Plaster-based material including an agent capable of trapping formaldehyde.

The present invention relates to a plaster-based material which includes an agent capable of trapping formaldehyde, in particular a plasterboard intended for the interior fittings of residential buildings.

The agent capable of trapping formaldehyde is chosen from ethylene urea and its derivatives, compounds comprising active methylene(s), sulphites, tannins and their mixtures. Another subject-matter of the invention is the use of the said material for reducing the amount of formaldehyde present in the atmosphere inside residential buildings.
Description

[0001] The invention relates to a plaster-based material which includes an agent capable of trapping formaldehyde, in particular a plasterboard intended for the interior fittings of residential buildings.

[0002] Highly diverse composite materials are used in the field of the construction and equipping of buildings in general, in particular residential buildings or offices and public buildings (museums, cinemas, concert halls, and the like). Some of these materials, such as acoustic and/or thermal insulators, wood panels, furniture units or decorative items, use adhesives, paints and varnishes which comprise formaldehyde-based resins.

[0003] These resins are highly advantageous as they are inexpensive and have excellent performances. Their major disadvantage lies in the fact that they comprise free formaldehyde and consequently that they are capable of emitting formaldehyde over time.

[0004] In recent years, the proportion of formaldehyde in resins has greatly decreased due to the application of stricter regulations with regard to protection from undesirable emissions of volatile organic products which may exhibit a risk to the health of individuals. However, the attempts which have consisted in replacing the abovementioned resins with other formaldehyde-free resins have not been successful due to the very much higher cost and the poorer quality of the products obtained.

[0005] Nevertheless, it is still desirable for the content of formaldehyde in the ambient air of buildings for residential use to be as low as possible.

[0006] Means are known for achieving this aim.

[0007] The proposal has been made to include particles of photocatalytic titanium oxide in a paint or a plaster material (US-A-2005/0226761) or in paper or a textile, plastic or wooden material (EP-A-1 437 397).

[0008] JP-A-11128329 describes the use of an ammonium salt in an interior building material, such as a plasterboard.

[0009] JP-A-2002145655 provides for the inclusion of urea and/or melamine in a plasterboard.

[0010] JP-A-10337803 describes the incorporation of a hydrazine derivative in a plasterboard. The proposal is also made to include at least one hydrazide in combination a) with an inorganic absorbent in a plasterboard or in a decorative layer on wood (JP-A-2000103002), b) with silica gel in a plasterboard (JP-A-2004115340) or c) with an organic carbide (US-A-20040101695) in an interior building material.

[0011] The aim of the present invention is to reduce the content of formaldehyde inside buildings, in particular residential or public buildings, in order to improve the quality of the ambient air.

[0012] To achieve this aim, the present invention provides a plaster-based material, in particular a plasterboard, which comprises an agent capable of trapping formaldehyde chosen from ethylene urea and its derivatives, compounds comprising active methylene(s), sulphites, tannins and their mixtures.

[0013] Another subject-matter of the invention is the use of the said plaster-based material for reducing the amount of formaldehyde in the air inside buildings.

[0014] The ethylene urea derivatives according to the invention are preferably chosen from N-hydroxyethylene urea, N-aminoethylethylene urea, N-[(3-allyloxy-2-hydroxypropyl)aminoethyl]ethylen urea, N-acryloyloxyethyleneurea, N-methacryloyloxyethylen urea, N-acryloylaminoethylethylene urea, N-methacryloylaminoethylethylene urea, N-methacryloyloxyacetoxylethylene urea, N-methacryloyloxyacetaminoethylethylene urea and N-di(3-allyloxy-2-hydroxypropyl)aminoethylethylene urea. Ethylene urea is preferred.

[0015] The compounds comprising active methylene(s) according to the invention preferably correspond to the following formula (I):

\[
\begin{align*}
\text{R}_1 & \quad \text{(O)}_a \\
\text{R}_3 & \quad \text{(O)}_b \\
\text{R}_2 & \quad \text{n}
\end{align*}
\]

in which:

- \(\text{R}_1 \) and \(\text{R}_2 \), which are identical or different, represent a hydrogen atom, a \(\text{C}_1-\text{C}_{20} \), preferably \(\text{C}_1-\text{C}_6 \), alkyl radical, an amino radical or a radical of formula...
in which R_4 represents a radical

or

where $R_5 = H$ or $-\text{CH}_3$

and p is an integer varying from 1 to 6

- R_3 represents a hydrogen atom, a C$_1$-C$_{10}$ alkyl radical, a phenyl radical or a halogen atom
- a is equal to 0 or 1
- b is equal to 0 or 1
- n is equal to 1 or 2

[0016] The compound of formula (I) which is particularly preferred is acetoacetamide ($R_1 = -\text{CH}_3$; $R_2 = -\text{NH}_2$; $R_3 = H$; $a = 0$; $b = 0$; $n = 1$).

