European Patent Specification

Date of publication and mention of the grant of the patent:
18.04.2018 Bulletin 2018/16

Application number: 10009360.8

Date of filing: 17.06.2003

Servo drive system and continuous working system of press machine
Servoantriebssystem und kontinuierlich laufendes System einer Presse
Système de commande asservie et système de travail continu de presse

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

Priority:
18.06.2002 JP 2002177145
18.06.2002 JP 2002177143
18.06.2002 JP 2002177150
18.06.2002 JP 2002177149
22.05.2003 JP 2003145372
22.05.2003 JP 2003145374
22.05.2003 JP 2003145377

Date of publication of application:
15.12.2010 Bulletin 2010/50

Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
03760155.6 / 1 541 330

Proprietor: AMADA Company, Ltd.
Isehara-shi
Kanagawa 259-1116 (JP)

Inventors:
• Naito, Kinshiro
 Isehara-shi
 Kanagawa 259-1116 (JP)
• Sekiyama, Tokuzo
 Kanra-gun
 Gunma 370-2217 (JP)
• Otake, Toshiaki
 Isehara-shi
 Kanagawa 259-1196 (JP)
• Kuriyama, Haruhiko
 Isehara-shi
 Kanagawa 259-1196 (JP)

Representative: Grünecker Patent- und Rechtsanwälte
PartG mbB
Leopoldstraße 4
80802 München (DE)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to a servo drive system of a press machine, according to independent claim 1.

Background Art

US 5 832 816 A describes the construction and operation of a ram driving device for a press machine. Said prior art device comprises a horizontal drive axle rotated by a plurality of servomotors with the rotational motion of the horizontal drive axle being converted into a vertical up-and-down motion of the ram by a motion converting mechanism. US 5 832 816 A describes a servo drive system according to the preamble of claim 1. JP 2000 358382 A shows a driving device for a three-phase motor with which a constant, freely adjustable motor terminal voltage can be generated irrespective of the power supply voltage. For this purpose, the driving device comprises a PWM inverter operative in either the power running mode for driving the AC motor or the power regenerative mode, wherein energy is returned from the motor to the inverter and temporarily stored in the capacitor of the DC power circuit. Regardless of the operation state, supply and reception of power to and from a power supply is controlled via a PWM converter and an AC reactor.

JP 2001 276467 A provides an inverter washing machine comprising a brushless motor for alternatingly rotating the washing rotor in a clockwise and counterclockwise direction, Hall sensors for detecting the position of the rotor of the motor, and an auxiliary control part having an inverter and driving the motor according to the position signals outputted from the Hall sensors. The auxiliary control part further comprises capacitors for storing the regenerative energy produced when the motor is temporarily stopped by the electromagnetic brake. The alternating current outputted from a power source is supplied to a rectification circuit through a reactor consisting of an inductor element to attenuate spikes of current and to limit peak currents.

Conventionally, there are electric punch presses using a servo motor as a driving source of a ram. In punching working of a press machine such as a punch press, since extremely large noise is generated during the working, it is required to decrease this kind of noise as much as possible. Principles of generation of noise in the punching working are complicated, and reasons of generation of noise are varied depending upon various conditions such as the material of the work, the plate thickness, and the like. However, it is known that the noise is large when the punching speed by driving of a ram is fast, the noise becomes smaller when the punching speed becomes slower, and when the punching speed is constant, the noise is small when the load is light, and as the load becomes heavier, the noise becomes larger.

The above conventional technique is disclosed in Japanese Patent Applications Laid-Open Nos. 2001-62591 and 2001-62596. However, the conventional electric punch press generates a torque necessary for working by using a mechanism such as a toggle and a flywheel. Therefore, the inertia caused by this mechanism delays the reciprocating motion of the ram. In addition, an operation shaft which vertically moves the ram and a main shaft of a servo motor is driven through a power transmission mechanism such as a gear, and a loss or a delay is generated by the power transmission mechanism. Even if the speed of the servo motor is controlled, the driving speed of the ram can not follow the speed of the servo motor easily, and therefore the conventional technique is not suitable for controlling the speed of the ram.

According to the conventional system, a predetermined punching pattern is switched in a hydraulic press system depending upon the plate thickness, material, and the like to satisfy both the noise reduction and an increase of punching speed. Therefore, complicated control systems such as high-speed processing hardware and software are required.

Generally, there are a hydraulic punch press using hydraulic pressure as the driving source of the ram and an electric punch press using a servo motor. In the punch press, the same punching die such as a nibble is used and a work is continuously punched in some cases. In such a continuous punching working, a speedup of the ram is required.

In the conventional hydraulic punch press, however, since the ram is reciprocated using a hydraulic pressure and a switching valve, response speed is inferior to that of the electric control, and a response delay to the control command is generated and thus, the conventional hydraulic punch press is not suitable for speedup of the ram.

Further, the conventional technique has problems that since the punching speed is set substantially at a constant value irrespective of the weight of the load, if the punching speed is set lower to decrease the noise, the operation efficiency is largely deteriorated, and if the punching speed is set high to enhance the operation efficiency, a large noise is generated and thus, reduction of noise and enhancement of operation efficiency can not be satisfied at the same time.

It is assumed herein to drive the operation shaft which vertically moves the ram, directly by the servo mo-
tor without through a power transmission mechanism such as a gear and without using a mechanism such as a toggle and a flywheel. If the operation shaft is driven directly by the servo motor, there is a possibility that the punching speed can automatically be increased or decreased according to the load, and with this, there is a possibility that both the noise reduction and the enhancement of operation efficiency can be satisfied at the same time.

[0014] If a case where a mechanism such as a toggle and a flywheel is used for generating a torque necessary for the working and a case where the mechanism is not used (direct driving by the servo motor) are compared with each other, in the punching working using the punch press, since a large punching energy is required at the time of the punching working in addition to the kinetic energy for vertically moving the ram at high speed, a servo motor having a greater rating is required in the direct driving.

