EUROPEAN PATENT SPECIFICATION

ANTIPERSPIRANT COMPOSITIONS
ANTIPERSPIRANTS-ZUSAMMENSETZUNGEN
COMPOSITIONS ANTITRANSPIRANTES

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Priority: 27.10.2008 EP 08167667

Date of publication of application: 06.07.2011 Bulletin 2011/27

Proprietors:
• Unilever PLC
 London, Greater London EC4P 4BQ (GB)
 Designated Contracting States:
 CY GB IE MT
• Unilever N.V.
 3013 AL Rotterdam (NL)
 Designated Contracting States:
 AT BE BG CH CZ DE DK EE ES FI FR GR HR HU IS IT LI LT LU LV MC MK NL NO PL PT RO SE SI SK SM TR

Inventors:
• CHAN, Catrin, Sian
 Leeds Yorkshire LS14 2AR (GB)
• CROPPER, Martin, Peter
 Wirral Merseyside CH63 3JW (GB)
• FRANKLIN, Kevin, Ronald
 Wirral Merseyside CH63 3JW (GB)
• JOHNSON, Simon, Anthony
 Wirral Merseyside CH63 3JW (GB)
• MCKEOWN, Robert
 Wirral Merseyside CH63 3JW (GB)

Representative: Whaley, Christopher
Unilever Patent Group
Colworth House
Sharnbrook
Bedford MK44 1LQ (GB)

References cited:
US-A- 5 043 161

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to antiperspirant compositions and more particularly to anhydrous antiperspirant compositions comprising encapsulated fragrance. Antiperspirant compositions comprising encapsulated fragrance are known in the art. Most of these compositions comprise moisture-sensitive encapsulates, such as those based on gum arabic or gum acacia, starch or certain modified starches, rather than the shear-sensitive encapsulates employed in the present invention. WO2006/056096 (Givaudan SA) discloses shear-sensitive encapsulates, largely focussing on their use in fabric conditioner compositions. Amongst the fabric conditioner examples, there is also disclosed as Example 9 an anhydrous antiperspirant composition, comprising gelatin capsules containing 20% fragrance. This prior art is silent concerning antiperspirant compositions comprising capsules having higher levels of encapsulated fragrance and lower levels of encapsulating shell.

The present invention is concerned with overcoming the problems encountered in providing antiperspirant compositions that allow triggered release of fragrance. The twin benefits of encapsulate stability during formulation and release of the encapsulated fragrance when desired are very difficult to achieve and require a precise selection of parameters for the encapsulates employed.

Throughout this specification it should be understood that the terms "perfume" and "fragrance" may be used interchangeably and have essentially the same meaning. Likewise, when the term "encapsulate" is used as a noun, it has essentially the same meaning as the word "capsule".

According to a first aspect of the present invention, there is provided an anhydrous antiperspirant composition according to claim 1.

According to a second aspect of the present invention there is provided a cosmetic method of reducing perspiration and perfuming the human body comprising the application thereto of a composition according to the first aspect of the present invention.

According to a third aspect of the present invention, there is provided a method of manufacture of a composition according to the first aspect of the present invention.

The selection of encapsulates satisfying the specified parameters according to the present invention can combine manufacturing capability under the conditions for making anhydrous antiperspirant compositions with greater availability of releasable fragrance in the underarm. This is particularly true for anhydrous aerosol compositions for the reasons described herein.

The use of shear-sensitive, rather than water-sensitive encapsulates in the present invention relates to the desired mode of rupture of the encapsulates and subsequent release of fragrance. Water-sensitive encapsulates, such as those made from starch or certain modified starches retain their content until moisture becomes present. When applied to the underarm, release of encapsulated perfume from such capsules only happens after sweating has commenced. The present invention concerns a different form of body-induced rupture of the encapsulates. When shear-sensitive encapsulates are applied to the underarms, rupture may be achieved by simple movement of the arms against the body, creating shear stresses in the underarm. The consumer may then experience a desirable fragrance release, whilst exercising for example. The fragrance release does not require the consumer to have started sweating, something uncomfortable and disappointing when one has applied a supposedly efficacious antiperspirant composition.

The present invention employs an anhydrous composition, with the antiperspirant active and fragrance capsules typically suspended in a carrier material. Such compositions do not have significant levels of water present which can, in many compositions, act as a lubricant and reduce shear stress upon encapsulates contained therein. The particulate encapsulates in such compositions are "dry", being in an anhydrous composition. Such compositions require careful selection of the encapsulates in order to have stability in manufacture and storage and yet still deliver fragrance when desired.

Anhydrous compositions should be understood to comprise less than 1% by weight of free water. "Free" water excludes water chemically or physically bound to other components of the composition, such as water associated with the particulate antiperspirant active.

A further problem with anhydrous antiperspirant compositions comprising shear-sensitive perfume encapsulates concerns their application to the body. Typical means of application are spraying (e.g. for aerosol compositions) and rubbing (e.g. for stick compositions). Both of these means of application can produce shear stress on the composition, whether on passing through the nozzle of a spray dispenser or on being directly rubbed against the body. It is not desirable for the majority of the encapsulated fragrance to be released at this stage. Hence, the perfume encapsulates employed in such compositions must have carefully selected properties in order to avoid premature rupture.

A particularly important parameter of the encapsulates used in the present invention is their level of shell material. This is relatively low, being only from 10 to 40% by weight. This enhances the capsules ability to be ruptured. With higher levels of shell material and consequential lower levels of encapsulated material, the capsules can become too hard and not rupture sufficiently for significant fragrance to be released under the desired stimulus.
The present invention is employed in the form of a spray composition, in particular, an aerosol spray composition. In such use, it is important that the capsules are sufficiently robust to not only to survive the manufacturing process, but also to survive the stress of being forced through the narrow spray outlet of a conventional spray dispenser and yet still be shear-sensitive on the skin.

The present invention relates to the incorporation into anhydrous antiperspirant compositions of shear-sensitive perfume capsules, the term capsules herein including microcapsules. Shear-sensitive herein contemplates that the capsule is capable of releasing its perfume contents as a result of normal shear stresses encountered in the underarm region, including shear against clothing. The shear-sensitive capsules may alternatively be termed “friction-sensitive” or “pressure-sensitive”.

The encapsulating material or shell for the shear-sensitive capsules herein is a cross-linked gelatine coacervate. One process suitable for forming such capsules is often called complex coacervation, and is described in US 6045835. In such a process, an aqueous solution of a cationic polymer, commonly gelatin or a closely related cationic polymer, is formed at an elevated temperature that is high enough to dissolve the gelatin, commonly at least 40°C and in many instances it is unnecessary to exceed 70°C. A range of 40 to 60°C is very convenient. The solution is typically dilute, often falling in the range of from 1 to 10% w/w and particularly from 2 to 5% w/w. Either before or after dissolution of the gelatin, an oil-in-water emulsion is formed by the introduction of a perfume oil, optionally together with a diluent oil if desired.

A polyanion or like negatively charged polymer is introduced and the composition diluted until a pH is attained or a charged carboxymethyl cellulose derivative, such an alkali metal salt, of which sodium is the most commonly mentioned example.

