EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:
31.08.2011 Bulletin 2011/35

Application number: 09713678.2

Date of filing: 16.02.2009

PYRROLOPYRAZINE KINASE INHIBITORS
PYRROLOPYRAZIN-KINASEHEMMER
INHIBITEURS DE KINASE PYRROLOPYRAZINE

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

Priority:
25.02.2008 US 31035 P
22.01.2009 US 146496 P

Date of publication of application:
17.11.2010 Bulletin 2010/46

Proprietor: F. Hoffmann-La Roche AG
4070 Basel (CH)

Inventors:
• DU BOIS, Daisy, Joe
 Menlo Park,
 California 94025 (US)
• ELWORTHY, Todd, Richard
 Los Altos
 California 94022 (US)
• HENDRICKS, Robert, Than
 San Carlos
 California 94070 (US)
• KONDRU, Rama, K.
 Sunnyvale
 California 94086 (US)
• LOU, Yan
 San Jose
 California 95130 (US)
• OWENS, Timothy, D.
 Mountain View
 California 94040 (US)
• PARK, Jaehyeon
 Sunnyvale
 California 94087 (US)
• SMITH, David, Bernard
 San Mateo
 California 94403 (US)
• SOTH, Michael
 Milpitas
 California 95035 (US)
• YANG, Hanbiao
 Sunnyvale
 California 94087 (US)

Representative: Salud, Carlos E.
F. Hoffmann-La Roche AG
Grenzacherstrasse 124
4070 Basel (CH)

References cited:
WO-A1-2005/063746
WO-A1-2006/112828
WO-A1-2008/079909
WO-A2-2008/063888

DATABASE BEILSTEIN BEILSTEIN INSTITUTE
FOR ORGANIC CHEMISTRY, FRANKFURT-MAIN,
DE; 1989, XP002523258 Database accession no.
29085 (BRN) & CHACHOYAN A A ET AL:
PHARMACEUTICAL CHEMISTRY JOURNAL, vol.
23, no. 2, 1989, pages 126-129,
degranulation responses (Malaviya et al., (1999), Biochem. Biophys. Res. Commun. 257:807-813), and inhibition of signaling (Suzuki et al., (2000), Blood 96:2172-2180). JAK3 also plays a crucial role in IgE receptor-mediated mast cell survival of murine mast cells induced by IL-4 and IL-9 have been shown to be dependent on JAK3- and gamma chain-

modulation of immune activity through this novel mechanism.

versus-host disease), autoimmune diseases (e.g., diabetes), and inflammation (e.g., asthma, allergic reactions). Conditions which can benefit for inhibition of JAK3 are discussed in greater detail below.

lymphoma, transplant rejection (e.g., pancreas islet transplant rejection, bone marrow transplant applications (e.g., graft-versus-host disease), autoimmune diseases (e.g., diabetes), and inflammation (e.g., asthma, allergic reactions). Conditions which can benefit for inhibition of JAK3 are discussed in greater detail below.

However, in contrast to the relatively ubiquitous expression of JAK1, JAK2 and Tyk2, JAK3 has a more restricted and regulated expression. Whereas some JAKs (JAK1, JAK2, Tyk2) are used by a variety of cytokine receptors, JAK3 is used only by cytokines that contain a γc in their receptor. JAK3, therefore, plays a role in cytokine signaling for cytokines which receptor was shown to date to use the common gamma chain; IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. JAK1 interacts with, among others, the receptors for cytokines IL-2, IL-4, IL-7, IL-9 and IL-21, while JAK2 interacts with, among others, the receptors for IL-9 and TNF-alpha. Upon the binding of certain cytokines to their receptors (e.g., IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21), receptor oligomerization occurs, resulting in the cytokinetic tails of associated JAK kinases being brought into proximity and facilitating the trans-phosphorylation of tyrosine residues on the JAK kinase. This trans-phosphorylation results in the activation of the JAK kinase.

Animal studies have suggested that JAK3 not only plays a critical role in B and T lymphocyte maturation, but that JAK3 is constitutively required to maintain T cell function. Modulation of immune activity through this novel mechanism can prove useful in the treatment of T cell proliferative disorders such as transplant rejection and autoimmune diseases.

In particular, JAK3 has been implicated in a variety of biological processes. For example, the proliferation and survival of murine mast cells induced by IL-4 and IL-9 have been shown to be dependent on JAK3- and gamma chain-signaling (Suzuki et al., (2000), Blood 96:2172-2180). JAK3 also plays a crucial role in IgE receptor-mediated mast cell degranulation responses (Malaviya et al., (1999), Biochem. Biophys. Res. Commun. 257:807-813), and inhibition of JAK3 kinase has been shown to prevent type I hypersensitivity reactions, including anaphylaxis (Malaviya et al., (1999),
The application provides a compound of Formula I.

SYK (Spleen Tyrosine Kinase) is a non-receptor tyrosine kinase that is essential for B-cell activation through BCR signaling. SYK becomes activated upon binding to phosphorylated BCR and thus initiates the early signaling events following BCR activation. Mice deficient in SYK exhibit an early block in B-cell development (Cheng et al. Nature 378:303, 1995; Turner et al. Nature 378:298, 1995). Therefore, inhibition of SYK enzymatic activity in cells is proposed as a treatment for autoimmune disease through its effects on autoantibody production.

In addition to the role of SYK in BCR signaling and B-cell activation, it also plays a key role in FcεRI mediated mast cell degranulation and eosinophil activation. Thus, SYK is implicated in allergic disorders including asthma (reviewed in Wong et al. Expert Opin Investig Drugs 13:743, 2004). SYK binds to the phosphorylated gamma chain of FcεRI via its SH2 domains and is essential for downstream signaling (Taylor et al. Mol. Cell. Biol. 15:4149, 1995). SYK deficient mast cells demonstrate defective degranulation, arachidonic acid and cytokine secretion (Costello et al. Oncogene 13:2595, 1996). This also has been shown for pharmacologic agents that inhibit SYK activity in mast cells (Yamamoto et al. J. Pharmacol Exp Ther 306:1174, 2003). Treatment with SYK antisense oligonucleotides inhibits antigen-induced infiltration of eosinophils and neutrophils in an animal model of asthma (Stenton et al. J Immunol 169:1028, 2002). SYK deficient eosinophils also show impaired activation in response to FcεRI stimulation (Lach-Trifilieff et al. Blood 96:2506, 2000). Therefore, small molecule inhibitors of SYK will be useful for treatment of allergy-induced inflammatory diseases including asthma.

JAK3 inhibitors are useful therapy as immunosuppressive agents for organ transplants, xeno transplantation, lupus, multiple sclerosis, rheumatoid arthritis, psoriasis, Type I diabetes and complications from diabetes, cancer, asthma, atopic dermatitis, autoimmune thyroid disorders, ulcerative colitis, Crohn’s disease, Alzheimer’s disease, Leukemia and other indications where immunosuppression would be desirable.

Provided herein are novel pyrrolopyrazine derivatives for use in the treatment of conditions in which targeting of the JAK and/or SYK pathways is important. These compounds provide substantial therapeutic benefits to a wide variety of patients.

The novel pyrrolopyrazine derivatives provided herein selectively inhibit JAK3 and are useful for the treatment of auto-immune and inflammatory diseases. The compounds of the invention modulate the JAK and/or SYK pathways and are useful novel pyrrolopyrazine derivatives for the treatment of auto-immune and inflammatory diseases, wherein preferred compounds selectively inhibit JAK3. For example, the compounds of the invention may inhibit JAK3 and SYK, wherein preferred compounds are selective for JAK3 of the JAK kinases and are useful novel pyrrolopyrazine derivatives for the treatment of auto-immune and inflammatory diseases. Furthermore, the compounds of the invention may inhibit JAK3 and JAK2, wherein preferred compounds are selective for JAK3 of the JAK kinases, and are useful novel pyrrolopyrazine derivatives for the treatment of auto-immune and inflammatory diseases. Similarly, the compounds of the invention may inhibit JAK3 and JAK1, wherein preferred compounds are selective for JAK3 of the JAK kinases, and are useful novel pyrrolopyrazine derivatives for the treatment of auto-immune and inflammatory diseases.