[0017] The sulphides according to the invention are, for example, ammonium bisulphite, potassium bisulphite, sodium bisulphite and alkali metal, in particular sodium, or alkaline earth metal metabisulphites. Sodium bisulphite is preferred.

[0018] The tannins according to the invention can be non-condensed or condensed tannins, such as acacia (catechu), mimosa, quebracho, pine, pecan nut, hemlock wood and sumac tannins. Acacia tannins are preferred.

[0019] The agent capable of reacting with formaldehyde is a compound which covalently bonds to formaldehyde. For this reason, the formaldehyde is trapped in a lasting fashion in the plaster-based material and is not re-emitted into the ambient air.

[0020] The amount of agent capable of trapping formaldehyde to be used can vary to a large extent, for example from 0.001 to 5 parts by weight per 100 parts by weight of gypsum, preferably from 0.01 to 1 and advantageously from 0.02 to 0.2 part.

[0021] The plaster-based material can additionally comprise additives which improve the physicochemical properties of the final product and which make it possible to have good conditions of use. The said material can thus comprise the following additives in the following proportions by weight, expressed per 100 parts by weight of gypsum:

- 0.1 - 15 parts of an adhesion agent, the role of which is to increase the adhesion of the paper coating with the plaster, for example a starch, in particular pretreated with an acid, or a dextrin,
- 0.001 - 5 parts of a setting accelerator, for example calcium sulphate hydrate or potassium sulphate,
- 0.0001 to 1 part of a foaming agent, the role of which is to create pores in order to reduce the density of the final product, in particular of plasterboards. Mention may be made, by way of example, of sodium lauryl sulphate.

[0022] The manufacture of plaster panels, in particular a plasterboard, is known per se.

[0023] Although the invention is more particularly described with regard to plaster panels, it is not limited to this type of material and comprises plaster-based materials no matter the form thereof (powder, mortar, mastic).

[0024] The plasterboard is formed according to a continuous process which consists in mixing powdered calcined gypsum (calcium sulphate hemihydrate) with water to form a paste, which is continuously deposited between two sheets of paper. The product formed is formed or shaped, in order to obtain the desired thickness, and then it is continuously transported on a conveyor over a distance which allows the paste to achieve a level of hardening sufficient to be able to be cut into boards of predetermined length. The boards are subsequently dried in an oven in order to remove the
excess water.

[0025] Conventionally, the powdered components of the paste comprise calcium sulphate hemihydrate (CaSO₄·
0.5H₂O; calcined gypsum) and the optional additives described above. The calcined gypsum undergoes a hydration
reaction in the presence of water and is converted to calcium sulphate dihydrate (CaSO₄·2H₂O; gypsum).

[0026] The amount of calcined gypsum employed to form the paste varies according to the nature of the panel to be
manufactured, generally from 30 to 100 parts by weight per 100 parts by weight of water, preferably from 60 to 80 parts.

[0027] The thickness of the panel can vary to a large extent, for example from 6 to 25 mm.

[0028] The agent capable of trapping formaldehyde can be introduced into the plasterboard in various ways.

[0029] According to a first embodiment, the agent capable of trapping formaldehyde is added to the calcined gypsum
paste before the latter is deposited between the sheets of paper.

[0030] The addition of the agent capable of trapping formaldehyde can take place during the manufacture of the paste,
for example by simultaneously or successively introducing the calcined gypsum and the said agent into the water, or
after the paste has been obtained. The simultaneous addition of the abovementioned constituents is preferred as it is
easier to carry out.

[0031] This embodiment makes it possible to have a homogeneous distribution of the agent capable of trapping
formaldehyde in the plaster body and thus a uniform content throughout the thickness of the board.

[0032] According to a second embodiment, the agent capable of trapping formaldehyde is added to the paper sheet
or sheets used as covering. The addition can take place during the manufacture of the paper, for example to the
 suspension of cellulose fibres or after the obtaining of the sheet.

[0033] The plaster-based material in accordance with the present invention can be provided in the form of a powder
(plaster, mortar), of a paste (mastic, pointing material) or of a plaster panel. As regards more particularly the plaster
panel, the latter can be a bare board or a board covered over at least one of its faces with a paper sheet, an acoustic
panel comprising perforations, a panel of plaster and of mineral or wood wool, or a board reinforced with fibres or a fabric.

[0034] The plaster-based material in accordance with the invention can be used on walls, ceilings and floors, in
particular for covering or pointing plaster or cement panels, or, as regards panels, to form facings, partitions and false
ceilings.

[0035] The use of the plaster-based material inside a building makes it possible to reduce the amount of formaldehyde
present in the atmosphere, which, for this reason, is thus decontaminated.

