A plug for a universal serial bus connector in the USB 3.0 standard to which a cable is connected to form a connector assembly, the cable including a signal line for the USB 2.0 standard and a ground line and being fixed by a cable fixing section of a connector shell, the plug includes an electrode which approximately abuts a distal end of the cable fixing section in the connector assembly, and to which at least one of the signal line for the USB 2.0 standard and the ground line is connected.

FIG. 2
[0001] The present invention relates to a plug for a universal serial bus (hereinafter abbreviated as “USB”) connector (hereinafter abbreviated as “plug”), and a connector assembly using the plug, and in particular relates to the structure of a Standard-A plug or a Standard-B plug in the USB 3.0 standard. Priority is claimed on Japanese Patent Application No. 2008-321099, filed December 17, 2008, the content of which is incorporated herein by reference.

BACKGROUND ART

[0002] A USB connector is a type of connector that is used for the connection of electronic devices including personal computers and peripheral devices, and is widely used due to having the advantages of easy connection to a device, plug-and-play or hot plugging capability, and capability of being used as a terminal for power supply (refer to Patent Documents 1 to 3 and Non-patent Document 1). The specification of the plug that constitutes a USB connector and the receptacle into which the plug is inserted are defined by standards.

[0003] On the other hand, in connecting a plug and cable to form a USB connector assembly, the structure of the connection portion is not particularly specified. For example, as shown in FIG. 7, a structure is employed in which a plug 1 is housed in a metal connector shell 2, a jacket 3a of a cable 3 is fixed in a grasping manner in a clamp portion 2a that is provided at the base end portion of the connector shell 2, and a plurality of electrical wires 3b that extend from the distal end of the jacket 3a and the braid 3c to the base end portion of the connector shell 2, and a plurality of (exposed) wires 3b that extend from the distal end of the jacket 3a and the braid 3c to the distal end side are connected to a plurality of electrodes 1a arranged at the base end portion of the plug 1. Also, in the case of the cable 3 used for the USB3.0 standard, the aforementioned plurality of wires 3b consist of two pairs of signal lines for the USB 3.0 standard that are shielded, one pair of wires for the USB 2.0 standard that are not shielded, a power line, and a ground line, for a total of eight wires (only five are shown in the figure). Note that in the following disclosure, unless otherwise noted, the left side in the figures (the side to be inserted into a receptacle) shall be defined as the distal end side, and the right side (the side connected to the cable) as the base end side.

PRIOR ART DOCUMENT

PATENT DOCUMENTS

NON-PATENT DOCUMENTS

SUMMARY OF THE INVENTION

[0006] In the aforementioned cable 3, the plurality of wires 3b are covered from the outer side by a jacket 3a and a braid 3c. Accordingly, during the connection described above, work called “leading” is required to remove the jacket 3a and the braid 3c to enable connection of the wires 3b to the electrode 1a of the plug 1. In the aforementioned conventional connector assembly, the distance between the location where the jacket 3a and the braid 3c of the cable 3, that is fixed to the clamp portion 2a, are removed by leading, and each electrode 1a of the USB plug 1 (the distance shown by the letter D in FIG. 7) is substantially equivalent. Accordingly, the lengths of the plurality of (exposed) wires 3b that extend from the distal end of the jacket 3a and the braid 3c to the distal end side by leading are substantially equivalent.

[0007] However, when the lengths of the plurality of wires 3b in the aforementioned exposed portion are equivalent, in the signal wires for the USB 2.0 standard in which the periphery is not particularly shielded, since the surrounding shield by the braid 3c is eliminated, they become more susceptible to external noise. In addition, since the braid 3c is eliminated, there is also the problem of the region in which impedance mismatching between the paired signal wires for the USB 2.0 standard occurs. Note that FIG. 7 shows the example of a Standard-A plug in the USB 3.0 standard, but even in the Standard-B plug in the USB 3.0 standard, a similar problem occurs.

[0008] The present invention was achieved in view of the aforementioned circumstances, and the object thereof is to provide a plug for a universal serial bus connector and a connector assembly that, in a plug for a USB connector and a connector assembly using the plug, can reduce the effects of external noise that the signal wires for the USB 2.0 standard receive and impedance mismatching between the paired signal wires for the USB 2.0 standard.

