Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
TECHNICAL FIELD OF THE INVENTION

[0001] This invention relates to the Metformin glycinate salt, which exhibits superior hypoglycaemic properties, greater bioavailability, a particular, safe pharmacokinetics.

TECHNICAL BACKGROUND

[0002] Metformin glycinate is a biguanide with pharmacological and pharmacokinetic properties different from those of metformin hydrochloride (generic medicament). Like the latter, glycinate metformin acts inhibiting hepatic glucose release and increasing peripheral sensitivity to endogenous insulin by promoting the fixation of insulin into its receptors, this is why it is considered an antihyperglycemic agent, since in this way prevents the increase of blood glucose levels. However, and unlike metformin hydrochloride, metformin glycinate has shown to possess a hypoglycaemic effect in preclinical and clinical studies, decreasing the plasma glucose levels directly. The mechanism of action by which it causes this effect has not been defined yet, but it has been observed consistently in various studies. In a study of glycemic curve, after the acute administration of metformin glycinate oral in rats by oral route, it was observed a pronounced hypoglycemic effect in rats that were given this drug compared with rats that were administered metformin hydrochloride. In another study that evaluated the toxicity of metformin glycinate in repeated administration for 28 days in rats by oral route, at different doses and comparing to metformin hydrochloride; with the obtained results, it was concluded that there were no differences as to the toxicity profile between metformin glycinate and metformin hydrochloride at the highest dose, although it was observed differences in relation to the results of clinical pathology that showed a severe hypoglycemia, suggesting an exaggerated pharmacological effect rather than toxic and indicating a pharmacological activity very different between the two drugs.

The class of anti-diabetic drugs called biguanides originates from the Galega officinalis plant, which has been known for several centuries for its capacity to reduce the symptoms of diabetes mellitus. Metformin is a compound derived from biguanides that primarily acts by reducing hepatic gluconeogenesis, but also reduces glucose absorption at the gastrointestinal tract level and increases sensitivity to insulin by increasing the peripheral utilisation of glucose. This may be due to the fact that Metformin improves the binding of insulin to its cellular receptor, which is explained by the increased activity that it induces in the tyrosine kinase postreceptor and the consequent increase in the number and activity of GLUT4 carriers.

[0003] Metformin is not metabolized; it is directly excreted in the urine. Its half-life is 6.2 hours.

[0004] Metformin and Metformin hydrochloride have poor intestinal absorption at the colon and the lower gastrointestinal tract level.

[0005] This invention relates to the development of a new biguanide salt based on Metformin conjugated with Glycine, which exhibits a better absorption and passage into the bloodstream, less gastro-intestinal adverse effects and a better pharmacokinetic profile as compared to other Metformin salts known in the prior art.

[0006] One disadvantage of Metformin hydrochloride is that it is hygroscopic. This hinders the industrial handling thereof to prepare solid compositions such as tablets, capsules, etc. Moreover, in its solid form, it is a corrosive crystal, which wears the tabletting machines used. Furthermore, it is an extremely bitter salt for users and the acid generated thereby often causes gastric disorders with prolonged use.

[0007] Patent GB 1473256 discloses, for the first time, biguanide salts for treating metabolic disorders, especially diabetes mellitus, by reducing blood glucose levels, with the following formula:

\[
\text{R}_1^+ \text{N} - \text{C} = \text{NH} - \text{C} - \text{NHR}_2^+ . n\text{CH}_3\text{COOH} \\
\text{R}_3^+ \text{NH} \quad \text{NH}
\]

where \(R_1 \) represents a hydrogen atom or a lower alkyl or a lower alkenyl group and \(R_2 \) represents a lower alkyl, aryl, aryl-(lower alkyl), or an aryloxy-(lower alkyl) group or \(R_1 \) and \(R_2 \) together represent a lower alkenyl group, \(R_3 \) represents a hydrogen atom or a group with the formula:
Where R⁴ and R⁵ each represent a hydrogen atom or a cation or R⁴ represents a hydrogen and R⁵ represents a lower alkyl group, or R⁴ and R⁵ together represent a lower alkyene group, and n means 1 or 2.

