EUROPEAN PATENT SPECIFICATION

Method of manufacturing of aromatic polyamide filament
Herstellungsverfahren für Aromatische Polyamidfilamente
Procédé de fabrication de filament de polyamide aromatique

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Priority: 05.07.2005 KR 20050060308

Date of publication and mention of the grant of the patent:

Application number: 10013377.6

Date of filing: 05.07.2006

Date of publication of application:
02.02.2011 Bulletin 2011/05

Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
06769175.8 / 1 899 512

Proprietor: KOLON INDUSTRIES, INC.
Kwacheon-si, Kyunggi-do 427-040 (KR)

Inventors:
• Han, In-Sik
  Buk-Gu
  Daegu 702-280 (KR)
• Lee, Jae-Young
  Gumi-city
  Gyungsangbuk-do 730-030 (KR)
• Lee, Seung-Hwan
  Gumi-si
  Gyeongsangbuk-do 730-814 (KR)
• Lee, Chang-Bae
  Suseong-gu
  Daegu 706-781 (KR)
• Kwon, So-Yeon
  Buk-gu
  Busan 616-831 (KR)

Representative: TER MEER - STEINMEISTER & PARTNER GbR
Patentanwälte
Mauerkircherstrasse 45
81679 München (DE)

References cited:
US-A- 5 001 219
US-A- 5 783 655

• RAO Y ET AL: "The evolution of structure and properties in poly(p-phenylene terephthalamide) fibers", 1 June 2001 (2001-06-01), POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB, PAGE(S) 5925 - 5935, XP004232676, ISSN: 0032-3861 * tables 2,3 *
• CHU B ET AL: "Characterization of poly(1,4-phenyleneterephthalamide) in concentrated sulphuric acid. 2: Determination of molecular weight distributions", 1 August 1985 (1985-08-01), POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB, PAGE(S) 1408 - 1418, XP024122281, ISSN: 0032-3861 [retrieved on 1985-08-01] * abstract * * page 1416, column 2 *

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to a method of manufacturing of wholly aromatic polyamide filament, and more particularly, to a method of manufacturing novel wholly aromatic polyamide filament with physical properties including high strength and modulus.

As disclosed in early known arts, for example, US Patent Nos. 3,869,429 and 3,869,430, wholly aromatic polyamide filaments are manufactured by a series of processes including: a process of preparing wholly aromatic polyamide polymer by polymerizing aromatic diamine and aromatic diacid chloride in a polymerization solvent containing N-methyl-2-pyrrolidone; a process of preparing a spinning liquid dope by dissolving the prepared polyamide polymer in a concentrated sulfuric acid solvent; a process of forming filaments by extruding the spinning liquid dope through spinnerets and passing the spun material through a non-coagulation fluid layer into a coagulant tank; and a process of refining the resulting filaments by washing, drying and heat treatment processes.

As a conventional process of manufacturing wholly aromatic polyamide filament as illustrated in FIG. 2, since aromatic diacid chloride A as polymeric monomer and a polymerization solvent B containing aromatic diamine as another polymeric monomer are individually introduced into a polymerization reactor 20 through each of corresponding feed pipes 11 which are contiguous with or separated from each other, both of the monomers put into the reactor 20 do not mingle together very well immediately after introducing the monomers, thus, are not polymerized uniformly or homogeneously over all of area of the reactor 20.

For that reason, the conventional process has a disadvantage of increasing deviation in degree of polymerization for wholly aromatic polyamide polymer, thereby causing a problem that physical properties, especially, strength and modulus of wholly aromatic polyamide filament are deteriorated.

As a result of intensive study and investigation made by the present inventor in order to solve the foregoing problem, the present invention has been suggested to produce novel wholly aromatic polyamide filament with improved strength and modulus.

Therefore, an object of the present invention is to improve strength and modulus of wholly aromatic polyamide filament as a final product by enabling uniform and homogeneous polymerization of monomer over all of area of a polymerization reactor 20, thus, minimizing deviation in degree of polymerization (hereinafter abbreviated to "deviation") of the resulting polymer.