The resultant shell is subsequently cross linked, with a short chain aliphatic dialdehyde, for example a C4 to C6 dialdehyde, including in particular glutaraldehyde. The cross linking step is commonly conducted at a temperature of below ambient such as from 5 to 15°C, and particularly in the region of 10°C. Representative weights and proportions of the reactants and of suitable operating conditions are shown in Examples 1, 2 or 3 of the aforementioned US 6045835. The skilful man by suitable selection of the parameters within the general process outlined therein is well capable of producing capsules having a volume average particle size in the range of from 30 to 100μm, particularly up to 75μm and especially 40 to 60μm.

A second encapsulation method that is likewise suitable for forming encapsulated perfumes in which the shell comprises cross-linked coacervated gelatin comprises variations of the above process, as contemplated in WO2006/056096. In such variations, microcapsules comprising a blank hydrogel shell are first formed in a dry state and brought into contact with an aqueous or aqueous/alcoholic mixture of a fragrance compound, commonly diluted with a diluent oil. The fragrance compound is transported through the hydrogel shell by aqueous diffusion and is retained inside. The resultant fragrance-containing microcapsules are then dried to a powder, which for practical purposes is anhydrous.

Although selection of the ratio of fragrance oil to diluent oil is at the discretion of the producer, and may be varied over a wide range, the ratio is often selected in the range of from 1:2 to 1:1, and particularly 3:4 to 1:1, for fragrance to diluent oils.

The proportion of shell material to core perfume oil is crucial, and is attainable by appropriately varying the proportions of the ingredients in the emulsion. It is required for the shell material to constitute from 10 to 40% by weight and especially from 12 to 25% by weight of the capsules. By varying the proportions of shell and core, the physical strength of the shell can be varied (for capsules of the same volume average particle size). Accordingly, capsules having the desired combination of characteristics can be selected.

In some preferred embodiments of the present invention, the fragrance oil constitutes from 70 to 85% by weight of the encapsulates and in such embodiments, the balance is provided by the shell.

In other preferred embodiments, the fragrance oil is present together with an oil diluent, for example providing from 25 to 75% by weight of the oil mixture held within the shell, and especially from 40 to 60% by weight. Desirably in such embodiments, the shell constitutes from 12 to 25% by weight of the encapsulates. In certain of such preferred embodiments, the fragrance constitutes from 35 to 50% by weight of the encapsulates, and is complemented by 35 to 50% by weight of diluent oil. If desired, in yet other embodiments, the composition contains some of the encapsulates that contain diluent oil and others that do not, the weight ratio of the two sets of encapsulates being selected in the range of from 25:1 to 1:25 at the discretion of the producer.

It is preferred for the volume average particle diameter (size) of the capsules to be at least 40 μm and in many desirable embodiments is up to 60 μm in diameter. Herein, unless otherwise indicated, the volume average particle diameter of the encapsulates (D[4,3]) is that obtainable using a Malvern Mastersizer, the encapsulates being dispersed in cyclopentasiloxane (DC245) using a dispersion module mixer speed of 2100 rpm. Calculations are made using the General Purpose model, assuming a spherical particle shape and at Normal calculation sensitivity.

The shell thickness of the microcapsules tends to increase as the particle size increases and is in the range of from 0.25 to 9 μm. Preferably at least 90% by volume of the capsules have shells of up to 2.5 μm thickness. Desirably, at least 95% by volume of the capsules has a shell thickness of at least 0.25 μm. The average shell thickness of
microcapsules desirably employed herein is up to 1.5 μm. The same or other suitable capsules have an average shell thickness of at least 0.4 μm. For capsules of diameter up to 40 μm, the shell thickness is often below 0.75 μm, such as from 0.25 to less than 0.75 μm whereas for particle of at least 40 μm the shell thickness is often from 0.6 to 2.5 μm.

[0026] The shell thickness can be measured by solidifying a dispersion of the capsules in a translucent oil, cutting a thin slice of the solid mass and using a scanning electron microscope to obtain an image of cut-through individual capsules, thereby revealing the inner and outer outline of its annular shell and hence its thickness.

[0027] The fragrance-containing capsules for incorporation in the anhydrous antiperspirant compositions are commonly selected having a ratio of volume average diameter to average shell thickness in the range of from 10:1 to 100:1 and in many desirable such capsules in the range of from 30:1 to 40:1.

[0028] By virtue of the particle size and the shell thickness of the capsules, the average % volume of the core containing the fragrance oils and any diluent oil, if present, often falls within the range of from 50 to 90%, and in many embodiments from 70 to 87.5%.

[0029] The hardness of the capsules, as measured in a Hysitron Tribo-indenter, is an important characteristic that enables them to be incorporated effectively in anhydrous formulations, retaining the capability of being sheared by frictional contact between skin and skin or clothing. The hardness is desirably in the range of from 0.5 to 50 MPa and especially from 2.5 or 5 up to 25 MPa, and in many embodiments is up to 10 MPa. In certain preferred embodiments, the hardness is in the range of from 3.5 to 5.5 MPa.

[0030] A further parameter of interest in relation to the capsules in the instant invention, and particularly their capability to be sheared by friction in the compositions and process of the instant invention, is their "Apparent Reduced Elastic Modulus" (Er). Desirably, Er falls within the range of from 20 to 35 MPa, and in many convenient embodiments, in the range of from 22 to 30 MPa.

[0031] Measurements of Hysitron hardness (H) and Apparent Reduced Elastic Modulus (Er) are made in the following manner.

[0032] Having appropriately mounted a given capsule, the head of the Tribo-indenter, fitted with a Berkovich tip (a three-sided pyramid) compresses the capsule. The instrument is programmed to perform an indent by compressing the sample with an initial contact force of 75 mN, for 10 seconds, followed by a position hold stage for 1 second and a decompression stage for 10 seconds. The instrument achieves a very small load (typically around 15-30 mN). The Hysitron Hardness (MPa) and Apparent Reduced Elastic Modulus (also in MPa) are calculated from the relaxation stage of the force deflection data using the following equations.

\[H = \frac{W}{A} \]

\[Er = \frac{\sqrt{\pi} \cdot S}{2\gamma \cdot \sqrt{A}} \]

\[S = \text{Contact Stiffness (dW/dh)} \]

\[h_T = \text{Total Penetration Depth} \]

\[\gamma = 1.034 \]

\[h_c = h - \kappa W \]

\[K = \frac{3}{4} \]

\[h_c = \text{Contact Depth} \]

[0033] By control of the manufacturing process conditions, the resultant dry capsules having the characteristics specified in the ranges or preferred ranges for particles size and mean diameter described herein can be obtained.

[0034] The capsules, by virtue of their manufacture route often contain a small residual water content. It is desirable, for example, as measured by the conventional Karl Fischer method, to select capsules having a residual water content...
of below 5% by weight and particularly below 4% by weight, such as from 0.5 to 3.5% and particularly from 0.6 to 3% w/w (based on the fragrance-containing capsule). Based on the weight of the shell, said water content of the capsules employed herein often falls in the range of from 1% to 20% w/w. By limiting the proportion of water in the capsule, and particularly in the shell, it is possible to avoid at least partly, and preferably substantially, the formation of grit within the anhydrous formulation, and thereby avoid the negative sensation of grit on underarm skin. Grit occurs typically when particles aggregate to form agglomerates that are not readily fractured into their constituent particles. Accordingly, in regard to aerosol or spray compositions, the avoidance of grit formation has a second benefit of reducing the likelihood of blockage of the spray nozzle.