[0015] In order to drive the operation shaft which vertically moves the ram directly by the servo motor, it is necessary to supply, to the servo motor, electric energy for high speed operation and for punching working, and a peak electricity of a control circuit for the servo motor becomes extremely high.

[0016] It is an object of the present invention to eliminate the conventional problems, and to provide a servo drive system of a punch press which can decrease a noise and enhance the operation efficiency at the same time by automatically increasing and decreasing the punching speed according to a load, and reduce a peak electricity of a control circuit for the servo motor.

To achieve this object, the invention provides a servo drive system of a punch press which uses a servo motor as a power source of a ram, wherein an operation shaft which vertically moves the ram is directly driven by using the servo motor to generate ram pressure by using a torque based on speed-torque characteristics of the servo motor, wherein the servo motor has a power driver, and wherein the power driver is provided at its front stage with a reactor which is adapted to suppress peak current by cutting off the high frequency current component, and a capacitor which is adapted to supply electric energy for vertically moving the ram at high speed and/or for punching working which are decreased due to suppression of the peak current.

Brief Description of the Drawings

[0017] Fig. 1 is a vertical sectional view of an essential portion showing an embodiment of a servo drive system (continuous working system) of a press machine according to the present invention;
Fig. 2 is a right side view of an essential portion shown in Fig. 1;
Fig. 3 is a connection diagram showing an example of a structure of a servo motor shown in Fig. 1 and a servo amplifier which drives the servo motor;
Figs. 4A, 4B, and 4C are explanatory views showing an operation region of an eccentric shaft portion (ram) of an eccentric shaft;
Fig. 5 is a graph showing an example of speed-torque characteristics of the servo motor;
Fig. 6 is a diagram showing actually measured data of a punching working when there is no work;
Fig. 7A is a diagram showing feature extraction waveform data based on the actually measured data shown in Fig. 6;
Fig. 7B is a diagram showing punching torque-speed characteristics based on the actually measured data shown in Fig. 6;
Fig. 8 is a diagram showing actually measured data of a punching working when a thin plate work is punched out using a punch having a small diameter;
Fig. 9A is a diagram showing the feature extraction waveform data based on the actually measured data shown in Fig. 8;
Fig. 9B is a diagram showing punching torque-speed characteristics based on the actually measured data shown in Fig. 8;
Fig. 10 is a diagram showing actually measured data of a punching working when a thick plate work is punched out using a punch having a large diameter;
Fig. 11A is a diagram showing the feature extraction waveform data based on the actually measured data shown in Fig. 10;
Fig. 11B is a diagram showing the punching torque-speed characteristics based on the actually measured data shown in Fig. 10;
Fig. 12 is a diagram showing actually measured data of a punching working when a thick plate work is punched out using a punch having a small diameter;
Fig. 13A is a diagram showing the feature extraction waveform data based on the actually measured data shown in Fig. 12;
Fig. 13B is a diagram showing the punching torque-speed characteristics based on the actually measured data shown in Fig. 12;
Fig. 14 is a vertical sectional view of an essential portion showing another embodiment of the servo drive system (continuous working system) of the press machine according to the present invention;
Fig. 15 is a right side view of an essential portion shown in Fig. 14; and
Fig. 16 is a connection diagram showing an example of a structure of a servo motor shown in Fig. 14 and a servo amplifier which drives the servo motor.

The Best Mode for Carrying Out the Invention

[0018] Embodiments of the present invention will be explained in detail with reference to the accompanying drawings.

[0019] Fig. 1 is a vertical sectional view of an essential
The turret punch press 10 has an eccentric shaft 20 which is pivotally supported by bearings 12a and 12b provided on frames 11a and 11b which stand in parallel to each other. The eccentric shaft 20 has an eccentric shaft portion 20e located substantially at a central portion between the frames 11a and 11b. A ram 22 is mounted on the eccentric shaft portion 20e through a connecting rod 21. If the eccentric shaft 20 rotates or turns, the ram 22 is vertically moved through the connecting rod 21 along a ram guide 23, and a striker 24 mounted on a lower end of the ram 22 is also vertically moved in unison with the ram 22. When the ram 22 moves downward, the striker 24 pushes a punching die 26 mounted on a turret 25 to punch a work out.

In the servo motor 30a, an outer cylinder 36a around which three-phase armature windings Ub, Vb, and Wb are wound is fitted over the rotor 35a and fixed to the frame 11a, thereby constituting a stator 37a. In the servo motor 30b, an outer cylinder 36b around which three-phase armature windings Ub, Vb, and Wb are wound is fitted over the rotor 35b and fixed to the frame 11b, thereby constituting a stator 37b.

In the servo motor 30a, the torque vector of the servo motor 30a and a torque vector of the servo motor 30b becomes an exact sum of torques of the servo motors (e.g., 30b) and the rotary encoder 38 is commonly integrally provided with the rotors 35a and 35b. Therefore, a rotary encoder 38 which detects rotation angles of the rotors 35a and 35b is provided on one of the servo motors and the rotary encoder 38 is commonly used. The servo motors 30a and 30b have the same speed-torque characteristics, and a torque based on the speed-torque characteristics is synthesized and used. With this, the servo motors 30a and 30b have a function of generating necessary ram pressure.

That is, the magnetic pole of the rotor 35a of the servo motor 30a (position of the magnetic pole in the circumferential direction of the magnetic pole magnet 32a) and the magnetic pole of the rotor 35b of the servo motor 30b (position of the magnetic pole in the circumferential direction of the magnetic pole magnet 32b) are positioned and mounted symmetrically with each other in the mirror image manner, and the three-phase armature windings Ua, Va, and Wa of the servo motor 30a and the three-phase armature windings Ub, Vb, and Wb of the servo motor 30b are positioned and mounted symmetrically with each other in the mirror image manner in the circumferential direction.