Another object of the present invention is to provide wholly aromatic polyamide filament with noticeably improved modulus and strength which can tolerate external stress by structural alteration that represents narrow distribution of molecular weight of the filament called to Polydispersity Index (referred to as "PDI") and large apparent crystal size (referred to as "ACS"), resulting from minimum deviation of the polymer.

In order to achieve the above objects, the present invention provides a process of manufacturing wholly aromatic polyamide filament, comprising: dissolving wholly aromatic polyamide polymer in a concentrated sulfuric acid solvent to prepare a spinning liquid dope, wherein the wholly aromatic polyamide polymer is obtained by polymerizing aromatic diamine and aromatic diacid chloride in a polymerization solvent containing N-methyl-2-pyrrolidone; and spinning the spinning liquid dope through spinnerets to give a spun material, characterized in that, in the process of preparing the wholly aromatic polyamide polymer, a multiple tubular feed pipe 11 for polymeric monomer and polymerization solvent B are adapted to feed either aromatic diacid chloride A or aromatic diamine dissolved in the polymerization solvent B into a polymerization reactor 20 through corresponding one among the inner and outer paths 11a, 11b which are alternately arranged one another.

The wholly aromatic polyamide filament is characterized in that PDI ranges from 1.5 to 2.3 and apparent crystal size ACS (based on 200 plane) before heat treatment ranges from 42 to 50Å.
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

Firstly, according to the present invention, wholly aromatic polyamide polymer is prepared by polymerizing aromatic diamine and aromatic diacid chloride in a polymerization solvent containing N-methyl-2-pyrrolidone.

The aromatic diamine preferably comprises p-phenylenediamine and the aromatic diacid chloride preferably comprises terephthaloyl chloride.

Also, the polymerization solvent preferably comprises N-methyl-2-pyrrolidone containing dissolved calcium chloride.

As to the process of preparing the wholly aromatic polyamide polymer according to the present invention as described above, either of aromatic diacid chloride A or aromatic diamine dissolved in the polymerization solvent B is fed into the polymerization reactor 20 through each of the inner paths 11a and the outer paths 11b of the multiple tubular feed pipe 11 for polymeric monomer and polymerization solvent, in which the inner paths 11a and the outer paths 11b are aligned repeatedly in turns.

The multiple tubular feed pipe 11 is not particularly restricted but includes, for example, double tubular pipe, triple tubular pipe, quadruple tubular and/or quintuple tubular pipe, etc.

FIG. 3 is a schematic view illustrating introduction of polymeric monomer and polymerization solvent into a polymerization reactor by using a double tubular feed pipe 11 for polymeric monomer and polymerization solvent, as a preferred embodiment of the present invention.

FIG. 4 is a cross-sectional view of the double tubular feed pipe 11 as shown in FIG. 3, while FIG. 5 is a cross-sectional view of alternative quadruple tubular feed pipe 11 adaptable for the present invention.

More preferably, aromatic diamine as a polymeric monomer is dissolved in a polymerization solvent and the solution is fed into a polymerization reactor 20 through an outer path 11b of the double tubular feed pipe 11 as shown in FIG. 4 while introducing aromatic diacid chloride as another polymeric monomer in a molar amount equal to that of the aromatic diamine through an inner path 11a of the above feed pipe 11 into the reactor 20.

As a result, both of the polymeric monomers fed into the reactor 20 are miscible and react each other very well, thus, resulting in uniform and homogeneous polymerization over all of the area of the reactor 20.

Accordingly, the wholly aromatic polyamide polymer produced has minimum deviation leading to narrow PDI and increased ACS, so as to considerably improve strength and modulus of a final product, that is, wholly aromatic polyamide filament.

In order to homogeneously blend the polymeric monomer with the polymerization solvent, it preferably occurs vortex caused by difference in velocity from the moment that the monomer and the solvent pass through the inner path 11a and the outer path 11b, respectively, or vice versa to allow the monomer to be in contact with the solvent, by regulating a velocity of passing the monomer or the solvent through outlet portion of the inner path 11a (referred to as "path outlet velocity") of the feed pipe and the other path outlet velocity of the monomer or the solvent through outlet portion of the outer path 11b of the feed pipe such that both of the velocities are different from each other.

