/mg PS)</td>
<td>0.50</td>
<td>0.75</td>
<td>0.50</td>
<td>0.79</td>
<td>0.83</td>
<td>0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serotype</th>
<th>9V fluid</th>
<th>14 fluid</th>
<th>18C fluid</th>
<th>19F fluid</th>
<th>23F fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS conc. (mg/ml)</td>
<td>5.0</td>
<td>5.0</td>
<td>4.5</td>
<td>9.0</td>
<td>2.38</td>
</tr>
<tr>
<td>PS dissolution</td>
<td>NaCl 2M</td>
<td>NaCl 2M</td>
<td>NaCl 2M</td>
<td>NaCl 2M</td>
<td>NaCl 2M</td>
</tr>
<tr>
<td>Carrier protein conc. (mg/ml)</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0 (TT)</td>
<td>20.0 (DT)</td>
<td>5.0</td>
</tr>
<tr>
<td>Initial carrier protein/PS Ratio (w/w)</td>
<td>1.2/1</td>
<td>1.2/1</td>
<td>2/1</td>
<td>1.5/1</td>
<td>1/1</td>
</tr>
<tr>
<td>CDAP conc. (mg/mg PS)</td>
<td>0.50</td>
<td>0.75</td>
<td>0.75</td>
<td>1.5</td>
<td>0.79</td>
</tr>
</tbody>
</table>

[0261] The 11 conjugates were then mixed together, and the final antigenic preparation mixed with the appropriate adjuvant before immunisation.

[0262] Groups of 40 female 4-weeks old Balb/c mice were immunized IM at days 0,14 and 28 with 0.1 µg of 11-valent PS conjugates formulated with either AS01 B or AS01 E. Anti-PS IgG antibodies were dosed by ELISA in sera collected at day 42.

[0263] As can be seen from figure 12, comparable responses were seen between the diluted AS01 E formulation.
compared to the AS01 B formulation except for PS 14 where a higher response was seen with AS01B, and PS 19F where a higher response was seen with AS01E.

Example IX: Preclinical evaluation of adjuvanted and non-adjuvanted cytomegalovirus immunogenic compositions.

IX.1: Guinea Pigs.

IX.1.1 Elisa anti-gB

[0264] Quantification of anti-gB antibodies was performed by ELISA using gB as a coating antigen. Antigen was diluted at a final concentration of 4 μg/ml in PBS and 100 μl was incubated overnight at 4 °C in 96 well microtiter plates. Plates were then saturated for 1 hour at 37 °C with 200 μl of PBS containing 1% bovine serum albumin. Two-fold serial dilutions of sera were added (100 μl/well) and incubated for 1 hour 30 minutes at 37 °C. The plates were washed 4 times with PBS 0.1% Tween 20 and 100 μl of horseradish peroxidase anti-guinea pig IgG (Dako, UK) was added to each well and incubated for 1 hour 30 minutes at 37 °C. Plates were washed 4 times with PBS 0.1% Tween 20 and 1 time with water. Then they were incubated for 20 min at 22 °C with 100 μl of a solution of α-phenylenediamine (Sigma) in 0.1M citrate buffer pH 4.2. This reaction was stopped with 100 μl of H2SO4 2N and read at 490/620 nm. Elisa titers were determined by interpolation of OD values from a sample reference by SoftMaxPro. Titers were expressed in EU/ml.

[0265] Statistical analyses were performed on days 14 post 2 Elisa data using UNISTAT. The protocol applied for anlaysis of variance can be briefly described as follows:

1) Log transformation of the data
2) Shapiro-Wilk test on each population (group) in order to verify the normality
3) Cochran test in order to verify the homogeneity of variance between different populations (groups)
4) Analysis of variance on selected data (one way)
5) Tuckey-HSD test for multiple comparison.

IX.1.2 - Neutralization Assay

[0266] Prior to the assay, MRC5 cells (10000 cells/200 μl MEM medium) were distributed in 96 well microplates and incubated for 3 days at 37 °C with CO2. Two-fold dilutions of inactivated sera (30 min at 56 °C) were realized and incubated with 100 μl of viral solution (800/ml) for 1 hour at 37 ºC. After incubation, 100 μl of serum/virus mixture was inoculated in 96 wells microplates containing MRC5 monolayer. The plates were centrifuged at 2000RPM for 1 hour at 35 ºC. After an overnight incubation at 37 ºC, the plates were fixed with an acetone 80% solution (20 minutes at -20 ºC). The acetone solution was discarded and CMV positive cells were detected using a specific monoclonal anti-immediate early antigen for 1 hour at 37 °C. The plates were washed 3 times with PBS and biotin-conjugated anti-mouse Ig was added to each well and incubated for 1 hour at 37 ºC. After a washing step, streptavidin-horseradish peroxidase was added for an addition 30 minutes at 37 °C. Plates were washed 4 times and incubated for 10 minutes with a solution of True-blue. Specific coloured signals were recorded by examination under microscope. Neutralizing titers were expressed as the reverse of the highest dilution of serum giving 50% reduction of CMV positive cells as compared to a virus control (CMV plus cells without serum).

IX.1.3 - Immunization protocols

[0267] 4 groups were immunised. Each group contained 8 female Hartley Crl:(ha) Guinea pigs 5 - 8 weeks old, except for a control group (group 4) containing only 4 subjects. Subjects were immunised IM at 0 and 28 days. Serum samples were collected 28 days after the first immunization and 14 days after the second immunization. Elisas were performed as described above on serum taken at 28 post I and 14 post II. Neutralisation assays were performed as described above at 14 post II. Groups were as below:

<table>
<thead>
<tr>
<th>Group</th>
<th>Antigen</th>
<th>Adjuvant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gB</td>
<td>NaCl</td>
</tr>
<tr>
<td>2</td>
<td>gB</td>
<td>AS01B</td>
</tr>
<tr>
<td>3</td>
<td>gB</td>
<td>AS01E</td>
</tr>
</tbody>
</table>

37
The antigen was prepared as follows: The vaccine antigen is expressed in Chinese Hamster Ovary (CHO) cells as gB**, a truncated chimera containing peptide sequences from glycoprotein gD of Herpes Simplex virus 2 (HSV2) at its N and C-terminus. The gB** is truncated at its C-terminal domain that contains the membrane anchoring sequence and is therefore secreted into the culture supernatant.

For the first three groups, 15 μg gB** made up in 500 μl of either PBS, AS01 B or AS01 E (prepared as in example II.2 above) was injected intramuscularly. In group 4, PBS alone was administered intramuscularly.

IX.1.4 - results

As can be seen in figure 13, significantly higher anti-gB ELISA titres were observed for the two adjuvanted groups as compared to the gB plain (8 and 5.5-fold higher for gB and AS01 B and gb/AS01 E respectively). Post dose II antibody titers were very slightly higher (1.5 fold) in the gB/AS01 B group compared to the gB/AS01 E group.

Multiple comparison: Tukey - HSD

IX.2 - Mice

IX.2.1 - ELISA anti gB

Quantification of anti-gB antibodies was performed by ELISA using gB as a coating antigen. Antigen was diluted at a final concentration of 1 μg/ml in PBS and 100 μl was incubated overnight at 4 °C in 96 well microwell plates. Plates were then saturated for 1 hour at 37 °C with 200 μl of PBS containing 1% bovine serum albumin. Two-fold serial dilutions of sera were added (100 μl/well) and incubated for 1 hour 30 minutes at 37°C. The plates were washed 4 times with PBS 0.1% Tween 20 and 100 μl of streptavidin-horseradish peroxidase was added to each well for an additional 30 minutes at 37 °C. Plates were washed 4 times with PBS 0.1% Tween 20 and 1 time with water. Then they were incubated for 10 min at 22 °C with 100 μl of tetra-methyl-benzidine 75% in 0.1M citrate buffer pH 5.8. This reaction was stopped with 100 μl of H₂SO₄ 0.4N and read at 450/620 nm. Elisa titers were determined by interpolation of OD values from a sample reference by SoftMaxPro. Titers were expressed in EU/ml.

Statistical analyses were performed on days 14 post 2 Elisa data using UNISTAT. The protocol applied for analysis of variance can be briefly described as follows:

1) Log transformation of the data
2) Shapiro-Wilk test on each population (group) in order to verify the normality
3) Cochran test in order to verify the homogeneity of variance between different populations (groups)
4) Analysis of variance on selected data (one way)
5) Tuckey-HSD test for multiple comparison.