Thus, as shown in Fig. 3, if a power driver 42a of a servo amplifier 40a which is a control circuit of the servo motor 30a, and a power driver 42b of a servo amplifier 40b which is a control circuit of the servo motor 30b are driven by the same gate signal, only three-phase alternating current having the same phase and same current values flows to the servo motor 30a and the servo motor 30b. Therefore, a torque vector of the servo motor 30a and a torque vector of the servo motor 30b have the same phase and thus, a composite torque of the servo motor 30a and the servo motor 30b becomes an exact sum of torques of the servo motors 30a and 30b. This relation is the same irrespective of whether the servo motors 30a and 30b are separately formed as shown in Figs. 1 and 3 or the servo motors 30a and 30b are integrally formed as the three-phase parallel circuit as shown in Figs. 14 and 16.
Among the entire rotating range of the eccentric shaft 20, if a half circumferential range is always used as shown in Fig. 4B, there is an adverse possibility that inconvenience is generated because lubricant oil is not delivered uniformly and various portions are not equally used. To avoid such inconvenience, the servo motors 30a and 30b are arranged such that the opposite half circumferential range is also used as required as shown in Fig. 4C. It is preferable that the side shown in Fig. 4B and the side shown in Fig. 4C are switched whenever the die is to be exchanged or the turret is to be rotated, or automatically according to a predetermined number of punching operations.

According to the turret punch press 10 of the present embodiment, the pair of servo motors 30a and 30b are respectively mounted on the outer sides of the frames 11a and 11b. Therefore, no distortion is generated in mechanical parts corresponding to one side of the eccentric shaft 20. That is, for example, the servo motors 30a and 30b are integrally formed as one servo motor (30) including a three-phase parallel circuit. The servo motor (30) can be mounted only on the outer side of the frame 11a or the frame 11b. In this case, since a stress caused by the weight of the servo motor (30) is received only by one frame 11a or 11b, distortion is generated in both the frames 11a and 11b, and distortion is generated due to uneven heat generated by the servo motor (30). Further, since the stresses of the bearings 12a and 12b are also different from each other, it is necessary to deal with this problem. With the turret punch press 10, however, there is a merit that such stress distortion is not generated, and the heat can be dispersed and equalized. Therefore, stable operation can be realized.

As explained above, the servo motors 30a and 30b directly drive the eccentric shaft 20, and the eccentric shaft 20 continuously reciprocates and turns only in the reciprocating turning angle range θ between the L position corresponding to the lower end position of the ram 22 and the H position corresponding to the upper end position of the ram 22. This operation is extremely effective for speeding up the ram 22 when a work is subjected to continuous punching working.

The operation of the present embodiment will be explained next with reference to explanatory views shown in Figs. 5 to 13B.

Fig. 5 shows examples 1) and 2) of speed-torque characteristics of the servo motors 30a and 30b. Fig. 5 shows the upper limit speed at which the servo motors 30a and 30b can be operated when a driving torque of the ram 22 required for a load applied to the ram 22 is to be generated.

As can be seen from Fig. 5, with the servo motors 30a and 30b, when a load applied to the ram 22 is light, since the required torque is small, the driving speed of the ram 22 is not reduced and the punching speed of the punching is fast. On the other hand, as the load applied to the ram 22 is heavier, the required torque becomes greater, the driving speed of the ram 22 is re-
duced, and the punching speed of punching becomes slower. Reasons of generation of noise by punching working are varied depending upon various conditions such as the material of the work, the plate thickness, and the like. However, it is known that the noise is large when the punching speed by driving of a ram is fast, the noise becomes smaller when the punching speed becomes slower, and when the punching speed is constant, the noise is small when the load is light, and as the load becomes heavier, the noise becomes larger. From this fact, like the speed-torque characteristics of the servo motors 30a and 30b shown in Fig. 5, as the load is heavier, the ram speed becomes slower, and this reduces the noise. Further, it is apparent, from the following actually measured data of punching working of various works and feature extraction waveform data based thereon, that such reduction in ram speed does not deteriorate the operation efficiency.

[0039] Fig. 6 shows the actually measured data of a punching working when there is no work, Fig. 7A shows the feature extraction waveform data based on the actually measured data, and Fig. 7B shows the punching torque-speed characteristics based on the actually measured data.

[0040] As shown in Figs. 6, 7A, and 7B, when there is no work, in a first half of one cycle of the ram 22, a speed curve and a torque curve rise in a normal rotation direction to keep constant values. With this, a ram position curve is substantially uniformly lowered from the upper end position (corresponding to H position) to the lower end position (corresponding to L position). Next, in a second half of the one cycle of the ram 22, the speed curve and the torque curve rise in the reverse rotation direction to keep the constant values. With this, the ram position curve is substantially uniformly moved upward from the lower end position (corresponding to L position) to the upper end position (corresponding to H position).

[0041] Fig. 8 shows the actually measured data of a punching working when a thin plate work is punched out using a punch having a small diameter, Fig. 9A shows the feature extraction waveform data based on the actually measured data, and Fig. 9B shows the punching torque-speed characteristics based on the actually measured data.

[0042] As shown in Figs. 8 to 9B, when a thin plate work is punched out using the punch having the small diameter, the behaviour in the first half of one cycle of the ram 22 is different from that in the case shown in Figs. 6 to 7B. That is, in the initial operation, like the case shown in Figs. 6 to 7B, the speed curve and the torque curve rise in the normal rotation direction to the constant values. With this, the ram position curve starts lowering substantially uniformly from the upper end position (corresponding to H position) to the lower end position (corresponding to L position). However, if the striker 24 of the lower end of the ram 22 pushes the punching die 26 and a tip end of the punching die 26 abuts against an upper surface of the work and the striker 24 receives a load from the work, the torque curve abruptly rises and the speed curve is reduced and with this, the lowering motion of the ram position curve becomes moderate (slow). If the tip end of the punching die 26 lowers to a position short of a lower surface of the work and the load received from the work is abruptly reduced, the torque curve abruptly lowers, the speed curve is accelerated beyond the constant value to restore the speed reduction and with this, the lowering speed of the ram position curve is also accelerated. Thereafter, in the second half of one cycle of the ram 22, like the case shown in Figs. 6 to 7B, the ram position curve substantially uniformly rises from the lower end position (corresponding to L position) to the upper end position (corresponding to H position).