Unlike other biguanides, such as buformin or phenformin, Metformin does not cause lactic acidosis at high serum levels. Metformin hydrochloride is the currently marketed salt and has the following formula:

Belgian patent BE 568,513 discloses acid addition salts of Metformin, including Metformin hydrochloride. Patent application US 2005/0158374 discloses Metformin associated with fatty acids, with improved absorption at the gastro-intestinal tract level. This Metformin associated with a fatty acid (such as laurate, succinate, caprate, palmitate, etc.) is produced from a Metformin salt (for example, Metformin-HCl). These compounds were created in order to increase absorption at the lower gastro-intestinal tract level and for the drug to remain in the blood of patients who so require at relatively constant levels throughout the day, which avoids the intake of several daily doses. The plasma concentrations of these compounds measured in rats in ng/ml with respect to time in hours show a greater bioavailability than Metformin salts which are not bound to fatty acids. However, unlike Metformin-fatty acid compounds, Metformin glycinate not only reaches the maximum plasma level within the first few minutes, but these same levels remain in plasma in a sustained manner for the first 3 to 4 hours, with a gradual decrease for 10 hours following intake. (Figure 1)

This phenomenon exhibited by Metformin glycinate is particularly advantageous to reduce glycaemia, due to the high concentrations that it reaches in the first hour and which may be particularly useful in dealing with postprandial hyperglycaemia, which has been recognised as one of the main factors for cardiovascular risk and vascular damage. On the other hand, since it reaches higher maximum concentrations than Metformin hydrochloride, Metformin glycinate requires lower doses to produce similar hypoglycaemic effects.

Another document that pertains to the state of the art is European patent EP 1039890 from Bristol-Myers Squibb Company, which addresses various dicarboxylic acid salts of Metformin, in combination with another anti-diabetic agent, and a method that uses said salts or combinations to treat diabetes; the patent protects Metformin fumarate, Metformin succinate and Metformin maleate. Similarly, there are other patents in the state of the art that relate to Metformin salts, such as US Patent US 4,835,184, which discloses the p-chlorophenoxyacetic salt of Metformin, French patents FR 2320735 and FR 2037002, which disclose the pamoate salt of Metformin, US patent US 3,957,853, which discloses the acetylsalicylate salt of Metformin, German patents DE 2357864 and DE1967138, which disclose the nicotinic acid salt of Metformin, Japanese patent JP 64008237, which discloses hydroxyacid salts of Metformin, including salts of hydroxy-aliphatic dicarboxylic acids, such as mesotartaric acid, tartaric acid, mesoxalic acids and oxidised maleates; it may be observed that all these are organic acid salts of Metformin.

US 2008/031964 A1 and WO 2006/086856 A describe the combination of a betaine with an antidiabetic agent with the aim of increasing the efficacy of the said antidiabetic agent and diminish its side effects. The combination of Glycine-betaine (trimethylglycine) and powered metformin is used with a granulating agent in the form of spheres. Also, WO 2005/065675 A refers either to betaine compounds in combination with metformin, the mixture intended to improve the metformin effects on body weight of the patient and long term glucose levels. However, these combinations of Glycine and Metformin administered separately do not achieve the Metformin bioavailability results of the Metformin Glycinate salt of the present invention, thus being this salt capable of decreasing postprandial glucose levels and thus avoiding
In this invention, a new 1,1-dimethylbiguanide Glycinate salt was synthesised, called Metformin Glycinate. This salt exhibits advantages over other Metformin salts. These advantages are due, in the first place, to the fact that the glycine counterion exhibits hypoglycaemic effects by itself. Moreover, this salt exhibits more rapid absorption, reaching higher plasma concentrations than those produced with Metformin hydrochloride (Figure 1). On the other hand, the glycine that is generated when the salt is ionised is not a strong acid; consequently, undesirable gastric effects are reduced. Finally, Metformin glycinate has favourable physical characteristics for industrial-scale handling, thus facilitating the preparation of pharmaceutical compositions, since it is less corrosive, has better rheological properties and is less susceptible to compaction.

FIGURES DESCRIPTION

[0015]

FIGURE 1, shows the plasmatic concentration of Metformin glycinate (GLI-MET3), compared with Metformin chloridrated (HCL-MET2).

FIGURE 2, shows Proton Nuclear Magnetic Resonance spectra (NMR) for Metformin glycinate.

FIGURE 3, shows Carbon-13 (NMR) spectra for Metformin glycinate.