IX.2.2 - Neutralization Assay

Prior to the assay, MRC5 cells (10000 cells/200 μl MEM medium) were distributed in 96 well microplates and incubated for 3 days at 37°C with 5% CO₂. Two-fold dilutions (60 μl) of inactivated sera (30 min at 56°C) were incubated with 60 μl of viral solution (800IPU/ml) for 1 hour at 37°C. After incubation, 100 μl of sera-virus mixture was inoculated in 96 well microplates containing MRC5 cells. The plates were centrifuged at 2000RPM for 1 hour at 35°C. After an overnight incubation at 37°C, the plates were fixed with an acetone 80% solution (20 minutes at -20°C). The acetone solution was discarded and CMV positive cells were detected using a specific monoclonal anti-immediate early I (IE-I) antigen for 1 hour at 37°C. The plates were washed 3 times with PBS and biotin-conjugated anti-mouse Ig was added to each well and incubated for 1 hour at 37 °C. After a washing step, streptavidin-horseradish peroxidase was added for an addition 30 minutes at 37°C. Plates were washed 4 times and incubated for 10 minutes with a solution of True-Blue. Specific coloured signals were recorded by examination under microscope. Neutralizing titers were expressed as the reverse of the highest dilution of serum giving 50% reduction of CMV positive cells as compared to a virus control (CMV plus cells without serum).

IX.2.3 - Intracellular Cytokine Staining

Intracellular detection of T cells cytokines were performed on PBLs on days 7 and 21 after the second immunization. PBLs were collected from mice and pooled (1 pool per group). In vitro antigen stimulation of lymphocytes (final concentration of 10⁷ cells/ml) were done with a pool of peptide covering the CMV sequence or with the gB protein. PBLs/antigen mix was incubated 2H at 37 °C. Cells were then incubated overnight in the presence of Brefeldin (1 μg/ml) at 37 °C to inhibit cytokine secretion.

Cell staining was performed as follows: Cell suspensions were washed, resuspended in 50 μl of PBS 1& FCS containing 2% Fc blocking reagent. After 10 min incubation at 4°C, 50 μl of a mixture of anti-CD4 PE and anti-CD8 perCp was added and incubated 30 min at 4 °C. After a washing step in PBS 1% FCS, cell membranes were permeabilised by resuspension in 200 μl of Cytofix=Cytoperm (kit Beckton Dickinson) and incubated 20 min at 4 °C. Cells were then washed with Perm Wash (kit BD) and resuspended with 50 μl of an anti-IFN-gamma APC + anti-IL-2 FITC diluted in PermWash. After 2 hours incubation at 4°C, cells were resuspended in PBS 1% FCS + 1% paraformaldehyde.

Sample analysis was performed by FACS. Live cells were gated and acquisition was performed on +/- 20000 events. The percentages of IFNg+ or IL2+ were calculated on CD4+ and CD8+ gated populations.

IX.2.4 - Immunisation Protocols

4 groups were immunised. Each group contained 12 female C57Bl/6 mice of 4 - 10 weeks old.

<table>
<thead>
<tr>
<th>Group</th>
<th>Antigen</th>
<th>Adjuvant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gB</td>
<td>PBS</td>
</tr>
<tr>
<td>2</td>
<td>gB</td>
<td>AS01B</td>
</tr>
<tr>
<td>3</td>
<td>gB</td>
<td>AS01E</td>
</tr>
<tr>
<td>4</td>
<td>NaCl</td>
<td>NaCl</td>
</tr>
</tbody>
</table>

The antigen was prepared as follows: The vaccine antigen is expressed in Chinese Hamster Ovary (CHO) cells as gB**, a truncated chimera containing peptide sequences from glycoprotein gD of Herpes Simplex virus 2 (HSV2) at its N and C-terminus. The gB** is truncated at its C-terminal domain that contains the membrane anchoring sequence and is therefore secreted into the culture supernatant.

For each group gB** at a concentration of 1.5 μg/dose was made up in 625 μl of PBS or adjuvant AS01 B or AS01E (prepared as in example II.2 above having a concentration of 100μl of immunostimulants per ml or 50μl of immunostimulants per ml respectively). 50 μl (i.e. 1/10 of a human dose of 0.5ml) was injected intramuscularly. One control group of mice was injected with saline. Injections were performed at days 0 and 28. Serum samples were collected 14 days after the second injections for ELISA and Neutralisation assays. PBLs were collected 7 days and 21 days post second injections for ICS.
IX.2.5 - results

[0282] Anti - gB ELISA titers (Figure 15).
[0283] A very weak to undetectable level of anti-gB antibodies was observed in the unadjuvanted gB group. However, a high antibody response (65 and 66 fold higher) was observed in both adjuvant groups, AS01B and AS01E respectively. There was no statistical significance between the AS01 B and AS01 E group.

Multiple comparison: Tuckey - HSD

[0284]

<table>
<thead>
<tr>
<th>Group</th>
<th>Cases</th>
<th>Mean</th>
<th>Plain</th>
<th>AS01E</th>
<th>AS01B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain</td>
<td>12</td>
<td>2.1132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS01E</td>
<td>12</td>
<td>3.9317</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS01B</td>
<td>12</td>
<td>3.9375</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain<AS01 E = AS01B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anti-CMV neutralizing titers (Figure 16)

[0285] Significantly higher anti-gB neutralising titers were observed for the two adjuvanted groups as compared to the gB plain group. No significant difference in neutralising antibody titres was observed between the AS01 B and AS01 E formulations.

Cell Mediated Immunity.

[0286] Due to the very low level of response observed after restimulation of 7 post II samples, no discrimination can be done between groups and no conclusive response for CD4 and CD8 stimulation can be seen (Figure 17). These low to undetectable responses were probably due to a technical issue during sample preparations. However, responses could be seen 21 days post second injection. The CD4 data (Figure 18) shows no difference after restimulation by gB (5μg/ml) or peptides (2 μg/ml or 4 μg/ml). A similar cytokine profile is seen for AS01E and AS01B. No conclusive response can be seen for CD8 stimulation (Figure 19)

[0287] These experiments show that for another antigenic composition and in two different organisms, an adjuvant having lower levels of immunostimulants is as immunologically effective as that having higher levels.

X: Preclinical Evaluation of Adjuvanted RTS,S Vaccine

X.1 - Formulation

[0288] The antigenic composition, RTS, S is produced in *Saccharomyces cervisiae* and consists of two proteins, RTS and S, that intracellularly and spontaneously assemble into mixed polymeric particulate structures that are each estimated to contain, on average, 100 polypeptides. RTS is a 51 kDa hybrid polypeptide chain of 424 amino acids consiting of 189aa derived from a sporozoite surfact antigen of the malaria parasite *P. falciparum* strain NF53 (the CSP antigen, a.a. 207 to 395), fused to the amino terminal end of the hepatitis B virus S protein. S is a 24 kDa polypeptide (226 amino acids long) corresponding to the surfact antigen of hepatitis B virus. The lyophilised antigen pellet contains approximately 50 μg (when designed to be formulated in 0.5 ml with AS01 B) or 25 μg (when designed to be formulated in 0.5 ml with AS01E) of antigen.

[0289] AS01B and AS01E were prepared by mixing the various components (PBS, liposomes, MPL and QS21) in a tank, and stirring under aseptic conditions. The product was then sterile filtered before filling into vials or syringes. The liquid adjuvant was stored at +2 °C to +8 °C before being used to reconstitute the lyophilised antigen pellet.

X.2 - Mice experiments

[0290] Two experiments in mice were performed aiming at comparing the immune responses specific to RTS,S induced by RTS,S/AS01B as compared to RTS,S formulated with AS01E. In each experiment, C57Bl/6 mice (10 mice/group) were immunised intramuscularly three times two weeks apart with 10, 5 or 2.5 μg of RTS,S formulated with AS01 B or
AS01 E adjuvants. AS controls, two groups were immunised with either AS01 B or AS01 E alone. The antibody responses specific to HBs and CS were assessed for each mouse by ELISA 15 days after the third immunisation. The geometric mean antibody titres and their 95% confidence intervals were calculated for all the mice receiving the same treatment in both experiments. Statistical analyses to evaluate adjuvant effect and antigen dose effects were performed on pooled data from both experiments. The CD4 and CD8 specific T cell responses were measured by flow cytometry 7 days after the second and third immunizations on pools of blood cells from 5 mice per group. Thus two values were generated for each group in each experiment.

Humoral Immune Response

[0291] As shown in figures 20 and 21, both AS01B and AS01E adjuvants induce strong comparable antibody responses against CSP and HBs.
[0292] A three-way ANOVA on anti-CSP GMTs showed that there was no significant differences between AS01 B and AS01 E for the 5 or 2.5 μg doses of RTS,S.
[0293] For the 10 μg dose, AS01 B adjuvant was found to induce higher anti-CS titers than AS01 E and the GMT ration "AS01 B group/AS01E group" was 1.93 (95% CI: 1.33 - 2.79; p = 0.001)

Cell Mediated specific immune response

[0294] Figures 22 and 23 show the levels of CD4 and CD8 T cells specific for CSP and HBs that express IL-2 and/or IFN gamma.
[0295] The CD4 response specific for CSP tends to be higher with AS01 B as compared to AS01E after three immunizations whereas the CD8 T cell response with AS01E are equivalent to or better than with AS01 B.
[0296] The CD4 response specific for HBs tends to be higher with AS01 B as compared to AS01E after three immunizations except for the lower dose of RTS,S where the levels of CD4 T cells are comparable between the two adjuvants. The HBs specific CD8 T cell responses induced by RTS,S formulated with AS01 E are equivalent to or better than the responses induced by RTS,S formulated with AS01 B.
[0297] These differences are thought to be within the expected variability of cellular immunology assays.
[0298] Pre-clinical evaluation of the RTS,S/AS01 E vaccine in mice revealed an acceptable safety profile, similar to that of RTS,S/AS01 B.