[0043] Fig. 10 shows the actually measured data of a punching working when a thin plate work is punched out using a punch having a large diameter, Fig. 11A shows the feature extraction waveform data based on the actually measured data, and Fig. 11B shows the punching torque-speed characteristics based on the actually measured data.

[0044] As shown in Figs. 10 to 11B, when a thin plate work is punched out using a punch having a large diameter, the behaviour in the first half of one cycle of the ram 22 is different from that in the case shown in Figs. 8 to 9B. That is, in the initial operation, like the case shown in Figs. 8 to 9B, the speed curve and the torque curve rise in the normal rotation direction to the constant values. With this, the ram position curve starts lowering substantially uniformly from the upper end position (corresponding to H position). However, if the striker 24 of the lower end of the ram 22 pushes the punching die 26 and load from the work is received, since the diameter of the punch is larger than that shown in Figs. 8 to 9B, a load received from the work is great and thus, the torque curve rises largely as compared with the case shown in Figs. 8 to 9B. With this, the lowering motion of the ram position curve becomes much more moderate (slower) than that shown in Figs. 8 to 9B. If the tip end of the punching die 26 lowers to a position short of the lower surface of the work and the load received from the work is abruptly reduced, the torque curve abruptly lowers, the speed curve is accelerated larger than that shown in Figs. 8 to 9B so as to restore the speed reduction and with this, the lowering speed of the ram position curve is also accelerated larger than that shown in Figs. 8 to 9B. Thereafter, in the second half of one cycle of the ram 22, like the case shown in Figs. 8 to 9B, the ram position curve substantially uniformly rises from the lower end position (corresponding to L position) to the upper end position (corresponding to H position).

[0045] Fig. 12 shows the actually measured data of a punching working when a thick plate work is punched out using a punch having a small diameter, Fig. 13A shows the feature extraction waveform data based on the actually measured data, and Fig. 13B shows the punching torque-speed characteristics based on the actually measured data.
As shown in Figs. 12 to 13B, when a thick plate work is punched out using a punch having a small diameter, since the plate of the work is thicker as compared with the case shown in Figs. 8 to 9B, a load received from the work is greater. Therefore, the behaviour in the first half of one cycle of the ram 22 is different from that of the case shown in Figs. 8 and 9, but the difference is not great as compared with the case shown in Figs. 10 to 11B.

If the speed curve is reduced depending upon the magnitude of the load applied to the ram 22 and the lowering motion of the ram position curve becomes moderate (slow), the speed curve is accelerated beyond the constant value to restore the speed reduction, and the lowering speed of the ram position curve is also accelerated, and the reduction in ram speed caused by the load is absorbed and overcome as acceleration and deceleration in one cycle of the ram 22. Therefore, time required through one cycle of the ram 22 is substantially the same, and this does not hinder the speed up of the ram 22.

Such speed-torque characteristics of the motor can be explained as follows. The motor converts the supplied electric energy into energy applied to a load. With the servo motors 30a and 30b, the magnitude of the supplied electric energy is determined by the servo amplifiers 40a and 40b, voltage of power supply is also limited, and voltage equal to or greater than the power supply voltage can not be applied.

On the other hand, with the servo motors 30a and 30b, energy applied to a load, i.e., the motor torque carries out the punching action of the punching during the lowering operation of the ram in a cycle where the normal rotation of appropriate acceleration which lowers the ram 22 and the reverse rotation of the appropriate acceleration which moves the ram 22 upward are repeated. Therefore, the motor torque can be divided into a torque for generating kinetic energy of the ram 22 and a torque for generating the punching pressurizing force.

In such a case, if the acceleration is very slow (if the vertical movement of the ram 22 is delayed), a small amount of kinetic energy generating torque suffices and thus, almost all of the motor torque can be utilized as the pressurizing force generating torque. Therefore, even if a great pressurizing force is required depending upon the conditions such as the plate thickness and material of the work, sufficient pressurizing force can be generated, and the kinetic energy generating torque does not come short and the speed of the ram 22 is not affected.

In actual practice, since high acceleration to some extent (fast vertical movement of the ram 22) is required for the operation efficiency, the amount of pressurizing force generating torque of the motor torque is limited. Therefore, if a great pressurizing force is required depending upon the conditions such as the plate thickness and material of the work, most of the motor torque is used for generating the pressurizing force, the kinetic energy generating torque comes short, the speed of the ram 22 can not be maintained, and the lowering speed of the ram 22 is reduced.

However, the deceleration of the lowering speed of the ram 22 is the characteristic which is extremely effective for reducing a noise caused by the punching operation of punching, a noise caused by vibration, and vibration itself. That is, when the required pressurizing force (the number of pressure tons) is relatively small depending upon the conditions such as the plate thickness and material of the work, since the speed reduction of the lowering speed of the ram 22 is small, the punching action with light load becomes relatively fast. When the required pressurizing force (the number of pressure tons) is relatively large, since the speed reduction of the lowering speed of the ram 22 is large, the punching action with heavy load becomes relatively slow.

The variation in punching speed is automatically determined according to the required pressurizing force (the number of pressure tons). Thus, a command of punching pattern (lowering pattern of the ram 22) by the number of punching tons is not necessary. That is, it becomes impossible to maintain the lowering speed of the ram 22 and with this, optimal punching pattern (lowering pattern of the ram 22) is automatically produced.

Conversely, the speed-torque characteristics of the servo motors 30a and 30b to be used are set such that motor torques of the servo motors 30a and 30b at which the capacity of the electric energy supplied by the servo amplifiers 40a and 40b is determined become motor torques at which an optimal punching pattern (lowering pattern of the ram 22) is generated from a light load to a heavy load according to the type of work to be worked on by the turret punch press 10. With this, a noise caused by the punching action of punching, a noise caused by vibration, and the vibration itself can be reduced.

