Hand winch with friction lock brake

Hand winch comprising a winding roll (5) for receiving a flexible elongated member, a manually operated shaft (15), acting on the winding roll, and a friction brake (17) including a brake disc (23) and a gear element (20) engaging with the winding roll and mounted on the shaft such that said gear element can move between a release position and a brake position in which the gear element enters into frictional contact with said brake disc, thus generating a braking torque opposite to a direction of winding off the flexible elongated member, for braking the winding roll, whereby a friction means (50) positioned between the shaft and the gear element and generating a frictional resistance between the shaft and the gear element such that, if a driving force acting on the gear element does not overcome the frictional resistance established by the friction means, the gear element drives the shaft via said friction means and that, if said driving force between the shaft and the gear element overcomes said increased frictional resistance, a relative movement of the gear element with respect to the shaft occurs.
Description

[0001] The invention refers to a hand winch which comprises a rotating winding roll for winding up and winding off a flexible elongated member, such as a belt, a band, a cable or the like.

[0002] Usually, a known hand winch comprises a rotatable rotation shaft engaged with said winding roll for transmitting manual operating forces via a crank handle and said shaft to the winding roll. Further, specific hand winches can comprise an automatically activating friction brake such that the friction brake activates itself automatically when a pulling load is applied to the elongated member.

[0003] Such known hand winch having a friction brake is disclosed in EP 2 058 266 A1. The friction brake includes a gear member mounted between the winding roll and the shaft in such a way that it can axially move along the shaft between a release position and a brake position in which it enters into friction contact with a brake disc releasably fixed to a housing of the hand winch, thereby generating friction forces that act on the gear member and thus on the winding roll and the elongated member. The fixation of the braking disc to the housing is realised by a ratchet system designed to be moved between an engaged position and an off-set position in which the brake system. The ratchet can be moved from the engaged position to the off-set position by movement of a pivot member of the housing of the hand winch. The ratchet system functions as a mechanism for activating and deactivating the automatism of the friction brake.

[0004] It is an object of the invention to overcome these disadvantages of the prior art, in particularly to provide a hand winch including an automatic friction brake which is ergonomically improved.

[0005] This object is solved by features of enclosed claim 1.

[0006] Accordingly, the hand winch of the invention comprises a stationary housing, a winding roll for receiving a flexible elongated member, a manually operated shaft acting on the winding roll, and a friction brake. The friction brake includes a brake disc fixed to said housing particularly by a ratchet always engaged with the brake disc so that rotation of the brake disc relative to the housing is avoided at least in one turning direction of the brake disc. Further, the friction brake includes a gear member being in a revolving engagement with the winding roll and particularly rotatably mounted on the shaft such that the gear member can rotate with respect to the shaft when overcoming an initial resistance against its movement relative to the shaft that opposes rotation for example through an initial inertia of said shaft including elements fixed thereon, the initial resistance particularly consisting of friction between the shaft and the gear member. In a relative movement of the gear member with respect to the shaft, the gear member is forced to axially move along the shaft between a release position in which it is not in contact with the brake disc and therefore no braking forces are generated for braking the winding roll, and a brake position in which the gear member is in frictional contact with the brake disc whereby a braking torque is applied to the winding roll opposite to its turning direction when winding off the flexible elongated member. According to the invention, a friction means is provided to be positioned between the shaft and the gear member and to increase or establish a friction resistance between the shaft and the gear member such that in the case that a driving force acting on the gear member does not overcome such increased friction resistance predetermined by the friction means, the gear member entrains the shaft via said friction means without slippage of the friction means. In the case that said driving force between the shaft and the gear member overcomes said increased frictional resistance, slippage and relative rotation may occur between the gear member and the shaft.

[0007] The friction means is designed to be able to transfer static friction forces between the shaft and the gear member such that the rotating gear member can entrain the shaft without allowing slippage, i.e. relative movement, between the shaft and the gear member. Only if an external resistance applied to the shaft becomes larger than the static friction forces generated by the friction means, the friction forces will become too small to entrain the shaft, and slippage between the gear mem-
ber and the shaft will occur, resulting in an activation of the friction brake.