MEANS FOR SOLVING THE PROBLEMS

[0009] The first aspect of the present invention is a plug for a universal serial bus connector in the USB 3.0
standard to which a cable is connected to form a connector assembly, the cable including a signal line for the USB 2.0 standard and a ground line and being fixed by a cable fixing section of a connector shell, the plug including an electrode which approximately abuts a distal end of the cable fixing section in the connector assembly, and to which at least one of the signal line for the USB 2.0 standard and the ground line is connected.

[0010] The second aspect of the present invention is a connector assembly including: the plug for a universal serial bus connector according to claim 1; and the cable that includes the signal line for the USB 2.0 standard, a signal line for the USB 3.0 standard, a power line, and the ground line, wherein the length from a distal end of a jacket of the cable to a distal end of the signal line for the USB 2.0 standard is shorter than the length from the distal end of the jacket to a distal end of the signal line for the USB 3.0 standard.

[0011] It may be arranged such that the lengths to the distal end of the signal line for the USB 2.0 standard, the power line, and the ground line with respect to the distal end of the jacket of the cable differ from each other.

[0012] The plug for a universal serial bus connector may be a Standard-A plug in the USB 3.0 standard.

[0013] The plug for a universal serial bus connector may be a Standard-B plug in the USB 3.0 standard.

EFFECTS OF THE INVENTION

[0014] According to the present invention, since the signal lines for the USB 2.0 standard that are not shielded can be connected to the electrodes at positions closer to the base end side compared to a conventional plug, it is possible to shorten the overall length of the signal lines for the USB 2.0 standard, which are susceptible to external noise. As a result, the range of being susceptible to external noise of the signal lines for the USB 2.0 standard shortens, and the effect of external noise on the signal lines decreases. Also, since the region where impedance mismatching between the paired signal lines for the USB 2.0 standard occurs (non-shielded region) narrows, the aforementioned impedance mismatching decreases.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 is perspective view that shows an upper side of an example of the structure of the plug for the USB connector according to the first embodiment of the present invention.

FIG. 2 is perspective view that shows a lower side of an example of the structure of the plug for the USB connector according to the first embodiment of the present invention.

FIG. 3 is a partial cross-sectional view that shows an example of the structure of the connector assembly according to the first embodiment of the present invention.

FIG. 4 is perspective view that shows an upper side of an example of the structure of the plug for the USB connector according to the second embodiment of the present invention.

FIG. 5 is perspective view that shows a lower side of an example of the structure of the plug for the USB connector according to the second embodiment of the present invention.

FIG. 6 is a partial cross-sectional view that shows an example of the structure of the connector assembly according to the second embodiment of the present invention.

FIG. 7 is perspective view that shows an upper side of an example of the structure of a conventional connector assembly.

EMBODIMENTS FOR CARRYING OUT THE INVENTION

[Embodiment 1] Hereinafter, embodiments of the present invention shall be described with reference to the drawings.

[0016] FIG. 1 and FIG. 2 show schematic configurations of a plug 11 for a USB connector according to the first embodiment (Embodiment 1) of the present invention. FIG. 1 is an upper side perspective view that shows the obverse side of the plug 11, and FIG. 2 is a lower side perspective view that shows the reverse side of the plug 11. This plug 11 corresponds to the aforementioned conventional plug 1, and in terms of standards, corresponds to the Standard-A plug in the USB 3.0 standard.

[0017] FIG. 3 is a partial cross-sectional view during forming of the connector assembly, a distal end portion 12b that extends from the center portion 12a to the distal end side and that is inserted into a receptacle (not shown), and a base end portion 12c that extends from the center portion 12a to the base end side and that is used for connection with a cable described below. Also, the shapes of the center portion 12a and the distal end portion 12b as well as the arrangement of the electrodes 13a to 13d in the main body 12 conform to the USB 3.0 standard.

