Active filter for DC power supply.

An active filter (RF) which has a filter input terminal (Vin) and a ground terminal (GND) across which a DC power supply (S1) is connected. The active filter comprises an active regulation device (V1) having main terminals coupled between the filter input terminal and a filter output terminal (Vout) of the active filter. The active regulation device is controlled by an OPAMP controller circuit (U1,R1,R2,R3) of which a first regulation input (+) is coupled to an attenuation output terminal (Vb) of a floating reference voltage circuit (REF,R1,R2,R3). The floating reference voltage circuit has an attenuation input terminal coupled to the filter input terminal and provides a control voltage at the attenuation output terminal for the OPAMP controller circuit. The active regulation device is a MOSFET having a first main terminal coupled to the filter input terminal, a second main terminal connected to the filter output terminal, and a gate connected to an amplifier output (Vc) of the OPAMP controller circuit.
Description

[0001] The present invention relates to an active filter for a DC power supply.

[0002] It is generally known that a Switch Mode Power Supply SMPS exhibit, by concept, more or less significant ripple and noise at its output. For a couple of applications this is not acceptable and additional filtering is required.

[0003] The present active filter should be preferably but not exclusively adapted to operate as a filter unit for a power supply to be used in a 900MHz power amplifier for a telecommunication base station.

[0004] An additional challenge is to change the output voltage of the DC power supply in short time frames (≤15μs) from 18V to 32V and back again. In this particular application, the required power is in the 250W range, corresponding to a needed current of about 8A @ 32V.

[0005] Finally, the ripple and noise requirements at the output should be of at least -70dBc.

[0006] A first solution for reducing this ripple and noise would be to add high quality capacitors, e.g. low Equivalent Series Resistances ESR ceramics, at the output.

[0007] However, beside increased cost and size considerations, this known solution is not suitable if the output voltage of the power supply has to be dynamically adjusted. Indeed, because of the above mentioned need to quickly change the output voltage of the power supply the then needed charging currents and related losses would be much too high.

[0008] A second possibility to reduce ripple and noise of such a DC power supply would be to use additional LC filtering. An L/C series filter works fine, also regarding efficiency losses, for applications with a more or less constant load current.

[0009] However, if the load current changes heavily, especially with variant frequencies, the LC filtering can cause problems and the result may even be worst than without this type of filtering.

[0010] Moreover, for the given application, this is absolutely not feasible because high dynamic load currents over a wide frequency range have to be considered. Crossing the L/C resonance ripple and noise will thereby actually increase instead of being reduced. This is due to the resonant frequency of this second order filter type (180° phase).

[0011] A third solution to get noise down could be to use an additional Low Drop Out linear regulator LDO connected in series.

[0012] This solution is only reasonable when the currents are in the sub 1A range. For higher currents the efficiency losses cause thermal problems to the system, beside any "green" considerations. Efficiency losses can approximatively be calculated to be of at least 2% (tolerance of the output of the power supply) PLUS 2% (tolerance of the LDO) PLUS the drop out voltage of the LDO, which result to about 0,2V or even higher. Further, the PSRR of LDO’s is normally specified at 100kHz and often not above. Moreover, also this solution will only be feasible for one fixed voltage.

[0013] As an example, a realistic ±3% total voltage tolerance at the output of the power supply over line, load and temperature is assumed. Same applies for the linear regulator. Then, if the power supply is at its lower limit and the linear regulator at its upper limit, the losses are of 6%; without considering the additional needed headroom for the actuating power transistor inside the linear regulator circuitry. This means that, to get a nominal 18V output of the linear regulator, the nominal input voltage of it needs to be set to >19,1V. Such features are not acceptable for the above given application; also regarding "green" requirements.

[0014] An object of the present invention is to provide an active filter for obtaining a power supply with extremely low ripple and noise accepting fast load current transients with varying frequency and fast variation of the DC power supply output while avoiding the drawbacks of the above mentioned solutions.

[0015] According to the invention, this object is achieved due to the fact that said active filter has a filter input terminal coupled to an output of said DC power supply and comprises an active regulation device having main terminals coupled between said filter input terminal and a filter output terminal of said active filter, said active regulation device being adapted to be controlled by an OPAMP controller circuit of which a first regulation input is coupled to an attenuation output terminal of a floating reference voltage circuit, and said floating reference voltage circuit having an attenuation input terminal coupled to said filter input terminal and being adapted to provide a control voltage at said attenuation output terminal for said OPAMP controller circuit.

