ADJUSTMENT DEVICE FOR THE ADJUSTMENT OF BELTS OF BELT CONVEYORS

EINSTELLUNGSVORRICHTUNG ZUR GURTEINSTELLUNG VON FÖRDERBÄNDERN

DISPOSITIF D AJUSTEMENT POUR L AJUSTEMENT DE COURROIES DE BANDES TRANSPORTEUSES

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

Priority: 21.05.2008 SE 0801172

Date of publication of application:
22.06.2011 Bulletin 2011/25

Proprietor: Sandvik Intellectual Property AB
811 81 Sandviken (SE)

Inventor: ERIKSSON, Nils, Håkan
S-811 38 Sandviken (SE)

Representative: Hägglöf, Henrik
Sandvik Intellectual Property AB
811 81 Sandviken (SE)

References cited:
US-A- 3 715 027

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This invention relates to an adjustment device according to the preamble of claim 1 intended for the adjustment of belts of belt conveyors and of the type that comprises a roller that is rotatable around a first axis and mounted in a cradle, which in turn is turnably mounted in a supporting stand, and, by means of a force generator, tiltable in relation to the stand around a second axis extending perpendicularly to the first one.

It also relates to a belt conveyor assembly comprising such an adjustment device.

Background of the Invention and Prior Art

Within the industry, there are used many kinds of belt conveyors of the type that comprises an endless belt as well as a plurality of rollers, at least one of which consists of a drive roller, another of a tension roller, and the other ones of a varying number of deflection rollers. Within many processing industries, e.g., for the preparation and processing of food, belt conveyors are found, the belts of which consist of steel and therefore have good properties in respect of strength, service life and hygiene. However, in such conveyors, at times problems arise so far that the belt may tend to be displaced laterally in relation to certain rollers, which should be passed, and thereby deviate from the ideal path in which the belt reliably is centred in relation to the rollers. Such displacement tendencies may, among other things, arise as a consequence of uneven load on the belt, but also for other reasons.

In order to manage the above-mentioned problems, adjustment devices of the type initially mentioned are used since long, viz. a roller that is rotatably mounted in a cradle and tiltable by means of a force generator that brings the cradle to be turned in relation to the stand around an axis extending perpendicularly to the rotation axis of the roller. The rollers of such adjustment devices are commonly denominated "tilt rollers" by those skilled in the art. By fitting such a tilt roller upstream the drive or tension roller, which should be passed by the belt, and let the tilt roller co-operate with sensors that detect the centring of the belt, the path of the belt can be corrected by means of readjustment of the tilt roller in a suitable direction and angle in relation to the belt path.

An adjustment device according to the preamble of claim 1 is disclosed in document US-A-3 715 027.

However, a disadvantage of previously known adjustment devices, which are fitted to the frame work carrying the belt conveyor in its entirety, and which are located either above or below the belt, is that the force generators occupy an obstructively large space in and around the frame work. Thus, in previously known belt conveyors, vertically fitted piston-cylinder mechanisms are used, which are pivotally connected with the two opposite ends of the cradle and have the purpose of lowering and raising, respectively, the same depending on the desired setting angle and setting direction of the tilt roller. When the tilt roller of the adjustment device is fitted for actuation of the upper part of the belt, said piston-cylinder mechanisms will protrude upward fairly high from the frame work of the conveyor. If the tilt roller is, on the other hand, fitted for actuation of the lower part of the belt, the mechanisms occupy space inside the frame work, whereby the machine construction in its entirety becomes complicated. Prior art adjustment devices present uneven distribution of load on the tilt roller.

Summary of the Invention

The present invention aims at obviating the above-mentioned disadvantages of previously known adjustment devices of the kind in question and at providing an improved adjustment device. Therefore, a primary object of the invention is to provide a compact, space-saving adjustment device, which does not unnecessarily intrude neither on the available space inside the machine construction nor on the premises outside the same. Another object is to provide an adjustment device, the fundamental construction of which easily can be adapted to belts of most varying widths. The invention also aims at providing an adjustment device, the constructive structure of which is simple and allows cost-effective series manufacturing. Still another object is to provide an adjustment device in which the load on the tilt roller is distributed in an even way to the stand.

The invention is attained by the features defined in the appended claim 1. Preferred embodiments of the adjustment device according to the invention are further defined in the dependent claims.

The invention is also attained by the belt conveyor assembly as stated in the appended claim 13.