[0008] Preferably, said friction means is mounted in a preferably annular cavity between the shaft and the gear member particularly such that the friction means is slightly compressed, for generating an increased frictional resistance between the gear member and the shaft. The annular cavity can extend circumferentially. The cavity can be confined by an inner surface of the gear member and an outer surface of the shaft. The technical measure of providing a friction means between the shaft and the gear member that predetermines a torque threshold representing a maximum transferable torque between the shaft and the gear member without slippage, has the effect that the elongated member can be unwound conveniently without fearing that the friction brake gets activated because the winding roll turns the gear member, and the friction member transfers said rotational movement of the gear member to the shaft without slippage, so that there is no relative movement between the gear member and the rotational shaft. The friction brake cannot be activated as long as the friction means entrains the shaft and avoids revolving movement of the shaft relative to the gear member. If an externally applied counter torque is subjected to the shaft that is larger than the predetermined torque threshold maximally transferable by the friction means, the gear member starts rotating with respect to the shaft and therefore is forced to move axially from the release position to the brake position, so that the gear member comes into frictional contact with the brake disk in order to brake the winding roll. Said counter torque applied to the shaft can be realised even by only slightly touching the shaft or by the inertia of a crank handle being fixed to the shaft.

[0009] The friction means can be realised by any structural element being capable to increase the frictional resistance between the shaft and the gear member. Of course, said friction means can be realised integrally with respect to either the shaft or the gear member. The inventive function of the friction means relates to its function of entraining the shaft particularly without slippage only if a counter torque acting on the shaft does not exceed the predetermined torque threshold established by the friction means. The friction means can for example be realised by an internal surface of the gear member and an external surface of the shaft rubbing against each other. A dimensional fit between the shaft and the gear member can be defined such that a predetermined friction resistance between the internal surface of the gear member and the external surface of the shaft is realised. Said frictional resistance can be adjusted by the dimensional fit between the gear member and the shaft.

[0010] In a preferred embodiment, the friction means is realised by a structural member being separated from the shaft and from the gear member, particularly separately mounted.

[0011] In a preferred embodiment, the friction means is mounted in a receiving recess formed in the shaft and/or in the gear member. In a mounted state of the friction means, the latter projects radially out of the recess for radially bridging a gap between the gear member and the shaft. The more the friction means projects out of the recess, the larger the frictional resistance can be adjusted and thereby the maximum torque transferable by the friction means. By varying the dimension of the cross section of the friction means, it is possible to adjust the torque threshold according to the wishes of the producer.

[0012] Preferably, the friction means is positioned within a circumferential groove formed in the shaft or in the gear member. The groove can extend circumferentially without any interruption.

[0013] In a further embodiment of the invention, the friction means consists of resilient material, in particular of an elastomer, for example of an elastic O-ring.

[0014] In a further embodiment of the invention, the gear member and the shaft each have a threaded portion and an unthreaded portion. The threaded portions of the gear member and the shaft cooperate with each other such that when the gear member rotates, it is forced to axially move between the release and brake positions. Said annular cavity in which the friction means is mounted, is radially confined by the unthreaded portions of the gear member and the shaft, the friction means being positioned between the unthreaded portion of the gear member and the unthreaded portion of the shaft.

[0015] In a preferred embodiment of the invention, the friction means is in frictional contact with the gear member and in frictional contact with the shaft in any axial position of the gear member moving between said release position and said brake position.

[0016] In a further embodiment of the invention, an (entire) external friction surface of the friction means is in frictional contact with the gear member in any axial position moving between said release position and brake position.

[0017] However, one portion of the external friction surface can come out of frictional contact with the gear member when the gear member is in the release position, while another portion of said external friction surface is still in frictional contact with the gear member. The friction means is always in at least partial frictional contact with the gear member. Thus, in the release position the friction force between the friction means and the gear member can be reduced compared to the position where the entire external friction surface is in frictional contact with the gear member. The effect of this aspect of the invention is that even if seizure of the friction means with the gear member has occurred resulting from a prolonged period of non-use of the hand winch, said seizure only takes place at the portion of the external friction surface being in contact with the gear member. The non-contacting structural friction surface remains untouched and provides a proper function of entraining and releasing the shaft in a predetermined manner.