[0035] The shear sensitive encapsulate or mixture of encapsulates can be employed in the antiperspirant compositions in an amount at the discretion of the formulator. Commonly, the amount is at least 0.05%, in many instances at least 0.1 % and often at least 0.3% by weight of the composition. Usually, the amount is up to 5%, desirably up to 4% and in many instances is up to 3% by weight of the composition. A convenient range is from 0.5 to 2.5% by weight of the composition. Accordingly, the base compositions before introduction of propellant contain a proportionately higher proportion of the encapsulate.

[0036] The perfume oil employable herein in the shear sensitives capsules, and/or other capsules and/or non-encapsulated can be selected as is conventional to attain the desired aesthetic result, and comprises usually a blend of at least 5 components, and often at least 20 components. The components can be synthetic or natural extractions, and, in the case of natural oils or oils produced to mimic natural oils, are often mixtures of individual perfume compounds. The perfume oil can comprise, inter alia, any compound or mixture of any two or more such compounds coded as an odour (2) in the Compilation of Odor and Taste Threshold Values Data edited by F A Fazzalari and published by the American Society for Testing and Materials in 1978.

[0037] Often, though not exclusively, the perfume compounds acting as perfume components or ingredients in blends have a ClogP (octanol/water partition coefficient) of at least 0.5 and many a ClogP of at least 1. Many of the perfume components that are employable herein can comprise organic compounds having an odour that is discernible by humans that are selected within the chemical classes of aldehydes, ketones, alcohols, esters, terpenes, nitriles and pyrazines. Mixtures of compounds within classes or from more than one class can be blended together to achieve the desired fragrance effect, employing the skill and expertise of the perfumer.

[0038] Alternatively or additionally, the fragrance incorporated into the capsules can comprise one or a mixture of perfume essential oils, either mixed with each or and/or with synthetic analogues and/or one or more individual perfume compounds, possibly extracted from blossom, leaves, seeds fruit or other plant material. Oils which are herein contemplated include oils from:-Bergamot, cedar atlas, cedar wood, clove, geranium, guaiacwood, jasmine, lavender, lemon-grass, lily of the valley, lime, neroli, musk, orange blossom, patchouli, peach blossom, petotgrain, pimento, rose, rosemary, and thyme.

[0039] It will be recognised that since naturally derived oils comprise a blend in themselves of many components, and the perfume oil commonly comprises a blend of a plurality of synthetic or natural perfume compounds, the perfume oil itself in the encapsulate does not exhibit a single boiling point, ClogP or ODT, even though each individual compound present therein does.

[0040] If desired, the composition can include one or more perfume ingredients that provide an additional function beyond smelling attractively. This additional function can comprise deodorancy. Various essential oils and perfume ingredients, for example those passing a deodorant value test as described in US 4278658 provide deodorancy as well as malodour masking.

[0041] In the invention described herein, the carrier in which the capsules (and the antiperspirant active) are suspended may comprise one or more oils, by which is meant liquids that are water-immiscible. Such oils are characterised by being liquid at 20°C (at 1 atmosphere pressure) and are often selected from silicone oils, hydrocarbon oils, ester oils, ether oils and alcohol oils or a mixture of two or more oils selected from such classes of oils. It is highly desirable that the oil has a boiling point of above 100°C and preferably above 150°C.

[0042] One class of oils that is highly favoured comprises volatile silicone oils, which often contribute from 20% to 95% by weight of a blend of oils, particularly at least 30% and in many convenient blends at least 40% by weight. It is advantageous in this invention to employ a blend in which the weight proportion of the volatile silicone oils is up to 80% by weight, and particularly up to 70% by weight. The balance of the oils in the blend is provided by one or more non-volatile silicone oils and/or one or more of the other classes of oils.

[0043] Herein, a volatile silicone oil is a liquid polyorganosiloxane having a measurable vapour pressure at 25°C of at least 1 Pa, and typically in a range of from 1 or 10 Pa to 2kPa. Volatile polyorganosiloxanes can be linear or cyclic or mixtures thereof. Preferred cyclic siloxanes, otherwise often referred to as cyclosilicones, include polydimethylsiloxanes and particularly those containing from 3 to 9 silicon atoms, preferably at least 4 and especially at least 5 silicon atoms. Preferred cyclosilicones contain not more than 7 silicon atoms and very preferably up to 6 silicon atoms. Volatile silicone oils herein desirably contain on weight average from 4.5 to 5.9 silicone atoms, and especially at least 4.9.

[0044] Preferred linear polyorganosiloxanes include polydimethylsiloxanes containing from 3 to 9 silicon atoms. The
Particularly preferably, the aromatic ester comprises C₁₂-₁₅ alkyl benzoate.

Esters satisfy the formula Ph-CO-O-R in which R is:-

It is especially desirable to employ an aromatic ester, including especially benzoate esters. Preferred benzoate esters include isopropyl myristate, isopropyl palmitate, myristyl myristate.

Volatile siloxanes normally by themselves exhibit viscosities of below 10⁻⁵ m²/sec (10 centistokes), and particularly above 10⁻⁷ m²/sec (0.1 centistokes), the linear siloxanes normally exhibiting a viscosity of below 5 x 10⁻⁶ m²/sec (5 centistokes). The volatile siloxanes can also comprise linear or cyclic siloxanes such as the aforementioned linear or cyclic siloxanes substituted by one or more pendant -O-Si(CH₃)₃ groups, the resultant compounds desirably containing not more than 7 silicon atoms. Examples of commercially available silicone oils include oils having grade designations 344, 345, 244, 245 and 246 from Dow Corning Corporation; Silicone 7207 and Silicone 7158 from Union Carbide Corporation; and SF1202 from General Electric.

Highly desirably, the compositions according to the present invention comprise either an ether oil or an ester oil or both, preferably in a proportion of greater than 10% w/w of the composition, and particularly greater than 20% w/w. Although together, they could constitute up to 100% w/w of the carrier oils blend, it is desirable that together they contribute no greater than 60% w/w and in many compositions, they total up to 50% w/w of the blend.

The ester oils can be aliphatic or aromatic. Suitable aliphatic ester oils comprise at least one residue containing from 10 to 26 carbon atoms and a second residue of at least 3 carbon atoms up to 26 carbon atoms. The esters may be mono or diesters, and in the latter be derived from a C₅ to C₉ diol or di carboxylic acid. Examples of such oils include isopropyl myristate, isopropyl palmitate, myristyl myristate.

It is especially desirable to employ an aromatic ester, including especially benzoate esters. Preferred benzoate esters satisfy the formula Ph-CO-O-R in which R is:-

an aliphatic group containing at least 8 carbons, and particularly from 10 to 20 carbons such as from 12 to 15, including a mixture thereof;
or an aromatic group of formula -A-Y-Ph in which A represents a linear or branched alkylene group containing from 1 to 4 carbons and Y represents an optional oxygen atom or carboxyl group.

Particularly preferably, the aromatic ester comprises C₁₂-₁₅ alkyl benzoate.

The ether oil preferably comprises a short chain alkyl ether of a polypropylene glycol (PPG), the alkyl group comprising from C₂ to C₆, and especially C₄ and the PPG moiety comprising from 10 to 20 and particularly 14 to 18 propylene glycol units. An especially preferred ether oil bears the INCI name PPG14-butyl ether.

The ester and ether oils herein are preferably selected to have a boiling point in excess of 100°C. This enables them to be employed with all wax systems for solidifying the oil in the carrier that typically melts at no higher than 95°C, and commonly between 65 and 85°C. For sticks made using small molecule gelling agents, it is preferable to select oils having a boiling point in excess of 150°C, and they, naturally, are suitable in conjunction with wax systems too.