Brief Description of the Appended Drawings

In the drawings:

FIG. 1 is a fragmentary perspective view of a part of a belt conveyor in which an adjustment device made in accordance with the invention is included for the endless belt of the conveyor,

FIG. 2 is a schematic side view showing how the adjustment device according to the invention acts against a lower part of the belt,

FIGS. 3 and 4 are analogous views illustrating how the adjustment device according to the invention alternatively can act against
an upper belt part,

FIG. 5 is a perspective view showing a first embodiment of an adjustment device according to the invention,

FIG. 6 is a partially cut perspective view of the same adjustment device according to the invention,

FIGS. 7-9 are schematic side views showing the tilt roller included in the adjustment device according to the invention in three different settings,

FIG. 10 is a side view showing a wedge body included in the adjustment device according to the invention,

FIG. 11 is a perspective view showing a wedge body included in the adjustment device according to the invention, and

FIG. 12 is a perspective view showing a carriage included in the adjustment device according to the invention.

Detailed Description of Preferred Embodiments of the Invention

[0011] In Figs. 1 and 2, there are shown parts of a belt conveyor, in which a supporting frame work 1, a roller 2 and an endless belt 3 are included, which in this case is kept tightened by the roller 2. In the frame work 1, in addition to a number of supporting uprights 4, also a number of uniting cross-bars 5 are included. The roller 2, which in the example is in the form of a cylindrical drum, includes a central shaft 6, which is rotatably mounted in the surrounding frame work. In the example, the lower part 3A of the belt 3 runs inward toward the roller 2, while the upper part 3B runs out from the same. In this case, an adjustment device according to the invention, in its entirety designated 7, co-operates with the lower, incoming belt part 3A. It should also be noted that at least two sensors 8 are fitted to the frame work in order to detect the position of the belt 3 laterally along the envelope surface of the roller. Said sensors co-operate in a conventional way with a force generator (described in more detail below) included in the adjustment device 7.

[0012] In the example according to Figs. 3 and 4, the upper part 3B of the belt 3 runs in onto the roller 2, while the lower part 3A runs out from the same. Also in this case, the adjustment device 7 co-operates with the incoming belt part, but since this consists of the upper belt part 3B, the adjustment device 7 is here fitted to a crossbar 5 positioned above the belt in order to act against the upperside of the upper belt part 3B.

[0013] Reference is now made to Figs. 5-12, which illustrate an embodiment of the invention. In the shown adjustment device, a roller 9 is included in the form of a so-called tilt roller, which is rotatable around a first axis CR, more precisely by being rotatably mounted, at the two opposite ends 10a, 10b thereof, in a cradle in its entirety designated 11. Said cradle 11 is in turn turnable or tiltable in relation to a stand generally designated 12, more precisely around a second axis CT extending perpendicularly to the axis CR. The length and diameter of the roller 9 may in practice vary most considerably, however on condition that the length is greater than the diameter. In the example, the length is approx. 10 times greater than the diameter.

[0014] In the embodiment shown, the stand 12 includes two side pieces 13 and a base or bottom part 14 extending between the same. At the two opposite ends thereof, the stand includes furthermore two end pieces 15a, 15b, which together with the base and the side pieces form a trough-like construction. The cradle 11 is carried by a shaft or journal 16, which defines the axis CT, and extends between the side pieces 13 and is mounted in relation to these (alternatively, the shaft journal could be fixed to the side pieces at the same time as the cradle is mounted in relation to the shaft). In addition, a force generator 17, providing external energy for tilting of the cradle, is included. The shaft or journal 16 defining the axis CT has a play of less than 1 mm in the direction perpendicular to the axis CR in order to allow the cradle to tilt relatively the stand without introducing tensions in the adjustment device due to the tilting as such.

[0015] In the following description, certain spatial concepts will be used, such as "upper" and "lower", respectively. However, these concepts only relate to the drawing concepts will be used, such as "upper" and "lower", respectively. However, these concepts only relate to the drawing Figs. 5-12, and have no relevance for the real location of the adjustment device in the complete belt conveyor (cf. Figs. 1-4).