[0018] In a further embodiment, a torque threshold maximally transferable from the gear member to the shaft
and corresponding to said increased friction resistance, is less than 5 Nm, particularly less than 2 Nm, more particularly less than 1 Nm, more particularly less than 0.3 Nm, in particular less than 0.05 Nm, especially less than 0.01 Nm. The low threshold torque enables rapid activation of the friction brake as soon as a minor counter torque is applied to the shaft, for example by the user.

[0019] In a preferred embodiment of the invention, the friction resistance of the friction means is adjusted such that the inertia of the shaft can be entrained by the gear member via the friction means, but in the case of an increased inertia of the shaft caused by adding an additional inertia mass, in particular the crank handle, the entraining torque of the gear member cannot be transferred to the shaft via the friction means. Even if the torque between the gear member and the shaft results from merely pulling the elongated member without load, said torque cannot be transferred into the shaft when the additional inertia mass is mounted, since the frictional resistance of the friction means is not sufficiently high. Only by unmounting the additional inertia mass the shaft is entrained and the friction brake is deactivated. Thus, the friction brake cannot be deactivated when the crank handle is mounted on the shaft. Furthermore the hand winch of the invention assures that a mounted crank handle cannot be driven in rotation by the gear member, and thus, the risk of injury for an operator is essentially reduced.

[0020] In an aspect of the invention, independent or dependent on the above-mentioned aspect of the invention, the brake disc is axially slidingly mounted on the shaft such that it transmits an axial force generated by the gear member onto a counter bearing, which is arranged onto the shaft and comprises two discs mounted onto the shaft. This aspect of the invention has the effect of saving costs of manufacturing the hand winch because welding of the counter bearing onto the shaft can be avoided and of improving the endurance of the friction brake construction.

[0021] In a further embodiment of the invention, the counter bearing comprises a first disc for transmitting only torque to the shaft and a second disc detached from the first disc for transmitting only axial forces to the shaft. The advantage of this aspect of the invention is that each disc of the counter bearing transmits only one force component into the shaft. Thus, each of the discs can be designed to be very wear resistant for a specific force component, for example by individually hardening the disc at its respective working surfaces.

[0022] In a further embodiment of the invention, the first disc is mounted on the shaft with a circumferential form fit such as a hexagonal shape, and the second disc is mounted on the shaft with an axial form fit, like a circumferential groove. The advantage of this design is to enable easy mounting and demounting of the two discs to and from the shaft.

[0023] Furthermore, the counter bearing, bearing the axial pressure of the friction brake, is realised in such a way that costly welding procedures for manufacturing the hand winch are avoided.

[0024] Furthermore, the invention relates to a method for deactivating a friction brake of a hand winch particularly according to the invention, comprising a winding roll for receiving a flexible elongated member and a manually operated shaft acting on the winding roll, wherein the friction brake is automatically activated if there is a relative rotation between a gear member of the friction brake with respect to the shaft. In particular the relative rotation makes the a gear member coming into frictional contact with a brake disc of the friction brake being stationary with a housing of the hand winch. According to the invention a predetermined frictional resistance between the gear member and the shaft is caused and adjusted such that if a driving force acting on the gear member does not overcome said predetermined frictional resistance, the gear member drives the shaft and if said driving force acting on the gear member overcomes said increased friction resistance, a relative movement of the gear member with respect to the shaft is allowed.

[0025] It is clear that the method of the invention can be defined by the function of the above mentioned hand winch of the invention.

[0026] The present invention provides a hand winch with which loads can be pulled up and let down while ensuring that when a load is attached to the hand winch, upon release of the crank handle by the user, the load will be held securely by means of the automatically engaging friction break. The hand winch according to the invention further allows the user to deactivate the friction brake, particularly when the crank handle is removed, so that the flexible member can be unwound quickly by pulling it, wherein the friction brake can be reactivated reliably and fast by simply touching the shaft even without the need to reinsert the crank handle.