[0016] In this way, the active filter is a kind of "floating LDO" provided in series with the output of the DC power supply. This active filter prevents efficiency losses caused by the tolerances of the power supply and by the "standard" Low Drop Out regulator LDO.

[0017] Another characterizing embodiment of the present invention is that said active filter has said filter input terminal and a ground terminal across which said DC power supply is connected, and that said active regulation device is a MOSFET having a first main terminal coupled connected to said filter input terminal, a second main terminal connected to said filter output terminal, and a gate connected to an amplifier output of said OPAMP controller circuit.

[0018] In more detail, the present invention is further characterized in that said OPAMP controller circuit comprises an operational amplifier having said first regulation input connected to said attenuation output terminal, a second regulation input connected to said filter output terminal via a first resistor, and said amplifier output connected back to said second regulation input via the series connection of a second resistor and a first capacitor.

[0019] With the nowadays-available high speed rail-to-rail OPerational AMPifiers (OPAMP) and low RDS...
Field Effect Transistors (MOSFET) the present embodiment can be realized at a relatively moderated cost.

Also another characterizing embodiment of the present invention is that said floating reference voltage circuit comprises a reference element, preferably a bandgap device or a Zener diode, having a cathode connected to said filter input terminal and an anode connected to said ground terminal via a third resistor, the first junction point between said anode and said third resistor being connected to said filter input terminal via the series connection of a fourth and a fifth resistors of which the second junction point is said attenuation output terminal.

Still another characterizing embodiment of the present invention is that a second capacitor is provided between said attenuation output terminal and said ground terminal.

The main idea is to use a high precision floating reference, avoiding any tolerance issues which would apply to circuitries referred to the ground terminal. Only the second capacitor needs to be connected to the ground terminal, necessary for filtering the floating reference voltage.

In a preferred characterizing embodiment of the present invention, said active regulation device is a N-channel MOSFET of which the first main terminal is the drain and the second main terminal is the source.

In this preferred embodiment of the present invention, an auxiliary voltage supply is connected to said filter output terminal.

This auxiliary voltage supply is the supply voltage for the operational amplifier of the OPAMP controller circuit.

In a variant characterizing embodiment of the present invention, said active regulation device is a P-channel MOSFET of which the first main terminal is the source and the second main terminal is the drain.

In this case, the auxiliary voltage supply is no longer needed and the supply voltage for the operational amplifier of the OPAMP controller circuit is the voltage at the filter input terminal.

In this variant embodiment of the present invention, said OPAMP controller circuit comprises an operational amplifier having said first regulation input connected to said filter output terminal, a second regulation input connected to said attenuation output terminal via a third resistor, and said amplifier output connected back to said second regulation input via the series connection of a second resistor and a first capacitor.

In this case of the auxiliary voltage supply being connected to the ground, an external voltage supply is no longer needed.

Further characterizing embodiments of the present active filter for a DC power supply are mentioned in the appended claims.

It is to be noticed that the term ‘comprising’, used in the claims, should not be interpreted as being restricted to the means listed thereafter. Thus, the scope of the expression ‘a device comprising means A and B’ should not be limited to devices consisting only of components A and B. It means that with respect to the present invention, the only relevant components of the device are A and B.

Similarly, it is to be noticed that the term ‘coupled’, also used in the claims, should not be interpreted as being restricted to direct connections only. Thus, the scope of the expression ‘a device A coupled to a device B’ should not be limited to devices or systems wherein an output of device A is directly connected to an input of device B. It means that there exists a path between an output of A and an input of B which may be a path including other devices or means.

The above and other objects and features of the invention will become more apparent and the invention itself will be best understood by referring to the following description of an embodiment taken in conjunction with the accompanying drawings wherein:

Fig. 1 shows an active filter for a DC power supply according to the invention, Figs. 2 to 5 show different signals characteristics measured inside the of the active filter of Fig. 1; and Fig. 6 shows a variant of the active filter of Fig. 1.

The active filter RF shown at Fig. 1 in conjunction with a high efficient DC to DC converter is used for the supply of a 900MHz power amplifier for telecommunication base stations. The active filter is able to follow the change of the output voltage of a DC power supply S1 connected thereto in short time frame from 18V to 32V and back again. The required power is in the 250W range, which means a needed current of around 8A @ 32V. The ripple and noise at the output is maximum -70dBc.

The DC power supply S1 is preferably a Switch Mode Power Supply SMPS of which a positive supply output terminal + is connected to a filter input terminal Vin of the active filter RF and a negative supply output terminal - is connected to a ground terminal GND of the active filter RF. The power supply S1 is a DC source with superimposed ripple and noise to be filtered out by the active filter RF.