The application provides a compound of Formula I.
wherein:

R is \(R^1, R^2, R^3 \) or \(R^4 \);
\(R^1 \) is \(C_{1-6} \) alkyl, phenyl, benzyl, heteroaryl, cycloalkyl, heterocycloalkyl, or cycloalkylalkyl, optionally substituted with one or more \(R^{1a} \);
\(R^{1a} \) is \(R^{1b} \) or \(R^{1c} \);
\(R^{1b} \) is halogen, oxo, hydroxy, or -CN;
\(R^{1c} \) is \(-\text{C}(=\text{O})\text{O}(R^{1f}), -\text{C}(=\text{O})\text{CH}_2(R^{1c}), -\text{S}(R^{1f}), -\text{S}(\text{O})_2(R^{1f}), \) or -\(\text{S}(=\text{O}) \) \((R^{1f}) \);
\(C_{1-6} \) alkyl, \(C_{1-6} \) alkoxy, amino, amido, \(C_{1-6} \) haloalkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, cycloalkylalkoxy, or heterocycloalkylalkoxy optionally substituted with one or more \(R^{1d} \);
\(R^{1d} \) is \(H, \) halogen, hydroxy, \(C_{1-6} \) alkyl, \(C_{1-6} \) alkoxy, or \(C_{1-6} \) haloalkyl;
\(R^{1e} \) is \(H, C_{1-6} \) alkyl, \(C_{1-6} \) alkoxy, -CN, \(C_{1-6} \) haloalkyl, phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl;
\(R^{1f} \) is \(H, C_{1-6} \) alkyl, \(C_{1-6} \) haloalkyl, phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl;
\(R^2 \) is \(N(R^3) \);
each \(R^{2a} \) is independently \(H \) or \(R^{2b} \);
each \(R^{2b} \) is independently \(C_{1-6} \) alkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, or heterocycloalkyl alkylene, optionally substituted with one or more \(R^{2c} \);
\(R^{2c} \) is \(R^{2d} \) or \(R^{2e} \);
\(R^{2d} \) is halogen, oxo, or hydroxy;
\(R^{2e} \) is \(-\text{N}(R^{2a})_2, -\text{C}(=\text{O})(R^{2a}), -\text{C}(=\text{O})\text{O}(R^{2a}), -\text{C}(=\text{O})\text{N}(R^{2a})_2, -\text{N}(R^{2a})\text{C}(=\text{O})(R^{2a}), -\text{S}(=\text{O})_2(R^{2a}), -\text{S}(=\text{O})_2 \text{N}(R^{2a})_2, C_{1-6} \) alkyl, \(C_{1-6} \) alkoxy, \(C_{1-6} \) haloalkyl, phenyl, heteroaryl, heteroaryloxy, cycloalkyl, or heterocycloalkyl, optionally substituted with one or more \(R^{2f} \);
each \(R^{2f} \) is independently \(H, \) halogen, \(C_{1-6} \) alkyl, \(C_{1-6} \) alkoxy, \(C_{1-6} \) haloalkyl;
\(R^3 \) is \(-\text{C}(=\text{O})R^{3a}\);
\(R^{3a} \) is \(C_{1-6} \) alkyl, \(C_{1-6} \) alkoxy, phenyl, or \(N(R^{3b})_2 \);
each \(R^{3b} \) is independently \(H \) or \(C_{1-6} \) alkyl;
\(R^4 \) is \(-\text{O}(R^{4a})\);
R^4a is H or R^4b;

R^4b is C_{1-6} alkyl, phenyl, benzyl, C_{1-6} haloalkyl, cycloalkyl, heterocycloalkyl, heteroaryl, optionally substituted with one or more R^4c;

R^4c is halogen, hydroxy, C_{1-6} alkyl, C_{1-6} haloalkyl, or C_{1-6} alkoxy;

Q^3 is \(-O\cdot Q^{3a}, -C(=O)(Q^{3a}), -O\cdot(CH_2)_mC(=O)(Q^{3a}), -S(=O)_2(Q^{3a}), -N(Q^{3a})_2,\)
\(N(Q^{3a})S(=O)_2(Q^{3a}), -N(Q^{3a})C(=O)(Q^{3a}), -C(=O)N(Q^{3a})_2,\) or \(N(Q^{3a})C(=O)N(Q^{3a})_2.\)

each Q^{3a} is H, C_{1-6} alkyl, phenyl or cycloalkyl, optionally substituted with one or more Q^{3d}; and

each Q^{3d} is independently Q^{3d} is Q^{3e} or Q^{3f};

Q^{3e} is halogen or hydroxy;

Q^{3f} is C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} haloalkyl, phenyl, cycloalkyl, heterocycloalkyl, or heteroaryl, optionally substituted with one or more Q^{3g}; and

each Q^{3g} is independently halogen, hydroxy, C_{1-6} alkyl, C_{1-6} hydroxyalkyl, C_{1-6} haloalkyl, or C_{1-6} alkoxy;

or a pharmaceutically acceptable salt thereof.

[0018] In one variation of the above embodiment, R is R^1.

[0019] In one variation of the above embodiment, R^1 is C_{1-6} alkyl.

[0020] In one variation of the above embodiment, the C_{1-6} alkyl is tert-butyl.

[0021] In another variation of the above embodiment, the C_{1-6} alkyl is tert-butyl, Q is Q^1, Q^1a is Q^1c, Q^1c is Q^1e, Q^1e is Q^1e', and Q^1e' is pyrrolidine.

[0022] In another variation of the above embodiment, the C_{1-6} alkyl is -CHC(CH_3)_3.

[0023] In another variation of the above embodiment, the C_{1-6} alkyl is iso-propyl.

[0024] In another variation of the above embodiment, the C_{1-6} alkyl is iso-propyl.

[0025] In one embodiment of the compound of Formula I, R^1 is -CHC(CH_3)_3.

[0026] In one embodiment of the compound of Formula I, R^1 is iso-butyl.

[0027] In one embodiment of the compound of Formula I, R^1 is iso-propyl.

[0028] In one embodiment of the compound of Formula I, R^1 is cycloalkyl.

[0029] In one embodiment of the compound of Formula I, R^1 is heterocycloalkyl.

[0030] In one embodiment of the compound of Formula I, R^1 is benzyl.

[0031] In one embodiment of the compound of Formula I, R^1 is phenyl.

[0032] In one embodiment of the compound of Formula I, R is R^2.

[0033] In one embodiment of the compound of Formula I, R is R^2 and R^2 is NH(R^2a).

[0034] In one variation of the above embodiment, R^{2a} is R^{2b}.

[0035] In one variation of the above embodiment, R^{2b} is C_{1-6} alkyl.

[0036] In one variation of the above embodiment, the C_{1-6} alkyl is iso-propyl.

[0037] In one embodiment of the compound of Formula I, R^{2a} is heterocycloalkyl.

[0038] In one embodiment of the compound of Formula I, R^{2b} is cycloalkyl.

[0039] In one embodiment of the compound of Formula I, R^{2b} is heterocycloalkyl alkylene.

[0040] In one variation of the above embodiment, the heterocycloalkyl is pyrrolidine.

[0041] In one variation of the above embodiment, the alkylene is methylene.

[0042] In one embodiment of the compound of Formula I, R^{2b} is pyrrolidine methylene.

[0043] In certain embodiments of formula I, the subject compounds are more specifically of formula II:
wherein

R\(^1\) is C\(_{1-6}\) alkyl, phenyl, benzyl, heteroaryl, cycloalkyl, heterocycloalkyl, or cycloalkylalkyl, optionally substituted with one or more R\(^{1a}\);

R\(^{1a}\) is R\(^{1b}\) or R\(^{1c}\);

R\(^{1b}\) is halogen, oxo, hydroxy, or -CN;

R\(^{1c}\) is -C(=O)O(R\(^{1f}\)), -C(=O)(CH\(_2\))\(_m\)(R\(^{1e}\)), -O(CH\(_2\))\(_m\)(R\(^{1e}\)), -S(R\(^{1f}\)), -S(O)\(_2\)(R\(^{1f}\)), or-S(=O)(R\(^{1f}\)), C\(_{1-6}\) alkyl, C\(_{1-6}\) alkoxy, amino, amido, C\(_{1-6}\) haloalkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, cycloalkyloxy, or heterocycloalkyloxy optionally substituted with one or more R\(^{1d}\);

R\(^{1d}\) is H, halogen, hydroxy, C\(_{1-6}\) alkyl, amino, C\(_{1-6}\) alkoxy, or C\(_{1-6}\) haloalkyl;

R\(^{1e}\) is H, C\(_{1-6}\) alkyl, C\(_{1-6}\) haloalkyl, cyano, C\(_{1-6}\) haloalkyl, phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl;

R\(^{1f}\) is H, C\(_{1-6}\) alkyl, C\(_{1-6}\) haloalkyl, phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl;

m is 0, 1, or 2; and

[0044] In certain embodiments of formula II, R\(^1\) is lower alkyl, preferably tert-butyl.