FIGURE 4, shows Infra-red (IR) spectra for Metformin glycinate.

FIGURE 5, shows mass spectra for Metformin glycinate muestra obtained for FAB+ technique where molecular ion of cation is in 259 m/z and FAB+ where molecular ion is in 75 m/z.

FIGURE 6, shows unitary cell obtained for X rays diffraction of monocrystal.

FIGURE 7, shows crystalline array obtained from X rays diffraction.

FIGURE 8 Glucose kinetic curves. Males. (Mean ± SD)

Statistically significant differences (*) \(P_{value} < 0.05 \), (**) \(P_{value} < 0.01 \) compared to the control group by using the multiple Dunnett test.

FIGURE 9 Glucose kinetic curves. Females. (Mean ± SD)

Statistically significant differences (*) \(P_{value} < 0.05 \), (*** \(P_{value} < 0.001 \) compared to the control group by using the multiple Dunnett test.

FIGURE 10 Kinetic of blood glucose [mg / dL]. Males. (N, Mean ± SD)

(*) \(P_{value} < 0.05 \), (*** \(P_{value} < 0.001 \), statistically significant differences compared the control group using the multiple Dunnett test were recorded.

FIGURE 11 Kinetic of blood glucose [mg / dL]. Females. (N, Mean ± SD)

(*) \(P_{value} < 0.05 \), (**) \(P_{value} < 0.01 \), statistically significant differences compared the control group using the multiple Dunnett test were recorded.

FIGURE 12 (a) \(P_{value} < 0.05 \), (**) \(P_{value} < 0.01 \) statistically significant differences between group B and group C using the multiple Tukey test were recorded.

DESCRIPTION OF THE INVENTION

[0016] Below we specify a preferred embodiment, which is not intended to limit the synthesis of the Metformin Glycinate salt, which was synthesised from the Metformin Hydrochloride salt, where free Metformin was produced by releasing the hydrochloride counterion, using an ion-exchange column for this purpose; the Metformin base released was dissolved in an aqueous medium and, subsequently, glycine was added at ambient temperature under constant stirring; subsequently, the resulting product is heated until a concentrated solution is produced, an organic solvent is added which does not react with the components present and wherein glycine is insoluble in order to create insolubility in the medium and favour crystallisation of the saturated medium; all this in order to precipitate the excess glycine and then separate it by filtering; the filtrate was concentrated again until precipitation of the Metformin glycinate salt was achieved, this precipitate is washed and purified.

The salt produced was identified by means of nuclear magnetic resonance, infrared spectrometry, mass spectrometry and, finally, Monocrystal X-ray Diffraction. The analysis of the spectra indicated that the new salt produced is different from other Metformin compounds.

[0017] The Nuclear Magnetic Resonance (RMN) proton spectrum showed displacements at 2,814 ppm, 2,916 ppm, and 4,677 ppm.
The 13C spectrum showed at 37,754 ppm, 44,824 ppm, 158,761 ppm, 160,308 ppm, and 180,049 ppm.

The infrared spectrum (IR) showed characteristic absorption signals at 3,367.34 cm⁻¹, 3,175.88 cm⁻¹, 1,618.78 cm⁻¹, and 1,573.96 cm⁻¹.

The mass spectrum was obtained by the FAB⁺ technique, and a molecular ion was obtained at 259 m/z, which is consistent with the expected compound, where will be remember that the molecular ion is equal to molecular weight by two plus one, this is: 129x2 + 1 = 259.

The other mass spectrum was obtained by the FAB⁻ technique, and a molecular ion was obtained at 75 m/z which is consistent with the expected compound.

The monocrystal X-ray diffraction obtained corresponds to a triclinic crystal, of spatial group P-1, with the following unit cell dimensions:

\[a = 5.993 \text{ Å} \quad \alpha = 90.94^\circ \]
\[b = 8.673 \text{ Å} \quad \beta = 95.10^\circ \]
\[c = 10.51 \text{ Å} \quad \gamma = 107.58^\circ \]

Characteristics of Metformin glycinate:

- Full chemical name: N,N-dimethylimidodicarbonimidic diamide glycinate.
- Condensed formula: \(\text{C}_6\text{H}_{16}\text{N}_6\text{O}_2 \)
- Molecular weight: 204.24
- Storage requirements: Keep in well-closed containers at ambient temperature.
- Solubility data: Highly soluble in water, freely soluble in methanol, ethanol. Insoluble in ethyl acetate, ether, chloroform, benzene. Solubility in water approximately 1.4 g/ml at 25°C.
- Melting point: 166°C - 172°C
- State: Solid (powder)
- Chemical stability: by reaction with a strong acid, Metformin glycinate produces a new Metformin salt, and a new glycine salt is produced by reaction of its basic part of glycine.