[0019] In this plug 11, the constitution of the base end portion 12c differs from that of the conventional plug 1. That is, in the plug 11, the base end portion 12c extends to a position closer to the base end side compared to the
The base end portion 12c extends with the same width and same thickness as the conventional plug 1 to a position that approximately abuts the distal end of the clamp portion of the connector shell (refer to reference numeral 2a of FIG. 3 described below) during formation of the connector assembly. Here, the "position that approximately abuts the distal end of the clamp portion" means a position at which a base end edge 12d of the base end portion 12c abuts the distal end face of the clamp portion, or faces it with a slight clearance.

In this case, in the plug 11 of the present embodiment, as stated above, the base end portion 12c of the main body 12 extends to a position that approximately abuts the distal end of the clamp portion 2a of the connector shell 2 during formation of the connector assembly 40. Also, the electrodes 13d that are positioned on the reverse surface of the base end portion 12c (for receptacle connection in accordance with the USB 2.0 standard) extend to the base end edge 12d along the extension direction of the base end portion 12c.

Accordingly, when forming the connector assembly 40, it becomes possible for the paired signal lines 30c for the USB 3.0 standard to be connected to the electrodes 13d (the signal lines 30c, the power line 30d and the ground line 30e), as well as the lengths among the electrical wires to be connected to the electrodes 13d (the signal lines 30c, the power line 30d and the ground line 30e) can be made to differ with respect to one another.

In particular, since the pair of signal lines 30c that are not shielded can be connected to the electrodes 13d at positions closer to the base end side compared to the conventional plug 1, it is possible to shorten the overall length of the signal lines 30c, which are susceptible to external noise. As a result, the range of being susceptible to external noise of the signal lines 30c shortens, and the effect of external noise on the signal lines 30c decreases. Also, since the region where impedance mismatching between the paired signal lines 30c occurs narrows, the aforementioned impedance mismatching decreases. As a result, reflection of signals between the paired signal lines 30c, signal attenuation arising from that, and crosstalk decrease.

In this plug 51, the configuration of the end portion 52e of the base end portion 52c differs from that of the conventional Standard-B plug in the USB 3.0 standard.

In the plug 51 of the present embodiment (Embodiment 2) of the present invention, FIG. 4 is an upper side perspective view that shows the obverse side of the plug 51, and FIG. 5 is a lower side perspective view that shows the reverse side of the plug 51. This plug 51 in terms of standards corresponds to the Standard-B plug in the USB 3.0 standard.

The plug 51 is constituted by a main body 52 that is made of resin, and electrodes 53a to 53d that are arranged in the main body, similarly to the plug 11 of the aforementioned first embodiment. The main body 52 is provided with a center portion 52a that is supported by a connector shell during forming of the connector assembly, a distal end portion 52b that extends from the center portion 52a to the distal end side and that is inserted into a receptacle (not shown), and a base end portion 52c that extends from the center portion 52a to the base end side and that is used for connection with a cable. Additionally, the base end portion 52c is constituted from a thick base portion 52d that is positioned on the distal end side, and a thin end portion 52e that extends from the base portion 52d to the base end side. The shapes of the center portion 52a, the distal end portion 52b, and the base portion 52d of the base end portion 52c as well as the arrangement of the electrodes 53a to 53d in the main body 52 conform to the USB 3.0 standard.
tion of the aforementioned conventional plug to a position that approximately abuts the distal end of the clamp portion of the connector shell (refer to reference numeral 2a of FIG. 6 described below) during formation of the connector assembly. Note that the “position that approximately abuts the distal end of the clamp portion” is defined in the same manner as in the plug 11 of the first embodiment described above.

[0027] The electrodes shown by the reference numerals 53c and 53d (for electrical wire connections in accordance with the USB 2.0 standard) extend to the base end edge 52f, along the extension direction of the end portion 52e, in the state of two each being arranged at a predetermined interval in the width direction on both the obverse and reverse surfaces of the end portion 52e of the base end portion 52c, in contrast to the conventional plug 1. Note that the arrangement of the electrodes 53a that are positioned on the obverse surface of the distal end portion 52b (for receptacle connection in accordance with the USB 3.0 standard) and the electrodes positioned on the end surface of the distal end portion 12c (for receptacle connection in accordance with the USB 2.0 standard, not illustrated), as well as the electrodes 53b positioned on the obverse surface of the base portion 52d of the base end portion 52c (for electrical wire connections in accordance with the USB 3.0 standard) are the same as for the conventional plug.