[0045] In certain embodiments of formula I, the subject compounds are more specifically of formula III:

wherein

R\(^{2b}\) is independently C\(_{1-6}\) alkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, or heterocycloalkyl alkylene, optionally substituted with one or more R\(^{2c}\);

R\(^{2c}\) is R\(^{2d}\) or R\(^{2e}\);

R\(^{2d}\) is halogen, oxo, or hydroxy;

R\(^{2e}\) is -N(R\(^{2f}\))\(_2\), -C(=O)(R\(^{2f}\)), -C(=O)O(R\(^{2f}\)), -C(=O)(R\(^{2g}\)), -C(=O)(R\(^{2g}\));

R\(^{2e}\) is H, C\(_{1-6}\) alkyl, C\(_{1-6}\) alkoxy, C\(_{1-6}\) haloalkyl, phenyl, heteroaryl, heteroaryloxy, cycloalkyl, or heterocycloalkyl, optionally substituted with one or more R\(^{2f}\);

Q\(^3\) is as defined herein.

[0046] In certain embodiments of formula III, R\(^{2b}\) is C\(_{1-6}\) alkyl.

[0047] In certain embodiments of either formulae I, II or III, Q\(^3\) is -O-Q\(^{3a}\), -C(=O)(Q\(^{3a}\)), -O(CH\(_2\))\(_m\)C(=O)(Q\(^{3a}\)), -S(=O)\(_2\)(Q\(^{3a}\)), -N(Q\(^{3a}\))\(_2\), -N(Q\(^{3a}\))S(=O)\(_2\)(Q\(^{3a}\)), -N(Q\(^{3a}\))C(-O)(Q\(^{3a}\)), -(C=O)N(Q\(^{3a}\))\(_2\), -(C=O)C(=O)N(Q\(^{3a}\))\(_2\), wherein m and Q\(^{3a}\) are as defined herein.

[0048] In certain embodiments of either formulae I or II, Q\(^{3a}\) is C\(_{1-6}\) alkyl, phenyl or cycloalkyl, optionally substituted with one or more Q\(^{3d}\).

[0049] In certain embodiments of either formulae I, II or III, Q\(^3\) is -O-Q\(^{3a}\), -C(=O)(Q\(^{3a}\)), -O(CH\(_2\))\(_m\)C(=O)(Q\(^{3a}\)), -S(=O)\(_2\)(Q\(^{3a}\)), -N(Q\(^{3a}\))\(_2\), -N(Q\(^{3a}\))S(=O)\(_2\)(Q\(^{3a}\)), -N(Q\(^{3a}\))C(-O)(Q\(^{3a}\)), -(C=O)N(Q\(^{3a}\))\(_2\), -N(Q\(^{3a}\))C(=O)N(Q\(^{3a}\))\(_2\), wherein m is as
defined herein and Q3a is H, lower alkyl phenyl or cycloalkyl, optionally substituted with one or more Q3d.

In one aspect, the application discloses a method for treating an inflammatory and/or autoimmune condition comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I.

In one variation of the above method, the above method further comprises administering an additional therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating diabetes, or an agent for treating immunodeficiency disorders.

In one aspect, the application discloses a method for treating an inflammatory condition comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I, wherein R is R1.

In one aspect, the application discloses a method for inhibiting T-cell proliferative disorder comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I, wherein R is R2.

In one variation of the above method, the proliferative disorder is cancer.

In one aspect, the application discloses a method for treating a B-cell proliferative disorder comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I.

In one aspect, the application discloses a method for treating an immune disorder including lupus, multiple
In one aspect, the application discloses a method for preventing or treating all forms of organ rejection, including acute allograft or xenograft rejection and chronic allograft or xenograft rejection, of vascularized or non-vascularized transplants, comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I.

In one aspect, the application discloses a method for preventing or treating all forms of organ rejection, including acute allograft or xenograft rejection and chronic allograft or xenograft rejection, of vascularized or non-vascularized transplants, comprising administering to a patient in need thereof the compound of Formula I.

In one aspect, the application discloses a method for inhibiting JAK3 activity comprising administering the compound of Formula I, wherein the compound exhibits an IC\textsubscript{50} of 50 micromolar or less in an in vitro biochemical assay of JAK3 activity.

In one aspect, the application discloses a method for inhibiting SYK activity comprising administering the compound of Formula I, wherein the compound exhibits an IC\textsubscript{50} of 50 micromolar or less in an in vitro biochemical assay of SYK activity.

In one aspect, the application discloses a method for treating an inflammatory condition comprising co-administering the compound of Formula I, wherein the compound exhibits an IC\textsubscript{50} of 50 micromolar or less in an in vitro biochemical assay of SYK activity.

In one variation of the above method, the compound exhibits an IC\textsubscript{50} of 10 nanomolar or less in an in vitro biochemical assay of JAK3 activity.

In one variation of the above method, the compound exhibits an IC\textsubscript{50} of 100 nanomolar or less in an in vitro biochemical assay of JAK3 activity.

In one variation of the above method, the compound exhibits an IC\textsubscript{50} of 100 nanomolar or less in an in vitro biochemical assay of SYK activity.

In one variation of the above method, the compound exhibits an IC\textsubscript{50} of 10 nanomolar or less in an in vitro biochemical assay of SYK activity.

In one variation, the above pharmaceutical composition further comprises an additional therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating diabetes, and an agent for treating immunodeficiency disorders.

The application provides a pharmaceutical composition comprising the compound of Formula I, admixed with at least one pharmaceutically acceptable carrier, excipient or diluent.

In one aspect, the application discloses a method for treating an immune disorder comprising co-administering to a patient in need thereof an immunosuppressant compound in combination with a therapeutically effective amount of the compound of Formula I.

The application provides a pharmaceutical composition comprising the compound of Formula I, II or III in the manufacture of a medicament for the treatment of an inflammatory disorder.

In one aspect, the application discloses a method for inhibiting SYK activity comprising administering the compound of Formula I, II or III, in the manufacture of a medicament for the treatment of an autoimmune disorder.

In one aspect, the application discloses a method for inhibiting JAK3 activity comprising administering the compound of Formula I, II or III, for use in the treatment of an inflammatory disorder or of an autoimmune disorder.

In one aspect, the application discloses a method for treating an immune disorder comprising co-administering to a patient in need thereof a therapeutically effective amount of an immunosuppressant compound in combination with the compound of Formula I.

The phrase "as defined herein above" refers to the broadest definition for each group as provided in the Summary of the Invention or the broadest claim. In all other embodiments provided below, substituents which can be
present in each embodiment and which are not explicitly defined retain the broadest definition provided in the Summary of the Invention.

[0080] As used in this specification, whether in a transitional phrase or in the body of the claim, the terms "comprise(s)" and "comprising" are to be interpreted as having an open-ended meaning. That is, the terms are to be interpreted synonymously with the phrases "having at least" or "including at least". When used in the context of a process, the term "comprising" means that the process includes at least the recited steps, but may include additional steps. When used in the context of a compound or composition, the term "comprising" means that the compound or composition includes at least the recited features or components, but may also include additional features or components.

[0081] As used herein, unless specifically indicated otherwise, the word "or" is used in the "inclusive" sense of "and/or" and not the "exclusive" sense of "either/or".

[0082] The term "independently" is used herein to indicate that a variable is applied in any one instance without regard to the presence or absence of a variable having that same or a different definition within the same compound. Thus, in a compound in which R" appears twice and is defined as "independently carbon or nitrogen", both R"s can be carbon, both R"s can be nitrogen, or one R" can be carbon and the other nitrogen.

[0083] When any variable (e.g., R2a or Q3g) occurs more than one time in any moiety or formula depicting and describing compounds employed or claimed in the present invention, its definition on each occurrence is independent of its definition at every other occurrence. Also, combinations of substituents and/or variables are permissible only if such compounds result in stable compounds.

[0084] The symbols "*" at the end of a bond or " ----- " drawn through a bond each refer to the point of attachment of a functional group or other chemical moiety to the rest of the molecule of which it is a part. Thus, for example:

\[
\text{MeC(=O)OR}^4 \text{ wherein } R^4 = \begin{array}{c}
\text{or } \text{ or } \\
\end{array}
\]

[0085] A bond drawn into ring system (as opposed to connected at a distinct vertex) indicates that the bond may be attached to any of the suitable ring atoms.