The studies specified below are a preferred embodiment of the invention, but are not intended to limit either the compositions to be administered, which may be in the form of a tablet, caplet, gel, paste, powder, prolonged-release granules, capsule, prolonged-release tablet, liquid with buffer agent, effervescent tablets, suspension, syrup, aerosol and others, or the administration route, which may be oral, intravenous injectable, intramuscular injectable, nasal, intraperitoneal, sublingual, etc.

In vitro cytotoxicity study of Metformin glycinate.

The following primary cell lines and cell cultures were used:

- Hepatic origin cells: CCL13, ATCC (American Type Culture Collection).
- Kidney origin cells: CRL 1633, ATCC (American Type Culture Collection).
- Primary cultures: hepatocytes.

The following cytotoxicity parameters were evaluated:
Cell morphology and cell adhesion.

Methylthiazoltetrazolium reduction assay (MTT Assay).

The concentration range evaluated was from 250 mg/ml to 0.12 mg/ml.
Two exposure times were evaluated: 24 and 72 hours.

Results:

[0026] The Metformin glycinate evaluated was not cytotoxic for any of the cell types used in this study in the two exposure periods evaluated (24 and 72 hours).

Median lethal dose study (LD_{50}) for Metformin glycinate.

[0027] The oral-route 50 Lethal Dose (LD_{50}) assay in Wistar rats was performed in compliance with international regulations and the specifications for the care and use of laboratory animals. The entire procedure was conceived as stipulated in Guideline 423 of the Guidelines of the Organisation for Economic Co-operation and Development.
[0028] Number of animals: 96 Wistar rats, young adults 3 months of age, of both sexes, were used.
[0029] Randomisation: 12 batches with 8 animals per batch. Four batches were used for the preliminary studies to find the dose interval and eight batches were used for the final study.

Method: After fasting, different doses of the product were orally administered using an orogastric tube. During the development of the study, a control group was used in parallel.

[0030] Volume: 3.8 \pm 0.4 \text{ ml} (corresponding to a volume not greater than 2 ml for every 100 g of rat body weight). Observation period: 24 hours.

Results:

[0031] The oral LD_{50} obtained for Metformin glycinate: 2.4625 \pm 0.195 \text{ g/kg}. (The LD_{50} of Metformin hydrochloride is 1.45 \text{ g/kg}.)
The X^2 test had a value of p = 0.723.
The OECD defines LD_{50} as the "statistically derived single dose of a substance that can be expected to cause death in 50% of the laboratory animals."

Subacute Toxicity study for Metformin glycinate.

[0032] The Subacute Toxicity test at 28 days was performed in compliance with international regulations and the specifications for the care and use of laboratory animals.
Number of animals: 50 Wistar rats, young adults 3 months of age, of both sexes, were used. Five batches with ten animals each. Four experimental groups (10 animals in each group) and a control group.

After fasting, different doses (low, medium, high, and satellite and control groups) of the product were orally administered using an orogastric tube.

Doses used:

[0033]

<table>
<thead>
<tr>
<th>Dose</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low:</td>
<td>0.1 g/kg</td>
</tr>
<tr>
<td>Medium:</td>
<td>0.5 g/kg</td>
</tr>
<tr>
<td>High:</td>
<td>1.0 g/kg</td>
</tr>
<tr>
<td>Satellite:</td>
<td>1.0 g/kg</td>
</tr>
<tr>
<td>Control:</td>
<td>Only the carrier (Bidistilled water)</td>
</tr>
</tbody>
</table>

During the 28 days, the following studies were performed: Observation of the appearance of signs and symptoms, haematological tests and anatomic-pathological study. The entire procedure was conceived as stipulated in Guideline 407 of the Guidelines of the Organisation for Economic Co-operation and Development.
Results:

Clinical observations: Semi-pasty faeces at high doses (duration 2 days). No mortality was observed during the 28-day study. No behavioural changes were observed. The autopsies did not show drastic changes in the different organs.