In an electric punch press in which a mechanism such as a toggle and a flywheel is not used and a motor and a ram operation shaft are directly connected to each other, it can be said that the punch press that can reduce a noise caused by the punching action of punching, a noise caused by vibration, and the vibration itself can be reduced. The variation in punching speed is automatically determined according to the required pressurizing force (the number of pressure tons). Thus, a command of punching pattern (lowering pattern of the ram 22) by the number of punching tons is not necessary. That is, it becomes impossible to maintain the lowering speed of the ram 22 and with this, optimal punching pattern (lowering pattern of the ram 22) is automatically produced.

The operation of the reactors 43a and 43b and the capacitors 44a and 44b of the servo amplifiers 40a and 40b will be explained.

If a value of each of the reactors 43a and 43b is defined as L, since the impedance $Z = \frac{2\pi f}{L}$, a resistance is high to a high frequency component. For this reason, the peak current of the reactors 43a and 43b can be suppressed by cutting off the high frequency current component. With this, since the peak electricity of the servo amplifiers 40a and 40b can be suppressed, if reactors 43a and 43b having extremely large L values are used, the peak electricity can be adjusted to such a value...
that it is substantially unnecessary to change contracted electric power with respect to a power company, as compared with a case where a mechanism such as a toggle and a flywheel is utilized.

[0057] However, in the case of the punching working using a punch press, in order to move, at high speed, the eccentric shaft 20 which vertically moves the ram 22, large kinetic energy is required, and its frequency is also high. Thus, if the L values of the reactors 43a and 43b become significantly large, there is an adverse possibility that high speed operation electric energy cannot be supplied from the servo amplifiers 40a and 40b to the servo motors 30a and 30b in time. In the case of the punching working using the punch press, since large punching energy is required at the time of the punching working, if the L values of the reactors 43a and 43b become significantly large, there is an adverse possibility that the supply of the punching operation electric energy from the servo amplifiers 40a and 40b to the servo motors 30a and 30b becomes insufficient.

[0058] To complement the supply of the high speed operation electric energy and/or the supply of the punching operation electric energy from the servo amplifiers 40a and 40b to the servo motors 30a and 30b, there are provided the capacitors 44a and 44b. If the capacitors 44a and 44b having significantly large capacity are used, electric energy required for the high speed operation and/or electric energy required for the punching operation can sufficiently be supplied from the servo amplifiers 40a and 40b to the servo motors 30a and 30b.

[0059] Therefore, if the reactors 43a and 43b having the significantly large L values and the capacitors 44a and 44b having the significantly large capacity are used, the peak electricity can be reduced as desired, and the high speed punching working can be carried out according to proper performance of the turret punch press 10.

[0060] Although both the servo motors 30a and 30b are integrally operated in the present embodiment, the present invention is not limited to this. For example, when the load is extremely light and a work can sufficiently be subjected to the working using torque of one of the servo motors 30a and 30b, only one of them may be energized and operated. With this, as compared with when both the servo motors 30a and 30b are integrally operated with respect to such an extremely light load, there is a possibility that the lowering speed of the ram 22 becomes moderate and the noise is reduced, and power may be saved. However, it is preferable to take necessary measures against heat such as cooling.

[0061] Fig. 14 is a vertical sectional view of an essential portion showing another embodiment of the servo drive system (continuous working system) of the press machine according to the present invention, and Fig. 15 is a right side view of the essential portion. A servo drive system (continuous working system) 101 of this press machine is applied to a turret punch press 110.

[0062] As shown in Fig. 16, the turret punch press 110 uses one servo motor 130 which integrally includes servo motors 30a and 30b as a three-phase parallel circuit instead of the pair of servo motors 30a and 30b. The turret punch press 110 has the same speed-torque characteristics as those of the servo motors 30a and 30b. Thus, the servo motor 130 is larger than one of the servo motors 30a and 30b in size and correspondingly, an eccentric shaft 120 is formed only at its one end with an extension 120a extending longer than the extension 20a. A servo motor 130 using this extension 120a as a motor main shaft 131 is mounted on an outer side of a frame 111a. Other structures of the servo drive system (continuous working system) 101 of the press machine are the same as those of the servo drive system (continuous working system) 1 of the press machine shown in Figs. 1 and 2. Therefore, the elements of the servo drive system (continuous working system) 101 which are the same as those of the system shown in Figs. 1 and 2 are designated with the reference numbers to which 100 is added, and detailed explanation of the structures of various portions of the servo drive system (continuous working system) 101 of the press machine will be omitted. The operation of the servo drive system (continuous working system) 101 of the press machine is also the same as that of the servo drive system (continuous working system) 1 of the press machine.

[0063] If a single drive turret punch press 110 having only one servo motor 130 and a twin drive turret punch press 10 having a pair of servo motors 30a and 30b are compared with each other, there are following differences. That is, in the single drive turret punch press 110, since a stress caused by the weight of the servo motor 130 is received only by the frame 111b, distortion is generated in the frames 111a and 111b. Further, a distortion caused by non-uniform heat is also generated by the heat of the servo motor 130. Stresses of the bearings 112a and 112b are also different from each other. Therefore, it is necessary to take measures against the problems. On the other hand, in the twin drive turret punch press 10, there is a merit that a stress distortion is not generated, and heat is dispersed and averaged.

[0064] Although the opposite end extensions 20a and 20b themselves of the eccentric shaft 20 serve as the main shafts 31a and 31b of the servo motors 30a and 30b in the present embodiment, the present invention is not limited to this. If necessary, for example, the eccentric shaft 20 and the main shafts 31a and 31b may be formed as separate members, the main shafts 31a and 31b may respectively be connected to the opposite ends of the eccentric shaft 20 using bolts or other appropriate means, and they may be formed as one member. The eccentric shaft 120 and the main shaft 131 of the servo motor 130 may also be formed in this manner.