[0086] The term "optional" or "optionally" as used herein means that a subsequently described event or circumstance may, but need not, occur, and that the description includes instances where the event or circumstance occurs and instances in which it does not. For example, "optionally substituted" means that the optionally substituted moiety may incorporate a hydrogen or a substituent.

[0087] The phrase "come together to form a bicyclic ring system" as used herein means join to form a bicyclic ring system, wherein each ring may be made up of either 4-7 carbon atoms or 4-7 carbon and heteroatoms, and may be saturated or unsaturated.

[0088] The term "about" is used herein to mean approximately, in the region of, roughly, or around. When the term "about" is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term "about" is used herein to modify a numerical value above and below the stated value by a variance of 20%.

[0089] The definitions described herein may be appended to form chemically-relevant combinations, such as "heteroalkylaryl," "haloalkylheteroaryl," "arylalkyldiheterocyclyl," "alkylcarbonyl," "alkoxyalkyl," "cycloalkylalkyl" and the like. When the term "alkyl," is used as a suffix following another term, as in "phenylalkyl," or "hydroxyalkyl," this is intended to refer to an alkyl group, as defined above, being substituted with one to two substituents selected from the other specifically-named group. Thus, for example, "phenylalkyl" refers to an alkyl group having one to two phenyl substituents, and thus includes benzyl, phenylethyl, and biphenyl. An "alkylaminoalkyl" is an alkyl group having one to two alkylamino substituents. "Hydroxyalkyl" includes 2-hydroxyethyl, 2-hydroxypropyl, 1-(hydroxymethyl)-2-methylpropyl, 2-hydroxybutyl, 2,3-dihydroxybutyl, 2-(hydroxymethyl), 3-hydroxypropyl, and so forth. Accordingly, as used herein, the term "hydroxyalkyl" is used to define a subset of heteroalkyl groups defined below. The term "(ar)alkyl" refers to either an unsubstituted alkyl or an aralkyl group. The term (hetero)aryl or (het)aryl refers to either an aryl or a heteroaryl group.

[0090] Compounds of formula I may exhibit tautomerism. Tautomeric compounds can exist as two or more interconvertible species. Prototropic tautomers result from the migration of a covalently bonded hydrogen atom between two atoms. Tautomers generally exist in equilibrium and attempts to isolate an individual tautomer usually produce a mixture whose chemical and physical properties are consistent with a mixture of compounds. The position of the equilibrium is dependent on chemical features within the molecule. For example, in many aliphatic aldehydes and ketones, such as acetaldehyde, the keto form predominates while, in phenols, the enol form predominates. Common prototropic tautomers include keten (C(=O)-CH=CH-), amide/imidic acid (C(=O)-NH-), (C(=OH)=N=) and amidine (C(=NR)-NH-) tautomers. The latter two are particularly common in heteroaeryl and heterocyclic rings and the present invention encompasses all tautomeric forms of the compounds.
[0091] Technical and scientific terms used herein have the meaning commonly understood by one of skill in the art to which the present invention pertains, unless otherwise defined. Reference is made herein to various methodologies and materials known to those of skill in the art. Standard reference works setting forth the general principles of pharmacology include Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th Ed., McGraw Hill Companies Inc., New York (2001). Any suitable materials and/or methods known to those of skill can be utilized in carrying out the present invention. However, preferred materials and methods are described. Materials, reagents, and the like to which reference are made in the following description and examples are obtainable from commercial sources, unless otherwise noted.

[0092] The term "acyl" as used herein denotes a group of formula -C(=O)R wherein R is hydrogen or lower alkyl as defined herein. The term or "alkycarbonyl" as used herein denotes a group of formula C(=O)R wherein R is alkyl as defined herein. The term C_{1-6} acyl refers to a group to -C(=O)R contain 6 carbon atoms. The term "arylcarbonyl" as used herein means a group of formula C(=O)R wherein R is an aryl group; the term "benzoyl" as used herein an "arylcarbonyl" group wherein R is phenyl.

[0093] The term "alkyl" as used herein denotes an unbranched or branched chain, saturated, monovalent hydrocarbon residue containing 1 to 10 carbon atoms. The term "lower alkyl" denotes a straight or branched chain hydrocarbon residue containing 1 to 6 carbon atoms. "C_{1-10} alkyl" as used herein refers to an alkyl composed of 1 to 10 carbons. Examples of alkyl groups include, but are not limited to, lower alkyl groups include methyl, ethyl, propyl, isobutyl, i-butyl, t-butyl or pentyl, isopentyl, neopentyl, hexyl, heptyl, and octyl.

[0094] When the term "alkyl" is used as a suffix following another term, as in "phenylalkyl," or "hydroxyalkyl," this is intended to refer to an alkyl group, as defined above, being substituted with one to two substituents selected from the other specifically-named group. Thus, for example, "phenylalkyl" denotes the radical R'R"-, wherein R' is a phenyl radical, and R" is an alkyl radical as defined herein with the understanding that the attachment point of the phenylalkyl moiety will be on the alkylene radical. Examples of arylalkyl radicals include, but are not limited to, benzyl, phenylethyl, 3-phenylpropyl. The terms "arylalkyl," "aryl alkyl," or "aralkyl" are interpreted similarly except R' is an aryl radical. The terms "heteroaryl alkyl" or "heteroarylalkyl" are interpreted similarly except R' is optionally an aryl or a heteroaryl radical.

[0095] The term "haloalkyl," as used herein denotes a unbranched or branched chain alkyl group as defined above wherein 1, 2, 3 or more hydrogen atoms are substituted by a halogen. The term "lower haloalkyl" denotes a straight or branched chain hydrocarbon residue containing 1 to 6 carbon atoms, wherein 1, 2, 3 or more hydrogen atoms are substituted by a halogen. Examples are 1-fluoromethyl, 1-chloromethyl, 1-bromomethyl, 1-iodomethyl, difluoromethyl, trifluoromethyl, trifluoromethyl, trichloromethyl, tribromomethyl, triiodomethyl, 1-fluoroethyl, 1-chloroethyl, 1-bromoethyl, 1-iodoethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-dichloroethyl, 3-bromopropyl or 2,2,2-trifluoroethyl.

[0096] The term "alkylene" as used herein denotes a divalent saturated linear hydrocarbon radical of 1 to 10 carbon atoms (e.g., (CH_2_n) or a branched saturated aliphatic hydrocarbon radical of 2 to 10 carbon atoms (e.g.; -CHMe- or -CH$_2$CH(i-Pr)CH$_2$-), unless otherwise indicated. Except in the case of methylene, the open valences of an alkylene group are not attached to the same atom. Examples of alkylene radicals include, but are not limited to, methylene, ethylene, propylene, 2-methyl-propylene, 1,1-dimethyl-ethylene, butylene, 2-ethylbutylene.

[0097] The term "alkoxy" as used herein means an-O-alkyl group, wherein alkyl is as defined above such as methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, pentyloxy, hexyloxy, including their isomers. "Lower alkoxy" as used herein denotes an alkoxy group with a "lower alkyl" group as previously defined. "C$_{1-10}$ alkoxy" as used herein refers to an-O-alkyl wherein alkyl is C$_{1-10}$.

[0098] The term "hydroxyalkyl" as used herein denotes an alkyl radical as herein defined wherein one to three hydroxyl atoms on different carbon atoms is/are replaced by hydroxyl groups.

[0099] The term "cycloalkyl," as used herein refers to a saturated carbocyclic ring containing 3 to 8 carbon atoms, i.e. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl. "C$_{3-7}$ cycloalkyl" as used herein refers to a cycloalkyl composed of 3 to 7 carbons in the carbocyclic ring.

[0100] The term "halogen" or "halo" as used herein means fluorine, chlorine, bromine, or iodine.