[0028] Then, for example as shown in FIG. 6, the plug 51 is housed in the metal connector shell 21, and the jacket 30a of the cable 30 that has been led is fixed in a grasping manner in the clamp portion 21a (cable fixing means) that is provided at the base end portion of the connector shell 21. Moreover, the electrodes 53b to 53d of the plug 51 and the plurality of wires that extend from the distal end of the jacket 30a to the distal end side (refer to reference numerals 30b to 30e described below) are connected. In this way, a connector assembly 60 is formed.

[0029] In this case, in the plug 51 of the present embodiment, as stated above, among the base end portion 52c of the main body 52, the end portion 52e that is positioned at the base end side extends to a position that approximately abuts the distal end of the clamp portion 21 a of the connector shell 21 during formation of the connector assembly 60. Also, the electrodes 53c and 53d that are positioned on the obverse and reverse surfaces of the end portion 52e extend to the base end edge 52f along the extension direction of the end portion 52e. Accordingly, when forming the connector assembly 60, it becomes possible for the paired signal lines 30c for the USB 2.0 standard that are not shielded, the power line 30d, and the ground line 30e to be connected to the electrodes 53c and 53d at different positions from one another with respect to the extension direction of the end portion 52e. As a result, the length of the two paired signal lines 30b for the USB 3.0 standard to be connected to the electrodes 53b positioned at the base portion 52d of the base end portion 52c, the length of the electrical wires to be connected to the electrodes 53c and 53d (the signal lines 30c, the power line 30d and the ground line 30e), as well as the lengths among the electrical wires to be connected to the electrodes 53c and 53d (the signal lines 30c, the power line 30d and the ground line 30e) can be made to differ with respect to one another.

[0030] In particular, since the pair of signal lines 30c that are not shielded can be connected to the electrodes 53c, 53d at positions closer to the base end side compared to the conventional plug, it is possible to shorten the overall length of the signal lines 30c, which are susceptible to external noise. As a result, the range of being susceptible to external noise of the signal lines 30c shortens, and the effect of external noise on the signal lines 30c decreases. Also, since the region where impedance mismatches between the paired signal lines 30c occurs (non-shielded region) narrows, the aforementioned impedance mismatching decreases. As a result, reflection of signals between the paired signal lines 30c, signal attenuation arising from that, and crosstalk decrease.

[0031] Note that the technical scope of the present invention is not limited to the foregoing embodiments, and various modifications can be made within a range that does not depart from the scope of the present invention. For example, in the plugs 11 and 51 of the foregoing embodiments, the electrodes 13d, 53c, 53d for electrical connections in accordance with the USB 2.0 standard all extend to the base end edge 12d, 52f of the base end portion 12c, 52c. However, if the object is to shorten the total length of the pair of signal lines 30c for the USB 2.0 standard that are not shielded, among the electrodes 13d, 53c, 53d, at least only the electrodes to which the paired signal lines 30c for the USB 2.0 standard are connected may be extend to the base end edge 12d, 52f of the base end portion 12c, 52c.

INDUSTRIAL APPLICABILITY

[0032] According to the present invention, it is possible to provide a plug for a universal serial bus connector and a connector assembly that is capable of lowering the effects of external noise that the signal lines for the USB 2.0 standard receive and mismatching of impedance between the pair of signal lines for the USB 2.0 standard, in a plug for a USB connector and a connector assembly that uses this plug.