[0065] Although the servo drive systems (continuous working systems) 1 and 101 are applied to the turret punch presses 10 and 110 in the embodiment, the present invention is not limited to this, and the system can also be applied to various press machines other than the punch press.
Claims

1. A servo drive system (1, 101) of a punch press (10, 110) which uses a servo motor (30a, 30b, 130) as a power source of a ram (22, 122), wherein an operation shaft which vertically moves the ram (22, 122) is directly driven by using the servo motor (30a, 30b, 130) to generate ram pressure by using a torque based on speed-torque characteristics of the servo motor (30a, 30b, 130), and wherein the servo motor (30a, 30b, 130) has a power driver (42a, 42b, 142a, 142b), characterized in that the power driver (42a, 42b, 142a, 142b) is provided at its front stage with a reactor (43a, 43b, 143a, 143b) which is adapted to suppress peak current by cutting off the high frequency current component, and a capacitor (44a, 44b, 144a, 144b) which is adapted to supply electric energy for vertically moving the ram (22, 122) at high speed and/or for punching working which is decreased due to suppression of the peak current.

2. The servo drive system according to claim 1, wherein the capacitor (44a, 44b, 144a, 144b) is adapted to store regenerative current generated during a speed reducing period of the servo motor (30a, 30b, 130).

3. The servo drive system according to claim 1 or 2, wherein the power driver (42a, 42b, 142a, 142b) comprises power transistors (Q) driven by a gate signal and diodes (D), connected to the power transistors (Q), for flowing regenerative current from the servo motor (30a, 30b, 130).

4. The servo drive system according to one of claims 1 to 3, comprising:

 a pair of servo motors (30a, 30b) which operate as power sources of the ram (22) and which composite and use torques based on the same speed-torque characteristics, thereby generating ram pressure, wherein the pair of servo motors (30a, 30b) are formed symmetrically with each other in a mirror image manner, wherein the pair of servo motors (30a, 30b) are opposed to each other at opposite ends of the operation shaft, and wherein the pair of servo motors (30a, 30b) are operated such that the operation shaft is directly driven and the ram (22) is vertically moved by using the pair of servo motors (30a, 30b).

5. The servo drive system according to claim 4, wherein the power driver (42a) of a servo amplifier (40a) of one of the pair of servo motors (30a, 30b) and the power driver (42b) of a servo amplifier (40b) of the other of the pair of servo motors (30a, 30b) are driven by the same gate signal, thereby operating both the servo motors (30a, 30b).

6. The servo drive system according to one of claims 1 to 5, wherein the speed-torque characteristics of the servo motor (130) or of the pair of servo motors (30a, 30b) are set in a manner such that, if a load is received from a work during a lowering operation of the ram (22, 122) to generate ram pressure, speeds of the servo motor (130) or of both the servo motors (30a, 30b) are reduced according to the load, thereby reducing the lowering speed of the ram (22, 122).

7. The servo drive system according to one of claims 1 to 6, wherein the operation shaft which vertically moves the ram (22, 122) comprises an eccentric shaft (20, 120), and the eccentric shaft (20, 120) of the servo motor (30a, 30b, 130) is formed as a motor main shaft (31a, 31b, 131a).

8. The servo drive system according to claim 7, wherein sleeves (33a, 33b) each provided at its outer periphery with an even number of magnetic pole magnets (32a, 32b) along a circumferential direction thereof at distances from one another are fitted over peripheries of left and right end extensions (20a, 20b) of the eccentric shaft (20), thereby forming rotors (35a, 35b) of the pair of servo motors (30a, 30b), wherein magnetic pole positions of the left and right sleeves (33a, 33b) are positioned such that the sleeves (33a, 33b) are symmetric with each other in a mirror image manner and the sleeves (33a, 33b) are fixed by bushes (34a, 34b), wherein stators (37a, 37b) of the pair of servo motors (30a, 30b) have outer cylinders (36a, 36b) around which three-phase armature windings (Ua, Va, Wa, Ub, Vb, Wb) are wound, and the outer cylinders (36a, 36b) are respectively fitted over the rotors (35a, 35b), and wherein the left and right outer cylinders (36a, 36b) are positioned such that positions of the three-phase armature windings (Ua, Va, Wa, Ub, Vb, Wb) of the outer cylinders (36a, 36b) in the circumferential direction are symmetric with each other in a mirror image manner, and the outer cylinders (36a, 36b) are fixed to left and right supporting frames (11a, 11b) of the eccentric shaft (20).

9. The servo drive system according to one of claims 1 to 8, wherein a servo amplifier (40a, 40b, 140a, 140b) of the servo motor (30a, 30b, 130) is controlled in a manner such that the operation shaft is continuously reciprocated and turned through an angle range (θ) corresponding to a distance between a lower end position (L) required for press working by the ram (22, 122) and a position (H) where the ram (22, 122) is returned from the lower end position (L) and
a lower end of the ram (22, 122) is separated from a tool upper surface such that the ram (22, 122) vertically moves between these positions (L, H) by the servo motor (30a, 30b, 130), thereby subjecting a work to a continuous press working.

Patentansprüche

1. Servoantriebssystem (1, 101) einer Lochpresse (10, 110), in der ein Servomotor (30a, 30b, 130) als Antriebsquelle einer Ramme (22, 122) verwendet ist, wobei eine Arbeitswelle, die die Ramme (22, 122) vertikal in Bewegung versetzt, durch Verwendung des Servomotors (30a, 30b, 130) zur Erzeugung des Drucks der Ramme direkt angetrieben ist, indem ein Drehmoment auf der Grundlage von Drehzahl-Drehmoment-Charakteristiken des Servomotors (30a, 30b, 130) verwendet wird, und wobei der Servomotor (30a, 30b, 130) einen Leistungstreiber (42a, 42b, 142a, 142b) aufweist, dadurch gekennzeichnet, dass der Leistungstreiber (42a, 42b, 142a, 142b) an seiner Eingangsstufe mit einer Drossel (43a, 43b, 143a, 143b), die zur Dämpfung einer Stromspitze durch Abschneiden der Hochfrequenz-Stromkomponente ausgebildet ist, und mit einem Kondensator (44a, 44b, 144a, 144b) versehen ist, der ausgebildet ist, elektrische Energie für die aufgrund der Dämpfung der Stromspitze verringerte vertikale Bewegung der Ramme (22, 122) bei hoher Geschwindigkeit und/oder für den Stanzvorgang zuzuführen.