[0016] The adjustment device according to the invention allows the use of only one force generator, which in the example consists of a ball or acme screw having a long narrow shape, and which is fitted to the lower, trough-like part of the stand 12, and at one end thereof connected with an end piece 15b, more precisely via a hinge 18. In accordance with the invention, the linearly movable part of the mechanism, viz. the rod 19, is arranged to co-operate with a transmission actuator, in the form of a carriage 20, which, when a force having a principal first force component of a first direction in a line with the rod 19 is generated, transforms the same into a force having a second principal force component of a second direction, different from the first direction, which guarantees tilting of the cradle 11 and thereby also the roller 9 in relation to the stand.

[0017] The carriage 20 is, as shown in Figs. 5-10, movable to and fro along a slide 21 included in the stand. The slide 21 can be either an integrated part of the stand or alternatively a member attached to the stand. In said carriage, an underside 22 and an upperside 23 are included in which a guide element 24 is arranged, which is inclined
at an acute angle to the underside 22. Along said guide element 24, a travelling member in the form of a rotatable pulley 25 and connected with the cradle 11 is movable to and fro in order to either be raised or be lowered in relation to the stand when the carriage 20 is moved rectilinearly along the slide 21 and thereby tilt the cradle.

[0018] In the shown embodiment, the carriage 20 is composed of two wedge bodies or parts 201, 202, which are interconnected via a coupler 26, which in this case comprises a flat iron fastened with screws in the wedge bodies. By the fact that the carriage in this embodiment includes two parts 201, 202, which individually include an inclined guide element 24, the guide elements will form an upwardly diverging V-formation, in which the same slope inward/downward toward the centre of the carriage.

[0019] In this case, the individual pulley 25 is formed with two flanges that are arranged on both sides of a central waist and run along the individual guide element 24. In the example, the individual guide element 24 is cross-sectionally wedge-shaped, the flanges of the pulley 25 being in the form of conical treads, which diverge in the direction outward from the waist. On the underside thereof, the carriage 20 includes at least two carriage wheels 27, which like the pulleys 25 may include a pair of conical and outwardly diverging treads. In the example, each one of the two wedge bodies 201, 202 include a pair of such carriage wheels 27 (from which it follows that the carriage 20 in its entirety is carried by four carriage wheels). Said carriage wheels are movable along the slide 21 that, in the shown preferred embodiment, is a part of the proper stand 12. More precisely, the slide 21 is a V-shaped bent portion of a sheet-metal plate, which, in addition to the base 14, includes two portions that are bent perpendicularly to the base and form the side pieces 13. The end pieces 15a, 15b consist of U-shaped sheet-metal plates, which are fastened with screws to the ends of the side pieces 13. It should also be pointed out that the movable rod 19 is connected with the carriage 20 via a hinge 28 on a journal protruding from the carriage.

[0020] In Fig. 7, the tilt roller 9 is shown set in a horizontal neutral position, in which the two pulleys 25 of the cradle are situated on one and the same level and at equally large distances from the centre of the carriage. This position is assumed as long as the belt 3 is running in a correct, centred way over the roller 2. In other words, the tilt roller is passive in this state.

[0021] However, if the belt 3 would tend to be displaced laterally in either direction in relation to the roller 2, the tilt roller is activated by the sensors 8. Thus, in Fig. 8, it is shown how the force generator 17 via the rod 19 has displaced the carriage 20 to the right in the drawing. In this connection, the pulley 25a positioned closest to the end 10a of the tilt roller 9 will fall down along one of the guide elements 24 of the carriage at the same time as the other pulley 25b correspondingly moves upward along the second, co-operating guide element 24. In such a way, the cradle 11 is turned in the clockwise direction around the shaft 16. As soon as the piston rod 19 is stopped in a given position, the cradle 11 is compulsorily kept fixed in the position in question, because the shaft 16 is fixed in relation to the stand 13 at the same time as the two pulleys 25 are kept pressed against the guide elements 24 by the wedge action that arises as a consequence of the wedge-shape of the two wedge bodies 201, 202. By pulling the piston rod 19 into the appurtenant cylinder, the cradle 11 is brought to turn counter-clockwise around the shaft 16, as is seen in Fig. 9. In this state, the pulley 25b has fell down along the appurtenant guide element, while the pulley 25a to a corresponding extent has moved upward along its guide element.

[0022] The selection of turning direction is determined by the direction in which the belt tends to be displaced laterally in relation to the rollers of the belt conveyor, more precisely in such a way that the tilt roller is brought to press against the edge of the belt that aims to retreat from the centre of the roller.