[0027] Further features and advantages of the invention are described in the following by means of the description of a preferred embodiment in view of the enclosed figures in which:

Figure 1 shows a perspective view of the hand winch.

Figure 2a shows a cross-sectional view of the hand winch with the gear member in the release position and with the friction brake in a non-braking state.

Figure 2b is a detailed view of section IIb in figure 2a.

Figure 3a shows a cross-sectional view of the hand winch with the gear member in the brake position and the friction brake in a braking state.

Figure 3b is a detailed view of section IIIb in figure 3a.

Figure 4a is a side view of a shaft structure holding the gear member, the friction disc and the counter bearing of the hand winch.
In figures 1 to 3, the hand winch according to a preferred embodiment of the invention is generally denoted with the reference numeral 1. While figures 1 and 2 show the hand winch in the release position, figure 3 shows the hand winch in a brake position.

In the following the main elements of the hand winch according to the preferred embodiment of the invention are introduced.

The hand winch 1 comprises a housing 3 which has a U-shaped cross section. Between two side walls of the housing 3 representing the legs of the primary axis 7 of winding roll 5 is mounted. The winding roll 5 further comprises a securing bar 9 for securing a flexible elongated member on the primary axis. In this embodiment, the flexible elongated member is a belt for winding up a boat (not shown). The winding roll 5 further comprises a gear wheel 11 and a side plate 13 for giving lateral support to the belt as it is wound up.

Furthermore, a shaft 15 is mounted at the housing 3, passing through the two side walls of the housing. On the portion of the shaft located inside the housing between the two side walls, friction brake 17 is mounted, which comprises the following elements: a pinion 20 engaged with the gear wheel 11; a brake disc 23 movably mounted on the shaft 15 mechanically linked to a ratchet mechanism (not shown) that is fixed to said housing 3, in order to avoid a rotation of the brake disc 23. Between the brake disc 23 and the pinion 20, a first washer 24 is located. On the side of the brake disc opposite to pinion 20, a counter bearing 30 is located. The counter bearing 30 comprises a torque transmitting disk 27 and an axial force transmitting disk 29. The axial force transmitting disk is mounted in a counter bearing groove 33. The torque transmitting disk 27 is mounted between the axial force transmitting disk and the brake disc on a shoulder portion 31 of the shaft, the circumferential shape of which is hexagonal. The hole in torque transmitting disk 27 correspondingly has a hexagonal shape. Between torque transmitting disk 27 and brake disc 23, a second washer 26 is located.

At the locations where the shaft 15 penetrates the side walls of housing 3, a first bearing and a second bearing 35, 37 are mounted. At the portion of the shaft 15 outside housing 3, crank handle 40 is mounted comprising of handle 41 and lever 39.

On the side of pinion 20 opposite to the friction brake, spring 43 is mounted on the shaft, biasing the pinion towards the brake disc 23. The pinion 20 and the shaft 15 both have a threaded portion 21, 16, which are in engagement which each other when the hand winch is in operation. The thread engagement between the pinion 20 and the shaft 15 causes the pinion 20 to move axially along the shaft 23 to the brake disk 23. On the section of the shaft between threaded portion 16 and shoulder 31, adjacent to the threaded portion 16, the shaft has a groove 49 in which a friction means in form of an O-ring 50 is located. Depending on the position of pinion 20, the outer surface of O-ring 50 is in total or in partial contact with unthreaded portion 22 of the inner side of pinion 20.

Figures 2a and 2b show the hand winch 1 with pinion 20 in a release position with a gap between the pinion 20 and the brake disc 23. When the belt is pulled for example by a load (not shown) hanging on the belt, the belt will cause the winding roll (5), the primary axis 7 and thus the gear wheel 11 to rotate and to drive the pinion 20. Through O-ring 50, the pinion 20 will transmit a torque to shaft 15. However, the forces of inertia and gravity caused by crank handle 40 produce a counter torque opposite to the torque generated by the pinion 20. The O-ring 50 is dimensioned such that the torque transmitted by the O-ring 50 into the shaft is smaller than the counter torque caused by the inertia of crank handle 40. Thus, due to the load pulling on the belt, pinion 20 will rotate relative to the shaft 15, and because the threaded portion 21 of pinion 20 is engaged with the threaded portion 16 of shaft 15, the pinion 20 is forced to move in axial direction along the shaft 15 towards break disc 23.