[0036] The examples which follow make it possible to illustrate the invention without, however, limiting it.

EXAMPLES 1 TO 4

a) manufacture of the plaster-based material

[0037] 600 g of calcium sulphate hemihydrate, the agent capable of trapping formaldehyde, 3 g of starch, 1.8 g of
ground gypsum (accelerator) and 630 g of water are introduced into a mixer.

[0038] The agent capable of trapping formaldehyde is as follows:

- ethylene urea (14 mg): Example 1
- acetoacetamide (15 mg): Example 2
- sodium bisulphite (16 mg): Example 3
- acacia tannin (115 mg): Example 4

[0039] The mixture is stirred for 30 seconds in order to obtain a paste.

[0040] The paste is poured into a brass mould (150 mm x 100 mm) covered internally on its bottom face with a paper
sheet and then a second paper sheet, cut to the dimensions of the mould, is applied to the paste. The two paper sheets
were conditioned beforehand for 24 hours in a chamber having an atmosphere maintained at a relative humidity of 90%.

[0041] After solidification, the plasterboard is removed from the mould. It is dried in an oven under the following
conditions: at 180°C until 80% of the water has been removed, at 60°C for 12 hours and at 40°C for 24 hours.

[0042] A plasterboard not comprising agent capable of trapping formaldehyde (Reference) is prepared under the same
conditions.

b) Ability to trap formaldehyde

[0043] The ability to trap formaldehyde is measured in a gastight test chamber.

[0044] A sample of the plasterboard (2.5 g) is placed in the test chamber and then the chamber is hermetically closed.
2.4 μl of a 37% by weight aqueous formaldehyde solution are subsequently deposited in a container placed inside the
chamber.
After 3 hours, the air present in the test chamber is extracted using a pump connected to a device for measuring formaldehyde (reactive tube sold by Gastec under the reference RAE 10-121-05; measurement range: 0.1 to 5 ppmv).

The results given in the following table correspond to a mean value based on a series of three samples of the same plasterboard.

<table>
<thead>
<tr>
<th>Formaldehyde (ppmv)</th>
<th>Reduction in the formaldehyde %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>0</td>
</tr>
<tr>
<td>Example 2</td>
<td>0</td>
</tr>
<tr>
<td>Example 3</td>
<td>0.4</td>
</tr>
<tr>
<td>Example 4</td>
<td>0.3</td>
</tr>
<tr>
<td>Reference</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Claims

1. Plaster-based material, characterized in that it includes an agent capable of trapping formaldehyde chosen from ethylene urea and its derivatives, compounds comprising active methylene(s), sulphites, tannins and their mixtures.

2. Material according to Claim 1, characterized in that the ethylene urea derivatives are chosen from N-hydroxyethylene urea, N-aminoethylethylene urea, N-[3-allyoxy-2-hydroxypropyl]aminoethylthylene urea, N-acryloyloxyethylene urea, N-methacryloyloxyethylethylene urea, N-acryloylaminioethylethylene urea, N-methacryloylaminoethylethylene urea, N-methacryloyloxyacetoxyethylene urea, N-methacryloyloxyacetaminoethylethylene urea and N-di(3-allyloxy-2-hydroxypropyl)aminoethylethylene urea.

3. Material according to Claim 1, characterized in that the compounds comprising active methylene(s) correspond to the following formula (I):

\[
\begin{align*}
\text{R}_1 (-\text{O})_\text{a} & \quad \text{O} \\
& \quad \text{R}_3 \quad \text{n} \\
& \quad \text{R}_2
\end{align*}
\]

in which:

- \(\text{R}_1 \) and \(\text{R}_2 \), which are identical or different, represent a hydrogen atom, a C\(_1\)-C\(_{20}\), preferably C\(_1\)-C\(_6\), alkyl radical, an amino radical or a radical of formula

\[
\text{-(CH}_2)_p \text{O-C-R}_4
\]

in which \(\text{R}_4 \) represents a radical.
or

where \(R_5 = H \) or -CH\(_3\)
and \(p \) is an integer varying from 1 to 6
- \(R_3 \) represents a hydrogen atom, a \(C_1-C_{10} \) alkyl radical, a phenyl radical or a halogen atom
- \(a \) is equal to 0 or 1
- \(b \) is equal to 0 or 1
- \(n \) is equal to 1 or 2.

4. Material according to Claim 3, **characterized in that** acetoacetamide is concerned.

5. Material according to Claim 1, **characterized in that** the sulphites are chosen from ammonium bisulphite, potassium bisulphite, sodium bisulphite and alkali metal or alkaline earth metal metabisulphites.