Anatomic-pathological study: No significant macroscopic changes were observed in the target organs. Control Group: No alterations were observed.

Post-study observations:

Since there was no documentation prior to performing this study, one may conclude that the presence of semi-pasty faeces at the high dose and in the satellite group is a potential adverse effect only at the high dose administered.

The possibility of determining any long-term adverse effects (after 28 days) was not demonstrated, since no subsequent effects were demonstrated following the last administration of the drug.

The probable adverse effects observed with the high dose (semi-pasty faeces) were reversed during the course of the study (9th-11th day).

The extrapolation of a probable dose to determine the non-observable adverse effect could be set between 0.5 and 1.0 g/kg.

Bioavailability study for Metformin glycinate

Metformin glycinate tablets equivalent to 850 mg of Metformin hydrochloride (HCl-Metformin) were administered to 12 healthy volunteers and were compared to the response of 12 other volunteers who received Metformin hydrochloride 850 mg. Samples were taken from the 24 volunteers in order to perform a pharmacokinetic curve, with the following resulting pharmacokinetic parameters: maximum concentration \(C_{max} \) 591 ng/ml, maximum time \(t_{max} \) 2.5 hours, area under the curve for 10 minutes at 24 hours \(ABC(10-24) \) 26.811 \(\eta \) g·ml/h, with a relative bioavailability of 2.8 \(\mu \)g/ml (see results in Figure 1).

Metformin glycinate begins its biodegradation and its release during the first few minutes; consequently, there is rapid absorption, with the appearance of plasma levels between 0.00 and 0.13 h. These levels remain in circulation for over 10.00 hours.

The circulating remnant (levels below 200 \(\eta \)g/ml) is present and tends to decrease within the next 12 hours and disappears when the drug is not administered the following morning.

Study of Gastric Tolerability and adverse events for Metformin glycinate.

A study was performed in 24 healthy volunteers who were administered one tablet of Metformin glycinate (12 volunteers) or Metformin hydrochloride (12 volunteers) in a dose equivalent to 850 mg for 30 days, continuously at the same time. An endoscopy was performed prior to the first drug intake and another was performed at the end of the 30-day study.

In this study, the Lanza Score, which is used to evaluate gastric damage by measuring the sum of ranges, was used. The higher the mean range, the greater the gastric damage.

In this study, we found that the group that received Metformin glycinate had a mean range sum of 225 versus 258 for the group that received Metformin hydrochloride \(p=0.43 \).

Although statistically significant differences are not observed, we did find that the group that received Metformin glycinate suffered less gastric damage than the group that received Metformin hydrochloride, who had a greater proportion of volunteers with a Lanza Score of 4 (maximum score in the scale).

In the patient follow-up, in search of serious adverse events, neither of the two groups showed any, which corroborates the safety of both drugs.

Study of glycemic curve after acute administration in rats orally

In the present acute toxicity study, it was administered a single oral dose of Metformin glycinate (1500 mg / kg base), Metformin hydrochloride (1500 mg / kg base) or Glycine (871.6 mg/kg equivalent to glycine contained in the proven dose of Metformin glycinate) administered to two groups of 10 Sprague Dawley rats 10 males and 10 females (20 rats per groupe) through oral catheter. One group of 20 rats received only the vehicle, as control group. The following 14 days to administration, toxic effects were evaluated. At different times after administration (5, 10, 15, 30, 60, 180 and 360 minutes) glucose levels were determined. Six hours after administration complete blood biochemistry analysis were carried out. The dose of Metformin base was selected to be close to lethal dosage. At this dosage, mortality occurred in 3 females of the group that received metformin glycinate within 3-4 hours after following administration and in one female who received metformin hydrochloride within 6 hours following administration. In males, either the test item Metformin
Hypoglycemic effect was observed in the groups treated with metformin glycinate and metformin hydrochloride to a pronounced and fast drop in glycaemia levels. See figures 8, 9, 10 and 11. Six hours after administration, the effect on blood glucose was still present. By contrast, in animals treated with glycine, it was not observed any effect on blood glucose level with respect to the control group. Six hours after administration, in addition to other differences with respect to the control group, lactate increase was observed in a manner statistically significant in both sexes treated with metformin glycinate compared to those treated with metformin hydrochloride.