The ester and ether oils can be present in the composition in a weight ratio to each other of from 1:0 to 0:1, and in some embodiments from 10:1 to 1:10.

Indeed, though such oils have a number of other beneficial properties, such as for example, reducing the extent to which the antiperspirant formulation is visible after application on the skin, compositions in which the oil blend contains only a minor as compared with a major proportion of such ether and ester oils tend to exhibit sensory attributes preferred by many consumers. In practice, it is desirable for greater than 5% by weight of the oil blend, especially greater than 10% and especially greater than 15% by weight of the oil blend to be furnished by the ester and ether oils. The combined weight of the two oils is preferably less than 60%, particularly less than 50% and especially less than 40% of the weight of the oil blend.

The carrier oil blend can further comprise one or more other water-immiscible oils that have a melting point of below 20°C and a boiling point of above 100°C and preferably above 150°C, including hydrocarbon oils, including preferably non-volatile hydrocarbon oils, non-volatile silicone oils and aliphatic monohydric alcohols.

In the instant invention, non-volatile oils, sometimes referred to as emollient oils, such as non-volatile silicone or hydrocarbon oils can desirably be included to alter the sensory attributes of the compositions containing, such as to soften the skin or to assist in masking the visibility of particulate materials deposited on the skin. However, it is desirable to restrict the proportion of such non-volatile oils to less than 30% by weight of the oil blend, and in various compositions according to the instant application, the total proportion of such oils is from 5 to 20% by weight.

Examples of suitable non-volatile hydrocarbon oils include polyisobutene and hydrogenated polydecene. Examples of suitable non-volatile silicone oils include dimethicones and linear alkylarylsiloxanes. The dimethicones typically have an intermediate chain length, such as from 20 to 100 silicon atoms. The alkylarylsiloxanes are particularly those containing from 2 to 4 silicon atoms and at least one phenyl substituent per silicon atom, or at least one diphenylene group. The aliphatic alcohol desirably is a branched chain monohydric alcohol containing from 12 to 40 carbon atoms, and often from 14 to 30 carbon atoms such as isostearyl alcohol.

One further class of ester oils that can constitute a fraction of the ester oils contemplated in the invention compositions comprises natural plant oils, commonly containing glyceride esters and in particular the glyceride triesters of unsaturated C₁₈ aliphatic carboxylic acids, such as linoleic acid, linolenic acid or ricinoleic acid, including isomers such as linolenelaidic acid, trans 7-octadecenoic acid, parinaric acid, pinolenic acid punicic acid, petroselenic acid,
columbianic acid and stearidonic acid. Examples of such beneficial natural oils include caster oil, coriander seed oil, impatiens balsimina seed oil, parinarium laurinum kernel fat, sabastiana brasiliensis seed oil borage seed oil, evening primrose oil, aquilegia vulgaris oil, for and sunflower oil and safflower oil. Such oils can desirably comprise from 1 to 10% by weight of the oil blend.

[0057] The weight of fragrance materials is not included herein in calculating the weight of the oil blend, irrespective of whether the fragrance is encapsulated or "free".

[0058] The compositions of the invention comprise a particulate antiperspirant active. Such antiperspirant actives are preferably incorporated in an amount of from 0.5-50%, particularly from 5 to 30% and especially from 10% to 26% of the total weight of the composition. It is often considered that the main benefit from incorporating up to 5% of an antiperspirant active in a stick composition is manifest in reducing body odour, and that as the proportion of antiperspirant active increases, so the efficacy of that composition at controlling perspiration increases.

[0059] Antiperspirant actives for use herein are often selected from astringent active salts, including in particular aluminium, zirconium and mixed aluminium/zirconium salts, including both inorganic salts, salts with organic anions and complexes. Preferred astringent salts include aluminium, zirconium and aluminium/zirconium halides and halohydrates, such as chlorohydrates.

[0060] Aluminium halohydrates are usually defined by the general formula \(\text{Al}_2(\text{OH})_x\text{Q}_y\cdot\text{wH}_2\text{O} \) in which \(\text{Q} \) represents chlorine, bromine or iodine, \(x \) is variable from 2 to 5 and \(x + y = 6 \) while \(\text{wH}_2\text{O} \) represents a variable amount of hydration. Especially effective aluminium halohydrate salts, known as activated aluminium chlorohydrates, are described in EP-A-6739 (Unilever NV et al).

[0061] Zirconium actives can usually be represented by the empirical general formula: \(\text{ZrO(OH)}_{2n-nz}\cdot\text{B}_z\cdot\text{wH}_2\text{O} \) in which \(z \) is a variable in the range of from 0.9 to 2.0 so that the value \(2n-nz \) is zero or positive, \(n \) is the valency of \(\text{B} \), and \(\text{B} \) is selected from the group consisting of chloride, other halide, sulphamate, sulphate and mixtures thereof. Possible hydration to a variable extent is represented by \(\text{wH}_2\text{O} \). Preferable is that \(\text{B} \) represents chloride and the variable \(z \) lies in the range from 1.5 to 1.87. In practice, such zirconium actives are usually not employed by themselves, but as a component of a combined aluminium and zirconium-based antiperspirant.

[0062] The above aluminium and zirconium salts may have co-ordinated and/or bound water in various quantities and/or may be present as polymeric species, mixtures or complexes. In particular, zirconium hydroxy salts often represent a range of salts having various amounts of the hydroxy group. Zirconium aluminium chlorohydrate may be particularly preferred.

[0063] Antiperspirant complexes based on the above-mentioned astringent aluminium and/or zirconium salts can be employed. The complex often employs a compound with a carboxylate group, and advantageously this is an amino acid. Examples of suitable amino acids include dl-tryptophan, dl-β-phenylalanine, dl-valine, dl-methionine and β-alanine, and preferably glycine which has the formula \(\text{CH}_2(\text{NH}_2)\text{COOH} \).

[0064] It is highly desirable to employ complexes of a combination of aluminium halohydrates and zirconium chlorohydrates together with amino acids such as glycine, which are disclosed in US-A-3792068 (Luedders et al). Certain of those \(\text{Al/Zr} \) complexes are commonly called ZAG in the literature. ZAG actives generally contain aluminium, zirconium and chloride with an \(\text{Al/Zr} \) ratio in a range from 2 to 10, especially 2 to 6, an \(\text{Al/Cl} \) ratio from 2.1 to 0.9 and a variable amount of glycine. Actives of this preferred type are available from B K Giulini, from Summit and from Reheis, though with differing particle size distributions.

[0065] Many aluminium and/or zirconium-containing astringent antiperspirant saltes employed herein have metal: chloride mole ratio in the range of 1.3:1 to 1.5:1. Others having a lower metal:chloride mole ratio, such as from 1:1 to 1.25:1 tend to generate lower pHs when applied to skin and thus tend to be more irritating.

[0066] The proportion of solid antiperspirant salt in a suspension composition normally includes the weight of any water of hydration and any complexing agent that may also be present in the solid active.

[0067] Many particulate antiperspirants employed in the instant invention have a refractive index (RI) of at least 1.49 and not higher than 1.57. Actives which are free from zirconium tend to have an RI of from 1.49 to 1.54, depending on their formula and at least partly on their residual water content. Likewise, actives which contain zirconium tend to have an RI of from 1.52 to 1.57.

