Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The invention relates to a light emitting diode lamp structure, and more particularly to a lamp structure with better heat dissipation.

The light emitting diode (LED) possessing the advantages of relatively high efficiency, high intensity, cost effectiveness and longer operation life has been increasingly and popularly used in all type of light assembly.

The level of luminous flux of the LED is characterized not only by its size but also by its heat dissipating efficiency, which is critical. The LED in operation accumulates a great deal of heat, which causes the temperature of the LED to rise. High temperature substantially decreases light output efficiency and shortens the service life of the LED. Thus, in prior invent the LED structure must include a heat dissipating unit to allow the LED to work in high temperature.

Conventionally, the LED was manufactured in a similar construction of the light bulb, in which the LED was mounted on a base. When the LED is in operation, the base absorbs and transfers the heat generated by the LED to the air. Moreover, to provide electric power to the LED, the base must embed and electrically engage with a lamp holder. In this case, a part of the base is covered by the lamp holder, and the base could not transfer the heat to the air, further decrease efficiency of the LED.

Thus, heat dissipating is a problem to be solved to improve the performance of the LED.

Prior art also includes WO 2009/091362 A2 which discloses an LED light bulb has a hollow LED support/heat sink with fins extending internally and openings at two ends. Heat generated by the LEDs is conducted through the heat sink fins and is removed by a convectively driven air flow that flows through the LED support/heat sink. LEDs are mounted on multiple external faces of the LED support/heat sink thereby providing illumination in all directions. Lenses are provided for the LEDs to make the illumination highly uniform.

In terms of claim 1, WO 2009/091562 A2 discloses a light emitting diode lamp structure, comprising a heat dissipating block having a plurality of light emitting diodes; a light emitting housing constructed by two transparent elements, each defining a casing, and a first hollow region, wherein the heat dissipation plane is partly covered by the light emitting housing and partly revealed through the first hollow region, and the light emitting diodes are covered by the light emitting housing; and a base mounted with the light emitting housing and electrically engaged with the light emitting diodes.

According to the aforesaid shortcoming, a primary object of this invention is to provide a LED lamp structure with brighter light output and higher heat dissipation efficiency.

To achieve this objective, the present invention provides a LED lamp structure comprising the features of claim 1. Advantageous embodiments are laid down in further claims.

A lamp according to the invention has a heat dissipating plane, a light emitting housing and a base. The heat dissipating plane comprises a plurality of LED elements. In addition, the light emitting housing further comprises a casing and a first hollow region. The heat dissipating plane is partly embedded in the casing and partly revealed through the first hollow region. The LED elements are also covered by the casing, and the heat dissipating plane can dissipate heat preferably from the first hollow region. The base can be mounted with the light emitting housing. Furthermore, the LED elements can also be electrically engaged with the base.

The heat dissipating plane may further include some protruded structures, indented structures or other structures that could increase the heat dissipating area.

The heat dissipating plane may also include a second hollow region. The second hollow region can match the first hollow region, which is on the light emitting housing. Air goes through the first hollow region and the second hollow region to form an air cycle. The air cycle could obtain better heat dissipating efficiency.

Representative advantages offered by this invention may be briefly summarized below.

1) The present invention which includes a plurality of LEDs enabled to increase brightness.

2) The present invention increases efficiency of heat dissipation and heat conductivit, thus effectively avoiding the problem of thermal degradation of LEDs.

These and other features of the invention will be described in further detail in the following detailed description of a presently preferred embodiment.

The technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, in which:

FIG. 1 is an exploded view of a LED lamp structure according to a first embodiment of present invention;

FIG. 2 is a partly assembled perspective view of a LED lamp structure according to a first embodiment of the present invention;

FIG. 3 is a perspective view of a LED lamp structure according to a first embodiment of the present invention;

FIG. 4 is a perspective view of a LED lamp structure according to a second embodiment of the present invention;
An exemplary embodiment of present invention will hereinafter be described in detail with reference to the accompanying drawings. As those skilled in the art would realize, the described embodiments may be modified in various different ways, without departing from the scope of the present invention, as defined by the appended claims.

Referring to FIGS. 1-3, the light emitting diode (LED) lamp structure constructed in accordance with the present invention has a heat dissipating plane 10, a light emitting housing 20 constructed by two transparent elements 20a, and a base 30.