The study showed that the pharmacological effect of Metformin glycinate, reflected in reduction of blood glucose and increase of lactate level in plasma on the day of oral administration, is more pronounced in females than in males and also more pronounced than in animals treated with Metformin glycinate. Both effects are well known from Metformin hydrochloride and are signs for an increased cellular glucose uptake and stimulation of anaerobic glycolysis. Glycine, used at the equimolar dose of glycinate (871.6 mg / Kg), did not show a marked glucose reducing effect. This result suggests that the more pronounced reduction of glucose levels in the group receiving Metformin glycinate with respect to Metformin hydrochloride was not caused by a simple additive pharmacological effect of Glycine. Figures 8 to 11.

Emphasizing, it was observed an effect on blood glucose level after one single oral administration in males and more pronounced in females when compared to animals from the control group and also when compared to animals from the reference items groups. Females showed a statistically significant lower blood glucose level 15 min, 30 min and also 3 and 6 hours after a single oral administration with Metformin glycinate when compared to females from the control group. Females treated with Metformin hydrochloride showed statistically lower blood glucose level 3 and 6 hours after oral administration when compared with females from the control group.

In general, the lowest level of glucose in blood was detected three hours after the oral single administration with Metformin glycinate and Metformin hydrochloride in both sexes. By contrast, glycine had no effect on blood glucose, suggesting that the most pronounced effect on glucose observed in the group treated with metformin glycinate is not due to an additive pharmacological effect of glycine: Deaths in this study were caused by a blood glucose lowering effect that was notoriously marked. At therapeutic doses, the effect was reproduced hipoglucemiente in clinical trials, where it was also observed a reduction in glycated hemoglobin of 1%. Metformin glycinate of the invention has pharmacological and pharmacokinetic properties that differ from metformin hydrochloride (generic medicament). This means that at salt cannot be considered a bioequivalent salt and therefore studies reported here characterize its pharmacodynamic activity, its pharmacokinetic profile and safety profile. Preclinical and clinical studies show differences with respect to metformin hydrochloride. The salt of the invention, metformin glycinate has shown a different pharmacological activity with respect to the hydrochloride salt in regard to the hypoglycemic activity. This difference has been shown in preclinical and clinical trials. It has also been shown to have a different pharmacokinetic profile in humans.

Due to all that disclosed above, any person skilled in the art may observe the novelty and inventive scope of the development of this new pharmaceutical salt for the treatment of diabetes; it is worth noting that the behaviour of the drug plasma concentration curves shows a greater bioavailability not only as compared to metformin hydrochloride, but also to metformin salts with fatty acids; this is evident upon analysing the differentials between the areas under the curves (see result Fig. 1); the high-concentration maintenance periods (four hours) have not been reported in the state of the art studied; this phenomenon is, therefore, an unexpected, advantageous result for the treatment of diabetic patients.

Claims

1. The Metformin glycinate salt.

2. The salt of claim 1, characterised in that the nuclear magnetic resonance (NMR) proton spectrum showed displacements at 2,814 ppm, 2,916 ppm, and 4,677 ppm.

3. The salt of claim 1, characterised in that the nuclear magnetic resonance (NMR) carbon-13 spectrum showed...
displacements at 37,754 ppm, 44,824 ppm, 158,761 ppm, 160,308 ppm, and 180,049 ppm.

4. The salt of claim 1, characterized in that the infrared (IR) spectrum shows characteristic absorption signals at 3,367.34 cm⁻¹, 3,175.88 cm⁻¹, 1,618.78 cm⁻¹, and 1,573.96 cm⁻¹.

5. The salt of claim 1, as an active principle in a pharmaceutical composition in the form of a tablet, caplet, gel, paste, powder, prolonged-release granules, capsule, prolonged-release tablet, liquid with buffer agent, effervescent tablets, suspension, syrup, or aerosol.