The active filter RF further comprises a floating reference voltage circuit that is composed of a reference element REF and three resistors R1, R2 and R3. The reference element REF is for instance a Zener diode (shown at Fig. 1 for simplicity), a bandgap, a dedicated IC or any other highly accurate reference element. The Zener diode REF has its cathode connected to the filter input terminal Vin and its anode connected to the ground terminal GND via resistor R3. The junction point between the latter resistors
R1 and R2 is an attenuation output terminal V_B connected to a first regulation input or non-inverting input + of an operational amplifier (OPAMP) U1. The second regulation input or inverting input of the operational amplifier U1 is connected to a filter output terminal V_out of the active filter RF via a resistor R4, and the amplifier output V_c of U1 is connected back to its second regulation input - via the series connection of a resistor R5 and a capacitor C2. Although other compensation circuits are possible, the components R4, R5 and C2 define the proportional-integral characteristic of the OPAMP controller circuit comprising the operational amplifier U1 and for which the resistor divider R1, R2 provides a suitable reference input (the voltage across the reference element REF divided down). Indeed, the attenuation output terminal V_B is at a reference input voltage for U1 that is floating by a value defined by the voltage across the reference element REF and the divider R1, R2 below the voltage Vin at the like-named filter input terminal. Furthermore, the operational amplifier U1 has a bandwidth high enough to filter out superimposed ripple and noise. In this way, the reference element REF describes a basic floating reference voltage for the operational amplifier U1. The voltage divider R1/R2 is used for "fine tuning" of the usually needed very low actual reference voltage.

[0038] Resistors R4 with R5 set the proportional part of the control loop of OPAMP U1, whereas capacitor C2 with resistor R5 set the integration constant.

[0039] A capacitor C1 is further preferably provided between the attenuation output terminal V_B and ground terminal GND of the active filter RF. The capacitor C1 forms, with resistor R1 parallel R2, a low pass element and defines the maximum possible "damping" of the circuitry. In other words, capacitor C1 with R1 parallel R2 set the pole for the chosen attenuation and the resulting voltage acts as reference for the operational amplifier U1.

[0040] The amplifier output V_c of the operational amplifier U1 is connected to the gate of an active regulation device V1. V1 is a pass element, preferably a N-channel MOSFET, controlled by the operational amplifier U1 and able to handle the incoming current I_load at the filter input terminal Vin as well as associated losses. To this end, the MOSFET V1 has its drain coupled connected to the filter input terminal Vin and its source connected to a filter output terminal V_out at which a load R_load is connected. The other terminal of the active filter’s load R_load is connected to the ground terminal GND.

[0041] The operational amplifier U1 controls the gate of MOSFET V1 in a way to filter out ripple and noise to a value defined by R1, R2 and C1, whereby the DC voltage drop is very well defined, especially when a high accuracy reference element REF is used.

[0042] Preferably, a capacitor Cout is connected between the filter output terminal V_out and the ground terminal GND. This capacitor Cout may be needed to guarantee stability of the circuitry, but could be also the capacitor(s) at the load.

[0043] Finally, an auxiliary "floating" voltage supply S2 providing a supply voltage V_supp is connected to the filter output terminal V_out of the active filter RF. This voltage supply V2 is used to feed the operational amplifier U1 with respect to the filter output terminal V_out. The voltage supply V2 is normally in the 5V range and provides a few mA of current.

[0044] When using the N-channel MOSFET V1 as pass element, the supply voltage V_supp for the operational amplifier U1 needs to be higher than the output voltage at the filter output terminal V_out. An easy way to generate the supply voltage V_supp is to use a current regenerative diode in series with a Zener diode for this purpose when a higher voltage is available inside the system. If no higher voltage is available, a small charge pump to generate the supply voltage V_supp or a P-channel FET as actuator MOSFET V1 could be used. This possible variant of the present active filter RF is shown at Fig. 6 and will be described in more detail later.

[0045] The present embodiment uses a kind of "floating Low Drop Out regulator LDO" in series the output of the DC power supply S1 or Switch Mode Power Supply SMPS so preventing the efficiency losses caused by the tolerances of the power supply S1 and the "standard" LDO. Beside the just mentioned problems referring to a changing voltage Vin, a main principle of the active filter RF is not to use a ground referred reference but a floating reference voltage at the like-named reference terminal V_A res. V_B. So any value change or tolerances of the voltage Vin - at the like-named filter input terminal - to be filtered will not affect the filtering circuitry and the voltage drop remains constant.