The heat dissipating plane 10 is made of thermally conducting material such as aluminum or the like. The heat dissipating plane 10 is a racket-like structure, in which the racket-like structure comprises an upper portion 100 and a handle portion 102. Moreover, several LED elements 12 are formed on the periphery of the upper portion 100.

Each transparent element 20a of the light emitting housing 20, made of glass, acrylic or the like, has a casing 22 and a first hollow region 24 in the center. The two transparent elements 20a are confronted and assembled in combination together so that the heat dissipating plane 10 shall be clamped between the two transparent elements 20a. The casing 22 covers a plurality of LED elements 12 on the periphery of the upper portion 100. Furthermore, the upper portion 100 of the heat dissipating plane 10 is partly revealed through the first hollow region 24 to obtain better heat dissipating efficiency.

The heat dissipating plane 10 comprises a plurality of LED elements 12 on the periphery of the upper portion 100. Furthermore, the upper portion 100 of the heat dissipating plane 10 is partly revealed through the first hollow region 24 to obtain better heat dissipating efficiency.

The heat dissipating plane 10 comprises several first protruded structures 14 as shown in FIGS. 3-4 and/or some first indented structures 16 as shown in FIG 4. The first protruded structure 14 may be a lamellar structure, a protruded surface or the like. The first indented structures 16 may be a grid-like structure, a wave-like structure, a flake-like structure or the like.

The first protruded structures 14 and/or the first indented structures 16 may be revealed through the first hollow region 24 in order to increase the overall heat dissipating area and improve heat dissipation.

Furthermore, heat generated from the LED elements 12 could be dissipate through the transparent elements 20a. Each transparent element 20a on an outer surface has one or more second protruded structures 26 as shown in FIG 3 or second indented structures 28 as shown in FIG 4 to increase the overall heat dissipating area and dissipate heat efficiently. The second protruded structure 26 may be a lamellar structure, a schistose structure, a protruded surface or the like. The second indented structures 28 may be a grid-like structure, a wave-like structure, a flake-like structure or the like.

The base 30 is made of conducting material and has a metal screw type base. The base 30 is positioned below the handle portion 102 of the heat dissipating plane 10 and is mounted with the two transparent elements 20a. The transparent elements 20a can be engaged or cohered to the base 30. Each transparent element 20a comprises a neck portion 23, which assembles with an opening 32 of the base 30. The base 30 may also be electrically engaged with the LED elements 12. Furthermore, when the base 30 is mounted on a lamp holder (not shown) the current flows to the base 30 so that the LED elements 12 start operating.

When the current flows through the LED elements 12, the LED elements 12 emit light and generate heat. The heat dissipating plane 10 may absorb the heat generated by the LED elements 12 and then dissipate the heat by itself and by the first protruded structures 14 and/or the first indented structures 16. The transparent elements 20a also dissipate heat and allow the LED elements 12 to operate in a relatively low temperature. Furthermore, the heat dissipating plane 10 can be shaped so that a plurality of LED elements 12 can be formed not only on the periphery of the heat dissipating plane 10 but also at any place on the sides of the heat dissipating plane 10. In this case, the different position of the LED elements 12 may alter the light projection angle not being limited to a certain range.

Figs. 5-7 show a LED lamp structure constructed according to the third embodiment of the present invention. The following description focuses on the main differences between the first embodiment and the third embodiment. According to this embodiment, the heat dissipating plane 10 comprises a second hollow region 18 relatively corresponded with the first hollow region 24 to have the LED lamp structure provided with a fully penetrating structure constructed from the second hollow region 18 in combination with the first hollow region 24. Furthermore, the second hollow region 18 can also increase the heat dissipating area of the heat dissipating plane 10. In addition, this embodiment allows the LED to generate higher light output without adverse temperature-related effects. Besides, the heat dissipating plane 10 also has one or more third dissipating structures 19 revealed through the second hollow region 18 in order to increase the overall heat dissipating area and dissipate heat efficiently. The third dissipating structure 19 is constructed by a protruded structure may be a lamellar structure, a protruded surface or the like, or if constructed by
an indented structure may be a grid-like structure, a wave-like structure, a flake-like structure or the like.

[0026] As shows in FIG 8, the second hollow region 18 can also be a grid structure. With the grid structure, the LED lamp structure may dissipate more heat into the air.