6. A method of producing the Metformin glycinate salt, comprising the following steps:
 - a solution of Metformin hydrochloride salt is passed through an ion-exchange column in order to produce free Metformin,
 - said free Metformin is dissolved in an aqueous medium and, subsequently, glycine is added at ambient temperature under constant stirring,
 - the resulting product is heated until concentrated, and an organic solvent wherein glycine is insoluble is added until the excess glycine precipitates,
 - said precipitated glycine is filtered and the resulting filtrate is concentrated until a precipitate of Metformin glycinate is produced,
 - said precipitate of Metformin glycinate is washed and purified.

7. The salt of claim 1 for use in the treatment of hyperglycaemia in warm-blooded animals, said treatment consisting in administering different doses of Metformin glycinate by various routes, namely: intravenous injectable, intramuscular injectable, nasal, intraperitoneal or sublingual.

8. The salt according to claim 7, in which said administration is oral administration.

Patentansprüche

1. Metforminglycinatsalz.

2. Salz nach Anspruch 1, dadurch gekennzeichnet, dass das Protonenspektrum mit kernmagnetischer Resonanz (NMR) Verschiebungen bei 2.814 ppm, 2.916 ppm und 4.677 ppm zeigt.

4. Salz nach Anspruch 1, dadurch gekennzeichnet, dass das Infrarot(IR)-Spektrum charakteristische Absorptionssignale bei 3.367,34 cm⁻¹, 3.175,88 cm⁻¹, 1.618,78 cm⁻¹ und 1.573,96 cm⁻¹ zeigt.

5. Salz nach Anspruch 1, als aktiver Wirkstoff in einer pharmazeutischen Verbindung in Form einer Tablette, Filmtablette, Gel, Paste, Puder, Retardgranulat, Kapsel, Retardtablette, Flüssigkeit mit Puffer, Brausetabletten, Suspension, Sirup oder Aerosol.

6. Verfahren zur Herstellung des Metforminglycinatsalzes, umfassend die folgenden Schritte:
 - Durchleiten einer Lösung aus Metforminglycinatsalz durch eine Ionenenaustauschsaule zum Herstellen von freiem Metformin,
 - Lösen des genannten freien Metformins in einem wässrigen Medium und anschließendes Zugeben von Glycin bei Raumtemperatur unter ständigem Rühren,
 - Erhitzen des resultierenden Produkts bis dieses konzentriert wird und Zugeben eines organischen Lösungsmittels, in welchem Glycin nicht löslich ist, bis das überschüssige Glycin ausgefällt wird,
 - Filtern des genannten ausgefallten Glycins und Konzentrieren des resultierenden Filtrats bis zur Herstellung einer Ausfällung von Metforminglycinat,
 - Waschen und Reinigen der genannten Ausfällung von Metforminglycinat.

7. Salz nach Anspruch 1 zur Verwendung in der Behandlung von Hypoglykämie bei warmblütigen, Tieren, wobei die
genannte Behandlung aus der Verabreichung unterschiedlicher Dosen von Metforminglycinat durch verschiedene Wege besteht, nämlich durch intervenöse Injektion, durch intramusculäre Injektion, auf nasalem Weg, intraperitoneal und sublingual.

8. Salz nach Anspruch 7, wobei die genannte Verabreichung eine orale Verabreichung ist.

Revendications

1. Un sel de metformine glycinate.

2. Le sel de la revendication 1, caractérisé en ce que le spectre de résonance magnétique nucléaire (RMN) du proton montrait des déplacements à 2,814 ppm, à 2,916 ppm, et à 4,677 ppm.

3. Le sel de la revendication 1, caractérisé en ce que le spectre de résonance magnétique nucléaire (RMN) du carbone-13 montrait des déplacements à 37,754 ppm, à 44,824 ppm, à 158,761 ppm, à 160,308 ppm, et à 180,049 ppm.

4. Le sel de la revendication 1, caractérisé en ce que le spectre d’infrarouge (IR) montre des signaux d’absorption caractéristiques à 3,367.34 cm⁻¹, à 3,175.88 cm⁻¹, à 1,618.78 cm⁻¹, et à 1,573.96 cm⁻¹.

5. Le sel de la revendication 1, en tant que principe actif dans une composition pharmaceutique sous la forme de comprimés, de cachets, de gel, de pâte, de poudre, de granules à libération prolongée, de capsules, de comprimés à libération prolongée, de liquide avec un agent tampon, des comprimés effervescents, de suspension, de sirop, de compositions pharmaceutiques ou d’aérosols.