XI: Clinical Evaluation of RTS,S/AS01E.

[0299] Formulations are prepared as in example X above. Sucrose is used as an excipient in the lyophilised antigen pellet. As in example X, the liquid adjuvant is used to reconstitute the lyophilised antigen. AS01 E was prepared as described in example II.2, and stored at +2 to +8 °C until needed for reconstitution.
[0300] A phase II randomized double-blind study of the safety and immunogenicity of RTS,S adjuvanted with AS01 E is currently underway in children aged 18 months to 4 years living in Gabon. The vaccination schedule is a 0, 1, 2 -month vaccination schedule. Objectives are as follows for RTS,S/AS01 E when administered as 3 doses intramuscularly on a 0,1,2-month schedule to children aged 18 months to 4 years living in a malaria-endemic area:

Coprimary

[0301]
- to assess safety until one month post Dose 3.
- To demonstrate non-inferiority to an oil in water emulsion adjuvanted RTS,S vaccine in terms of anti-CS antibody response one month post Dose 3.

Secondary

[0302]
- to assess reactogenicity until one month post Dose 3
- to demonstrate non-inferiority to an oil in water emulsion adjuvanted RTS,S vaccine in terms of anti HBs antibody response one month post Dose 3
- to describe seroprotection against hepatitis B up to one month post Dose 3
- to describe the anti-CS response up to one month post Dose 3 Tertiary
Exploratory

[0303]
- to evaluate T-cell mediated immune response to CS antigen up to 12 months post dose 3
- to evaluate B-cell memory immune response to CS antigen up to 12 months post dose 3
- to describe the anti-CS response up to one month post Dose 3 according to documented HBV immunization status at screening.

[0304] 180 subjects were enrolled, 90 were given a vaccine adjuvanted with a previously validated proprietary oil in water emulsion adjuvant (termed "control" in the tables below) and 90 were given a vaccine adjuvanted with AS01 E. Healthy male and female children aged 18 months to 4 years of age were screened. Vaccines were administered by the IM route to the left deltoid.

Incidence and nature of symptoms (solicited and unsolicited) reported during the 7-day (Days 0-6) post-vaccination period following each dose and overall (Total vaccinated cohort)
<table>
<thead>
<tr>
<th></th>
<th>Any symptom</th>
<th>General symptoms</th>
<th>Local symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95% CI</td>
<td>95% CI</td>
<td>95% CI</td>
</tr>
<tr>
<td></td>
<td>N n %</td>
<td>N n %</td>
<td>N n %</td>
</tr>
<tr>
<td></td>
<td>LL UL</td>
<td>LL UL</td>
<td>LL UL</td>
</tr>
<tr>
<td>Gr 1 Dose 1</td>
<td>90 40 44.4</td>
<td>90 23 25.6</td>
<td>90 20 22.2</td>
</tr>
<tr>
<td></td>
<td>34.0 55.3</td>
<td>16.9 35.8</td>
<td>14.1 32.2</td>
</tr>
<tr>
<td>Gr 2 Dose 1</td>
<td>90 47 52.2</td>
<td>90 26 28.9</td>
<td>90 32 35.6</td>
</tr>
<tr>
<td></td>
<td>41.4 62.9</td>
<td>19.8 39.4</td>
<td>25.7 46.3</td>
</tr>
<tr>
<td>Gr 1 Dose 2</td>
<td>88 50 56.8</td>
<td>88 36 40.9</td>
<td>88 35 39.8</td>
</tr>
<tr>
<td></td>
<td>45.8 67.3</td>
<td>30.5 51.9</td>
<td>29.5 50.8</td>
</tr>
<tr>
<td>Gr 2 Dose 2</td>
<td>87 53 60.9</td>
<td>87 39 44.8</td>
<td>87 34 39.1</td>
</tr>
<tr>
<td></td>
<td>49.9 71.2</td>
<td>34.1 55.9</td>
<td>28.8 50.1</td>
</tr>
<tr>
<td>Gr 1 Dose 3</td>
<td>83 78 94.0</td>
<td>83 34 41.0</td>
<td>83 76 91.6</td>
</tr>
<tr>
<td></td>
<td>86.5 98.0</td>
<td>30.3 52.3</td>
<td>83.4 96.5</td>
</tr>
<tr>
<td>Gr 2 Dose 3</td>
<td>85 82 96.5</td>
<td>85 50 58.8</td>
<td>85 79 92.9</td>
</tr>
<tr>
<td></td>
<td>90.0 99.3</td>
<td>47.6 69.4</td>
<td>85.3 97.4</td>
</tr>
<tr>
<td>Overall/dose</td>
<td>261 168 64.4</td>
<td>261 93 35.6</td>
<td>261 131 50.2</td>
</tr>
<tr>
<td></td>
<td>58.2 70.2</td>
<td>29.8 41.8</td>
<td>44.0 56.4</td>
</tr>
<tr>
<td>Overall/dose</td>
<td>262 182 69.5</td>
<td>262 115 43.9</td>
<td>262 145 55.3</td>
</tr>
<tr>
<td></td>
<td>63.5 75.0</td>
<td>37.8 50.1</td>
<td>49.1 61.5</td>
</tr>
<tr>
<td>Overall/subject</td>
<td>90 87 96.7</td>
<td>90 60 66.7</td>
<td>90 83 92.2</td>
</tr>
<tr>
<td></td>
<td>90.6 99.3</td>
<td>55.9 76.3</td>
<td>84.6 96.8</td>
</tr>
<tr>
<td>Overall/subject</td>
<td>90 85 94.4</td>
<td>90 70 77.8</td>
<td>90 84 93.3</td>
</tr>
<tr>
<td></td>
<td>87.5 98.2</td>
<td>67.8 85.9</td>
<td>86.1 97.5</td>
</tr>
</tbody>
</table>

Gr.1 = RTS,S,AS01E
Gr.2 = control
LL = lower limit
UL = upper limit
For each dose and overall/subject:
N = number of subjects with at least one administered dose
n/% = number/percentage of subjects presenting at least one type of symptom whatever the study vaccine administered
For overall/dose:
N = number of administered doses
n/% = number/percentage of doses followed by at least one type of symptom whatever the study vaccine administered
95% CI = exact 95% confidence interval, LL = Lower Limit, UL = Upper Limit
These data demonstrate that an AS01 E adjuvanted RTS,S vaccine gave acceptable reactogenicity results in a paediatric population when compared with a control formulation.

Serological responses were measured by evaluating antibody responses to HBs and to CSP repeats (anti R32LR). Serum for antibody determination was collected at screening, at day 60 and at day 90 (at second vaccination and at third vaccination). Antibody levels against CS were measured by standard ELISA methodology using plate adsorbed R32LR antigen with a standard reference antibody as a control according to SOPs from the laboratory. Results are reported in EU/mL.

Antibody to hepatitis B surface antigen was measured using a commercially available ELISA immunoassay (AUSAB EIA test kit from Abbott) or equivalent according to the assay instructions. Results are reported in mIU/mL.