[0023] The acute angle or wedge angle α (see Fig. 10), which is formed between the upperside and underside 22, 23 of the individual wedge body, amounts in the example to approx. 10°. This angle α may of course vary, but should not be more than 20°, and not be less than 3°. Preferably, the angle is within the range of 8-13°.

[0024] In a preferred embodiment, the individual wedge bodies 201, 202 composing the carriage 20 are hollow bodies. The upper part of the wedge body forming the guide element 24 has, in a plane perpendicular to the direction of motion of the carriage 20, a V-shaped cross-section with downwards extending parts forming the walls of the hollow wedge body as shown in Fig. 11. Preferably, the wedge body 201, 202 is composed of a bent sheet-metal plate. As is shown in Fig. 12, the carriage 20 may thus be composed of two such hollow wedge bodies, interconnected via a coupler 26. The coupler 26 can be placed either inside or outside the hollow wedge bodies. The carriage wheels 27 are preferably mounted on the inside of the hollow wedge body.

[0025] An advantage of the adjustment device according to the invention is that the same can be realized in a compact design without any vertically protruding components requiring space in the surroundings of the adjustment device, in particular above or underneath the ends of the cradle. By, in the described way, using a transmission actuator for the conversion of a linear force into a force having a force component that can tilt the tilt roller, the requisite force generator can be built into the space between the tilt roller and the base of the supporting stand, i.e., on a level between the same, the force generator advantageously being placed essentially parallel to the length extension of the tilt roller. With particular advantage, the force generator as well as the transmission actuator are placed in the space delimited, on one hand, between the tilt roller and a stand base, and on the other hand between two spaced-apart side pieces of the stand. In the embodiment according to Figs. 5-12, the carriage is slender, the force generator being placed be-
between the carriage and one of the two side pieces of the stand, more precisely in the immediate vicinity of the base of the stand. A particular advantage of the embodiment according to Figs. 5-12 is that the same can be realized for tilt rollers having a most varying length and capacity. Thus, the two wedge bodies, which together form a carriage, can be connected with each other via couplers of different length. In other words, the wedge bodies can be manufactured in a standard design and be used for differently long tilt rollers only by the simple measure of varying the length of the coupler. Another advantage of the embodiment according to Figs. 5-12 is that the load from the tilt roller 9 is distributed in three support points 25 - 16 - 25 to the carriage 20 and from the same to the base of the stand 12 via four additional support points in the form of the carriage wheels 27, thus allowing for a stable and light-weight construction. An additional advantage of the embodiment according to Figs. 11-12, wherein the carriage is composed of two wedge bodies made from a bent sheet-metal plate, is that it allows for a cost-effective series manufacturing of the adjustment device.

[0026] The invention is not limited only to the embodiments described above and shown in the drawings. Thus, the travelling members 25 connected with the cradle 11 and movable to and fro along the guide element 24 arranged in the carriage 20 do not necessarily consist of rotatable pulleys. Other examples of suitable travelling members are ball bearings or slide bearings, such as one or more shoes following a rail-shaped guide element arranged in the carriage 20. Correspondingly, the carriage wheels 27 could also be ball bearings or slide bearings. The slide 21, along which the carriage 20 is movable, is not necessarily a V-shaped bent portion of a sheet-metal plate which also includes the base 14 of the stand 12. Alternatively, the slide 21 may e.g. be welded or screwed onto the base 14.

[0027] Furthermore, the requisite force generator may be realized in other ways than in the form of long narrow mechanisms acting in the longitudinal direction of the tilt roller 9 and cradle 11. It is also possible to fit the force generator so that it applies a force to the transmission actuator in another direction than parallel to the cradle. Moreover, the proper force generator may be placed in the extension of the stand 12 - on a level between the tilt roller 9 and the base of the stand - and be connected with the carriage 20, e.g. via a drawbar. Furthermore, the cradle 11 may carry more than one roller 9, either arranged in a row along the axis CR, or consecutively in respect of the long direction of the belt 3. In the latter case, each tilt roller 9 has an individual axis CR. Also combinations of said two variants are feasible in certain applications.