[0101] The term "heteroaryl" or "heteroaromatic" as used herein means a monocyclic or bicyclic, or tricyclic radical of 5 to 18 ring atoms having at least one aromatic ring containing four to eight atoms per ring, incorporating one or more N, O, or S heteroatoms, the remaining ring atoms being carbon, with the understanding that the attachment point of the heteroaryl radical will be on an aromatic ring. As well known to those skilled in the art, heteroaryl rings have less aromatic character than their all-carbon counter parts. Thus, for the purposes of the invention, a heteroaryl group need only have some degree of aromatic character. Examples of heteroaryl moieties include monocyclic aromatic heterocycles having 5 to 6 ring atoms and 1 to 3 heteroatoms include, but is not limited to, pyridinyl, pyrimidinyl, pyrazinyl, pyrrolyl, pyrazolyl, imidazolyl, oxazol, isoxazole, thiazole, isothiazole, triazoline, triiazole and oxadiazoline which can optionally be substituted with one or more, preferably one or two substituents selected from hydroxy, cyano, alkyl, alkoxy, thio, lower haloalkoxy, alkythio, halo, haloalkyl, alkylsulfinyl, alkylsulfonyl, halogen, amino, alkylamino, dialkylamino, aminooalkyl, alkylaminooalkyl, and dialkylaminooalkyl, nitro, alkoxy carbonyl and carbamoyl, alkyl carbamoyl, dialkyl carbamoyl, acyl carbamoyl, alklycarbonylalino and acylcarbonylalino. Examples of bicyclic moieties include, but are not limited to, quin-
The term "heterocyclicalkyl", "heterocyclicyl" or "heterocycle" as used herein denotes a monovalent saturated cyclic radical, consisting of one or more rings, preferably one to two rings, or three rings, of three to eight atoms per ring, incorporating one or more ring carbon atoms and one or more ring heteroatoms (chosen from N, O or S(=O)0-2), wherein the point of attachment can be through either a carbon atom or a heteroatom, and which can optionally be independently substituted with one or more, preferably one or two or three substituents selected from hydroxy, oxo, cyano, lower alkyl, lower alkoxy, lower haloalkoxy, alkylthio, halo, haloalkyl, hydroxyalkyl, nitro, alkoxy carbonyl, amino, alkylamino, alkylsulfonyl, arylsulfonyl, arylamino sulfonyl, alkylsulfonylamino, arylsulfonylamino, alkyaminocarbonyl, arylaminocarbonyl, arylcarboxylamino, arylcarboxyl amino, unless otherwise indicated. Examples of heterocyclic radicals include, but are not limited to, azetidinyl, pyrrolidinyl, hexahydroazepinyl, oxazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, oxazolidinyl, thiazolidinyl, isoazolylidinyl, morpholinyl, piperazinyl, piperidinyl, tetrahydro-pyranyl, thiomorpholinyl, imidazolinyl.

The phrase "organ rejection" includes acute allograft or xenograft rejection and chronic allograft or xenograft rejection in the setting of vascularized and/or non-vascularized (e.g. bone marrow, pancreatic islet cells) transplants. In general, the nomenclature used in this Application is based on AUTONOMTM v.4.0, a Beilstein Institute computerized system for the generation of IUPAC systematic nomenclature. If there is a discrepancy between a depicted structure and a name given that structure, the depicted structure is to be accorded more weight. In addition, if the computerized system for the generation of IUPAC systematic nomenclature is not indicated with, for example, bold or dashed lines, the structure and a name given that structure, the depicted structure is to be interpreted as encompassing all stereoisomers of it.

This table depicts exemplified compounds according to Formula I.
<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>SYSTEMATIC NAME</th>
<th>STRUCTURE</th>
<th>MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>2-(Cyclopentylmethyl-amino)-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid isopropylamide</td>
<td></td>
<td>277-278</td>
</tr>
<tr>
<td>I-2</td>
<td>1-[7-(2,2-Dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-2,2-dimethyl-propan-1-one</td>
<td></td>
<td>188-198</td>
</tr>
<tr>
<td>I-3</td>
<td>1-(2-Cyclopentyloxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-4</td>
<td>N-[7-(2,2-Dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-benzamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5</td>
<td>Cyclohexanecarboxylic acid [7-(2,2-dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-amide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-6</td>
<td>N-[7-(2,2-Dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-N-methyl-benzamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPOUND</td>
<td>SYSTEMATIC NAME</td>
<td>STRUCTURE</td>
<td>MP</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>I-7</td>
<td>N-[7-(2,2-Dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-benzenesulfonamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-8</td>
<td>N-[7-(2,2-Dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-N-methyl-benzenesulfonamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-9</td>
<td>-(2,2-Dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazine-2-carboxylic acid dimethylamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-10</td>
<td>7-(2,2-Dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazine-2-carboxylic acid isopropylamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-11</td>
<td>1-(2-Acetyl-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethylpropan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-12</td>
<td>1-(2-Isobutyryl-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPOUND</td>
<td>SYSTEMATIC NAME</td>
<td>STRUCTURE</td>
<td>MP</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>I-13</td>
<td>2,2-Dimethyl-1-[2-(2-methylbenzoyl)-5H-pyrrolo[2,3-b] pyrazin-7-yl]-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-14</td>
<td>1-(2-Benzoyl-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-15</td>
<td>7-(2,2-Dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazine-2-carboxylic acid cyclopentylamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-16</td>
<td>2,2-Dimethyl-1-[2-(pyridine-4-carbonyl)-5H-pyrrolo[2,3-b] pyrazin-7-yl]-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-17</td>
<td>2,2-Dimethyl-1-[2-(pyridine-3-carbonyl)-5H-pyrrolo[2,3-b] pyrazin-7-yl]-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-18</td>
<td>1-(2-Cycloheptyloxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPOUND</td>
<td>SYSTEMATIC NAME</td>
<td>STRUCTURE</td>
<td>MP</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>I-19</td>
<td>1-(2-Cyclohexyloxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-20</td>
<td>1-(2-Isopropoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-21</td>
<td>1-(2-Ethoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-22</td>
<td>2,2-Dimethyl-1-[2-(2-morpholin-4-yl-2-oxo-ethoxy)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-23</td>
<td>1-[2-(1,2-Dimethylpropoxy)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-24</td>
<td>1-(2-Isobutoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPOUND</td>
<td>SYSTEMATIC NAME</td>
<td>STRUCTURE</td>
<td>MP</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>I-26</td>
<td>1-Cyclohexyl-3-[7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-27</td>
<td>1-Cycloheptyl-3-[7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-28</td>
<td>2,2-Dimethyl-1-[2-(methyl-phenyl-amino)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-29</td>
<td>1-(2-sec-Butoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-30</td>
<td>2,2-Dimethyl-1-(2-phenylamino-5H-pyrrolo[2,3-b]pyrazin-7-yl)-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-31</td>
<td>1-(2-Cyclopentyl-oxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPOUND</td>
<td>SYSTEMATIC NAME</td>
<td>STRUCTURE</td>
<td>MP</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>I-32</td>
<td>1-[2-(Cyclopentyl-methyl-amino)-5H-pyrrolo[2,3-b] pyrazin-7-yl]-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-33</td>
<td>2,2-Dimethyl-1-(2-phenoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-34</td>
<td>2,2-Dimethyl-1-{2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-35</td>
<td>2,2-Dimethyl-1-{2-[3-(4-methyl-piperazin-1-yl)-phenylamino]-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-36</td>
<td>1-Cyclohexyl-3-[7-(2,2-dimethylpropionyl)-5H-pyrrolo [2,3-b]pyrazin-2-yl]-urea</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DOSAGE AND ADMINISTRATION

[0108] The compounds of the present invention may be formulated in a wide variety of oral administration dosage forms and carriers. Oral administration can be in the form of tablets, coated tablets, dragées, hard and soft gelatine capsules, solutions, emulsions, syrups, or suspensions. Compounds of the present invention are efficacious when administered by other routes of administration including continuous (intravenous drip) topical parenteral, intramuscular, intravenous, subcutaneous, transdermal (which may include a penetration enhancement agent), buccal, nasal, inhalation and suppository administration, among other routes of administration. The preferred manner of administration is generally oral using a convenient daily dosing regimen which can be adjusted according to the degree of affliction and the patient’s response to the active ingredient.

[0109] A compound or compounds of the present invention, as well as their pharmaceutically useable salts, together with one or more conventional excipients, carriers, or diluents, may be placed into the form of pharmaceutical compositions and unit dosages. The pharmaceutical compositions and unit dosage forms may be comprised of conventional ingredients in conventional proportions, with or without additional active compounds or principles, and the unit dosage forms may contain any suitable effective amount of the active ingredient commensurate with the intended daily dosage range to be employed. The pharmaceutical compositions may be employed as solids, such as tablets or filled capsules, semisolids, powders, sustained release formulations, or liquids such as solutions, suspensions, emulsions, elixirs, or filled capsules for oral use; or in the form of suppositories for rectal or vaginal administration; or in the form of sterile injectable solutions for parenteral use. A typical preparation will contain from about 5% to about 95% active compound or compounds (w/w). The term "preparation" or "dosage form" is intended to include both solid and liquid formulations of the active compound and one skilled in the art will appreciate that an active ingredient can exist in different preparations depending on the target organ or tissue and on the desired dose and pharmacokinetic parameters.