Seropositivity rates and GMCs for anti-CS antibodies (Total vaccinated cohort)

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Group</th>
<th>Timing</th>
<th>N</th>
<th>n</th>
<th>%</th>
<th>LL</th>
<th>UL</th>
<th>value</th>
<th>LL</th>
<th>UL</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-CS</td>
<td>Gr 1</td>
<td>SCREENING</td>
<td>89</td>
<td>0</td>
<td>0.0</td>
<td>4.1</td>
<td><0.5</td>
<td><0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td><0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PII(D60)</td>
<td>78</td>
<td>78</td>
<td>100</td>
<td>81.9</td>
<td>100</td>
<td>4.6</td>
<td>568.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIII(D90)</td>
<td>75</td>
<td>75</td>
<td>100</td>
<td>215.6</td>
<td>178.8</td>
<td>259.9</td>
<td>14.3</td>
<td>1922.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gr 2</td>
<td>SCREENING</td>
<td>90</td>
<td>1</td>
<td>1.1</td>
<td>6.0</td>
<td><0.5</td>
<td><0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PII(D60)</td>
<td>78</td>
<td>78</td>
<td>100</td>
<td>56.9</td>
<td>45.7</td>
<td>70.9</td>
<td>3.6</td>
<td>2380.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIII(D90)</td>
<td>80</td>
<td>80</td>
<td>100</td>
<td>164.8</td>
<td>134.1</td>
<td>202.6</td>
<td>6.3</td>
<td>2093.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gr.1 = RTS,S.AS01E
Gr.2 = Control
GMC = geometric mean antibody concentration calculated on all subjects
N = number of subjects with available results
n/% = number/percentage of subjects with concentration within the specified range
95% CI = 95% confidence interval; LL = Lower Limit, UL = Upper Limit
MIN/MAX = Minimum/Maximum

Seropositivity rates and GMCs for anti-HBs antibodies (Total vaccinated cohort)
<table>
<thead>
<tr>
<th>Antibody</th>
<th>Group</th>
<th>Timing</th>
<th>N</th>
<th>n</th>
<th>%</th>
<th>LL</th>
<th>UL</th>
<th>value</th>
<th>95% CI LL</th>
<th>95% CI UL</th>
<th>95% CI Min</th>
<th>95% CI Max</th>
<th>95% CI Min</th>
<th>95% CI Max</th>
<th>95% CI Min</th>
<th>95% CI Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-HBs</td>
<td>Gr 1</td>
<td>SCREENING</td>
<td>89</td>
<td>43</td>
<td>48.3</td>
<td>37.6</td>
<td>59.2</td>
<td>40.8</td>
<td>23.3</td>
<td>71.4</td>
<td><10.0</td>
<td>46421.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PII(D60)</td>
<td>78</td>
<td>77</td>
<td>98.7</td>
<td>93.1</td>
<td>100</td>
<td>8936.4</td>
<td>4684.2</td>
<td>17048.7</td>
<td><10.0</td>
<td>161536.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIII(D90)</td>
<td>75</td>
<td>75</td>
<td>100</td>
<td>95.2</td>
<td>100</td>
<td>24527.7</td>
<td>15316.5</td>
<td>39278.5</td>
<td>21.1</td>
<td>169430.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gr 2</td>
<td>SCREENING</td>
<td>90</td>
<td>37</td>
<td>41.1</td>
<td>30.8</td>
<td>52.0</td>
<td>20.0</td>
<td>12.8</td>
<td>31.0</td>
<td><10.0</td>
<td>30796.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PII(D60)</td>
<td>78</td>
<td>77</td>
<td>98.7</td>
<td>93.1</td>
<td>100</td>
<td>3640.0</td>
<td>1963.1</td>
<td>6749.3</td>
<td><10.0</td>
<td>150811.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIII(D90)</td>
<td>80</td>
<td>80</td>
<td>100</td>
<td>95.5</td>
<td>100</td>
<td>19485.0</td>
<td>13511.3</td>
<td>28099.9</td>
<td>178.6</td>
<td>110397.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gr.1 = RTS,S, AS01E
Gr.2 = Control
GMC = geometric mean antibody concentration calculated on all subjects
N = number of subjects with available results
n/% = number/percentage of subjects with concentration within the specified range
95% CI = 95% confidence interval; LL = Lower Limit, UL = Upper Limit
MIN/MAX = Minimum/Maximum
These data demonstrate that an AS01E adjuvanted RTS,S vaccine formulation gave acceptable humoral immune responses in a paediatric population when compared to a validated control.

Example XII: Preclinical evaluation of Varicella Zoster Virus with AS01B compared to AS01E.

The candidate vaccine is composed of a truncated VZV envelope protein, gE, produced in CHO cells. For this study C57BL/6 mice (n=48) were primed with one human dose (HD) of Varilrix (-4 log pfu/dose) administered sub-cutaneously. Five weeks after priming with Varilrix, mice were divided into 5 groups of 12 mice and injected intra-muscularly (tibias) on days 0 and 28 with 5 μg of gE alone, 5 μg gE + AS01E* (1/10 HD) or 5 μg gE + AS01 B (1/10 HD). The control group of mice (primed only) was injected with saline (0.9% NaCl). Immune responses were evaluated at 14 and/or 30 days following the second vaccination. Levels of gE specific total antibodies and the frequency of cytokine producing (IL2/IFNγ) CD4 and CD8 T cells were evaluated.

gE specific antibody responses:

An ELISA was developed to detect and quantify gE-specific antibodies in mice sera, using gE protein as the coating antigen. The ELISA titers were defined as the reciprocal of the serum dilution, which produced an absorbance (optical density) measure equal to 50% of the maximal absorbance value. ELISA titers were calculated by regression analysis.

The data demonstrate that gE AS01 E and gE AS01 B induced similar levels of gE specific antibodies (pvalues > 0.05). Both formulations induced significantly higher responses compared to the gE antigen alone (10-13 fold, pvalues < 0.05) at both 14 and 30 days post II (Figure 26).

<table>
<thead>
<tr>
<th>14 days post II</th>
<th>95% CI</th>
<th>30 days post II</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>gE</td>
<td>12067</td>
<td>5960</td>
<td>24433</td>
</tr>
<tr>
<td>gE/AS01E</td>
<td>125934</td>
<td>95504</td>
<td>166059</td>
</tr>
<tr>
<td>gE/AS01B</td>
<td>131728</td>
<td>88112</td>
<td>196934</td>
</tr>
<tr>
<td>Varilrix</td>
<td>34</td>
<td>11</td>
<td>105</td>
</tr>
</tbody>
</table>

Cytokine production was evaluated in CD4 and CD8 T cells using an intra-cellular cytokine staining technique. Spleen cells were isolated from each group of 12 mice at 30 days post II and pooled into 4 groups of 3 spleens. Spleen cells (1 x 10⁶) were incubated for 2 hours in the presence of gE peptides (63 peptides) spanning the complete gE protein (20 aa peptides/10 aa overlap) and then incubated overnight in the presence of brefeldin. Subsequently cells were stained with fluorescent mAb specific for cell surface CD4/CD8 and following permeabilization intracellular cytokines IL-2 and IFNγ.

As shown in figures 26 although similar cytokine profiles (IL2/IFNγ) were induced with both gE AS01B and gE AS01E formulations, the AS01 B formulation induced a higher magnitude of both CD4 and CD8 cytokine producing cells (2 fold, p>0.05 for CD4, 3.6 fold, p>0.05 for CD8). Due to unexpectedly high variability of the T cell responses the power to detect a significant difference between adjuvant doses was very limited (<50%). Importantly both gE formulated with AS01 B or AS01 E induced cytokine producing CD4 T cells of a significantly higher magnitude (13.3 fold, p< 0.05) compared to gE alone. Higher levels of CD8 cells were also induced by gE formulated with AS01 B or AS01 E (3.8 fold, p> 0.05) compared to gE antigen alone.

Example XIII: Preclinical Evaluation of AS01 B v AS01E in an Influenza Ferret model.

Materials and Methods

Female ferrets (Mustela putorius furo) aged 4 - 6 months were obtained from MISAY Consultancy (Hampshire, UK). Ferrets were primed on day 0 with heterosubtypic strain H1N1 A/Stockholm/24/90,(4LogTCID50/ml), 250 μl administered intranasally. On day 21, ferrets were injected intramuscularly with a full human dose (1000 μl vaccine dose, 15 μg HA per A strain, 17.5 μg B strain) of a combination of H1N1 A/New Caledonia C/20/99 (15 μg/ml), H3N2 A/Wyoming/3/2003 (15 μg/ml) and B/Jiangsu/10/2003 (17.5 μg/ml). Ferrets were then challenged on day 42 by intranasal
route with 250 µl of a heterosubtypic strain Wh.A/NY/55/04 (4.51 Log TCID50/ml).

Vaccinations on day 21 were either with the plain trivalent formulation ("plain" in the tables below) or with the trivalent formulation adjuvanted with AS01 B ("AS01B" in the tables below) or AS01 E ("AS01 E" in the tables below). Formulations were prepared as set out in example 3 above.

Body temperature monitoring:

Individual temperatures were monitored during the challenge period and were assessed using telemetry implants which recorded each individual animal temperature every 15 minutes before and after the challenge. All implants were checked and refurbished and a new calibration was performed by DSI before placement in the intraperitoneal cavity. All animals were individually housed in single cage during these measurements. Temperatures were recorded every 15 minutes 6 days before priming until 4 days post-priming, as well as 3 days before challenge until 7 days post-challenge.

Hemagglutination Inhibition Test (HI).

Test procedure

Anti-Hemagglutinin antibody titers to the three influenza virus strains were determined using the hemagglutination inhibition test (HI). The principle of the HI test is based on the ability of specific anti-Influenza antibodies to inhibit hemagglutination of chicken red blood cells (RBC) by influenza virus hemagglutinin (HA). Sera were first treated with a 25% neuraminidase solution (RDE) and were heat-inactivated to remove non-specific inhibitors. After pretreatment, two-fold dilutions of sera were incubated with 4 hemagglutination units of each influenza strain. Chicken red blood cells were then added and the inhibition of agglutination was scored using tears for reading. The titers were expressed as the reciprocal of the highest dilution of serum that completely inhibited hemagglutination. As the first dilution of sera was 1:10, an undetectable level was scored as a titer equal to 5.