As shown in figures 3a and 3b, upon entering into contact with the break disc 23, further movement in axial direction of the pinion 20 is prevented, because the brake disc 23 abuts counter bearing 30, which is stationary with the shaft 15. Due to the brake disc 23 being stationary with respect to housing 3 by means of a ratchet mechanism (not shown), the friction between the pinion 20 and the brake disc 23 and the friction between the threaded portion 21 of pinion 20 and the threaded portion 16 of shaft 15 will impede rotation of the pinion 20. Because the pinion 20 is engaged with gear wheel 11, rotation of the gear wheel 11 and the primary axis 7 is also impeded, thereby stopping the load on the belt from descending. In this configuration, the pinion 20 and the brake disc 23 are immobilised with respect to the shaft 15. Thus, the belt can be wound up and thereby the load attached to the belt be lifted by turning the crank handle 40 so that pinion 20 drives the primary axis 7 through gear wheel 11. If the crank handle 40 is rotated in opposite direction, the friction grip between the threaded portions 16, 21 of the shaft 15 and the pinion 20 is overcome, and the pinion 20 will rotate by a small amount with respect to shaft 15. Thus, the pinion 20 will slightly move away from the brake disc 23 in axial direction, thereby reducing the friction between the pinion 20 and the brake disc 23. Thus, the pinion 20 can rotate with the shaft 15 in a direction of unwinding the belt, thereby lowering a load in a control manner.

In the constellation shown in figures 2a and 2b no load is applied to the belt, the crank handle 40 can be unmounted from shaft 15. If in this configuration the belt is pulled by an operator, the gear wheel 11 will drive
the pinion 20 which in turn will drive shaft 15 by means of the friction force generated by O-ring 50. Thus, the pinion 20 will not rotate with respect to the shaft 15 and therefore not move axially to enter into contact with brake disc 23, so that the belt can be unwound quickly. During unwinding of the belt, the friction brake can be activated at any time by applying a torque to shaft 15 opposite to its direction of rotation. The torque can be applied by attempting to reinsert the crank handle into the shaft and also by bringing any other object into frictional contact with shaft 15, like for example the operator's hand. Thereby the friction grip created by the O-ring 50 between pinion 20 and shaft 15 is overcome, allowing the pinion 20 to rotate relative to shaft 15 and thereby to activate the friction brake as described above.

[0037] Axial pressure generated by the brake disc is born by counter bearing 30, which constitutes a torque transmitting disc 27 and an axial force transmitting disc 29. The axial force transmitting disc 27 has an opening extending from its centre to its periphery, enabling it to slide radially into counter bearing groove 33. At about half of the length of the opening, closer to the centre of the disc, the width of the opening is about the same as the internal diameter of axial force transmitting disc 29. The torque transmitting disc 27 is bent close to its outer circumference such that its cross-section in an axial plane through its centre has an L-shape at one extremity and an inverted L-shape at the other extremity. Thus, the torque transmitting disc 27 forms a receiving cavity which is enclosed in radial direction by the torque transmitting disc’s circumferential section and in axial direction by the torque transmitting disc’s centre section. The outer diameter of the torque transmitting disc 27 is larger than that of the axial force transmitting disc 29, so the that axial force transmitting disc 29 is received in the receiving cavity of the torque transmitting disc 27. In this constellation the torque transmitting disc 27 is immobilised in one axial direction by the axial force transmitting disc 29, and the axial force transmitting disc 29 is immobilised in radial direction by the circumferential section of torque transmitting disc 27. Since the torque transmitting disc is immobilised in the other axial direction by brake disc 23, both disks are securely mounted on shaft 15 when the hand winch 1 is in the assembled state.

[0038] It is understood that the above is only one possible embodiment and should not be used to limit the scope of the invention as set forth by the following claims.