[0110] The term "excipient" as used herein refers to a compound that is useful in preparing a pharmaceutical compo-
sition, generally safe, non-toxic and neither biologically nor otherwise undesirable, and includes excipients that are acceptable for veterinary use as well as human pharmaceutical use. The compounds of this invention can be administered alone but will generally be administered in admixture with one or more suitable pharmaceutical excipients, diluents or carriers selected with regard to the intended route of administration and standard pharmaceutical practice.

"Pharmaceutically acceptable" means that which is useful in preparing a pharmaceutical composition that is generally safe, non-toxic, and neither biologically nor otherwise undesirable and includes that which is acceptable for veterinary as well as human pharmaceutical use.

A "pharmaceutically acceptable salt" form of an active ingredient may also initially confer a desirable pharmaco-kinetic property on the active ingredient which were absent in the non-salt form, and may even positively affect the pharmacodynamics of the active ingredient with respect to its therapeutic activity in the body. The phrase "pharmaceutically acceptable salt" of a compound means a salt that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound. Such salts include: (1) acid addition salts, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethane-disulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesul- fonic acid, 4-toluene sulfonic acid, camphorsulfonic acid, 4-methylbicyclo[2.2.2]-oct-2-ene-1-carboxylic acid, glucoheptonic acid, 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, muconic acid, and the like; or (2) salts formed when an acidic proton present in the parent compound either is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion; or coordinates with an organic base such as ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, and the like.

Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier may be one or more substances which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material. In powders, the carrier generally is a finely divided solid which is a mixture with the finely divided active component. In tablets, the active component generally is mixed with the carrier having the necessary binding capacity in suitable proportions and compacted in the shape and size desired. Suitable carriers include but are not limited to magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. Solid form preparations may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.

Liquid formulations also are suitable for oral administration include liquid formulation including emulsions, syrups, elixirs, aqueous solutions, aqueous suspensions. These include solid form preparations which are intended to be converted to liquid form preparations shortly before use. Emulsions may be prepared in solutions, for example, in aqueous propylene glycol solutions or may contain emulsifying agents such as lecithin, sorbitan monoleate, or acacia. Aqueous solutions can be prepared by dissolving the active ingredient in water and adding suitable colorants, flavors, stabilizing, and thickening agents. Aqueous suspensions can be prepared by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well known suspending agents.

The compounds of the present invention may be formulated for parenteral administration (e.g., by injection, for example bolus injection or continuous infusion) and may be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative. The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, for example solutions in aqueous polyethylene glycol. Examples of oily or nonaqueous carriers, diluents, solvents or vehicles include propylene glycol, polyethylene glycol, vegetable oils (e.g., olive oil), and injectable organic esters (e.g., ethyl oleate), and may contain formulatory agents such as preserving, wetting, emulsifying or suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilisation from solution for constitution before use with a suitable vehicle, e.g., sterile, pyrogen-free water.

The compounds of the present invention may be formulated for topical administration to the epidermis as ointments, creams or lotions, or as a transdermal patch. Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents. Lotions may be formulated with an aqueous or oily base and will in general also containing one or more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents, or coloring agents. Formulations suitable for topical administration in the mouth include lozenges comprising active agents in a flavored base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert base such as gelatin and glycerin or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
The term "therapeutically effective amount" as used herein means an amount required to reduce symptoms of the disease in an individual. The dose will be adjusted to the individual requirements in each particular case. That dosage can vary within wide limits depending upon numerous factors such as the severity of the disease to be treated, the age and general health condition of the patient, other medicaments with which the patient is being treated, the route and form of administration and the preferences and experience of the medical practitioner involved. For oral administration, a daily dosage of between about 0.01 and about 1000 mg/kg body weight should be appropriate in monotherapy and/or in combination therapy. A preferred daily dosage is between about 0.1 and about 500 mg/kg body weight, more preferred 0.1 and about 100 mg/kg body weight and most preferred 1.0 and about 10 mg/kg body weight per day. Thus, for administration to a 70 kg person, the dosage range would be about 7 mg to 0.7 g per day. The daily dosage can be administered as a single dosage or in divided dosages, typically between 1 and 5 dosages per day. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect for the individual patient is reached. One of ordinary skill in treating diseases described herein will be able, without undue experimentation and in reliance on personal knowledge, experience and the disclosures of this application, to ascertain a therapeutically effective amount of the compounds of the present invention for a given disease and patient.

[0126] The pharmaceutical preparations are preferably in unit dosage forms. In such form, the preparation is subdivided
into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.

The following examples illustrate the preparation and biological evaluation of compounds within the scope of the invention. These examples and preparations which follow are provided to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof.

EXAMPLES

Example 1.

1-[2-bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one

Sodium hydride (60% in mineral oil, 0.019 g, 0.48 mmol) was added to a stirring solution of 1-(2-bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one (0.094 g, 0.33 mmol) in 1.5 mL of N,N'-dimethylformamide at 0-5 °C. The bubbling yellow mixture was stirred at 0-5 °C for 15 min., then 2-(trimethylsilyl)ethoxymethyl chloride (0.075 mL, 0.42 mmol) was added. The resulting cloudy yellow mixture was stirred at RT for 3 h, then partitioned between 10 mL of water and 10 mL of ethyl acetate. The organic layer was sequentially washed with two 10 mL portions of water and 10 mL of a sat. aq. NaCl solution, dried over MgSO₄, filtered, and concentrated to an orange oil. Silica gel chromatography (10% EtOAc/hexanes) afforded 0.129 g (93%) of slightly impure 1-[2-bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one as a yellow oil that was used without further purification.

Example 2.

7-(2,2-dimethyl-propionyl)-5-(2-trimethylsilanyl-ethoxymethyl)-1,5-dihydro-pyrrolo[2,3-b]pyrazin-2-one

Sodium hydride (60% in mineral oil, 0.019 g, 0.48 mmol) was added to a stirring solution of 1-[2-bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.067 g, 0.16 mmol), 0.4 mL dioxane, 0.4 mL water, Pd₂(dba)₃ (0.009 g, 0.01 mmol), 2-di-t-butylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl (0.008 g, 0.02 mmol), and freshly ground KOH (0.038 g, 0.67 mmol) in a sealed tube
under N₂ was stirred at 100 °C for 15 h. The resulting orange-black mixture was partitioned between 5 mL of ethyl acetate and 5 mL of water, with a few drops of ethanol added to reduce emulsions. The aqueous layer was extracted with 5 mL of ethyl acetate. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated to an orange oil. Silica gel chromatography (20->40% EtOAc/hexanes) afforded 0.029 g (51%) of 7-(2,2-dimethyl-propionyl)-5-(2-trimethylsilyl-ethyl-ethoxymethyl)-1,5-dihydro-pyrrolo[2,3-b]pyrazin-2-one as a pale yellow solid.

Example 3.

A solution of 7-(2,2-dimethyl-propionyl)-5-(2-trimethylsilyl-ethyl-ethoxymethyl)-1,5-dihydro-pyrrolo[2,3-b]pyrazin-2-one (0.029 g, 0.082 mmol), 1 mL of tetrahydrofuran, cyclopentanol (0.010 mL, 0.11 mmol), tributylphosphine (0.025 mL, 0.1 mmol), and diisopropyl azodicarboxylate (0.020 mL, 0.10 mmol) under nitrogen was stirred at 65 °C for 17.5 h then allowed to cool. Additional cyclopentanol (0.020 mL, 0.22 mmol), tributylphosphine (0.050 mL, 0.20 mmol), and diisopropyl azodicarboxylate (0.040 mL, 0.21 mmol) were added, and the solution stirred at 65 °C for 2.5 h. The yellow solution was partitioned between 5 mL of water and 5 mL of ethyl acetate. The organic layer was washed with 5 mL of a sat. aq. NaCl solution, dried over MgSO₄, filtered and concentrated to a yellow oil. Silica gel chromatography (10% EtOAc/hexanes) afforded 0.017 g (51%) of 1-[2-cyclopentyloxy-5-(2-trimethylsilyl-ethyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one as a colorless oil.