The multiple tubular feed pipe 11 for polymeric monomer and polymerization solvent preferably has circular, elliptical or polygonal cross-section.

Furthermore, the monomer and the polymerization solvent fed into the polymerization reactor 20 are preferably agitated to be homogeneously blended together by using an agitator equipped in the reactor 20.

The wholly aromatic polyamide polymer has intrinsic viscosity of not less than 5.0, which is preferable for improving the strength and modulus of the filament.

Conditions of polymerization for the above polymer are substantially same as those previously known, for example, in US Patent No. 3,869,429 or the like.

A preferred embodiment of the process for preparing the above polymer provides microfine powder form of polymer by introducing a solution which is obtainable by dissolving 1 mole of p-phenylenediamine in N-methyl-2-pyrrolidone containing above 1 mole of calcium chloride, and 1 mole of terephthaloyl chloride into the polymerization reactor 20 through the double tubular feed pipe 11 according to the present invention; agitating the mixture in the reactor to form a gel type of polymer; and washing, washing and drying the gel type polymer, thereby resulting in the polymer in the microfine powder form.

Next, the wholly aromatic polyamide polymer prepared as described above is dissolved in a concentrated sulfuric acid solvent to form a spinning liquid dope. Then, as shown in FIG. 1, the spinning liquid dope is submitted to a spinning process through a spinneret 40 to form spun material, followed by passing the spun material through a non-coagulation fluid layer into a coagulant tank 50 to form filaments. In the end, wholly aromatic polyamide filament according to the present invention is produced by washing, drying and heat treatment processes for the resulting filament. FIG. 1 is a schematic view illustrating a process of manufacturing wholly aromatic polyamide filament by a dry-wet spinning process.

The concentrated sulfuric acid used in production of the spinning liquid dope preferably has a concentration ranging from 97 to 100% and may be replaced by chlorosulfuric acid or fluorosulfuric acid.

If the concentration of the sulfuric acid is below 97%, solubility of the polymer is lowered and non-isotropic
solution cannot easily express liquid crystallinity. Therefore, it is difficult to obtain the spinning liquid dope with a constant viscosity, and in turn, to manage the spinning process, thus causing mechanical properties of a final textile product to be deteriorated.

[0031] Otherwise, when the concentration of the concentrated sulfuric acid exceeds 100%, SO$_3$ content becomes excessive in any fumed sulfuric acid containing over-dissociated SO$_3$, thus, it is undesirable to handle and use the sulfuric acid as the spinning liquid dope because it causes partial dissolution of the polymer. In addition, even if the fiber is obtainable by using the spinning liquid dope, it has loose inner structure, is substantially lusterless in terms of appearance and decreases diffusion rate of the sulfuric acid into the coagulant solution, so that it may cause a problem of lowering mechanical properties of the fiber.

[0032] Alternatively, the concentration of polymer in the spinning liquid dope preferably ranges from 10 to 25% by weight.

[0033] However, both of the concentration of the concentrated sulfuric acid and the concentration of the polymer in the spinning liquid dope are not particularly limited.

[0034] The non-coagulation fluid layer may generally comprise an air layer or an inert gas layer.

[0035] Depth of the non-coagulation fluid layer, that is, a distance from the bottom of the spinneret 40 to the surface of the coagulant in the coagulant tank 50 preferably ranges from 0.1 to 15 cm, in order to improve spinning ability or physical properties of the filament.

[0036] The coagulant contained in the coagulant tank 50 may overflow and include but be not limited to, for example, water, saline or aqueous sulfuric acid solution with below 70% of concentration.

[0037] Subsequently, the formed filament is subject to washing, drying and heat treatment to manufacture wholly aromatic polyamide.

[0038] The spinning and take-up velocity ranges from 700 to 1,500 m/min.

[0039] The resulting wholly aromatic polyamide has minimum deviation, thus, exhibits narrow PDI and large apparent crystal size ACS, so that it has excellent strength before and after the heat treatment of not less than 230 cN/tex (26 g/d), and excellent modulus before the heat treatment of not less than 6621 cN/tex (750 g/d) and after the heat treatment of not less than 8387 cN/tex (950 g/d).