Claims

1. Adjustment device for the adjustment of belts of belt conveyors, comprising a roller (9) that is rotatable around a first axis (CR) and mounted in a cradle (11), which in turn is turnably mounted in a supporting stand (12), and, by means of a force generator (17), tiltable in relation to the stand around a second axis (CT), whereby a vertical plane extending through second axis (CT) is perpendicular to a vertical plane extending through first axis (CR), and a transmission actuator (20) co-operating with the force generator (17), the force generator (17) being designed to generate a force in a first direction, which can cause the transmission actuator (20) to apply to a force in a second direction transverse to the first direction, which guarantees tilting of the cradle (11) and thereby also the roller (9) in relation to the stand (12), the transmission actuator being built-in into a space between the roller and a base part (14) of the stand, the transmission actuator consisting of a carriage (20) movable to and fro along a slide (21), characterized in that the carriage comprises an underside (22) and an upperside (23) having two guide elements (24), which are each inclined at an acute angle (α) to the underside (22) and which guide elements slope in different directions in relation to the underside (22) and along each of which guide elements a respective travelling member (25) connected with the cradle (11) and spaced apart laterally from the second tilt axis (CT) is movable to and fro, and that the carriage (20) is rectilinearly movable along said slide (21) in order to - depending on the direction of motion - either raise or lower the travelling members (25) and thereby turn or tilt the cradle (11) in either direction around said second tilt axis (CT), wherein the travelling members are located on opposite sides of the second tilt axis (CT) to each other, such that movement of the carriage in a first direction lowers a first one of the travelling members and raises a second one of the travelling members, and movement of the carriage in the opposite direction raises the first one of the travelling members and lowers the second one of the travelling members, wherein both travelling members (25) are kept pressed against the respective guide elements (24).

2. Adjustment device according to claim 1, characterized in that the travelling member consists of a rotatable pulley (25).

3. Adjustment device according to claim 2, characterized in that the pulley (25) comprises two flanges that are arranged on both sides of a central waist and have the purpose of running along the guide element (24) arranged on the upperside of the carriage.

4. Adjustment device according to claim 3, character-
ized in that the guide element (24) is cross-sectionally wedge-shaped and that the flanges of the pulley (25) include conical treads, which diverge in the direction outward from the waist.

5. Adjustment device according to any one of the preceding claims, characterized in that the carriage (20) comprises two spaced-apart carriage wheels (27) rotatably fitted along the underside and abutting against a slide (21).

6. Adjustment device according to claim 5, characterized in that the slide (21) is straight.

7. Adjustment device according to claim 5 or 6, characterized in that the carriage (20) comprises two spaced-apart carriage wheels (27) rotatably fitted along the underside and abutting against a slide (21).

8. Adjustment device according to any of the preceding claims, characterized in that the individual guide element (24) slopes in the direction upward/outward from a central part of the carriage (20).

9. Adjustment device according to any of the preceding claims, characterized in that the guide elements (24) are included in two separate wedge bodies (201, 202), which are interconnected via a coupler (26) while forming a continuous carriage (20).

10. Adjustment device according to claim 9, characterized in that each wedge body (201, 202) is composed of a bent sheet-metal plate.

11. Adjustment device according to any one of the preceding claims, characterized in that the force generator consists of a long narrow mechanism (17) of variable length, one end of which is connected with the stand (12) and the opposite end of which is connected with the carriage (20).

12. Adjustment device according to claim 11, characterized in that the force generator consists of a piston-cylinder mechanism (17).