Example 4.

A solution of 1-[2-cyclopentyloxy-5-(2-trimethylsilyl-ethyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.017 g, 0.041 mmol) in 1 mL of dichloromethane and 1 mL of trifluoroacetic acid was stirred for 5 h then concentrated to a yellow oil. Silica gel chromatography (0->40% EtOAc/hexanes) afforded 0.012 g of a white solid. ¹H NMR spectroscopy indicated that this intermediate was the formaldehyde adduct of the desired product. The solid was dissolves in 1 mL of ethanol and the solution was treated with sodium acetate trihydrate (0.064 g, 0.47 mmol). The colorless mixture was stirred for 5 h then concentrated. The residue was partitioned between 5 mL of ethyl acetate
and 5 mL of water. The organic layer was sequentially washed with 5 mL of water and 5 mL of a sat. aq. NaCl solution, dried over MgSO₄, filtered and concentrated to 0.007 g (57%) of 1-(2-cyclopentyloxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one as a slightly impure white solid.

[0136] The following compounds were prepared according to the above general procedure:

1-(2-Cycloheptyloxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one

1-(2-Cyclohexyloxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one

1-(2-Isopropoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one

1-(2,1,2-Dimethyl-propoxy)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one

1-(2-Isobutoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one

1-(2-sec-Butoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one

Example 5.

2-(Cyclopentyl-methyl-amino)-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid isopropylamide

[0138] Step 1. Pyrrolopyrazine C (340 mg, 1.7 mmol) and N-methyl-cyclopentylamine were dissolved in NMP (2 mL) and placed in a sealed tube. The solution was irradiated with high intensity microwave at 240 Celsius for 1.5 hours. Upon cooling the mixture was partitioned between water and ethyl acetate. The extract was aged over anhydrous sodium sulfate and the volatiles were removed. The desired adduct (A, 102 mg) was isolated by SGC eluted with 10 to 60% ethyl acetate in hexanes and displayed spectroscopic properties consistent with the proposed structure.

[0139] Step 2. Pyrrolopyrazine A (100 mg, 0.46 mmol) was dissolved in N,N-dimethylformamide (5 mL) and cooled to 0 Celsius. Powdered potassium hydroxide (67 mg, 1.2 mmol) and iodine (127 mg, 0.5 mmol) were added in sequence which gave a tan solution after 30 minutes at 0 Celsius. The solution was treated with water, decolorized with 10% sodium thiosulfate (aq) and the resulting precipitate was filtered. The filter cake was washed with fresh water and stored in vacuo at 50 Celsius overnight. The tan powder (B, 120 mg) displayed spectroscopic properties consistent with the proposed structure.
Step 3. The desired amide I was prepared according to step 2 with B (110 mg, 0.32 mmol) and K₂CO₃ (135 mg, 1.0 mmol) by replacing the amine with iso-propylamine (0.08 mL, 1.0 mmol). The amide I was obtained as a solid (35 mg): mp 277-278 °C; ESMS m/z 302 (M⁺) for MW of 301.

2-(3-Methylamino-piperidin-1-yl)-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid isopropylamide was obtained by replacing N-methylcyclopentyl amine with 3-methylaminopiperidine in step 1 and conducting the reaction for 4 hours. The crude reaction mixture treated with di-tert-butyl dicarbonate and 4-dimethylaminopyridine in refluxing tetrahydrofuran and subjected to silica gel chromatography (eluant: 20 to 80% ethyl acetate in hexanes. The title compound was obtained by replacing B in step 2 with [1-(7-ido-5H-pyrrolo[2,3-b]pyrazin-2-yl)-piperidin-3-yl]-methyl-carbamic acid tert-butyl ester then the product of the carbonylation was treated with trifluoroacetic acid in refluxing 1,2-dichloroethane to obtain the title compound as the trifluoroacetate salt: m.p. 54-64 °C; MS m/z 317 (M⁺) for free base.

Example 6.

7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazine-2-carboxylic acid dimethylamide: 1-(2-bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one (50mg, 0.177mmol) was dissolved in N,N-dimethylformamide and the flask was purged with carbon monoxide. Dimethylamine (0.32ml of a 5.5M ethanol solution) was added followed by palladium bis(diphenylphosphino)ferrocenedichloride, dichloromethanecomplex (14mg, 0.0177mmol). A carbon monoxide-filled balloon was attached and the flask was stirred in a 100C bath for 48hrs. The reaction was worked up by addition of water and ethyl acetate. The layers were separated and the aqueous layer was extracted twice more with ethyl acetate. The combined ethyl acetate layers were washed with water and then saturated sodium chloride solution, dried over sodium sulfate, filtered, and evaporated to a residue. The residue was purified by silica gel chromatography (methanol/dichloromethane) to give 16mg (32%) of product. MP = 98-101C, (M+H)⁺ = 275.

Example 7.

N-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-N-methyl-benzamide Step 1: A mixture of 1-[2-Bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.25 g, 0.61 mmol), N-Methyl-benzamide (0.243 g, 1.8 mmol), K₂CO₃ (0.185 g, 1.34 mmol), Cul (0.0175 g, 0.092 mmol) and N,N'-Dimethyl-ethane-1,2-diamine (0.02 mL, 0.184 mmol) in tolene was heated under an argon atmosphere in a microwave oven at 110 °C overnight. After cooling to room temperature, the reaction mixture was purified by flash column chroma-
tography on silica gel with EtOAc in hexane (10% to 40% gradient over 30 min) to give the desired product (60 mg, 21% yield) as a yellow oil. 1H NMR (CDCl$_3$, 300MHz): δ 8.43 (s, 1H), 8.04 (s, 1H), 7.45-7.24 (m, 5H), 5.65 (s, 2H), 3.74 (s, 3H), 3.62-3.59 (m, 2H), 1.51 (s, 9H), 0.99-0.94 (m, 2H), 0 (s, 9H); MS [M+H]$^+$: 467. Step 2: The general procedures as described in these Examples were followed. 1H NMR (CDCl$_3$): δ 9.50 (s, 1H), 8.35 (s, 1H), 8.00 (s, 1H), 7.39-7.21 (m, 5H), 3.69 (s, 3H), 1.45 (s, 9H); MS [M+H]$^+$: 337.

Example 8.

[C147]

[C148] Cyclohexanecarboxylic acid [7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-amide. The general procedures as described in these Examples were followed. 1H NMR (DMSO-d$_6$): δ 12.85 (br s, 1H), 10.9 (s, 1H), 8.96 (s, 1H), 8.50 (s, 1H), 8.14-8.12 (m, 2H), 1.62 (s) ppm, 7.765-7.53 (m, 3H), 1.40 (s, 9H); MS [M+H]$^+$: 329.

Example 9.

[C149]

N-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-benzamide.

[C150] The general procedures as described in these Examples were followed. 1H NMR (DMSO): δ 12.85 (br s, 1H), 10.9 (s, 1H), 8.96 (s, 1H), 8.50 (s, 1H), 8.14-8.12 (m, 2H), 1.62 (s) ppm, 7.765-7.53 (m, 3H), 1.40 (s, 9H); MS [M+H]$^+$: 323.

Example 10.

[C151]
N-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-benzenesulfonamide

[0152] Step 1: A mixture of 1-[2-Bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.25 g, 0.61 mmol), benzenesulfonamide (0.143 g, 0.91 mmol, 1.5 equiv.), CuI (0.023 g, 0.12 mmol, 20 mol%), N, N-dimethylglycine (0.013 g, 0.12 mmol, 20 mol%) and K3PO4 (0.323 g, 1.53 mmol, 2.5 equiv.) in DMF (2 mL) was heated under an argon atmosphere in a microwave oven at 153 °C overnight. After cooling to room temperature, the reaction mixture was diluted with H2O and extracted with DCM. The combined organic extracts was washed with H2O and concentrated. The residue was purified by flash column chromatography on silica gel with EtOAc in hexane (15% to 50% gradient over 20 min) to give 0.215 g of product as a pale yellow foam. 1H NMR (CDCl3): δ 8.50 (s, 1H), 8.29 (s, 1H), 7.99-7.96 (m, 2H), 7.61-7.47 (m, 3H), 5.67 (s, 2H), 2.64-3.58 (m, 2H), 1.38 (s, 9H), 1.00-0.94 (m, 2H), 0 (s, 9H); MS [M+H]+: 489.