[0068] The selection of the antiperspirant active material desirably takes into account the type of applicator from which it is dispensed. Thus, the antiperspirant active is highly desirably an aluminium chlorohydrate (ACH) or an activated aluminium chlorohydrate (AACH).

[0069] For incorporation of compositions according to the present invention, desirably at least 90%, preferably at least 95% and especially at least 99% by weight of the particles having a diameter in the range of from 0.1 μm up to 100 μm.

[0070] For incorporation in non-contact applicators and especially in aerosols in which the composition is expelled from the dispenser by a propellant gas, possibly augmented by a mechanical or electromechanical propulsive means, it is especially desirable for less than 5% by weight, particularly less than 1% by weight and advantageously none of the particles to have a diameter of below 10 μm. Preferably for inclusion in aerosol compositions, the particles have a diameter of below 75 μm. In many preferred aerosol compositions, the antiperspirant has an average (D₅₀) particle
diameter in the range of from 15 to 25 μm. The particle size of the antiperspirant active or mixture of actives can be measured using a Malvern Mastersizer, similarly to measurement of the perfume microcapsules size, as mentioned hereinbefore.

[0071] For application from a pressurized aerosol dispenser, the anhydrous composition, deemed to be a base composition, and desirably incorporating a suspension aid, is blended with a propellant.

[0072] The anhydrous compositions can contain one or more optional ingredients, such as one or more of those selected from those identified below.

[0073] Optional ingredients include wash-off agents, often present in an amount of up to 10% w/w to assist in the removal of the formulation from skin or clothing. Such wash-off agents are typically nonionic surfactants such as esters or ethers containing a C₅ to C₂₂ alkyl moiety and a hydrophilic moiety which can comprise a polyoxyalkylene group (POE or POP) and/or a polyol.

[0074] A further optional ingredient comprises a preservative, such as ethyl or methyl paraben or BHT (butyl hydroxytoluene) such as in an amount of from 0.01 to 0.1% w/w.

[0075] Aerosol compositions desirably additionally comprise a suspending aid, sometimes called a bulking agent which is typically a powdered silica or a layered clay, such as a hectorite, bentonite or montmorillonite. The layered clay is optionally hydrophobically surface treated. The suspending aid often constitutes from 0.5 to 4% by weight of the base aerosol composition (i.e. the composition minus any associated volatile propellant). Aerosol compositions desirably also can contain a swelling aid to assist swelling of the layered clay, often selected in a proportion of from 0.005 to 0.5% by weight of the aerosol base composition and particularly in a weight ratio to the clay of from 1:10 to 1:75. Suitable swelling aids include especially propylene carbonate and triethyl citrate.

[0076] The invention compositions can additionally comprise a non-encapsulated fragrance, for example in a weight % of from 0.01 to 4% of the composition, and particularly from 0.1 to 1.5%. The non-encapsulate fragrance is desirably incorporated into the composition in a weight ratio to the shear-sensitive encapsulate in the range of from 5:1 to 1:5. The non-encapsulated fragrance can be created from the same palette of perfume materials described above. The non-encapsulated fragrance can, if desired, be the same as or similar to the encapsulated fragrance, but it is often more attractive if the two fragrances are different, because this minimizes the extent to which the nose has become desensitized to perfume. Choice of the various fragrances and the differences between them, such as proportion of top notes, is primarily a matter of aesthetic judgement.

[0077] Additionally or alternatively to the non-encapsulated fragrance, if desired the compositions herein can comprise a perfume encapsulated in a water-sensitive shell, such that when a person sweats, the aqueous excretion ruptures the shell, releasing fragrance. Such water-sensitive encapsulates are described for example in EP0303461. Additionally or likewise alternatively, the compositions herein can comprise a cyclic oligosaccharide such as cyclodextrins, including α or β cyclodextrin, each optionally substituted by a methyl or hydroxy-propyl group that associates reversibly with free fragrance. Such materials are described in EP1289484. The composition can contain the water-sensitive fragrance encapsulate and/or cyclic oligosaccharide in an amount of from 0.1 % to 4% by weight of the composition.

[0078] The weight ratio of shear-sensitive encapsulate to water-sensitive encapsulate and/or cyclic oligosaccharide is often selected in the range of from 5:1 to 1:5.

[0079] The invention compositions are substantially or totally free from water-soluble short chain monohydric alcohols (commonly recognised as up to C₅) and especially ethanol. Substantially in this context indicates a proportion of less than 5% and preferably less than 1% by weight of the respective full or base composition.

[0080] Herein unless the context demands otherwise, all weights, %s, and other numbers can be qualified by the term "about".

[0081] The compositions of the invention may be made by any of the methods known in the art. In preferred methods, the fragrance capsules are incorporated into the composition with gentle mixing; at a rate and power input that does not damage the capsules. It is further preferred that the composition is not subsequently subjected to shear or intensive mixing.

[0082] Aerosol products herein comprise a base composition comprising an antiperspirant and/or deodorant active suspended in an oil blend together with the fragrance capsules, suspending agent and optional ingredients that is blended with a propellant, commonly in a weight ratio of blend to propellant of from 1:1 to 1:15, and in many formulations from 1.3 to 1.9. The propellant is commonly either a compressed gas or a material that boils at below ambient temperature, preferably at below 0°C, and especially at below -10°C. Examples of compressed gasses include nitrogen and carbon dioxide. Examples of low boiling point materials include dimethylether, C₅ to C₉ alkanes, including in particular propane, butanes and isobutane, optionally further containing a fraction of pentane or isopentane, or especially for use in the USA the propellant is selected from hydrofluorocarbons containing from 2 to 4 carbons, at least one hydrogen and 3 to 7 fluoro atoms.

[0083] Aerosol products can be made in a conventional manner by first preparing a base composition, charging the composition into the aerosol can, fitting a valve assembly into the mouth of the can, thereby sealing the latter, and thereafter charging the propellant into the can to a desired pressure, and finally fitting an actuator on or over the valve assembly together.
Having summarised the invention and described it in more detail, together with preferences, specific embodiments will now be described more fully by way of example only.

Examples

Capsules E1 and E2

The capsules E1 and E2 described herein comprised a shell made from a complex coacervate of gelatin with respectively gum arabic or carboxymethylcellulose, cross-linked with glutaraldehyde. E1 is prepared in accordance with the process of WO2006/056096, but with a higher level of incorporated perfume, and E2 in accordance with the process of US6045835, but again with a higher level of incorporated perfume, and in each instance with conditions controlled to obtain the specific characteristics detailed in Table 1.

The Hysitron hardness and Apparent Reduced Elastic Modulus of the capsules were measured using the method in the general description. To prepare the capsules for measurement, a drop of a dispersion of the capsules in demineralised water was placed onto a piece of silicon wafer and allowed to dry leaving behind discrete capsules for mechanical analysis. The dried wafer was fitted into a Hysitron Tribo-indenter, and spatially mapped using the optical system of the instrument to identify a perimeter around the sample.

Results are expressed as averages of a minimum of 20 measurements made on capsules with a particle size of D_{4,3} +/- 20%.

Examples 1

In these Examples, the effectiveness across time of adding capsules E1 or E2 to conventional antiperspirant compositions was assessed. Aerosol compositions as indicated in Table 2 were tested. The aerosol base composition was gassed with propellant (base: propellant = 13:87 by weight) prior to application.