13. A belt conveyor assembly comprising an adjustment device in accordance with any preceding claim.

Patentansprüche

1. Einstelleinrichtung für die Einstellung von Bändern von Bandförderern, welche aufweist:

eine Walze (9), die um eine erste Achse (CR) drehbar und in einem Gestell (11) montiert ist, welches seinerseits in einem stützenden Rahmen (12) drehbar montiert ist und mit Hilfe eines Kraftgenerators (17) relativ zu dem Rahmen um eine zweite Achse (CT) drehbar ist, wobei eine vertikale Ebene, welche sich durch die zweite Achse (CT) erstreckt, senkrecht zu einer vertikalen Ebene ist, die sich durch die erste Achse (CR) erstreckt, und einen Übertragungsbetätiger (20), der mit dem Kraftgenerator (17) zusammenwirkt, wobei der Kraftgenerator (17) dafür ausgelegt ist, eine Kraft in einer ersten Richtung zu erzeugen, die bewirken kann, dass der Übertragungsbetätiger (20) eine Kraft in einer zweiten Richtung quer zu der ersten Richtung aufbringt, die ein Verkippen des Gestells (11) der Walze (9) relativ zu dem Rahmen (12) sicherstellt, wobei der Übertragungsbetätiger in einem Raum zwischen der Walze und einem Basisteil (14) des Rahmens eingebaut ist, wobei der Übertragungsbetätiger aus einem Wagen (20) besteht, der entlang einer Gleitbahn (21) vor und zurück bewegbar ist, dadurch gekennzeichnet, dass der Wagen eine eine Unterseite (22) und eine Oberseite (23) mit zwei Führungs- elementen (24) aufweist, die jeweils unter einem spitzen Winkel (α) zu der Unterseite (22) geneigt sind, wobei die Führungselemente relativ zu der Unterseite (22) in unterschiedlichen Richtungen geneigt sind, wobei der Wagen (20) entlang der Gleitbahn (21) geradlinig bewegbar ist, und dass der Wagen (20) entlang der Gleitbahn (21) geradlinig bewegbar ist, um, abhängig von der Bewegungsrichtung, die Laufglieder (25) entweder anzuheben oder abzusenken und dadurch das Gestell (11) in jeder Richtung um die zweite Kippachse (CT) zu drehen oder zu kippen, wobei die Laufglieder auf entgegengesetzten Seiten der zweiten Kippachse (CT) be- abgestandet ist, hin- und herbewegbar ist, und dass der Wagen (20) entlang der Gleitbahn (21) geradlinig bewegbar ist, um, abhängig von der Bewegungsrichtung, die Laufglieder (25) entweder anzuheben oder abzusenken und dadurch das Gestell (11) in jeder Richtung um die zweite Kippachse (CT) zu drehen oder zu kippen.

2. Einstelleinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Laufglied aus einer drehbaren Riemenscheibe (25) besteht.
3. Einstelleinrichtung nach Anspruch 2, **dadurch gekennzeichnet**, dass die Riemenscheibe (25) zwei Flansche aufweist, die auf beiden Seiten einer zentralen Einschnürung angeordnet sind und den Zweck haben, entlang des Führungselementes (24) zu laufen, das an der Oberseite des Wagens angeordnet ist.

5. Einstelleinrichtung nach einem der vorstehenden Ansprüche, **dadurch gekennzeichnet**, dass der Wagen (20) zwei voneinander beabstandete Wagenräder (27) aufweist, die entlang der Unterseite drehbar montiert sind und an einer Gleitbahn (21) anliegen.

6. Einstelleinrichtung nach Anspruch 5, **dadurch gekennzeichnet**, dass die Gleitbahn (21) gerade ist.

7. Einstelleinrichtung nach Anspruch 5 oder 6, **dadurch gekennzeichnet**, dass der Rahmen (12) zusätzliche Trennflächen (13), zwischen welchen das Gestell (11) scharnierbeweglich aufgenommen ist, ein Basisteil (14) in Form einer Blechplatte aufweist, in welcher die Gleitbahn (21) zwei zusammenhängende Teile (13) und den Rahmen (12) zu verbinden, und an der Oberseite des Wagens angeordnet ist.

8. Einstelleinrichtung nach einem der vorstehenden Ansprüche, **dadurch gekennzeichnet**, dass die Gleitbahn (21) von einem zentralen Teil des Wagens (20) aus in Richtung nach oben und außen geneigt verläuft.

9. Einstelleinrichtung nach einem der vorstehenden Ansprüche, **dadurch gekennzeichnet**, dass die Führungselemente (24) in zwei getrennten Keilkörpern (201, 202) enthalten sind, die über eine Kuppung (26) miteinander verbunden sind, wobei sie einen zusammenhängenden Wagen (20) bilden.