2. Servoantriebssystem nach Anspruch 1, wobei der Kondensator (44a, 44b, 144a, 144b) ausgebildet ist, dem während der Geschwindigkeitsreduktionsphase erzeugten regenerativen Strom des Servomotors (30a, 30b, 130) zu speichern.

3. Servoantriebssystem nach Anspruch 1 oder 2, wobei der Leistungstreiber (42a, 42b, 142a, 142b) Leistungstransistoren (Q), die von einem Gatesignal angesteuert sind, und Dioden (D) aufweist, die mit den Leistungstransistoren (Q) verbunden sind, um regenerativen Strom aus dem Servomotor (30a, 30b, 130) fließen zu lassen.

4. Servoantriebssystem nach einem der Ansprüche 1 bis 3, mit:
 einem Paar aus Servomotoren (30a, 30b), die als Antriebsquellen der Ramme (22) agieren und auf der Grundlage gleicher Geschwindigkeits-Drehmoment-Charakteristiken Drehmomente zusammenführen und verwenden, wodurch der Druck der Ramme erzeugt wird, wobei die beiden Servomotoren (30a, 30b) in der Art eines Spiegelbilds zueinander symmetrisch ausgebildet sind, wobei die beiden Servomotoren (30a, 30b) auf gegenüberliegenden Enden der Arbeitswelle zueinander entgegengesetzt angeordnet sind, und wobei die beiden Servomotoren (30a, 30b) so betrieben werden, dass die Arbeitswelle direkt angetrieben ist und die Ramme (22) durch Verwendung der beiden Servomotoren (30a, 30b) vertikal in Bewegung versetzt wird.

5. Servoantriebssystem nach Anspruch 4, wobei der Leistungstreiber (42a) eines Servo-Verstärkers (40a) eines der beiden Servomotoren (30a, 30b) und der Leistungstreiber (42b) eines Servo-Verstärkers (40b) des anderen der beiden Servomotoren (30a, 30b) durch das gleiche Gatesignal angesteuert sind, wodurch beide Servomotoren (30a, 30b) in Betrieb sind.

6. Servoantriebssystem nach einem der Ansprüche 1 bis 5, wobei die Geschwindigkeits-Drehmomentcharakteristiken des Servomotors (130) oder der beiden Servomotoren (30a, 30b) so festgelegt sind, dass, wenn eine Last von einem Werkstück während eines Absenkvgangs der Ramme (22, 122) zur Erzeugung des Drucks der Ramme aufgenommen wird, die Drehzahl des Servomotors (130) oder der beiden Servomotoren (30a, 30b) entsprechend der Last reduziert wird, wodurch die Absenkgeschwindigkeit der Ramme (22, 122) reduziert wird.

7. Servoantriebssystem nach einem der Ansprüche 1 bis 6, wobei die Arbeitswelle, die die Ramme (22, 122) vertikal in Bewegung versetzt, eine exzentrische Welle (20, 120) aufweist und wobei die exzentrische Welle (20, 120) des Servomotors (30a, 30b, 130) als eine Motorhauptwelle (31a, 31b, 131a) ausgebildet ist.

8. Servoantriebssystem nach Anspruch 7, wobei Hülsen (33a, 33b), die jeweils an ihrem Außenumfang mit einer geraden Anzahl an Magnetpolmagneten (32a, 32b) entlang einer Umfangsrichtung mit Abständen voneinander versehen sind, über Umfängen von Verlängerungen am linken und am rechten Ende (20a, 20b) der exzentrischen Welle (20) passgenau angebracht sind, wodurch Läufer (35a, 35b) der beiden Servomotoren (30a, 30b) gebildet sind, wobei die Magnetpolpositionen der linken und der rechten Hüse (33a, 33b) so liegen, dass die Hülsen (33a, 33b) in der Art eines Spiegelbilds symmetrisch zueinander sind und die Hülsen (33a, 33b) durch Buchsen (34a, 34b) fixiert sind, wobei Ständer (37a, 37b) der beiden Servomotoren (30a, 30b) Außenzylinder (36a, 36b) aufweisen, um die Dreiphasen-Ankerwicklungen (Ua, Va, Wa, Ub,
Système d’entraînement asservi (1, 101) d’une presse à poinçonner (10, 110) qui utilise un servomoteur (30a, 30b) comme source d’alimentation d’un piston-plongeur (22, 122), dans lequel l’arbre d’actionnement qui déplace verticalement le piston-plongeur (22, 122) est entraîné directement en utilisant le servomoteur (30a, 30b, 130) pour générer une pression de piston-plongeur en utilisant un couple sur la base de caractéristiques de vitesse/couple du servomoteur (30a, 30b, 130), et dans lequel le servomoteur (30a, 30b, 130) comporte un pilote de puissance (42a, 42b, 142a, 142b), caractérisé en ce que le pilote de puissance (42a, 42b, 142a, 142b) est muni sur son étage avant d’un réacteur (43a, 43b, 143a, 143b) conçu pour supprimer un courant de crête en coupant la composante de courant haute fréquence, et d’un condensateur (44a, 44b, 144a, 144b) qui est adapté pour fournir de l’énergie électrique pour déplacer verticalement le piston-plongeur (22, 122) à grande vitesse et/ou pour effectuer un travail de poinçonnage qui est diminué en raison de la suppression du courant de crête.

2. Système d’entraînement asservi selon la revendication 1, dans lequel le condensateur (44a, 44b, 144a, 144b) est adapté pour stocker du courant régénéré produit pendant une période de réduction de vitesse du servomoteur (30a, 30b, 130).