[0040] More particularly, the wholly aromatic polyamide filament has PDI ranging from 1.5 to 2.3, preferably, 1.5 to 2.0, and more preferably, 1.5 to 1.7, and the apparent crystal size ACS (based on 200 plane) before the heat treatment ranging from 4.2 to 5.0 nm (42 to 50Å), and more preferably, 4.7 to 5.0 nm (47 to 50Å).

[0041] Also, the apparent crystal size ACS (based on 200 plane) ranges from 4.6 to 5.5 nm (46 to 55Å), and more preferably, 5.3 to 5.5 nm (53 to 55Å) after the heat treatment at 300°C under 2% tension for 2 seconds.

[0042] In case that PDI exceeds the above range or the apparent crystal size ACS is less than the above range, it shows insignificant increase of the modulus. On the contrary, the apparent crystal size ACS exceeds the above range, the strength is reduced while the modulus increases.

[0043] Also, in case that PDI is less than the above range, although the modulus increases it is within an area which is difficult to be achieved by the present invention.

[0044] Accordingly, compared with conventional wholly aromatic polyamide filament, the present wholly aromatic polyamide filament has minimum deviation in degree of polymerization of the polymer, thus, represents narrow PDI and larger ACS before and after the heat treatment.

[0045] As a result, the wholly aromatic polyamide exhibits excellent strength and remarkably improved modulus.

(ADVANTAGEOUS EFFECTS)

[0046] As described above, the present invention enables deviation in degree of polymerization to be minimum by uniformly progressing polymerization of polymeric monomer over all of area of the polymerization reactor 20.

[0047] Accordingly, the wholly aromatic polyamide filament manufactured by the present invention has minimum deviation in degree of polymerization of the polymer, thus, represents narrow PDI and larger ACS so that it exhibits excellent strength and remarkably improved modulus.

BRIEF DESCRIPTION OF THE DRAWINGS

[0048] The above object, features and advantages of the present invention will become more apparent to those skilled in the related art from the following preferred embodiments of the invention in conjunction with the accompanying drawing.

Figure 1 is a schematic view illustrating a process of manufacturing wholly aromatic polyamide filament by conventional dry-wet spinning process;
Figure 2 is a schematic view illustrating introduction of polymeric monomer and polymerization solvent into a polymerization reactor according to conventional process;
FIG. 3 is a schematic view illustrating introduction of polymeric monomer and polymerization solvent into a polymerization reactor by using a double tubular feed pipe 11 for polymeric monomer and polymerization solvent according to the present invention;

FIG. 4 is a cross-sectional view of the double tubular feed pipe 11 according to the present invention, as shown in FIG. 3; and

FIG. 5 is a cross-sectional view of a quadruple tubular feed pipe 11 according to other embodiment of the present invention.

* Explanation of Reference Numerals of Main Parts of the Drawings

[0049]

11 : feed pipe for polymeric monomer and polymerization solvent

11a : inner path of feed pipe

11b : outer path of feed pipe

20 : polymerization reactor

30 : spinning liquid dope storage tank

40 : spinneret

50 : coagulant tank

60 : washing device

70 : dryer

80 : heat treatment device

90 : winder

A : aromatic diacid chloride

B : aromatic diamine dissolved in polymerization solvent

BEST MODE FOR CARRYING OUT THE INVENTION

[0050] Features of the present invention described above and other advantages will be more clearly understood by the following non-limited examples and comparative examples. However, it will be obvious to those skilled in the art that the present invention is not restricted to the specific matters stated in the examples below.

EXAMPLE 1

[0051] 1,000kg of N-methyl-2-pyrrolidone was maintained at 80°C and combined with 80kg of calcium chloride and 48.67kg of p-phenylenediamine which was then dissolved to prepare an aromatic diamine solution B.

[0052] After putting the aromatic diamine solution B into a polymerization reactor 20 through an outer path 11b of a double tubular feed pipe 11 as illustrated in FIG. 3, and fused terephthaloyl chloride A in a molar quantity equal to p-phenylenediamine simultaneously into the reactor 20 through an inner path 11a of the feed pipe 11, both of these compounds were agitation and became poly (p-phenylene terephthalamide) polymer with intrinsic viscosity of 6.8.