Statistical analysis

Statistical analysis was performed on HI titers using UNISTAT. The protocol applied for analysis of variance can be briefly described as followed:

- Log transformation of data.
- Shapiro-wilk test on each population (group) in order to verify the normality of groups distribution.
- Cochran test in order to verify the homogeneity of variance between the different populations (groups).
- One-way analysis of variance performed on groups.
- Tuckey-HSD Test for multiple comparisons.

Viral titration in nasal washes

All nasal samples were first sterile filtered through Spin X filters (Costar) to remove any bacterial contamination. 50 µl of serial ten-fold dilutions of nasal washes were transferred to microtiter plates containing 50 µl of medium (10 wells/dilution). 100µl of MDCK cells (2.4 x 10^5 cells/ml) were then added to each well and incubated at 35°C for 6-7 days. After 6-7 days of incubation, the culture medium is gently removed and 100 µl of a 1/20 WST-1 containing medium is added and incubated for another 18 hours. The intensity of the yellow formazan dye produced upon reduction of WST-1 by viable cells is proportional to the number of viable cells present in the well at the end of the viral titration assay and is quantified by measuring the absorbance of each well at the appropriate wavelength (450 nanometers). The cut-off is defined as the OD average of uninfected control cells - 0.3 OD (0.3 OD correspond to +/- 3 StDev of OD of uninfected control cells). A positive score is defined when OD is < cut-off and in contrast a negative score is defined when OD is > cut-off. Viral shedding titers were determined by "Reed and Muench" and expressed as Log TCID50/ml.

Lymphoproliferation assay.

PBMC were collected by density gradient centrifugation (20 min at 2500 rpm and 4°C) on Ficoll Cedarlane lymphocyte mammal solution. PBMC were resuspended in 5 ml culture medium (RPMI/Add at 4°C) and 10% of normal ferret serum. Additives were composed by 100 mM sodium pyruvate, non essential amino acids MEM, Penicillin/streptomycin, glutamine and 1000 x concentrated β2-mercaptoethanol. Freshly isolated PBMC were immediately used for in vitro proliferation assays. The cells were placed in 96-well flat bottom tissue culture plates at 2 x 10^5 cells/well and...
cultured with different concentrations of antigen (0.1 to 1 μg HA of whole inactivated virus) for 44 to 96 h and then were pulse labeled with 0.5 μCi of [3H]thymidine. Incorporation of radiolabel was estimated 4 to 16 h later by β-emission spectroscopy.

Results

Viral load in nasal washes after challenge.
Nasal washes were collected 2 days before priming (priming = day 0) 1, 2 and 7 days post priming, as well as 4 days before challenge (challenge = day 42) and for a period of 7 days post challenge.

See results in figure 27.

Viral shedding after priming
A peak of viral shedding was observed in all ferrets 2 days after the priming.
7 days post priming, only residual viral load was observed in all groups.

Viral shedding after challenge
The peak of viral shedding was observed 24 hours after challenge.
Viral titration 3 days post-challenge showed high viral titers (no protection) in ferrets immunized with trivalent split plain. Lower reduction of viral shedding was observed in ferrets immunized with trivalent split AS01E than was seen with trivalent split adjuvanted with AS01 B.

Temperature monitoring:
Body temperature was monitored from 6 days pre-priming (priming = day 0) until 4 days post-priming as well as from 3 days pre-challenge until 7 days post challenge (challenge = day 42). Measurements were taken every 15 minutes and an average calculated by midday for each group. Results can be seen in figure 28.

Post Priming
Body temperature monitored before, during and after priming did show an increase in temperature in all groups.

Post-Challenge
Interpretation of body temperature monitoring is difficult. A slight increase of body temperature was observed post-challenge in ferrets immunized with trivalent split plain and trivalent split AS01 E, but not with trivalent split AS01 B. The score below was obtained by the number of ferrets with an increase of body temperature >0.4 °C.

<table>
<thead>
<tr>
<th>Group</th>
<th>-2</th>
<th>0</th>
<th>+1</th>
<th>+2</th>
<th>+7</th>
<th>39</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>47</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain</td>
<td>0.82</td>
<td>1.84</td>
<td>5.35</td>
<td>1.85</td>
<td>0.8</td>
<td>1.82</td>
<td>5.77</td>
<td>4.44</td>
<td>1.97</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS01E</td>
<td>0.82</td>
<td>2.11</td>
<td>5.83</td>
<td>1.65</td>
<td>0.8</td>
<td>1.62</td>
<td>4.93</td>
<td>4.15</td>
<td>2.4</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS01B</td>
<td>0.81</td>
<td>2.26</td>
<td>5.38</td>
<td>1.91</td>
<td>0.82</td>
<td>1.74</td>
<td>2.25</td>
<td>1.89</td>
<td>1.350</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Increase in temperature post challenge
Trivalent plain: 5/8 (+0.4, +0.4, +0.5, +0.7, +0.8)
Trivalent AS01B 0/8
Trivalent AS01E 6/8(+0.4, +0.4, +0.5, +0.5, +0.9, +1.6)

This read out is less robust than other read outs used in ferrets.

Haemagglutination Inhibition Test (HI)
Serum samples were collected 4 days before priming, 17 days post-priming, 21 days post-immunization and
13 days post challenge. Results can be seen in figures 29 and 30. For all three vaccine strains, statistically significantly higher HI titers were observed in ferrets immunised with trivalent split adjuvanted with AS01 B or AS01 E compared to trivalent split plain. No difference was observed between the two adjuvanted groups. Compared to other groups statistically significant higher cross-reactive HI titers to A/New York H3N2 (challenge strain) were observed after immunisation of ferrets with trivalent split vaccines adjuvanted with AS01 B.

[0335] The specification describes the following clauses:

1. An immunogenic composition in a dose volume suitable for human use comprising an antigen or antigenic preparation, in combination with an adjuvant which adjuvant comprises an immunologically active saponin fraction derived from the bark of Quillaja Saponaria Molina presented in the form of a liposome and a lipopolysaccharide wherein said saponin fraction and said lipopolysaccharide are both present in said human dose at a level of below 30 μg.
2. An immunogenic composition according to clause 1 wherein said adjuvant composition further comprises a sterol, wherein the ratio of saponin : sterol is from 1:1 to 1:100 w/w.
3. An immunogenic composition according to clause 2 wherein the ratio of saponin : sterol is from 1:1 to 1:10 w/w.
4. An immunogenic composition according to clause 2 wherein the ratio of saponin : sterol is from 1:1 to 1:5 w/w.
5. An immunogenic composition according to any of clauses 1 to 4 wherein said immunologically active saponin fraction is QS21.
6. An immunogenic composition according to any of clauses 2 to 5 wherein said sterol is cholesterol.
7. An immunogenic composition according to any preceding clause wherein said lipopolysaccharide is a lipid A derivative.
8. An immunogenic composition according to clause 7 wherein said lipid A derivative is 3D-MPL.
9. An immunogenic composition according to clause 7 or 8 wherein the ratio QS21 : 3D-MPL is 1:1.
10. An immunogenic composition according to any of clauses 1 to 9 further comprising a carrier.
11. An immunogenic composition according to any preceding clause wherein said lipopolysaccharide is present at an amount of 1 - 30 μg.
12. An immunogenic composition according to clause 11 wherein said lipopolysaccharide is present at an amount of 25 μg.
13. An immunogenic composition according to clause 11 wherein said lipopolysaccharide is present at an amount of 1 - 15 μg.
14. An immunogenic composition according to clause 13 wherein said lipopolysaccharide is present at an amount of 10 μg.
15. An immunogenic composition according to clause 13 wherein said lipopolysaccharide is present at an amount of 5 μg.
16. An immunogenic composition according to any of clauses 11 - 15 wherein said lipopolysaccharide is a lipid A derivative.
17. An immunogenic composition according to clause 16 wherein said lipid A derivative is 3D-MPL.
18. An immunogenic composition according to any preceding clause wherein said saponin is present at an amount of 1 - 25 μg.
19. An immunogenic composition according to clause 18 wherein said saponin is present at an amount of 25 μg.
20. An immunogenic composition according to clause 18 wherein said saponin is present at an amount of 1 - 10 μg.
21. An immunogenic composition according to clause 20 wherein said saponin is present at an amount of 10 μg.
22. An immunogenic composition according to clause 20 wherein said saponin is present at an amount of 5 μg.
23. An immunogenic composition according to any of clauses 18 - 22 wherein said immunologically active saponin fraction is QS21.
24. An immunogenic composition as clauseed in any preceding clause, wherein said dose volume suitable for human use is between 0.5 and 1.5 ml.
25. An immunogenic composition as clauseed in clause 24 wherein said dose volume is 0.5 ml.
26. An immunogenic composition as clauseed in clause 24 wherein said dose volume is 0.7 ml.
27. An immunogenic composition as clauseed in clause 24 wherein said dose volume is 1.0 ml.
28. An adjuvant composition in a volume suitable for use in a human dose of an immunogenic composition comprising between 1 and 30 μg of a lipopolysaccharide and between 1 and 30 μg of an immunologically active saponin fraction presented in the form of a liposome.
29. An adjuvant composition according to clause 28 wherein said lipopolysaccharide is a lipid A derivative.
30. An adjuvant composition according to clause 29 wherein said lipid A derivative is 3D-MPL.
31. An adjuvant composition according to any of clauses 28 - 30 wherein said immunologically active saponin fraction is QS21.
32. An adjuvant composition according to any of clauses 28 - 31 wherein said lipopolysaccharide and said immunologically active saponin fraction are present in the adjuvant composition at the same amount.
33. An adjuvant composition according to any of clauses 28 - 32 wherein said human dose suitable volume is 250 µl.
34. An adjuvant composition according to any of clauses 28 - 32 wherein said human dose suitable volume is 360 µl.
35. An adjuvant composition according to any of clauses 28 - 34 wherein said lipopolysaccharide is present at an amount of 25 µg.
36. An adjuvant composition according to any of clauses 28 - 34 wherein said lipopolysaccharide is present at an amount of 10 µg.
37. An adjuvant composition according to any of clauses 28 - 34 wherein said lipopolysaccharide is present at an amount of 5 µg.
38. An adjuvant composition according to any of clauses 28 - 37 wherein said immunologically active saponin is present at an amount of 25 mg.
39. An adjuvant composition according to any of clauses 28 - 37 wherein said immunologically active saponin is present at an amount of 10 mg.
40. An adjuvant composition according to any of clauses 28 - 37 wherein said immunologically active saponin is present at an amount of 5 mg.
41. An immunogenic composition according to any of clauses 1 - 27 wherein said antigen or antigenic preparation is derived from varicella zoster virus (VZV).
42. An immunogenic composition according to any of clauses 1 - 27 wherein said antigen or antigenic preparation is derived from Streptococcus pneumoniae.
43. An immunogenic composition according to any of clauses 1 - 27 wherein said antigen or antigenic preparation is derived from Cytomegalovirus (CMV).
44. An immunogenic composition according to any of clauses 1 - 27 wherein said antigen or antigenic preparation is derived from Plasmodium falciparum.
45. An immunogenic composition according to any of clauses 1 - 27 wherein said antigen or antigenic preparation is derived from influenza virus.
46. An immunogenic composition according to any of clauses 1 - 27 wherein said antigen or antigenic preparation is derived from human papillomavirus (HPV).
47. An Immunogenic composition comprising an influenza virus or antigenic preparation thereof in combination with an adjuvant composition which comprises an immunologically active saponin presented in the form of a liposome.
48. An immunogenic composition according to clause 47 in which said adjuvant further comprises a lipid A derivative.
49. An immunogenic composition according to clause 48 in which said lipid A derivative is 3D-MPL.
50. The use of (a) an antigen or antigenic preparation thereof, and (b) an adjuvant as defined in any of clauses 1 to 49 in the manufacture of an immunogenic composition for inducing, in a human, at least one, or at least two or all of the following: (i) an improved CD4 T-cell immune response against said antigen or antigenic preparation thereof, (ii) an improved humoral immune response against said antigen or antigenic preparation thereof, (iii) an improved B-memory cell response against said antigen or antigenic preparation thereof.
51. A method of vaccination comprising delivery of an antigen or antigenic composition, and an adjuvant as defined in any of clauses 1 to 49 to an individual or population in need thereof.
52. Use or method according to clause 50 or 51 in a human elderly or in an immunocompromised human individual or population.
53. Use or method according to any of clauses 50 to 52 wherein the administration of said immunogenic composition induces both an improved CD4 T-cell immune response and an improved B-memory cell response.
54. Use or method according to any of clauses 50 to 53 wherein said CD4 T-cell immune response involves the induction of a cross-reactive CD4 T helper response.
55. Use or method according to any of clauses 50 to 54 wherein said humoral immune response involves the induction of a cross-reactive humoral immune response.
56. Use or method according to any of clauses 50 to 55 wherein the target population is elderly above 65 years of age.
57. Use or method according to any of clauses 50 to 56 for protection against infection or disease caused by a pathogen which is a variant of the pathogen from which the antigen in the immunogenic composition is derived.
58. Use or method according to any of clauses 50 to 56 for protection against infections or disease caused by a pathogen which comprises an antigen which is a variant of that antigen in the immunogenic composition.
59. The use according to any of clause 57 or 58 wherein the immunological response following revaccination is any or two or all of the following: an improved CD4 response against said antigen or antigenic preparation thereof, an improved humoral response or an improved B cell memory response.
60. Use or method according to clause 57 or 58 wherein protection is assessed by body temperature of the infected individual or population.
61. A composition, use or method according to any of clauses 1 to 60 wherein the immunogenic composition comprises an antigen with a CD4 T cell epitope.
62. A composition, use or method according to any of clauses 1 to 60 wherein the immunogenic composition...
comprises an antigen with a B cell epitope.

63. Use of an antigen in the manufacture of an immunogenic composition for revaccination of individuals previously vaccinated with the antigen or antigenic composition, or a fragment or variant thereof, and an adjuvant as defined in any of clauses 1 to 49.

64. Use according to clause 63 wherein the antigen for revaccination shares common CD4 T-cell epitopes with an antigen or antigenic composition used for a previous vaccination.

65. Use according to clauses 63 or 64 wherein the antigen or antigenic composition for revaccination is adjuvanted.

66. Use according to clause 65 wherein the adjuvant is as defined in any of clauses 1 to 49.

67. Composition, use or method according to any of clauses 1 to 66 wherein the antigen or antigenic composition is derived from organisms selected from the list consisting of: influenza virus, HPV, CMV, VZV, *Streptococcus pneumoniae*, *Plasmodium falciparum*, *Plasmodium vivax*, Respiratory syncytial virus (RSV).

68. Composition, use or method according to any of clauses 1 to 67 wherein said influenza antigen is selected from the list consisting of: a split influenza virus, a purified whole influenza virus, a sub-unit influenza virus, and antigenic preparation thereof.

69. Composition, use or method according to clause 68 wherein said influenza antigen or antigenic preparation thereof is from at least two influenza virus strains.

70. A composition, use or method according to clause 69 wherein said influenza virus or antigenic preparation thereof is from at least three influenza virus strains.

71. A composition, use or method according to clause 70 wherein said influenza virus or antigenic preparation thereof is from at least four influenza virus strains.

72. A composition, use or method according to clause 71 wherein said influenza virus or antigenic preparation thereof is from at least five influenza virus strains.

73. A composition, use or method according to any of clauses 69 to 72 wherein at least one strain of said influenza virus or antigenic preparation thereof is associated with a pandemic outbreak or has the potential to be associated with a pandemic outbreak.

74. A composition, use or method according to clause 73 wherein at least two strains of said influenza virus or antigenic preparation thereof is associated with a pandemic outbreak or has the potential to be associated with a pandemic outbreak.

75. A composition, use or method according to clause 74 wherein at least three strains of said influenza virus or antigenic preparation thereof is associated with a pandemic outbreak or has the potential to be associated with a pandemic outbreak.

76. A composition, use or method according to any of clauses 73 to 75 wherein at least two or at least three pandemic influenza virus strain(s) is (are) selected from the list consisting of: H5N1, H9N2, H7N7, and H2N2.

77. An composition, use or method according to any of clauses 68 to 76, wherein said influenza virus or antigenic preparation thereof contains between 1 to 15 μg of HA per influenza strain.

78. An composition, use or method according to any of clauses 68 to 76, wherein said influenza virus or antigenic preparation thereof contains less than 15 μg HA per influenza strain.

79. An composition, use or method according to any of clauses 68 to 76, wherein said influenza virus or antigenic preparation thereof contains between 2.5 to 7.5 μg of HA per strain.

80. Use or method according to any of clauses 51 to 53 wherein the influenza virus or antigenic preparation thereof for revaccination is from at least two different influenza strains.

81. Use or method according to any of clauses 51 to 53 wherein the influenza virus or antigenic preparation thereof for revaccination is from at least three different influenza strains.

82. Use or method according to any of clauses 51 to 53 wherein the influenza virus or antigenic preparation thereof for revaccination contains at least one influenza strain which is associated with a pandemic outbreak or has the potential to be associated with a pandemic outbreak.

83. Use or method according to any of clauses 51 to 53 wherein the influenza virus or antigenic preparation thereof for revaccination contains at least one influenza strain which is associated with a pandemic outbreak or has the potential to be associated with a pandemic outbreak.