Revendicaciones

1. Dispositivo d’ajustement pour l’ajustement de courroies de bandes transporteuses, comprenant un rouleau (9) qui peut tourner autour d’un premier axe (CR) et monté dans un berceau (11), qui à son tour est monté avec possibilité de rotation dans un montant de support (12), et, au moyen d’un générateur de force (17), inclinable par rapport au montant autour d’un deuxième axe (CT), un plan vertical s’étendant à travers le deuxième axe est perpendiculaire à un plan vertical s’étendant perpendiculairement au premier axe (CR), et un actionneur de transmission (20) coopérant avec le générateur de force (17), le générateur de force (17) conçu pour générer une force dans une première direction, qui peut entraîner l’actionneur de transmission (20) à appliquer une force dans une deuxième direction transversale par rapport à la première direction, qui garantit l’inclinaison du berceau (11) et de cette manière également le rouleau (9) par rapport au montant (12), l’actionneur de transmission étant intégré dans un espace entre le rouleau et une partie de base (14) du montant, l’actionneur de transmission étant constitué d’un chariot (20) mobile dans un sens et dans l’autre le long d’une glissière (21), caractérisé en ce que le chariot comprend un côté inférieur (22) et un côté supérieur (23) ayant deux éléments de guidage (24), qui sont chacun inclinés à un angle aigu (α) par rapport au côté inférieur (22) et lesquels éléments de guidage sont inclinés dans des directions différentes par rapport au côté inférieur (22) et le long de chacun desquels éléments de guidage un élément de déplacement respectif (25) connecté au berceau (11) et écarté latéralement par rapport au deuxième axe d’inclinaison (CT) est mobile dans un sens et dans l’autre, et en ce que le chariot (20) est mobile de manière rectiligne le long de ladite glissière (21) de manière à, en fonction du sens du mouvement, soit faire monter soit faire descendre les éléments de déplacement (25) et de cette manière faire tourner ou incliner le berceau (11) dans l’un ou l’autre sens autour dudit deuxième axe d’inclinaison (CT), dans lequel les éléments de déplacement sont situés sur des côtés opposés du deuxième axe d’inclinaison (CT) l’un par rapport à l’autre, de sorte qu’un
déplacement du chariot dans un premier sens fasse descendre un premier des éléments de déplacement et fasse monter un deuxième des éléments de déplacement, et un déplacement du chariot dans le sens opposé fasse monter le premier des éléments de déplacement et fasse descendre le deuxième des éléments de déplacement, dans lequel les deux éléments de déplacement (25) sont maintenus appuyés contre les éléments de guidage respectifs (24).

2. Dispositif d’ajustement selon la revendication 1, caractérisé en ce que l’élément de déplacement consiste en une poulie rotative (25).

3. Dispositif d’ajustement selon la revendication 2, caractérisé en ce que la poulie (25) comprend deux joues qui sont disposées des deux côtés d’un ventre central et qui ont pour fonction de se déplacer le long de l’élément de guidage (24) disposé sur le côté supérieur du chariot.

4. Dispositif d’ajustement selon la revendication 3, caractérisé en ce que l’élément de guidage (24) possède une section transversale en forme de coin et en ce que les joues de la poulie (25) incluent des bandes de roulement coniques, qui divergent dans la direction vers l’extérieur du ventre.

5. Dispositif d’ajustement selon l’une quelconque des revendications précédentes, caractérisé en ce que le chariot (20) comprend deux roues de chariot écartées (27) montées avec possibilité de rotation le long du côté inférieur et en butée contre une glissière (21).

6. Dispositif d’ajustement selon la revendication 5, caractérisé en ce que la glissière (21) est droite.

7. Dispositif d’ajustement selon la revendication 5 ou 6, caractérisé en ce que le montant (12), en plus de deux pièces latérales écartées (13) entre lesquelles le berceau (11) est articulé, comprend une base (14) sous la forme d’une plaque de tôle métallique dans laquelle un pliage en forme de V en section transversale est formé, qui forme ladite glissière (21).

8. Dispositif d’ajustement selon l’une quelconque de revendications précédentes, caractérisé en ce que l’élément de guidage individuel (24) est incliné dans la direction vers le haut/vers l’extérieur par rapport à une partie centrale du chariot (20).

9. Dispositif d’ajustement selon l’une quelconque des revendications précédentes, caractérisé en ce que les éléments de guidage (24) sont inclus dans deux corps de coin séparés (201, 202), qui sont interconnectés par le biais d’un élément de couplage (26) tout en formant un chariot continu (20).

10. Dispositif d’ajustement selon la revendication 9, caractérisé en ce que chaque corps de coin (201, 202) est composé d’une plaque de tôle métallique pliée.

11. Dispositif d’ajustement selon l’une quelconque des revendications précédentes, caractérisé en ce que le générateur de force consiste en un long mécanisme étroit (17) de longueur variable, dont une extrémité est connectée au montant (12) et dont l’extrémité opposée est connectée au chariot (20).

12. Dispositif d’ajustement selon la revendication 11, caractérisé en ce que le générateur de force consiste en un mécanisme à piston et cylindre (17).

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 3715027 A [0005]