Table 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Capsules E1</th>
<th>Capsules E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean particle size D_{4,3} (1)</td>
<td>48.4 μm</td>
<td>50.7 μm</td>
</tr>
<tr>
<td>Shell thickness (2) (of capsules having diameter from 19 to 38 μm)</td>
<td>0.3 to 0.65 μm</td>
<td>0.25 to 0.6 μm</td>
</tr>
<tr>
<td>Shell thickness (2) (of capsules having diameter from 25 to 35 μm)</td>
<td>1.3 μm</td>
<td>1.8 μm</td>
</tr>
<tr>
<td>Calculated shell thickness (3) at mean particle size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio of capsule diameter to shell thickness</td>
<td>30:1 to 48:1</td>
<td>23:1 to 36:1</td>
</tr>
<tr>
<td>Hysitron hardness (4)</td>
<td>4.05 MPa</td>
<td>4.88 MPa</td>
</tr>
<tr>
<td>Apparent Reduced Elastic Modulus (4)</td>
<td>24.1 MPa</td>
<td>27.5 MPa</td>
</tr>
<tr>
<td>Encapsulated oil (% w/w)</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>Encapsulated perfume (% w/w)</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>R.I. of capsule</td>
<td>1.430</td>
<td>1.530</td>
</tr>
</tbody>
</table>

1. Mean Particle Size (D_{4,3}) of the capsules was measured following dispersion in cyclopentadimethicone (R.I. 1.397) using a Malvern Mastersizer 2000, with a dispersion module speed of 2100 rpm, a "general purpose" results calculation model, a "normal" calculation sensitivity, and "spherical" selected as the particle shape.
2. Shell Thickness was measured by SEM on capsules having a particle size within the range indicated. For non-spherical capsules, the thickness was measured at or close to the minimum encapsulate diameter.
3. The calculated shell thickness assumes that capsules are spherical, with a single core and that the shell and core had the same density.
4. The Hysitron hardness and Apparent Reduced Elastic Modulus were measured using a Hysitron Tribo-indenter (further details below).

The Hysitron hardness and Apparent Reduced Elastic Modulus of the capsules were measured using the method in the general description. To prepare the capsules for measurement, a drop of a dispersion of the capsules in demineralised water was placed onto a piece of silicon wafer and allowed to dry leaving behind discrete capsules for mechanical analysis. The dried wafer was fitted into a Hysitron Tribo-indenter, and spatially mapped using the optical system of the instrument to identify a perimeter around the sample.

Results are expressed as averages of a minimum of 20 measurements made on capsules with a particle size of D_{4,3} +/- 20%.

Examples 1

In these Examples, the effectiveness across time of adding capsules E1 or E2 to conventional antiperspirant compositions was assessed. Aerosol compositions as indicated in Table 2 were tested. The aerosol base composition was gassed with propellant (base: propellant = 13:87 by weight) prior to application.
The effectiveness of the formulations was determined in the following test. The aerosol test product and control product were applied using an approximately 2 second spray. "Test" formulations comprising the added capsules E1 or E2 (containing a floral-green fragrance) were compared with control formulations that contained just a fruity-floral (Bm) or a floral aldehydic (Cn) non-encapsulated fragrance. The effects across time of the added encapsulated fragrances are indicated in Table 3.

After application of the antiperspirant formulations, the users put on their normal clothing and the intensity of the odour was assessed by an expert panel at 2 hourly intervals on a scale of perception increasing from 0 to 10. The scores were averaged and that for the control sample deducted from that for the "test" sample. Three scores were measured, namely intensity of the fragrance itself, the intensity detected through the clothing and finally the intensity of any malodour. The results are summarised in Table 3.

Interesting, it may be seen that the fragrance intensity difference resulting the added fragrance capsules increases for about 6 to 8 hours, for example, and then falls away somewhat. In contrast, the intensity of non-encapsulated fragrances tends to fall away from the start.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>% by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclomethicone</td>
<td>Balance</td>
</tr>
<tr>
<td>Ether Oil</td>
<td>23.1</td>
</tr>
<tr>
<td>Dimethiconol</td>
<td>0.56</td>
</tr>
<tr>
<td>Suspending Aid</td>
<td>3.8</td>
</tr>
<tr>
<td>Swelling Aid</td>
<td>0.1</td>
</tr>
<tr>
<td>AACH</td>
<td>38.5</td>
</tr>
<tr>
<td>AP co-gellant</td>
<td>3.8</td>
</tr>
<tr>
<td>Fragrance Bm</td>
<td></td>
</tr>
<tr>
<td>Fragrance Cn</td>
<td>4.6</td>
</tr>
<tr>
<td>Capsule E1</td>
<td>4.6</td>
</tr>
<tr>
<td>Capsule E2</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Table 3 - Aerosol Results (Example 1)

<table>
<thead>
<tr>
<th>Assessment time (Hrs)</th>
<th>Difference in Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct</td>
</tr>
<tr>
<td></td>
<td>E1+Cn vs. Cn</td>
</tr>
<tr>
<td>0</td>
<td>0.93</td>
</tr>
<tr>
<td>2</td>
<td>1.21</td>
</tr>
<tr>
<td>4</td>
<td>1.06</td>
</tr>
<tr>
<td>6</td>
<td>0.96</td>
</tr>
<tr>
<td>8</td>
<td>0.77</td>
</tr>
</tbody>
</table>
From Table 3, it is apparent that a greater intensity of the fragrance was perceived from the test samples compared with the control samples throughout the period of the trial, irrespective of whether was assessed through clothing or directly. In addition, when judging the presence of malodour, the panelists consistently generated negative differences, once a long enough period had elapsed for malodour to have been generated, showing that more malodour developed following treatment with the control compositions than developed following treatment with the test compositions. The longevity of this effect is particularly noticeable, sometimes still delivering peak performance at from 8 to 12 hours after application.

Examples 2

Clinical trials were conducted to demonstrate the benefit in malodour suppression for compositions according to the invention. The formulations employed in Examples 2 were the same as those employed in Examples 1, as were the levels of application.

In these Examples, test and control products were applied daily to the underarm of panelists and the panelist carried out normal daily activities until after 5 or 24 hours, when the effectiveness of the fragrance was assessed by trained assessors both before and after gently rubbing the underarms ("shear"). The malodour in this test was assessed on a scale of from 0 to 5. The results from the aerosol products are shown in Table 4.

Table 4 - Aerosol Results (Example 2)

<table>
<thead>
<tr>
<th>Fragrance comparison</th>
<th>After (hr.)</th>
<th>Odour Score</th>
<th>Before shear</th>
<th>After shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cn+E1 v Cn</td>
<td>5</td>
<td>-0.04</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-0.01</td>
<td>-0.10</td>
<td></td>
</tr>
<tr>
<td>Cn+E2 v Cn</td>
<td>5</td>
<td>-0.10</td>
<td>-0.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-0.04</td>
<td>-0.12</td>
<td></td>
</tr>
</tbody>
</table>

The results summarised in Table 4 consistently show that assessors judged that the compositions employing the encapsulated fragrances E1 and E2 reduced malodour to a greater extent than the control compositions over an extended period time.