3. Système d’entraînement asservi selon la revendication 1 ou 2, dans lequel le pilote de puissance (42a, 42b, 142a, 142b) comprend des transistors de puissance (Q) entraînés par un signal de grille et des diodes (D) connectées aux transistors de puissance (Q), pour faire circuler du courant régénérateur à partir du servomoteur (30a, 30b, 130).

4. Système d’entraînement asservi selon l’une des revendications 1 à 3, comprenant : une paire de servomoteurs (30a, 30b) qui fonctionnent en tant que sources de puissance du piston-plongeur (22) et qui composent et utilisent des couples sur la base des mêmes caractéristiques de vitesse/couple, en générant ainsi une pression de piston-plongeur, dans lequel la paire de servomoteurs (30a, 30b) sont formés symétriquement l’un par rapport à l’autre d’une manière en image miroir, dans lequel la paire de servomoteurs (30a, 30b) sont opposés l’un à l’autre aux extrémités opposées de l’arbre d’actionnement, et dans lequel la paire de servomoteurs (30a, 30b) sont actionnés de telle sorte que l’arbre d’actionnement est entraîné directement et le piston-plongeur (22) est déplacé verticalement en utilisant la paire de servomoteurs (30a, 30b).

5. Système d’entraînement asservi selon la revendication 4, dans lequel le pilote de puissance (42a) d’un servo-amplificateur (40a) d’un de la paire de servomoteurs (30a, 30b) et le pilote de puissance (42b) d’un servo-amplificateur (40b) de l’autre de la paire de servomoteurs (30a, 30b) sont entraînés par le même signal de grille, en actionnant ainsi les deux servomoteurs (30a, 30b).

6. Système d’entraînement asservi selon l’une des revendications 1 à 5, dans lequel les caractéristiques de vitesse/couple du servomoteur (130) ou de la paire de servomoteurs (30a, 30b) sont régulées de sorte que si une charge est reçue d’une pièce pendant une opération d’abaissement du piston-plongeur (22, 122) pour générer une pression de piston-plongeur, les vitesses du servomoteur (130) ou des deux servomoteurs (30a, 30b) sont réduites en fonction de la charge, en réduisant ainsi la vitesse d’abaissement du piston-plongeur (22, 122).

7. Système d’entraînement asservi selon l’une des revendications 1 à 6, dans lequel l’arbre d’actionnement qui déplace verticalement le piston-plongeur (22, 122) comprend un arbre excentrique (20, 120), et l’arbre excentrique (20, 120) du servomoteur (30a, 30b).
30b, 130) est formé sous la forme d’un arbre principal de moteur (31a, 31b, 131a).

8. Système d’entraînement asservi selon la revendication 7, dans lequel des manchons (33a, 33b), pourvus chacun à leur périphérie externe d’un nombre pair d’aimants à pôle magnétique (32a, 32b) le long d’une direction circonférentielle de ceux-ci à des distances les uns des autres, sont montés sur des périphéries de prolongements d’extrémité gauche et droit (20a, 20b) de l’arbre excentrique (20), en formant ainsi des rotors (35a, 35b) de la paire de servomoteurs (30a, 30b), dans lequel les positions de pôle magnétique des manchons gauche et droit (33a, 33b) sont positionnées de sorte que les manchons (33a, 33b) sont symétriques l’un par rapport à l’autre d’une manière en image miroir, et les manchons (33a, 33b) sont fixés par des douilles (34a, 34b), dans lequel des stators (37a, 37b) de la paire de servomoteurs (30a, 30b) comportent des cylindres externes (36a, 36b) autour desquels sont enroulés des enroulements d’induit triphasés (Ua, Va, Wa, Ub, Vb, Wb), et les cylindres externes (36a, 36b) sont montés respectivement sur les rotors (35a, 35b), et dans lequel les cylindres externes gauche et droit (36a, 36b) sont positionnés de telle sorte que des positions des enroulements d’induit triphasés (Ua, Va, Wa, Ub, Vb, Wb) des cylindres externes (36a, 36b) dans la direction circonférentielle sont symétriques les unes par rapport aux autres d’une manière en image miroir, et les cylindres externes (36a, 36b) sont fixés à des cadres de support gauche et droit (11a, 11b) de l’arbre excentrique (20).

9. Système d’entraînement asservi selon l’une des revendications 1 à 8, dans lequel un servo-amplificateur (40a, 40b, 140a, 140b) du servomoteur (30a, 30b, 130) est commandé de manière à ce que l’arbre d’actionnement soit animé d’un mouvement de va-et-vient continu et tourné sur une plage angulaire (θ) correspondant à une distance entre une position d’extrémité inférieure (L) requise pour le travail de presse par le piston-plongeur (22, 122) et une position (H) où le piston-plongeur (22, 122) est renvoyé de la position d’extrémité inférieure (L) et une extrémité inférieure du piston-plongeur (22, 122) est séparée d’une surface supérieure d’outil de sorte que le piston-plongeur (22, 122) se déplace verticalement entre ces positions (L, H) par l’intermédiaire du servomoteur (30a, 30b, 130), en soumettant ainsi une pièce à usiner à un travail de presse continu.
FIG. 5

Graph showing the relationship between torque (T [Kgfm]) and speed (N [rpm]) with two distinct lines labeled 1 and 2.
FIG. 6

Graph showing changes in \textit{Ram Position}, \textit{Torque}, and \textit{Speed} over \textit{Time}.

- **RAM POSITION**: The position changes with a peak at around 100.0 units of time.
- **TORQUE**: Shows a significant increase from 0 to 50.0 units of time.
- **SPEED**: Depicts a decrease to a low point before increasing again.
- **TIME**: The horizontal axis represents the time in units.

The graph illustrates the dynamics of these parameters over the specified time period.
FIG. 8

[Graph showing RAM POSITION, TORQUE, and SPEED over TIME]
FIG. 13A

FIG. 13B
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 5832816 A [0002]
• JP 2000358382 A [0002]
• JP 2001062591 A [0006]
• JP 2001062596 A [0006]