[0046] It is to be noted that the characteristics shown at Figs. 2, 3, 4 and 5 were taken with the output of the power supply set to around 18,4V. To improve visibility mostly an offset of 18V was added.

[0047] The upper curve at Fig. 2 shows the actual output voltage of the DC power supply S1 at the filter input terminal Vin with around 318mV_pp ripple and noise superimposed, i.e. without additional filtering, whilst the lower curve shows the shifted reference voltage V_A at the like-named junction point between the reference element REF and resistor R3 according to the embodiment shown at Fig.1.

[0048] In this application, a TLV 431 is used as reference element REF with a reference voltage of 1.24V.

[0049] The upper curve at Fig. 3 also shows the unfiltered output of the DC power supply S1, whilst the lower curve shows the divided down voltage V_A at the like-named attenuation output terminal as obtained by the resistor divider R1, R2. The divided down voltage V_B at the attenuation output terminal is also the reference input voltage of the operational amplifier U1, here chosen to be around 0,45V (referred to Vin). Also capacitor C1 was removed from the active filter providing the lower curve shown at Fig. 3. It is finally to be noted that for relative low load currents, the MOSFET V1 may be replaced by a transistor.

[0050] Adding up capacitor C1 provides the required filtering as represented by the lower curve at Fig. 4.
filter time constant is given by $R1 \parallel R2 \times C1$ and has to be chosen according the filtering requirements. Here, a pole set to around 30kHz causes about -25dB damping of the original ripple (500kHz fundamental).

[0051] As mentioned earlier, the divided down voltage V_{Ag} at the like-named attenuation output terminal is the reference input voltage for the operational amplifier U1 and, as any OPAMP, U1 will try to set its output accordingly to achieve equal voltages at both of its non-inverting + and inverting - inputs.

[0052] To be able to deliver the high required currents, e.g. of 8A, the "help" of MOSFET V1 is needed. So the operational amplifier U1 will adjust dynamically its output to have at its inverting input - the same voltage as at its non-inverting input +, i.e. in this case the filtered voltage $Vin - 0.45V$. The total loop is closed via resistor R4.

[0053] The upper curve at Fig. 5 again shows the unfiltered output of the DC power supply S1, i.e. the input voltage comprising superimposed ripple and noise at the filter input terminal Vin, whilst the lower curve shows the filtered output voltage Vout at the like-named filter output terminal.

[0054] In more detail, the voltage drop across drain and source of MOSFET V1 is set to 0.45V_{eff} which equals an efficiency loss of 2.5% referred to 18V and only 1.4% referred to 32V as input voltage. Compared to the > 6% losses of a linear regulator mentioned above, this represents a big advantage, despite the additional problem not having a fixed voltage here.

[0055] As already mentioned, the components R5 and C2 (with R4) set the proportional- integral characteristic of the controller circuit (inner loop) and need to be adjusted according the requirements and to guarantee stability. Eventually an additional low pass is required across output and the inverting input - of the operational amplifier U1.

[0056] It is to be noted that due to the use of N-channel MOSFET V1 a higher voltage than Vin is required to switch this MOSFET "on". So, the supply voltage for the operational amplifier U1 needs to be higher than the input voltage Vin (drawn voltage source S2 floating on Vout). For the given application this voltage could be generated more easily. However, an alternative could be to replace the N-channel MOSFET V1 by a P-channel type and thereby removing S2.

[0057] This alternative is shown at Fig. 6 where the active regulation device V1 is then a P-channel MOSFET of which the first main terminal is the source which is connected to the filter input terminal Vin, and the second main terminal is the drain which is connected to the filter output terminal Vout.

[0058] The OPAMP controller circuit of Fig. 6 still comprises an operational amplifier U1 but having its first regulation input or non-inverting input + connected to the filter output terminal Vout, its second regulation input or inverting input - connected to the attenuation output terminal V_B via a resistor R4', and its amplifier output V_c connected back to its inverting input - via the series connection of resistor R5 and capacitor C2. The operational amplifier U1 is now fed via connections to the filter input terminal Vin and to the ground terminal.

[0059] A final remark is that embodiments of the present invention are described above in terms of functional blocks. From the functional description of these blocks, given above, it will be apparent for a person skilled in the art of designing electronic devices how embodiments of these blocks can be manufactured with well-known electronic components. A detailed architecture of the contents of the functional blocks hence is not given.