Components of Compositions

Ingredients included in the examples and comparative examples herein described are detailed in Table 4:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Name and/or Trade Name</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclomethicone ¹</td>
<td>DC 245</td>
<td>Dow Corning Inc</td>
</tr>
<tr>
<td>Ester oil 1 ²</td>
<td>C12-15 alkyl benzoate Finsolv TN</td>
<td>Finetex</td>
</tr>
<tr>
<td>Ester oil 2 ³</td>
<td>Isopropyl myristate Estol 1512</td>
<td>Uniqema</td>
</tr>
<tr>
<td>Ether Oil</td>
<td>PPG-14-butyl ether/ Fluid AP</td>
<td>Ucon Inc</td>
</tr>
</tbody>
</table>
The aerosol products described herein are typically prepared/packaged in the following manner. All of the ingredients of the base composition are blending in a vessel at ambient temperature until an homogenous mixture is obtained. Then the base composition is charged into a preformed aluminium can, a valve cup supporting a valve from which depends a dip tube is crimped into place, and propellant is charged into the can through the valve. Thereafter, an actuator is placed above the valve stem extending upwards from the valve.

The further examples indicated below may be prepared in the manner described herein.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Name and/or Trade Name</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethicone</td>
<td>Dow Corning Fluid 200 (350 cSt)</td>
<td>Dow Corning Inc</td>
</tr>
<tr>
<td>Fumed silica</td>
<td>fumed silica Cab-o-sil</td>
<td>Cabot</td>
</tr>
<tr>
<td>Layered Clay</td>
<td>treated hectorite/Bentone 38</td>
<td>Rheox Inc</td>
</tr>
<tr>
<td>Swelling Aid</td>
<td>Propylene carbonate</td>
<td></td>
</tr>
<tr>
<td>ACH</td>
<td>Aluminium chlorohydrate Micro Dry</td>
<td>Reheis Inc</td>
</tr>
<tr>
<td>AACH</td>
<td>Activated aluminium chlorohydrate A296</td>
<td>B K Giulini GmbH</td>
</tr>
<tr>
<td>Preservative</td>
<td>Butylhydroxytoluene Tenox BHT</td>
<td>Eastman Chemical</td>
</tr>
<tr>
<td>E1</td>
<td>As described above</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>As described above</td>
<td></td>
</tr>
<tr>
<td>ES3</td>
<td>Starch encapsulate</td>
<td>Givaudan</td>
</tr>
<tr>
<td>Free Fragrance</td>
<td></td>
<td>Fragrance House</td>
</tr>
<tr>
<td>Propellant</td>
<td>Propane, butane and isobutane CAP40</td>
<td>Calor Gas Ltd.</td>
</tr>
</tbody>
</table>

1. DC245 can be replaced* by DC246 or DC345™.
2. Finsoin TN can be replaced* by Finsov TPP™.
3. Estol 1512 can be replaced* by Estol 1517™.
4. * Wholly or partly.
Claims

1. An anhydrous aerosol antiperspirant composition comprising less than 1% by weight of free water; propellant; particulate antiperspirant active; capsules comprising a shear-sensitive shell which encapsulates perfume; and a carrier for the particulate antiperspirant active and capsules; wherein the capsules have a shell of cross-linked gelatin coacervate having a thickness of from 0.25 to 9 μm and providing from 10 to 40% by weight of the capsules, a volume average particle diameter of from 25 to 70 μm, a ratio of shell thickness to the average particle diameter in the range of from 1:5 to 1:120, and a Hysitron hardness, measured in a Hysitron Tribo-indenter fitted with a Berkovich tip and programmed to perform an indent by compressing a sample with an initial contact force of 75 mN, for 10 seconds, followed by a position hold stage for 10 seconds, in the range of from 1.5 MPa to 50 MPa.

2. A composition according to claim 1 in which the cross-link gelatine coacervate is obtained by contacting gelatin with either gum arabic or a charged carboxymethyl cellulose at a pH of below 5.

3. A composition according to claim 1 or 2 in which the coacervate is cross-linked with glutaraldehyde.

4. A composition according to any preceding claim in which the capsules have a particle size D[4,3] in the range of from 40 to 60 μm.

5. A composition according to any preceding claim in which the capsules have a measured shell thickness in the range of up to 2.5 μm.

6. A composition according to any preceding claim in which the capsules have an average measured shell thickness in the range of from 0.3 to 0.8 μm.
7. A composition according to any preceding claim in which the capsules have an average particle size to shell thickness ratio in the range of from 40:1 to 80:1.

8. A composition according to any preceding claim in which the capsules have shells providing from 12 to 25% by weight of the capsules.

9. A composition according to any preceding claim in which the capsules have a Hysitron hardness in the range of from 2.5 to 4 MPa.

10. A composition according to any preceding claim in which the capsules have an apparent reduced elastic modulus, measured in a Hysitron Tribo-indenter fitted with a Berkovich tip and programmed to perform an indent by compressing a sample with an initial contact force of 75 μN, for 10 seconds, followed by a position hold stage for 10 seconds, in the range of from 10 to 3 MPa.

11. A composition according to any preceding claim in which the capsules have a water content of less than 5%.

12. A composition according to any preceding claim which contains from 0.1 to 4% by weight of the capsules.

13. A composition according to any preceding claim which additionally contains non-encapsulated fragrance.

14. A composition according to any preceding claim in which the blend comprises from 30 to 70% w/w volatile silicone oil and from 20 to 40% w/w ester oil and/or ether oil.

15. A composition according to claim 14 in which at least 90% w/w of the volatile silicone oil is cyclopentadimethicone and/or cyclohexadimethicone.

16. A composition according to either of claims 14 or 15 in which the ester oil is an alkyl benzoate and optionally a triglyceride oil of an unsaturated C16 fatty acid.

17. A composition according to any preceding claim containing at least one gellant selected from waxes, oil-soluble polymers and non-polymeric fibre-forming gellants at a weight concentration in the composition selected in the range of from 1.5 to 30% to provide a penetration hardness of from 7 to 13 mm.

18. A composition according to any preceding claim in which the particulate antiperspirant active is selected from aluminium chlorohydrates, and/or aluminium chlorohydrates, either of which is optionally complexed with glycine and either of which is optionally together with a polymeric co-gellant.

19. A composition according to any preceding claim which is free from ethanol.

20. A composition according to any preceding claim which additionally contains a water-sensitive encapsulated fragrance.

Patentansprüche

1. Wasserfreie Aerosol-Antiperspirant-Zusammensetzung, die weniger als 1 Gew.-% freies Wasser; Treibgas; aktive Antiperspirantpartikel; Kapseln, die eine scherempfindliche Hülle haben, die Parfum umschließt; und einen Träger für die aktiven Antiperspirantpartikel und Kapseln umfasst; wobei die Kapseln eine Hülle aus vernetztem Gelatine-Koazervat, die eine Dicke im Bereich von 0,25 bis 9 μm aufweist und 10 bis 40 Gew.-% der Kapseln bereitstellt, einen volumengemittelten Partikeldurchmesser im Bereich von 25 bis 70 μm, ein Verhältnis der Hüllendicke zu dem gemittelten Partikeldurchmesser im Bereich von 1:5 bis zu 1:120 und eine Hysitron-Härte aufweisen, die in einem Hysitron-Tribo-Identemer gemessen wird, der mit einer Berkovich-Spitze ausgerüstet ist und programmiert ist, um einen Eindruck durch Zusammendrücke einer Probe mit einer anfänglichen Kontaktkraft von 75 μN für 10 Sekunden, gefolgt von einer Positionshaltestufe für 10 Sekunden, im Bereich von 1,5 MPa bis 50 MPa auszuführen.