[0053] Continuously, the obtained polymer was dissolved in 99% concentrated sulfuric acid to form an optical non-isotropic liquid dope for spinning with 18% of polymer content.

[0054] The formed liquid dope was spun through the spinneret 40 as shown in FIG. 1 to form spun material. After passing the spun material through an air layer with thickness of 7mm, it was fed into a coagulant tank 50 containing water as the coagulant, thereby forming filament.

[0055] After that, to the formed filament, water was injected at 25°C to rinse the filament, followed by passing the
filament through a double-stage dry roller having the surface temperature of 150°C and winding the rolled filament to result in poly (p-phenylene terephthalamide) filament before heat treatment.

**EXAMPLE 2**

[0057] The poly (p-phenylene terephthalamide) filament resulting from Example 1 was subject to heat treatment at 300°C under 2% tension for 2 seconds to yield a final product, that is, poly (p-phenylene terephthalamide) filament after heat treatment.

[0058] Various physical properties of the produced poly (p-phenylene terephthalamide) filament were determined and the results are shown in the following Table 1.

COMPARATIVE EXAMPLE 1

[0059] The production of poly (p-phenylene terephthalamide) filament before heat treatment was carried out in the same procedure and under similar conditions as Example 1 except that the aromatic diamine solution B and the fused terephthaloyl chloride A prepared in Example 1 were separately fed into the polymerization reactor through corresponding feed pipes, respectively.

[0060] Various physical properties of the produced poly (p-phenylene terephthalamide) filament were determined and the results are shown in the following Table 1.

COMPARATIVE EXAMPLE 2

[0061] The poly (p-phenylene terephthalamide) filament resulting from Comparative Example 1 was subject to heat treatment at 300°C under 2% tension for 2 seconds to yield a final product, that is, poly (p-phenylene terephthalamide) filament after heat treatment.

[0062] Various physical properties of the produced poly (p-phenylene terephthalamide) filament were determined and the results are shown in the following Table 1.

### Table 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Comparative example 1</th>
<th>Comparative example 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polydispersity index (PDI)</td>
<td>1.7</td>
<td>1.6</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Apparent crystal size (ACS; based on 200 plane)</td>
<td>Before heat treatment</td>
<td>4.7 nm (47 Å)</td>
<td>-</td>
<td>4.5 nm (45 Å)</td>
</tr>
<tr>
<td></td>
<td>After heat treatment at 300°C under 2% tensile for 2 seconds</td>
<td>-</td>
<td>5.4 nm (54 Å)</td>
<td>-</td>
</tr>
<tr>
<td>Strength (cN/tex) [(g/d)]</td>
<td>238 [27]</td>
<td>230 [26]</td>
<td>194 [22]</td>
<td>185 [21]</td>
</tr>
<tr>
<td>Modulus (cN/tex) [(g/d)]</td>
<td>7,327 [830]</td>
<td>9,534 [1,080]</td>
<td>6,444 [730]</td>
<td>8,210 [930]</td>
</tr>
</tbody>
</table>

[0063] The foregoing listed physical properties of the filament according to the present invention were determined and/or evaluated by the following procedures:

Strength (cN/tex) [(g/d)]:

[0064] After measuring force g at break point of a sample yarn by means of Instron tester which is available from Instron Engineering Corp., Canton, Mass, using the sample yarn with 25 cm of length, the measured value was divided by denier number of the sample yarn to give the strength. Such strength is the average calculated from values yielded by testing the sample yarns five times. In this examination, the tension velocity was defined as 300 mm/min and the
initial-load was defined as fineness $\times \frac{1}{30}$ g.

Modulus (cN/tex) [(g/d)]:

[0065] Under the same conditions as with the strength, a stress-strain curve for the sample yarn was obtained. The modulus was determined from a slope of the stress-strain curve.