[0060] While the principles of the invention have been described above in connection with specific apparatus, it is to be clearly understood that this description is merely made by way of example and not as a limitation on the scope of the invention, as defined in the appended claims.

Claims

1. An active filter (RF) for a DC power supply (S1), characterized in that said active filter (RF) has a filter input terminal (Vin) coupled to an output of said DC power supply (S1) and comprises an active regulation device (V1) having main terminals coupled between said filter input terminal and a filter output terminal (Vout) of said active filter, said active regulation device (V1) being adapted to be controlled by an OPAMP controller circuit (U1, R4, R5, C2) of which a first regulation input (+) is coupled to an attenuation output terminal (V_B) of a floating reference voltage circuit (REF, R1, R2, R3), and said floating reference voltage circuit having an attenuation input terminal coupled to said filter input terminal and being adapted to provide a control voltage at said attenuation output terminal for said OPAMP controller circuit.

2. The active filter according to claim 1, characterized in that said active filter (RF) has a filter input terminal (Vin) and a ground terminal (GND) across which said DC power supply (S1) is connected, and in that said active regulation device (V1) is a MOSFET having a first main terminal coupled connected to said filter input terminal (Vin), a second main terminal connected to said filter output terminal (Vout), and a gate connected to an amplifier output (V_C) of said OPAMP controller circuit (U1, R4, R5, C2).

3. The active filter according to claim 2, characterized in that said OPAMP controller circuit (U1, R4, R5, C2) comprises an operational amplifier (U1) having said first regulation input (+) connected to said attenuation output terminal (V_B), a second regulation
4. The active filter according to claim 2, characterized in that said floating reference voltage circuit (REF, R1, R2, R3) comprises a reference element (REF) having a cathode connected to said filter input terminal (Vin) and an anode connected to said ground terminal (GND) via a third resistor (R3), the first junction point (VA) between said anode and said third resistor (R3) being connected to said filter input terminal (Vin) via the series connection of a fourth (R1) and a fifth (R2) resistors of which the second junction point is said attenuation output terminal (VB).

5. The active filter according to claim 4, characterized in that said reference element (REF) is a bandgap device.

6. The active filter according to claim 4, characterized in that said reference element (REF) is a Zener diode.

7. The active filter according to claim 2, characterized in that a second capacitor (C1) is provided between said attenuation output terminal (VB) and said ground terminal (GND).

8. The active filter according to claim 2, characterized in that said active regulation device (V1) is a N-channel MOSFET of which the first main terminal is the drain and the second main terminal is the source.

9. The active filter according to claim 8, characterized in that an auxiliary voltage supply (S2) is connected to said filter output terminal (Vout).

10. The active filter according to claim 8, characterized in that said operational amplifier (U1) is fed via connections to an auxiliary supply terminal (Vs upp) and to said filter output terminal (Vout).

11. The active filter according to claim 2, characterized in that a load (R_Load) is connected between said filter output terminal (Vout) and said ground terminal (GND).

12. The active filter according to claim 1, characterized in that said DC power supply (S1) is a Switch Mode Power Supply SMPS.

13. The active filter according to claim 2, characterized in that said active regulation device (V1) is a P-channel MOSFET of which the first main terminal is the source and the second main terminal is the drain.

14. The active filter according to claim 13, characterized in that said OPAMP controller circuit (U1, R4', R5, C2) comprises an operational amplifier (U1) having said first regulation input (+) connected to said filter output terminal (Vout), a second regulation input (-) connected to said attenuation output terminal (VB) via a third resistor (R4'), and said amplifier output (V_C) connected back to said second regulation input (-) via the series connection of a second resistor (R5) and a first capacitor (C2).

15. The active filter according to claim 14, characterized in that said operational amplifier (U1) is fed via connections to said filter input terminal (Vin) and to said ground terminal.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>* paragraph [0007] * * figure 3 *</td>
<td>9-10</td>
<td>G05F1/565</td>
</tr>
<tr>
<td>Y</td>
<td>* column 2, line 16 * * figures 2, 3, 4 *</td>
<td>9-10</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

Category of Cited Documents

- T: theory or principle underlying the invention
- E: earlier patent document, but published on, or after the filing date
- D: document cited in the application
- L: document cited for other reasons
- A: technological background
- O: non-written disclosure
- P: intermediate document

Technical Fields Searched (IPC)

- H02M
- G05F
ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

15-01-2010

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4814687 A</td>
<td>21-03-1989</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82