[0027] Generally, the heat dissipating plane 10 may be formed as an element of substantially constant thickness. It may be formed e.g. from sheet material and have a racket-like structure as shown in Fig. 1. However, other shapes with a through opening are also possible. The transparent elements 20a have a corresponding shape with an opening corresponding to the through opening of the afore-mentioned heat dissipating element. The two transparent elements 20a define two shells of a housing 20 around the heat dissipating element. However, a portion of the heat dissipating element is partly exposed to the exterior, i.e. remains uncovered to obtain better heat dissipating efficiency. Preferably, the uncovered portion faces towards the opening while the radially outer rim of the dissipating element is covered by the housing 20. Protruding structures formed or provided on the dissipating element may extend into the opening. However, it is also possible to arrange the uncovered part of the heat dissipating element to face radially outwardly. Also, the lamp may have an inner and outer rim of the heat dissipating element or protruded portions thereof or thereon exposed to the exterior while the remaining portions are shielded by a transparent housing, which may be formed in one or more pieces, preferably two substantially symmetric shells. These features may be applied partly or in full to the afore-mentioned embodiments to modify them.

[0028] The present invention has been demonstrated herein by reference to the preferred embodiments. However, it is understood that the embodiments are not intended to limit the scope of the present invention, which is defined by the appended claims.

Claims

1. A light emitting diode lamp structure, comprising:
 - a heat dissipating plane (10) having a plurality of light emitting diodes (12);
 - a light emitting housing (20) constructed by two transparent elements (20a) each defining a casing (22) and a first hollow region (24), wherein the heat dissipation plane (10) is partly covered by the light emitting housing (20) and partly revealed through the first hollow region (24), and the light emitting diodes are covered by the light emitting housing (20); and
 - a base (30) mounted with the light emitting housing (20) and electrically engaged with the light emitting diodes,

2. The light emitting diode lamp structure as cited in Claim 1, characterized in that the heat dissipating plane (10) further comprises first protruded structures (14) and/or first indented structures (16) revealed through the first hollow region (24).

3. The light emitting diode lamp structure as cited in Claim 2, characterized in that the first protruded structures (14) is a lamellar structure, or a protruded surface, and the first indented structure (16) is a grid-like structure, a wave-like structure or a flake-like structure.

4. The light emitting diode lamp structure as cited in one of Claims 1 to 3, characterized in that the heat dissipating plane (10) further comprises a second hollow region (18) relatively corresponded with the first hollow region (24) of the light emitting housing (20).

5. The light emitting diode lamp structure as cited in Claim 4, characterized in that the second hollow region (18) is a through hole or a grid structure.

6. The light emitting diode lamp structure as cited in Claim 4 or 5, characterized in that a surface of the second hollow region (18) further comprises one or more third dissipating structures (19).

7. The light emitting diode lamp structure as cited in Claim 6, characterized in that the third dissipating structures (19) is either a protrude structure including a lamellar structure, or a protruded surface or an indented structure including a grid-like structure, a wave-like structure or a flake-like structure.

8. The light emitting diode lamp structure as cited in one of Claims 1 to 7, characterized in that the light emitting housing is made of glass or acrylic.

9. The light emitting diode lamp structure as cited in one of Claims 1 to 8, characterized in that the transparent element (20a) on an outer surface further comprises one or more second protruded structures (26) or second indented structures (28).

10. The light emitting diode lamp structure as cited in Claim 9, characterized in that the second protruded structure (26) is a lamellar structure, or a protruded surface, and the second indented structures (28) is
a grid-like structure, a wave-like structure or a flake-like structure.

Patentansprüche

1. Lichtemittierende Diodenlampenstruktur, umfassend:

 eine wärmeableitende Ebene (10), die eine Vielzahl von lichtemittierenden Dioden (12) aufweist;
 ein lichtemittierendes Gehäuse (20), das aus zwei transparenten Elementen (20a) besteht, die jeweils eine Umhüllung (22) und einen ersten hohlen Bereich (24) definieren, wobei die wärmeableitende Ebene (10) teilweise von dem lichtemittierenden Gehäuse (20) abgedeckt und teilweise durch den ersten hohlen Bereich (24) freigegeben wird und die lichtemittierenden Dioden von dem lichtemittierenden Gehäuse (20) abgedeckt werden; und
 eine Basis (30), die an dem lichtemittierenden Gehäuse (20) montiert und elektrisch mit den lichtemittierenden Dioden verbunden ist.

wobei

die zwei transparenten Elemente (20a) so ausgerichtet und montiert sind, dass die wärmeableitende Ebene (10) zwischen den zwei transparenten Elementen (20a) eingeklemmt ist, und der erste hohle Bereich (24) in der Mitte der jeweiligen transparenten Elemente (20a) angeordnet ist.