6. Material according to Claim 5, **characterized in that** sodium bisulphite is concerned.

7. Material according to Claim 1, **characterized in that** the tannin is chosen from non-condensed or condensed tannins.

8. Material according to Claim 7, **characterized in that** the tannin is an acacia, mimosa, quebracho, pine, pecan nut, hemlock wood and sumac tannin.

9. Material according to Claim 8, **characterized in that** the tannin is an acacia tannin.

10. Material according to one of Claims 1 to 9, **characterized in that** the amount of agent capable of reacting with formaldehyde varies from 0.001 to 5 parts by weight per 100 parts by weight of gypsum, preferably from 0.01 to 1 and advantageously from 0.02 to 0.2 part.

11. Material according to one of Claims 1 to 10, **characterized in that** it additionally comprises the following additives in the following proportions by weight, expressed per 100 parts by weight of gypsum:

 - 0.1 - 15 parts of an adhesion agent, for example a starch, in particular pretreated with an acid, or a dextrin,
 - 0.0001 - 5 parts of a setting accelerator, for example calcium sulphate hydrate or potassium sulphate,
 - 0.0001 to 1 part of a foaming agent, for example, of sodium lauryl sulphate.

12. Material according to one of Claims 1 to 11, **characterized in that** it is provided in the form of a powder, of a paste or of a plaster panel.

13. Material according to Claim 12, **characterized in that** a plasterboard is concerned.

14. Use of a material according to one of Claims 1 to 13 for reducing the amount of formaldehyde in the air inside buildings.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2007 296283 A (ONE UIRU KK; ISHIMARU AKIRA) 15 November 2007 (2007-11-15)</td>
<td>1,2,10-12,14</td>
<td>INV., C04828/14</td>
</tr>
<tr>
<td></td>
<td>* paragraphs [0002], [0012], [0013], [0014], [0015], [0016], [3538], [0039] *</td>
<td>3,4,8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 2006/183879 A1 (YAMATO FUJIO [JP] ET AL) 17 August 2006 (2006-08-17)</td>
<td>1,5,6,11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraphs [0018], [0019], [0029] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>GB 557 562 A (ALFRED HENRY GUY BERRY) 25 November 1943 (1943-11-25)</td>
<td>1,7,11,12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 1, line 32 - line 38 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 1, line 65 - line 74 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 3 950 295 A (YAMAGUCHI TADASHI ET AL) 13 April 1976 (1976-04-13)</td>
<td>1,11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* abstract *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* examples 1,2 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 2, line 53 - column 3, line 21 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 4, line 7 - line 16 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* abstract *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-----</td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>JP 2003 245543 A (SEIBUTSU YUKI KAGAKU KENKYUSHO; HOKKAIDO) 2 September 2003 (2003-09-02)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>* abstract *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0007] *</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* the whole document *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Place of search: Munich
Date of completion of the search: 4 May 2010
Examiner: Roesky, Rainer
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
</table>

The present search report has been drawn up for all claims.

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munich</td>
<td>4 May 2010</td>
<td>Roesky, Rainer</td>
</tr>
</tbody>
</table>

CATEGORIES OF CITED DOCUMENTS:
- T: theory or principle underlying the invention
- E: earlier patent document, but published on, or after the filing date
- D: document cited in the application
- L: document cited for other reasons
- A: non-written disclosure
- O: non-written disclosure
- P: non-written disclosure
- X: relevant to the invention
- Y: relevant to the application
- Z: irrelevant to the invention
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

04-05-2010

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 2007296283 A</td>
<td>15-11-2007</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2006183879 A1</td>
<td>17-08-2006</td>
<td>CN 1814565 A</td>
<td>09-08-2006</td>
</tr>
<tr>
<td>GB 557562 A</td>
<td>25-11-1943</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2404952 A1</td>
<td>08-08-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2216242 A1</td>
<td>30-08-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 945445 C</td>
<td>30-03-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 49103925 A</td>
<td>02-10-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 53028934 B</td>
<td>17-08-1978</td>
</tr>
<tr>
<td>US 5051283 A</td>
<td>24-09-1991</td>
<td>AR 246049 A1</td>
<td>30-03-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1535892 A</td>
<td>07-09-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 920330 A1</td>
<td>12-08-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 100786 A</td>
<td>11-11-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 21475 A</td>
<td>25-06-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 100123 A</td>
<td>31-05-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9213650 A1</td>
<td>20-08-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9201016 A</td>
<td>25-11-1992</td>
</tr>
<tr>
<td>US 5160679 A</td>
<td>03-11-1992</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 10337803 A</td>
<td>22-12-1998</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 5194674 A</td>
<td>16-03-1993</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 2002145655 A</td>
<td>22-05-2002</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 20050226761 A [0007]
- JP 11128329 A [0008]
- JP 2002145655 A [0009]