DESCRIPTION OF REFERENCE NUMERALS

[0033]

2, 21 Connector shell
2a, 21a Clamp portion (cable fixing means)
11, 51 Plug
13d, 53c, 53d Electrode
30 Cable
30a Jacket
30b Signal line for USB 3.0 standard
30c Signal line for USB 2.0 standard
30d Power line
30e Ground line
40, 60 Connector assembly

Claims

1. A plug for a universal serial bus connector in the USB 3.0 standard to which a cable is connected to form a connector assembly, the cable including a signal line for the USB 2.0 standard and a ground line and being fixed by a cable fixing section of a connector shell, the plug comprising an electrode which approximately abuts a distal end of the cable fixing section in the connector assembly, and to which at least one of the signal line for the USB 2.0 standard and the ground line is connected.

2. The plug for a universal serial bus connector according to claim 1, being a Standard-A plug in the USB 3.0 standard.

3. The plug for a universal serial bus connector according to claim 1, being a Standard-B plug in the USB 3.0 standard.

4. A connector assembly comprising:

 the plug for a universal serial bus connector according to claim 1; and
 the cable that includes the signal line for the USB 2.0 standard, a signal line for the USB 3.0 standard, a power line, and the ground line, wherein the length from a distal end of a jacket of the cable to a distal end of the signal line for the USB 2.0 standard is shorter than the length from the distal end of the jacket to a distal end of the signal line for the USB 3.0 standard.

5. The connector assembly according to claim 2, wherein the lengths to the distal end of the signal line for the USB 2.0 standard, the power line, and the ground line with respect to the distal end of the jacket of the cable differ from each other.
INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2009/006477

A. CLASSIFICATION OF SUBJECT MATTER

H01R24/00 (2006.01), H01R13/648 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01R24/00, H01R13/648

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

<table>
<thead>
<tr>
<th>Jitsuyo Shinan Koho</th>
<th>1922-1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kokai Jitsuyo Shinan Koho</td>
<td>1971-2009</td>
</tr>
<tr>
<td>Toroku Jitsuyo Shinan Koho</td>
<td>1994-2009</td>
</tr>
</tbody>
</table>

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X A</td>
<td>JP 3071506 U (Shika Denshi Kofun Yugen Koshi), 14 September 2000 (14.09.2000),</td>
<td>1-3, 4, 5</td>
</tr>
<tr>
<td></td>
<td>entire text; all drawings (Family: none)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>entire text; all drawings (Family: none)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 2007-141522 A (Fujitsu Component Ltd.), 07 June 2007 (07.06.2007),</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>entire text; all drawings & US 2007/011597 A1</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 * "A" earlier application or patent but not published on or after the international filing date
 * "D" document defining the general state of the art which is not considered to be of particular relevance
 * "E" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document published prior to the international filing date but later than the priority date claimed
 * "P" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "Q" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 * "F" document member of the same patent family

Date of the actual completion of the international search

10 December, 2009 (10.12.09)

Date of mailing of the international search report

22 December, 2009 (22.12.09)

Name and mailing address of the ISA

Japanese Patent Office

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2008-508694 A (SanDisk IL Ltd.), 21 March 2008 (21.03.2008), entire text; all drawings</td>
<td>1-2</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.☐ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2.☐ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3.☐ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

It is apparent that the invention of claim 1 is not novel, since it is disclosed in JP 3071506 U.

Hence, it is admitted that the number of inventions is three, as described in the following.

1. Claims 1, 2 and 5
2. Claim 3
3. Claim 4

1.☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2.☒ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3.☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4.☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest
☐ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.
☐ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invocation.
☐ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2007)
Claim 1 has a structure of "said connector assembly comprising electrodes abutting substantially against the leading end of said cable fixing means and connected with at least one of the signal line for said USB 2.0 standards and said earth line". However, what is disclosed within the meaning of PCT Article 5 is only the specific structure described in the description (that is, the structure including electrodes, in which the base end of the body of a USB connector plug abuts substantially against the leading end of a cable fixing means (a clamp portion) and to which at least one of a signal line for the USB 2.0 standards and said earth line is connected at the base end of the body of the USB connector plug), and is not supported within the meaning of PCT Article 6.

Hence, the search has been made on the range which has been supported by and disclosed in the description, that is, a plug for a universal serial bus connector having the specific structure which is specifically described in the description.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2008321099 A [0001]
- JP 2001217026 A [0004]
- JP 2008508694 A [0004]
- JP 3059768 B [0004]