84. Use or method according to any of clause 57 to 59 wherein the influenza virus or antigenic preparation thereof for revaccination contains at least one influenza strain which is associated with a pandemic outbreak or has the potential to be associated with a pandemic outbreak.

85. Use or method according to any of clauses 57 to 59 and 80 to 83 wherein said influenza antigen or antigenic preparation thereof is egg-derived or cell-culture derived.

86. Use or method according to any of clauses 57 to 59 and 80 to 83 wherein said influenza antigen or antigenic preparation thereof is egg-derived or cell-culture derived.

87. Composition, use or method according to clause 86 wherein said influenza antigen is associated with cancer or with genital warts.

88. Composition, use or method according to clause 87 wherein said cancer-associated HPV is HPV type 16 and/or
HPV type 18.

89. Composition, use or method according to clause 88 wherein one or more additional antigens from cancer-causing HPV types are used with HPV 16 and/or 18 antigens, the antigens being selected from the following HPV types: HPV 31, 45, 33, 58 and 52.

90. Composition, use or method according to clause 88 or 89 wherein the antigens are in the form of virus like particles (VLPs).

91. Composition, use or method according to clause 90 wherein the VLPs are L1 VLPs.

Claims

1. An immunogenic composition comprising a varicella zoster virus (VZV) antigen, in combination with an adjuvant which adjuvant comprises an immunologically active saponin fraction derived from the bark of Quillaja Saponaria Molina presented in the form of a liposome and a lipopolysaccharide wherein said saponin fraction and said lipopolysaccharide are both present in the composition at a level of between 1 µg and 30 µg per dose, for use as a human medicament.

2. An immunogenic composition according to claim 1 wherein said adjuvant composition further comprises a sterol, wherein the ratio of saponin : sterol is from 1:1 to 1:100 w/w.

3. An immunogenic composition according to claim 1 or 2 wherein said immunologically active saponin fraction is QS21.

4. An immunogenic composition according to claim 2 or 3 wherein said sterol is cholesterol.

5. An immunogenic composition according to any preceding claim wherein said lipopolysaccharide is a lipid A derivative.

6. An immunogenic composition according to claim 5 wherein said lipid A derivative is 3D-MPL.

7. An immunogenic composition according to claim 6 wherein the ratio QS21 : 3D-MPL is 1 : 1.

8. An immunogenic composition according to any of claims 1 to 7 further comprising a carrier.

9. An immunogenic composition according to any of claims 1 to 8 wherein said lipopolysaccharide is present at an amount of 25 µg.

10. An immunogenic composition according to any of claims 1 to 9 wherein said saponin is present at an amount of 25 µg.

11. An immunogenic composition according to any of claims 1 to 10 wherein said humans are immune-compromised humans.

12. An immunogenic composition according to any of claims 1 to 11 wherein said VZV antigen is a truncated VZV gE produced in CHO cells.

Patentansprüche

1. Immunogene Zusammensetzung, umfassend ein Varizella-Zoster Virus (VZV)-Antigen in Kombination mit einem Adjuvans, wobei das Adjuvans eine immunologisch aktive Saponinfraktion, stammend von der Rinde von Quillaja Saponaria Molina, dargeboten in der Form eines Liposomes, und ein Lipopolysaccharid umfasst, wobei die Saponinfraktion und das Lipopolysaccharid beide auf einem Niveau von zwischen 1 µg und 30 µg pro Dosis in der Zusammensetzung vorhanden sind, zur Verwendung als humanes Medikament.

2. Immunogene Zusammensetzung gemäß Anspruch 1, wobei die Adjuvans-Zusammensetzung weiterhin ein Sterol umfasst, wobei das Verhältnis von Saponin : Sterol bei 1:1 bis 1:100 w/w liegt.

3. Immunogene Zusammensetzung gemäß Anspruch 1 oder 2, wobei die immunologisch aktive Saponinfraktion QS21 ist.
4. Immunogene Zusammensetzung gemäß Anspruch 2 oder 3, wobei das Sterol Cholesterol ist.

5. Immunogene Zusammensetzung gemäß einem der vorherigen Ansprüche, wobei das Lipopolysaccharid ein Lipid-A-Derivat ist.

8. Immunogene Zusammensetzung gemäß einem der Ansprüche 1 bis 7, weiterhin umfassend ein Trägermittel.

9. Immunogene Zusammensetzung gemäß einem der Ansprüche 1 bis 8, wobei das Lipopolysaccharid in einer Menge von 25 μg vorhanden ist.

10. Immunogene Zusammensetzung gemäß einem der Ansprüche 1 bis 9, wobei das Saponin in einer Menge von 25 μg vorhanden ist.

11. Immunogene Zusammensetzung gemäß einem der Ansprüche 1 bis 10, wobei die Menschen immungeschwächte Menschen sind.

12. Immunogene Zusammensetzung gemäß einem der Ansprüche 1 bis 11, wobei das VZV-Antigen ein gekürztes VZV gE ist, hergestellt in CHO Zellen.

Revendications

1. Composition immunogène comprenant un antigène du virus de la varicelle-zona (VZV), en combinaison avec un adjuvant, lequel adjuvant comprend une fraction de saponine immunologiquement active dérivée de l’écorce de Quillaja Saponaria Molina, présentée sous la forme d’un liposome et un lipopolysaccharide, où ladite fraction de saponine et ledit lipopolysaccharide sont tous les deux présents dans la composition à un taux entre 1 μg et 30 μg par dose, pour une utilisation en tant que médicament à usage humain.

2. Composition immunogène selon la revendication 1, dans laquelle ladite composition adjuvante comprend en outre un stérol, où le rapport de saponine/stérol est de 1/1 à 1/100 p/p.

3. Composition immunogène selon la revendication 1 ou 2, dans laquelle ladite fraction de saponine immunologiquement active est le QS21.

4. Composition immunogène selon la revendication 2 ou 3, dans laquelle ledit stérol est le cholestérol.

5. Composition immunogène selon l’une quelconque des revendications précédentes, dans laquelle ledit lipopolysaccharide est un dérivé du lipide A.

6. Composition immunogène selon la revendication 5, dans laquelle ledit dérivé du lipide A est le 3D-MPL.

7. Composition immunogène selon la revendication 6, dans laquelle le rapport QS21/3D-MPL est de 1/1.

8. Composition immunogène selon l’une quelconque des revendications 1 à 7 comprenant en outre un support.

9. Composition immunogène selon l’une quelconque des revendications 1 à 8, dans laquelle ledit lipopolysaccharide est présent dans une quantité de 25 μg.

10. Composition immunogène selon l’une quelconque des revendications 1 à 9, dans laquelle ladite saponine est présente dans une quantité de 25 μg.

11. Composition immunogène selon l’une quelconque des revendications 1 à 10, où lesdits êtres humains sont des êtres humains immunocompromis.
12. Composition immunogène selon l'une quelconque des revendications 1 à 11, dans laquelle ledit antigène du VZV est une gE tronquée du VZV produite dans des cellules CHO.
Figure 1 – MPL preparation

MPL® powder
↓
Suspension (10mg/mL)
↓
Thermal treatment
↓
Cooling
↓
Microfluidisation
↓
Dilution to 2mg/mL
↓
Pre-filtration on 0.65μm
↓
Filtration on 0.2μm
↓
dilution to 1mg/mL
↓
Storage at +2/8°C
Figure 2 – Humoral immunity against divers strains of influenza following immunisation of ferrets with experimental formulations (Hemagglutination Inhibition Test (GMT +/- IC95))
Anti-A/Wyoming/3/2003 H3N2

<table>
<thead>
<tr>
<th></th>
<th>Trivalent Split Plain</th>
<th>Trivalent Split MPL/IQS21 in liposomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-4 Pre Prim</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>D17 Post Prim</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>D21 Post Imm</td>
<td>20</td>
<td>1437</td>
</tr>
<tr>
<td>D13 Post Chall</td>
<td>1437</td>
<td>2574</td>
</tr>
</tbody>
</table>
Figure 3 – Ferret study – Viral titration in nasal washes after challenge (Day 42)

<table>
<thead>
<tr>
<th></th>
<th>J+42</th>
<th>J+43</th>
<th>J+44</th>
<th>J+46</th>
<th>J+47</th>
<th>J+49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivalent Plain</td>
<td>3.93</td>
<td>4.02</td>
<td>3.11</td>
<td>1.50</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Trivalent MPL/QS21 in liposomes</td>
<td>2.75</td>
<td>1.73</td>
<td>1.28</td>
<td>1.11</td>
<td>0.80</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4 – Mice study – Humoral response against the three vaccine strains of influenza following immunization of mice with experimental formulations: Hemagglutination Inhibition Test (GMT +/- 1C95) 21 days after immunization.
Figure 5 – Mice study – Cell mediated immune response: Flu-specific CD4+ T cell responses on Day 7 Post-immunization.