Polydispersity Index PDI:

[0066] Using Gel Permeation Chromatography (referred to as "GPC"), PDI was determined by the following procedures:

(i) Synthesis of wholly aromatic polyamide polymer derivative

[0067] Wholly aromatic polyamide filament as a sample and potassium ter-butoxide were added to dimethyl sulfoxide and dissolved at room temperature under nitrogen atmosphere. Then, to the solution, added was allyl bromide to produce wholly polyamide polymer substituted by allyl group (see Macromolecules 2000, 33, 4390).

(ii) Determination of PDI

[0068] The produced wholly polyamide polymer was dissolved in CHCl$_3$ and submitted to determination of PDI by using Shodex GPC of Waters manual injector kit at 35°C and a flow rate of 10ml/min, which is equipped with a refraction index detector.

Apparent crystal size ACS:

[0069] Using Rigaku X-ray Diffractometer (referred to as "XRD"), ACS was determined by the following procedures:

(i) Sampling

[0070] Wholly aromatic polyamide filament samples having a thickness of about 1,000 to 2,000 deniers were aligned as regularly as possible, and then fixed to a sample holder with a length of 2 to 3cm.

(ii) Measurement order

[0071] - After fixing the prepared sample on a sample attachment, $\beta$-position is set up to 0° (the sample is fixed on the sample attachment in an axial direction of the filament to set up $\beta$-position).
- XRD equipment is ready to measure ACS by gently raising electric voltage and current up to 50kV and 180mA, respectively, after warming-up the equipment.
- Equatorial pattern capable of calculating ACS is measured.
- Set up are the following measurement conditions in principle:

  Goniometer, continuous scan mode, scan angle range of 10 to 40°, and scan speed of 2.

- Measured are $2\theta$ positions of two peaks appearing between the range of 20 to 21° and 22 to 23° of a profile in which the scanning was carried out.
- The measured profile is subject to operation of Multi-peak separation method program.
- After defining Background straightly from $2\theta$ 15 to 35° and separating two crystal peaks, ACS is calculated by means of Scherrer equation using factors [$2\theta$ position, intensity, full-width at half-maximums(FWHM)] when K of every crystal face is 1. Such ACS means average size of crystals in every face.

INDUSTRIAL APPLICABILITY

[0072] As described above, the present invention is effective to manufacture wholly aromatic polyamide filament with excellent strength and modulus.
Claims

1. A method of manufacturing wholly aromatic polyamide filament, comprising: dissolving wholly aromatic polyamide polymer in a concentrated sulfuric acid solvent to prepare a spinning liquid dope, wherein the wholly aromatic polyamide polymer is obtained by polymerizing aromatic diamine and aromatic diacid chloride in a polymerization solvent containing N-methyl-2-pyrrolidone; and spinning the liquid dope through spinnerets to give a spun material, characterized in that, in the process of preparing the wholly aromatic polyamide polymer, a multiple tubular feed pipe for polymeric monomer and polymerization solvent with specific construction of adjacent inner paths and outer paths which are alternately arranged one another in the feed pipe is adapted to feed aromatic diacid chloride A and aromatic diamine dissolved in the polymerization solvent B into a polymerization reactor through corresponding one among the inner and outer paths of the multiple tubular feed pipe simultaneously.

2. The method according to claim 1, wherein the multiple tubular feed pipe comprises a double tubular pipe.

3. The method according to claim 1, wherein the polymerization solvent contains calcium chloride.

4. The method according to claim 1, wherein the aromatic diamine comprises p-phenylenediamine.

5. The method according to claim 1, wherein the aromatic diacid chloride comprises terephthaloyl chloride.

6. The method according to claim 2, wherein the aromatic diacid chloride A is fed into the polymerization reactor through the inner paths of the feed pipe and, at the same time, the aromatic diamine dissolved in the polymerization solvent B is fed into the reactor through the outer paths of the feed pipe.

7. The method according to claim 1, wherein path outlet velocity of a compound that passes through outlet portion of an inner path of the feed pipe, and path outlet velocity of the other compound that passes through outlet portion of an outer path of the feed pipe are controlled such that both of the path outlet velocities are different from each other.

8. The method according to claim 1, wherein the feed pipe has a cross-section selected from a group consisting of circular, elliptical and polygonal cross-sections.

9. The method according to claim 1, wherein the monomer and the polymerization solvent fed into the reactor are agitated by using an agitator equipped in the reactor.