Claims

1. Hand winch (1) comprising:

- a winding roll (5) for receiving a flexible elongated member,
- a manually operated shaft (15) acting on the winding roll (5), and
- a friction brake (17) including:
 - a brake disc (23) and
 - a gear member (20) engaging with the winding roll (5) and mounted on the shaft (15) such that said gear member (20) can move between a release position and a brake position in which the gear member (20) enters into frictional contact with said brake disc (23), thus generating a braking torque opposite to a direction of winding off the flexible elongated member, for braking the winding roll (5);

characterised by a friction means positioned between the shaft (15) and the gear member (20) and generating a frictional resistance between the shaft (15) and the gear member (20) such that, if a driving force acting on the gear member (20) does not overcome the frictional resistance established by the friction means, the gear member (20) drives the shaft (15) via said friction means and that, if said driving force acting on the gear member (20) overcomes said increased frictional resistance, a relative movement of the gear member (20) with respect to the shaft (15) occurs.

List of reference numerals

[0039]

1 hand winch
3 housing
5 winding roll
7 primary axis
9 securing bar
11 gear wheel
13 side plate
15 shaft
16 threaded portion of shaft
17 friction brake
20 pinion
21 threaded portion of pinion
22 unthreaded portion of pinion
23 brake disk
24 first washer
26 second washer
27 torque transmitting disk
29 axial force transmitting disk
30 counter bearing
33 counter bearing groove
35 first bearing
37 second bearing
39 leaver
40 crank handle
41 handle
43 spring
49 friction groove
50 O-ring
2. The hand winch as in claim 1, **characterised in that** the friction means comprises at least one friction member (50) having an internal friction surface in frictional contact with the shaft (15) and/or a second friction surface in frictional contact with the gear member (20).

3. The hand winch as in claims 1 or 2, **characterised in that** said friction means is mounted in a particularly angular cavity between the gear member and the shaft such that the friction means is particularly slightly compressed.

4. The hand winch as in on of the preceding claims **characterised in that** the friction means is mounted in a recess (49) formed in the shaft (15) and/or the gear member (20), wherein said friction means in its mounted state projects radially out of the recess, a dimension of the radial depth of the recess is smaller than the radial dimension of the friction means mounted in said recess.

5. The hand winch as in one of the preceding claims, **characterised in that** the friction means is positioned within a circumferential groove (49) formed in the shaft (15) or in the gear member (20).

6. The hand winch as in one of the preceding claims, **characterised in that** the friction means consists of resilient material, in particular of an elastomer.

7. The hand winch as in one of the preceding claims, **characterised in that** the friction means is an O-ring (50).

8. The hand winch as in one of the preceding claims, **characterised in that** the gear member (20) and the shaft (15) each have a threaded portion (21, 16) cooperating with each other and an unthreaded portion, and the friction means is positioned between the unthreaded portion of the gear member (20) and the unthreaded portion of the shaft (15).

9. The hand winch as in one of the preceding claims, **characterised in that** the friction means is in frictional contact with the gear member (20) and in frictional contact with the shaft (15) in any axial position of the gear member (20) moving between said release portion and said brake position.

10. The hand winch as in one of the preceding claims, **characterised in that** a maximum transferable torque threshold achieved by said increased friction resistance is less than 5 Nm, particularly less than 2 Nm, more particularly less than 1 Nm, more particularly less than 0.3 Nm, in particular less than 0.05 Nm, especially less than 0.01 Nm.

11. The hand winch as in one of the preceding claims, **characterised in that** the frictional resistance caused by the friction means is adjusted such that the shaft including elements of the brake disc and defining a basic inertia can be entrained by the gear member via the friction means, and if the basic inertia of the shaft is increased by adding an additional inertia mass, such as a crank handle to the shaft, the frictional resistance of the friction means is too low to entrain the shaft having the increased inertia.

12. The hand winch as in the preamble of claim 1 or one of the preceding claims, **characterised in that** the brake disc (30) is slidably mounted on the shaft (15) such that it transmits an axial force generated by the gear member (20) onto a counter bearing (30) arranged on the shaft.