ICS Day 35 - restimulation with Whole Triv 1μgHA strains/ml in CD4 T cells

<table>
<thead>
<tr>
<th>% Flu Whole in specific CD4+ T cells</th>
<th>Triv plain</th>
<th>Triv liposome-MPL</th>
<th>Triv DQS21</th>
<th>Triv MPL/DQS21 in liposomes</th>
<th>Agrippal plain</th>
<th>Agrippal liposome-MPL</th>
<th>Agrippal DQS21</th>
<th>Agrippal MPL/DQS21 in liposomes</th>
<th>PBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4+L2+</td>
<td>0.1</td>
<td>0.11</td>
<td>0.12</td>
<td>0.66</td>
<td>0.36</td>
<td>0.17</td>
<td>0.4</td>
<td>0.89</td>
<td>0.07</td>
</tr>
<tr>
<td>CD4+L2+NF+</td>
<td>0.19</td>
<td>0.1</td>
<td>0.29</td>
<td>0.57</td>
<td>0.21</td>
<td>0.24</td>
<td>0.38</td>
<td>0.6</td>
<td>0.03</td>
</tr>
<tr>
<td>CD4+NF+</td>
<td>0.07</td>
<td>0.14</td>
<td>0.08</td>
<td>0.56</td>
<td>0.06</td>
<td>0.33</td>
<td>0.29</td>
<td>0.63</td>
<td>0.05</td>
</tr>
</tbody>
</table>

ICS Day35 - restimulation with Whole Triv 1μgHA strain/ml

<table>
<thead>
<tr>
<th>% Flu Whole in specific CD4+ T cells</th>
<th>CD4Total</th>
<th>CD4Total liposome-MPL</th>
<th>CD4Total DQS21</th>
<th>CD4Total MPL/DQS21 in liposomes</th>
<th>CD4Total Agrippal plain</th>
<th>CD4Total Agrippal liposome-MPL</th>
<th>CD4Total Agrippal DQS21</th>
<th>CD4Total Agrippal MPL/DQS21 in liposomes</th>
<th>PBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMT +/- CI 95</td>
<td>0.35</td>
<td>0.32</td>
<td>0.49</td>
<td>1.79</td>
<td>0.3</td>
<td>0.74</td>
<td>1</td>
<td>2.01</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Figure 6 - CMI for CD4 – Pooled strain (all double) – Day 0 and Day 21

Figure 7 - GMTs at days 0 and 21 for HI antibodies
Figure 8 Incidence of local and general symptoms (Total and grade 3 related) reported during the 7-day FU period

General symptoms

Local symptoms

% of symptoms reported (with 95% CI)

Vaccine group
Figure 9: Humoral responses to HPV 16 and 18 L1.
Figure 10: Intracellular Cytokine Staining - VLP16 and 18 CD4+ T cells.
Figure 11: Production of Specific B Memory cells following immunisation with adjuvanted HPV formulations.
Figure 12: Preclinical comparison of adjuvant S. pneumoniae vaccines in mice.

Conjugate immunogenicity in Balb/c mice:
AS01B versus AS01E

LgG (post-III), µg/mL
(GMC, CI 0.95)

p < 0.005
p < 0.05

1 3 4 5 6B 7F 9V 14 18C 19F 23F
Figure 13: Guinea pig Anti-gB ELISA titers following immunisation with adjuvant Gb vaccine.

Figure 14: Guinea Pig Anti CMV neutralizing titers following immunisation with adjuvant Gb vaccine.
Figure 15: Mice Anti-gB ELISA titers following immunisation with adjuvant gB vaccine.

![Specific anti-gB antibody titers diagram]

<table>
<thead>
<tr>
<th></th>
<th>1.5 µg gB</th>
<th>1.5 µg gB + AS01B</th>
<th>1.5 µg gB + AS01E</th>
<th>PBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elisa titers EIU/ml (GMT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 post 2</td>
<td>130</td>
<td>8544</td>
<td>8661</td>
<td>50</td>
</tr>
</tbody>
</table>

Figure 16: Mice anti CMV neutralising titers following immunisation with adjuvanted gB vaccine.

![Anti-CMV neutralizing titers diagram]

<table>
<thead>
<tr>
<th></th>
<th>1.5µ gB</th>
<th>1.5µ gB + AS01b</th>
<th>1.5µ gB + AS01e</th>
<th>PBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralising titer (GMT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 post 2</td>
<td>20</td>
<td>58</td>
<td>62</td>
<td>20</td>
</tr>
</tbody>
</table>
Figure 17: Cell Mediated immunity – CMV specific CD4+ and CD8+ cells following re-stimulation with a pool of gB peptides (7 days post second immunisation)
Figure 18: Cell Mediated immunity – CMV specific CD4+ cells following re-stimulation with two different dosages of a pool of gB peptides (21 days post second immunisation).
Figure 19: Cell Mediated immunity – CMV specific CD8+ cells following re-stimulation with two different dosages of a pool of gB peptides (21 days post second immunisation).
Figure 20: Geometric mean antibody titers (GMT) against Circumsporozoite protein CSP following immunization with adjuvanted RTS,S vaccine in mice.

Note: Results are presented as the geometric mean anti-CSP Ab titers from groups of mice of two experiments and their 95% confidence limits

Figure 21: Geometric mean antibody titers (GMT) against Hepatitis B surface antigen (HBs) following immunization with adjuvanted RTS,S vaccine in mice.
Figure 22: Ex vivo expression of IL-2 and/or IFN gamma by CSP-specific CD4 and CD8 T cells
Figure 23: Ex vivo expression of IL-2 and/or IFN gamma by HBs-specific CD4 and CD8 T cells.
Figure 24: Humoral responses in mice following immunisation with adjuvanted trivalent split influenza vaccine (immunostimulants at two different concentrations).
Figure 25: Cell mediated immune response in mice following immunisation with adjuvanted trivalent influenza vaccine (immunostimulants at two different concentrations)

<table>
<thead>
<tr>
<th></th>
<th>Plain</th>
<th>MPL</th>
<th>dQ</th>
<th>AS01E</th>
<th>AS01B</th>
<th>PBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4+IL2+</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.07</td>
</tr>
<tr>
<td>CD4+IL2+INFg+</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>CD4+INFg+</td>
<td>0.06</td>
<td>0.19</td>
<td>0.13</td>
<td>0.44</td>
<td>0.75</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Figure 26: Preclinical results in mice comparing VZV gE vaccines adjuvant with AS01B or AS01E.
Figure 27 – viral nasal wash titres following priming and challenge with influenza virus antigens (plain or adjuvanted) in ferrets.
Figure 28: Body temperature monitoring in ferrets following priming and challenge with influenza antigens

Figure 2: Temperature monitoring from 1 day before challenge until 7 days post-challenge
Figure 29: Anti H1 titers for the A strains in the trivalent vaccine formulation following immunisation and challenge with influenza antigen preparations

20050518/554 - Anti-A/New Caledonia/20/99 H1N1 - H1 titers

20050518/554 - Anti-A/Wyoming/3/2003 H3N2 - H1 titers
Figure 30: Anti H1 titres for B/Jiangsu and the drift strain used for challenge following immunisation and challenge with influenza antigen preparations.

20050518/554 - Anti-B/Jiangsu/10/2003 - H1 titers

20050518/554 - Anti-A/New-York/55/2004 H3N2 H1 titers
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4912094 A [0008] [0009] [0047]
- WO 02078637 A [0009]
- WO 9633739 A [0012] [0035] [0057] [0118] [0121]
- EP 0671948 A [0013]
- EP 0362278 A [0031]
- US 3238190 A [0037]
- US 4436727 A [0047]
- US 4877611 A [0047]
- US 4866034 A [0047]
- GB 2220211 A [0047]
- WO 9421292 A [0047]
- US 4886499 A [0072]
- US 5190521 A [0072]
- US 5328483 A [0072]
- US 5599302 A [0072]
- US 5466220 A [0072]
- US 5339163 A [0072]
- US 5312335 A [0072]
- US 4941880 A [0072]
- US 4940460 A [0072]
- US 5015235 A [0072]
- US 5141496 A [0072]
- US 5417662 A [0072]
- US 5480381 A [0072]
- US 5469912 A [0072]
- US 5599318 A [0072]
- US 5569189 A [0072]
- US 5704911 A [0072]
- US 5993412 A [0072]
- US 6049912 A [0072]
- US 5569189 A [0072]
- US 5704911 A [0072]
- EP 311863 B [0076]

Non-patent literature cited in the description

- Merck index [0037]
- FIEDLER. Arzneimittel-Forsch, 1953, vol. 4, 213 [0037]
- BOMMER, R. Pharmaceutical Technology Europe, September 1999 [0076]
- WHO Collaborating Centre for influenza. Centres for Disease Control, 1991 [0100]
- WHO collaborating Centre for influenza. Centres for Diseases Control, 1991 [0195]