Patentansprüche


2. Verfahren nach Anspruch 1, wobei das multiple schlauchförmige Beschickungsrohr ein doppeltes Beschickungsrohr umfasst.

3. Verfahren nach Anspruch 1, wobei das Polymerisationslösungsmittel Calciumchlorid enthält.

4. Verfahren nach Anspruch 1, wobei das aromatische Diamin p-Phenylenediamin umfasst.

5. Verfahren nach Anspruch 1, wobei das aromatische Disäurechlorid Terephthaloylchlorid umfasst.

7. Verfahren nach Anspruch 1, wobei die Austrittsgeschwindigkeit aus dem Pfad einer Verbindung, die durch das Auslaßteil eines inneren Pfads des Beschickungsrohrs geleitet wird, und die Austrittsgeschwindigkeit aus dem Pfad der anderen Verbindung, die durch das Auslaßteil eines äußeren Pfads des Beschickungsrohrs geleitet wird, so kontrolliert werden, dass beide Austrittsgeschwindigkeiten der Pfade sich voneinander unterscheiden.

8. Verfahren nach Anspruch 1, wobei das Beschickungsrohr einen Querschnitt aufweist, ausgewählt aus der Gruppe, bestehend aus kreisförmigen, elliptischen und polygonalen Querschnitten.


Revendications

1. Procédé de fabrication d’un filament de polyamide entièrement aromatique, comprenant : la dissolution d’un polymère de polyamide entièrement aromatique dans un solvant d’acide sulfurique concentré pour préparer une solution liquide de filage, où le polymère de polyamide entièrement aromatique est obtenu par la polymérisation d’une diamine aromatique et d’un chlorure de diacide aromatique dans un solvant de polymérisation contenant la N-méthyl-2-pyrrolidone ; et le filage de la solution liquide à travers les filières pour donner une matière filée, caractérisé en ce que, dans le procédé de préparation du polymère de polyamide entièrement aromatique, un tuyau d’alimentation tubulaire multiple pour un monomère polymère et un solvant de polymérisation ayant une construction spécifique de voies internes et de voies externes adjacentes qui sont disposées alternativement dans le tuyau d’alimentation est adapté à l’alimentation du chlorure de diacide aromatique (A) et de la diamine aromatique dissoute dans le solvant de polymérisation (B) dans un réacteur de polymérisation par la voie correspondante choisie parmi les voies internes et externes du tuyau d’alimentation tubulaire multiple simultanément.

2. Procédé selon la revendication 1, dans lequel le tuyau d’alimentation tubulaire multiple comprend un tuyau tubulaire double.

3. Procédé selon la revendication 1, dans lequel le solvant de polymérisation comprend du chlorure de calcium.

4. Procédé selon la revendication 1, dans lequel la diamine aromatique comprend la p-phénylènediamine.

5. Procédé selon la revendication 1, dans lequel le chlorure de diacide aromatique comprend le chlorure de téréphthaloyl.

6. Procédé selon la revendication 2, dans lequel le chlorure de diacide aromatique (A) est alimenté dans le réacteur de polymérisation par les voies internes du tuyau d’alimentation et, en même temps, la diamine aromatique dissoute dans le solvant de polymérisation (B) est alimentée dans le réacteur par les voies externes du tuyau d’alimentation.

7. Procédé selon la revendication 1, dans lequel la vitesse de sortie de la voie d’un composé qui passe par une partie de sortie d’une voie interne du tuyau d’alimentation et la vitesse de sortie de la voie de l’autre composé qui passe par la partie de sortie d’une voie externe du tuyau d’alimentation sont régulées de sorte que les deux vitesses de sortie de voie soient différentes l’une de l’autre.

8. Procédé selon la revendication 1, dans lequel le tuyau d’alimentation possède une section transversale choisie dans le groupe constitué par les sections transversales circulaires, elliptiques et polygonales.

9. Procédé selon la revendication 1, dans lequel le monomère et le solvant de polymérisation placés dans le réacteur sont agités en utilisant un agitateur installé dans le réacteur.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 3869429 A [0002] [0026]
- US 3869430 A [0002]