14
3. Zusammensetzung nach Anspruch 1 oder 2, wobei das Koazervat mit Glutaraldehyd vernetzt ist.

4. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei die Kapseln eine Partikelgröße \(D_{4,3} \) im Bereich von 40 bis 60 \(\mu \text{m} \) aufweisen.

5. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei die Kapseln eine gemessene Hüllendicke im Bereich bis 2,5 \(\mu \text{m} \) aufweisen.

6. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei die Kapseln eine mittlere gemessene Hüllendicke im Bereich von 0,3 bis 0,8 \(\mu \text{m} \) aufweisen.

10. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei die Kapseln einen offensichtlich verringerten Elastizitätsmodul, der in einem Hysitron-Tribo-Identer gemessen wird, der mit einer Berkovich-Spitze ausgerüstet ist und programmiert ist, einen Eindruck durch Zusammendrücken einer Probe mit einer anfänglichen Kontaktkraft von 75 \(\mu \text{N} \) für 10 Sekunden, gefolgt von einer Positionshaltestufe für 10 Sekunden, im Bereich von 10 bis 3 MPa auszuführen.

11. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei die Kapseln einen Wassergehalt von weniger als 5 % aufweisen.

12. Zusammensetzung nach einem der vorhergehenden Ansprüche, die von 0,1 bis 4 Gew.-% der Kapseln aufweist.

16. Zusammensetzung nach einem der Ansprüche 14 oder 15, wobei das Esteröl ein Alkyl-Benzoat und gegebenenfalls ein Triglyceridöl einer ungesättigten \(C_{16} \)-Fettsäure ist.

17. Zusammensetzung nach einem der vorhergehenden Ansprüche, die wenigstens ein Geliermittel umfasst, das aus Wachsen, öllösen Polymeren und nichtpolymeren faserbildenden Geliermitteln mit einer Gewichtskonzentration in der Zusammensetzung, die aus dem Bereich von 1,5 bis 30 % gewählt ist, um eine Eindruckhärte im Bereich von 7 bis 13 mm bereitzustellen.

18. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei der aktive Antiperspirantpartikel aus Aluminiumhydroxychlorid und/oder aus Aluminiumhydroxychlorid gewählt ist, wovon beide gegebenenfalls mit Glycin komplexiert sind und wovon beide gegebenenfalls mit einem polymeren Cogeliermittel zusammen sind.

Revendications

1. Composition d'antiperspirant d'aérosol anhydre comprenant moins de 1 % en masse d'eau libre ; un propulseur ; une matière active d'antiperspirant particulaire ; des capsules comprenant une enveloppe sensible au cisaillement qui encapsule du parfum ; et un support pour les matière active d'antiperspirant particulaire et capsules ; dans laquelle les capsules présentent une enveloppe de coacervat de gélatine réticulé ayant une épaisseur de 0,25 à 9 μm et fournissant de 10 à 40 % en masse des capsules, un diamètre moyen de particule en volume de 25 à 70 μm, un rapport d'épaisseur d'enveloppe au diamètre moyen de particule dans l'intervalle de 1:5 à 1:120, et une dureté Hysitron, mesurée dans un Hysitron Tribo-indenter équipé d’une pointe Berkovich et programmé pour réaliser une indentation par compression d’un échantillon avec une force de contact initiale de 75 μN, pendant 10 secondes, suivi par une étape de maintien de position pendant 10 secondes, dans l’intervalle de 1,5 MPa à 50 MPa.

2. Composition selon la revendication 1, dans laquelle le coacervat de gélatine réticulé est obtenu par mise en contact de gélatine avec soit de la gomme arabique, soit une carboxyméthylcellulose chargée à pH inférieur à 5.

3. Composition selon la revendication 1 ou 2, dans laquelle le coacervat est réticulé avec du glutaraldéhyde.

5. Composition selon l’une quelconque des revendications précédentes, dans laquelle les capsules présentent une épaisseur d’enveloppe mesurée dans l’intervalle jusqu’à 2,5 μm.

6. Composition selon l’une quelconque des revendications précédentes, dans laquelle les capsules présentent une épaisseur moyenne d’enveloppe mesurée dans l’intervalle de 0,3 à 0,8 μm.

7. Composition selon l’une quelconque des revendications précédentes, dans laquelle les capsules présentent un rapport taille moyenne de particule à épaisseur d’enveloppe dans l’intervalle de 40:1 à 80:1.

8. Composition selon l’une quelconque des revendications précédentes, dans laquelle les capsules présentent des enveloppes fournissant de 12 à 25 % en masse des capsules.

9. Composition selon l’une quelconque des revendications précédentes, dans laquelle les capsules présentent une dureté Hysitron dans l’intervalle de 2,5 à 4 MPa.

10. Composition selon l’une quelconque des revendications précédentes, dans laquelle les capsules présentent un module élastique réduit apparent, mesuré dans un Tribo-indenter Hysitron équipé d’une pointe Berkovich et programmé pour réaliser une indentation par compression d’un échantillon avec une force de contact initiale de 75 μN, pendant 10 secondes, suivi par une étape de maintien de position pendant 10 secondes, dans l’intervalle de 10 à 3 MPa.

11. Composition selon l’une quelconque des revendications précédentes, dans laquelle les capsules présentent une teneur en eau inférieure à 5 %.

12. Composition selon l’une quelconque des revendications précédentes, qui contient de 0,1 à 4 % en masse des capsules.

13. Composition selon l’une quelconque des revendications précédentes qui contient de plus un parfum non-encapsulé.

14. Composition selon l’une quelconque des revendications précédentes, dans laquelle la combinaison comprend de 30 à 70 % en masse/masse d’huile de silicone volatile et de 20 à 40 % en masse/masse d’huile d’ester et/ou d’huile d’éther.

15. Composition selon la revendication 14, dans laquelle au moins 90 % en masse/masse de l’huile de silicone volatile sont de la cyclopentadiméthicone et/ou cyclohexadiméthicone.

16. Composition selon la revendication soit 14 soit 15 dans laquelle l’huile d’ester est un benzoate d’alkyle et éventuellement une huile de triglycéride d’un acide gras en C16 insaturé.
17. Composition selon l’une quelconque des revendications précédentes contenant au moins un gélifiant choisi parmi des cires, des polymères solubles dans l’huile et des gélifiants formant une fibre non polymère à une concentration en masse dans la composition choisie dans l’intervalle de 1,5 à 30 % pour fournir une dureté de pénétration de 7 à 13 mm.

18. Composition selon l’une quelconque des revendications précédentes, dans laquelle la matière active d’antiperspirant particulaire est choisie parmi des chlorhydrates d’aluminium, et/ou des chlorhydrates d’aluminium, dont l’un est éventuellement complexé avec de la glycine et dont l’un est éventuellement complexé avec un co-gélifiant polymère.

19. Composition selon l’une quelconque des revendications précédentes qui est exempte d’éthanol.

20. Composition selon l’une quelconque des revendications précédentes qui contient de plus un parfum encapsulé sensible à l’eau.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2006056096 A, Givaudan SA [0003] [0020] [0085]
- US 6045835 A [0017] [0019] [0085]
- US 4278658 A [0040]
- EP 6739 A, Unilever NV [0060]
- US 3792068 A, Luedders [0064]
- EP 0303461 A [0077]
- EP 1289484 A [0077]