6. Méthode pour produire le sel de metformine glycinate, qui comprend les étapes suivantes :

- on fait passer une solution de sel de chlorhydrate de metformine par une colonne échangeuse d’ions afin de produire de la metformine libre ;
- ladite metformine libérée est dissoute dans un milieu aqueux et par la suite de la glycine est ajoutée à température ambiante sous agitation constante ;
- le produit obtenu est chauffé jusqu’à ce qu’une solution concentrée soit produite, et un solvant organique, dans lequel la glycine est insoluble, est ajouté jusqu’à la précipitation de la glycine en excès ;
- ladite glycine précipitée est filtrée et le filtrage résultant est concentré jusqu’à produire un deuxième précipité de metformine de glycinate ;
- ledit précipité de metformine de glycinate est lavé et purifié.

7. Le sel de la revendication 1 pour son utilisation dans le traitement de la hyperglycémie dans des animaux à sang chaud, ledit traitement consistant en l’administration de différentes doses de metformine glycinate par diverses voies, à savoir : injectables par voie intraveineuse, injectables par voie intramusculaire, nasale, intrapéritonéale ou sublinguale.

8. Le sel selon la revendication 7, dans lequel ladite administration est une administration par voie orale.

10
FIGURE 8

mean blood glucose [mg/dL]

time [h] after oral administration

Group A (Vehicle)
Group B (Metformin hydrochloride)
Group C (Metformin HCl)
Group D (Glycine)
FIGURE 9

[Graph showing the effect of different groups on mean blood glucose levels after oral administration. The x-axis represents time [h] after oral administration, ranging from 0.0 to 4.0 hours. The y-axis represents mean blood glucose [mg/dL], ranging from 0 to 220 mg/dL. Different lines represent different groups:
- Black line with square markers: Group A (vehicle)
- Grey line with circle markers: Group B (Metformin glycinate)
- Black line with triangle markers: Group C (Metformin HCl)
- Grey line with star markers: Group D (Glycine)

Significant differences are indicated by asterisks above the respective lines, with "***" indicating a significant difference. The specific time point is marked as "t = oo" with an asterisk next to it.]
FIGURE 10

Kinetic of blood glucose [mg / dL]. Males. (N, Mean ± SD)

<table>
<thead>
<tr>
<th>Group</th>
<th>Item</th>
<th>Dose [mg / kg]</th>
<th>Blood collection at the time points [min] after oral administration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>Vehicle</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>124.9 ±</td>
<td>130.4 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.2</td>
<td>12.7</td>
</tr>
<tr>
<td>B</td>
<td>Metformin glycinate</td>
<td>1500</td>
<td>121.5 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.2</td>
<td>23.9</td>
</tr>
<tr>
<td>C</td>
<td>Metformin HCl</td>
<td>1500</td>
<td>119.9 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.7</td>
<td>16.5</td>
</tr>
<tr>
<td>D</td>
<td>Glycine</td>
<td>871.6</td>
<td>111.5 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.5</td>
<td>12.2</td>
</tr>
<tr>
<td>Group</td>
<td>Item</td>
<td>Dose [mg/kg]</td>
<td>5</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>A</td>
<td>Vehicle</td>
<td>-</td>
<td>112.8±</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17.3</td>
</tr>
<tr>
<td>B</td>
<td>Metformin glycinate</td>
<td>1500</td>
<td>111.1±</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11.5</td>
</tr>
<tr>
<td>C</td>
<td>Metformin HCl</td>
<td>1500</td>
<td>111.8±</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.2</td>
</tr>
<tr>
<td>D</td>
<td>Glycine</td>
<td>67.1±</td>
<td>128.6±</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31.4</td>
</tr>
</tbody>
</table>

Table 4: Kinetic of blood glucose [mg/dL], Females. (N: Mean ± SD)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- GB 1473256 A [0007]
- BE 568513 [0010]
- EP 1039890 A [0012]
- US 4835184 A [0012]
- FR 2320735 [0012]
- FR 2037002 [0012]
- US 3957853 A [0012]
- DE 2357864 [0012]
- DE 1967138 [0012]
- JP 64008237 B [0012]
- US 2008031964 A1 [0013]
- WO 2006086856 A [0013]
- WO 2005065675 A [0013]