13. The hand winch as in claim 12, **characterised in that** the counter bearing comprises a torque transmitting disc (27) mounted on the shaft (15) for transmitting torsional moments to the shaft (15) without transmitting any axial forces to the shaft, and an axial force transmitting disc (27) separate from the torque transmitting disc and mounted on the shaft (15) for transmitting pure axial forces to the shaft (15) without transferring any torsional moments to the shaft, wherein particular said torque transmitting disc comprises a non-rotational hole for receiving the shaft having a respective non-rotational portion cooperating with said torque transmitting disc.

14. Hand winch as in claim 13, **characterised in that** said axial force transmitting disc (27) comprises a rotational form cooperating with a shaft portion having a respective rotational form.

15. Method for deactivating a friction brake of a hand winch particularly according to the invention, comprising a winding roll for receiving a flexible elongated member, and a manually operated shaft acting on the winding roll, wherein the friction brake is automatically activated if there is a relative rotation between a gear member of the friction brake with respect to the shaft, particularly a gear member coming into friction contact with a brake disc of a friction brake being stationary with a housing of the hand winch, **characterised in that** a predetermined frictional resistance between the gear member and the shaft is adjusted such that if a driving force acting on the gear member does not overcome said predetermined frictional resistance, the gear member drives the shaft and that, if said driving force acting on the gear member overcomes said increased friction resistance, a relative movement of the gear member with respect to the shaft is allowed.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* paragraphs [0006] - [0009], [0013], [0014] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>* column 1, line 48 - line 68 *</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* figures 3,4 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 2, line 54 - column 3, line 45 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>GB 499 148 A (WALTER SLINGSBY AND COMPANY LT; WALTER SLINGSBY; THOMAS JOHN LESLIE SL) 17 January 1939 (1939-01-17)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* abstract *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 5, line 3 - page 6, line 15 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 8, line 19 - page 9, line 11 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* figures 3,5,6 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0078] - paragraph [0087] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* figure 10 *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Place of search: The Hague
Date of completion of the search: 28 April 2010
Examiner: Seródio, Renato
CLAIMS INCURRING FEES

The present European patent application comprised at the time of filing claims for which payment was due.

☐ Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for those claims for which no payment was due and for those claims for which claims fees have been paid, namely claim(s):

☐ No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for those claims for which no payment was due.

LACK OF UNITY OF INVENTION

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

see sheet B

☒ All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.

☐ As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.

☐ Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:

☐ None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:

☒ The present supplementary European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims (Rule 164 (1) EPC).
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. claims: 1-11, 15

Hand winch comprising a winding roll for receiving a flexible elongated member, a manually operated shaft acting on the winding roll, and a friction brake including a brake disc and a gear member engaging with the winding roll and mounted on the shaft such that said gear member can move between a release position and a brake position in which the gear member enters into frictional contact with said brake disc, thus generating a braking torque opposite to a direction of winding off the flexible elongated member, for braking the winding roll, whereby a friction means positioned between the shaft and the gear member and generating a frictional resistance between the shaft and the gear member such that, if a driving force acting on the gear member does not overcome the frictional resistance established by the friction means, the gear member drives the shaft via said friction means and that, if said driving force acting on the gear member overcomes said increased frictional resistance, a relative movement of the gear member with respect to the shaft occurs.

2. claims: 12-14

Hand winch comprising a winding roll for receiving a flexible elongated member, a manually operated shaft acting on the winding roll, and a friction brake including a brake disc and a gear member engaging with the winding roll and mounted on the shaft such that said gear member can move between a release position and a brake position in which the gear member enters into frictional contact with said brake disc, thus generating a braking torque opposite to a direction of winding off the flexible elongated member, for braking the winding roll, whereby the brake disc is slidably mounted on the shaft such that it transmits an axial force generated by the gear member onto a counter bearing arranged on the shaft.

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4456227 A</td>
<td>26-06-1984</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>GB 499148 A</td>
<td>17-01-1939</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>FR 2885895 A3</td>
<td>24-11-2006</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2003205703 A1</td>
<td>06-11-2003</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description