2. Lichtemittierende Diodenlampenstruktur nach Anspruch 1, dadurch gekennzeichnet, dass die wärmeableitende Ebene (10) ferner erste vorstehende Strukturen (14) und/oder erste eingerückte Strukturen (16) umfasst, die durch den ersten hohlen Bereich (24) freigelegt sind.

3. Lichtemittierende Diodenlampenstruktur nach Anspruch 2, dadurch gekennzeichnet, dass die erste vorstehende Struktur (14) eine Lamellenstruktur oder eine vorstehende Fläche ist, und die erste eingerückte Struktur (16) eine gitterartige Struktur, eine wellenartige Struktur oder eine schuppenartige Struktur ist.

4. Lichtemittierende Diodenlampenstruktur nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die wärmeableitende Ebene (10) ferner einen zweiten hohlen Bereich (18) umfasst, der relativ dem ersten hohlen Bereich (24) des lichtemittierenden Gehäuses (20) entspricht.

5. Lichtemittierende Diodenlampenstruktur nach An-
diodes électroluminescentes,
dans laquelle
- les deux élément transparents (20a) sont con-
frontés et montés en combinaison ensemble si
bien que le plan de dissipation de la chaleur (10)
est serré entre les deux élément transparents
(20a)
- et la première région creuse (24) est arrangée
au centre de chacun des deux éléments trans-
parents (20a).

2. Structure de lampe à diode électroluminescente se-
lon la revendication 1, **caractérisée en ce que** le
plan de dissipation de la chaleur (10) comprend de
plus des premières structures en saillie (14) et/ou
des premières structures dentelées (16) révélées à
travers la première région creuse (24).

3. Structure de lampe à diode électroluminescente se-
lon la revendication 2, **caractérisée en ce que** les
premières structures en saillie (14) sont une struc-
ture à lamelles ou une surface en saillie et la pre-
mière structure dentelée (16) est une structure de
type grille, une structure de type onde ou une struc-
ture de type écaille.

4. Structure de lampe à diode électroluminescente se-
lon l’une des revendications 1 à 3, **caractérisée en ce que** le plan de dissipation de la chaleur (10) com-
prend de plus une seconde région creuse (18) qui
correspond relativement à la première région creuse
(24) du bâti électroluminescent (20).

5. Structure de lampe à diode électroluminescente se-
lon la revendication 4, **caractérisée en ce que** la
seconde région creuse (18) est un trou traversant
ou une structure de grille.

6. Structure de lampe à diode électroluminescente se-
lon la revendication 4 ou 5, **caractérisée en ce qu’une surface de la seconde région creuse (18) comporte de plus une ou plusieurs troisièmes struc-
tures de dissipation (19).**

7. Structure de lampe à diode électroluminescente se-
lon la revendication 6, **caractérisée en ce que** les
troisièmes structures de dissipation (19) sont soit
une structure en saillie comprenant une structure à
lamelles, soit une surface en saillie, soit une struc-
ture dentelée comprenant une structure de type
grille, une structure de type onde ou une structure de
type écaille.

8. Structure de lampe à diode électroluminescente se-
lon l’une des revendications 1 à 7, **caractérisée en ce que** le bâti électroluminescent est en verre ou en
acrylique.

9. Structure de lampe à diode électroluminescente se-
lon l’une des revendications 1 à 8, **caractérisée en ce que** l’élément transparent (20a) sur une surface
extérieure comprend de plus une ou plusieurs se-
condes structures en saillie (26) ou des secondes structures dentelées (28).

10. Structure de lampe à diode électroluminescente se-
lon la revendication 4, **caractérisée en ce que** la
seconde structure en saillie (26) est une structure à
lamelles ou une surface en saillie et les secondes structures dentelées (28) sont une structure de type
grille, une structure de type onde ou une structure de type écaille.
FIG. 1
FIG. 8
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2009091362 A2 [0006]
- WO 2009091562 A2 [0007]