[0153] Step 2: The general procedures as described in these Examples were followed. 1H NMR (DMSO-d6): δ 8.23 (s, 1H), 8.00 (s, 1H), 7.54-7.47 (m, 5H), 1.17 (s, 9H); MS [M+H]+: 359.

Example 11.

[0154]

N-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-N-methyl-benzenesulfonamide.

[0155] The general procedures as described in these Examples were followed except replacing benzenesulfonamide with N-methylbenzenesulfonamide in step 1. 1H NMR (CDCl3): δ 8.75 (s, 1H), 8.49 (d, J = 3.2 Hz, 1H), 7.56-7.53 (m, 3H), 7.44-7.40 (m, 2H), 3.36 (s, 3H), 1.23 (s, 9H); [M+H]+: 373.

Example 12.

[0156]
2,2-dimethyl-1-(2-phenoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-propan-1-one

[0157] A mixture of 1-[2-bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.051 g, 0.12 mmol), phenol (0.017 g, 0.18 mmol), potassium phosphate (0.056 g, 0.26 mmol), 2-di-tert-butylphosphino-2’-(N,N-dimethylamino)biphenyl (0.0041 g, 0.012 mmol) and Pd(OAc)$_2$ (0.002 g, 0.009 mmol) in 1 mL of toluene was stirred at 100 °C for 13 h, then at 150 °C for 4 h. The resulting dark orange mixture was partitioned between 10 mL of ethyl acetate and 10 mL of water. The organic layer was dried over MgSO$_4$, filtered and concentrated to an orange oil. Column chromatography (0-20% EtOAc/hexanes) afforded 0.032 g (62%) of impure 2,2-dimethyl-1-[2-phenoxy-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one as a yellow oil, which was used without further purification.

Example 13.

[0158]

[0159] A solution of impure 2,2-dimethyl-1-[2-phenoxy-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one, prepared according to general procedures as described in these Examples, (0.032 g, "0.075 mmol") in 1 mL of dichloromethane and 1 mL of trifluoroacetic acid was stirred for 13 h, then concentrated to a yellow-green oil, which was partitioned between 5 mL of a sat. aq. NaHCO$_3$ solution and 5 mL of dichloromethane. The aqueous layer was extracted with 5 mL of dichloromethane, and the combined organic layers were dried over MgSO$_4$, filtered and concentrated to a pale yellow oil. The oil was dissolved in 1 mL of ethanol and treated with sodium acetate trihydrate (0.103 g, 0.756 mmol). The mixture was stirred for 2 h, then concentrated. The residue was partitioned between 5 mL of water and 5 mL of dichloromethane. The aqueous layer was extracted with 5 mL of dichloromethane, and the combined organic layers were dried over MgSO$_4$, filtered and concentrated to a pale yellow oil. The oil was again dissolved in 1 mL of ethanol and treated with sodium acetate trihydrate (0.101 g, 0.745 mmol). The mixture was stirred for 4 h, then concentrated. The residue was partitioned between 5 mL of water and 5 mL of dichloromethane. The aqueous layer was extracted with 5 mL of dichloromethane, and the combined organic layers were dried over MgSO$_4$, filtered and concentrated to an off-white solid. Column chromatography (0->33% EtOAc/hexanes) afforded 0.014 g (65% from impure; 40% 2-step) of 2,2-dimethyl-1-(2-phenoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-propan-1-one as an off-white solid.
Example 14.

[0160] A solution of 1-[2-bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.051 g, 0.123 mmol) and methylcyclopentylamine (0.050 mL, 0.44 mmol) in 1 mL of N-methyl pyrrolidinone in a sealed tube was stirred at 200 °C for 20 h. Additional methylcyclopentylamine (0.100 mL, 0.88 mmol) was added, and the solution stirred at 200 °C for 3 d. After cooling, the dark orange solution was partitioned between 10 mL of ethyl acetate and 10 mL of a 10% citric acid solution. The organic layer was sequentially washed with three 10 mL portions of water and 10 mL of a sat. aq. NaCl solution, dried over MgSO₄, filtered and concentrated to an orange oil. Column chromatography (0-20% EtOAc/hexanes) afforded 0.030 g (58%) of impure 1-[2-(cyclopentyl-methyl-amino)-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one, which was used without further purification.

Example 15.

[0161] A solution of impure 1-[2-(cyclopentyl-methyl-amino)-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one, prepared according to general procedures as described in these Examples, (0.030 g, 0.071 mmol) in 1 mL of dichloromethane and 1 mL of trifluoroacetic acid was stirred for 3 h, then concentrated, chasing with toluene, to a yellow oil. The oil was dissolved in 1 mL of ethanol and treated with sodium acetate trihydrate (0.103 g, 0.760 mmol). The yellow mixture was stirred for 16 h, then concentrated to a yellow solid. Column chromatography (two columns: first run, 0->40% EtOAc/hexanes; second run, 66% ether/hexanes) afforded 0.0045 g (21%
from impure, 12% two-step) of 1-[2-(cyclopentyl-methyl-amino)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one as a white solid.

Example 16.

1-(2-ethoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one

[0164]

Example 17.

[0166]

[0167] A solution of crudel-[2-ethoxy-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-1,2,2-dimethyl-propa-1-one (0.075 g, 0.20 mmol) in 2 mL of dichloromethane and 2 mL of trifluoroacetic acid was stirred for 3 h, then concentrated, chasing with toluene. The resulting residue was dissolved in 3 mL of ethanol and treated with sodium acetate trihydrate (0.270 g, 1.98 mmol). The mixture was stirred overnight, then concentrated to a residue. Column chromatography (0->30% EtOAc/hexanes) afforded 0.039 g (80%) of 1-(2-ethoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one as a white solid.
Example 18.

A mixture of 1-[2-bromo-5-(2-trimethylsilanylethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.206 g, 0.50 mmol), potassium carbonate (0.152 g, 1.10 mmol), copper (I) iodide (0.014 g, 0.075 mmol), proline (0.017 g, 0.15 mmol) and aniline (0.46 mL, 5 mmol) in 1 mL of dimethylsulfoxide was stirred at 90 °C for 5 d, then allowed to cool. The mixture was partitioned between 50 mL of ethyl acetate and 30 mL of water, and the organic layer was washed with 30 mL of a sat. aq. NaCl solution, dried over MgSO4, and concentrated to a residue. Column chromatography (0->45% EtOAc/hexanes) afforded 0.102 g (48%) of 2,2-dimethyl-1-[2-phenylamino-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one as a pale orange solid.

Example 19.

A solution of 2,2-dirnethyl-1-[2-phenylamino-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one (0.102 g, 0.240 mmol) in 2 mL of dichloromethane and 1 mL of trifluoroacetic acid was stirred for 14 h, then concentrated. Column chromatography (20->70% EtOAc/hexanes afforded 0.055 g of the formaldehyde adduct of the desired product. This intermediate was dissolved in 1 mL of ethanol and treated with sodium acetate trihydrate (0.327 g, 2.40 mmol). The mixture was stirred for 24 h, and solid was isolated by filtration, rinsing with water and ethanol, and dried to afford 0.010 g (14%) of 2,2-dimethyl-1-((2-phenylamino-5H-pyrrolo[2,3-b]pyrazin-7-yl))-propan-1-one as a yellow solid.
Example 20.

2,2-dimethyl-1-[2-(methyl-phenyl-amino)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one

[0172]

A mixture of 1-[2-bromo-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.053 g, 0.129 mmol), *N*-methylaniline (0.021 mL, 0.19 mmol), Pd$_2$(dba)$_3$ (0.012 g, 0.013 mmol), BINAP (0.012 g, 0.019 mmol) and cesium carbonate (0.084 g, 0.258 mmol) in 2 mL of toluene was stirred at 120 °C in a microwave for 1 h, then at 150 °C in a microwave for 1 h, then at 180 °C in a microwave for 1 h, then concentrated to a residue. Column chromatography (0->30% EtOAc/hexanes) afforded 0.021 g (37%) of 2,2-dimethyl-1-[2-(methyl-phenyl-amino)-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one as a yellow oil.

Example 21.

[0174]

A solution of 2,2-dimethyl-1-[2-(methyl-phenyl-amino)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one (0.021 g, 0.048 mmol) in 1 mL of dichloromethane and 1 mL of trifluoroacetic acid was stirred for 1 h, then concentrated. The residue was dissolved in 0.5 mL of ethanol and treated with sodium acetate trihydrate (0.065 g, 0.48 mmol). The mixture was stirred for 15 h, then concentrated to a residue. Column chromatography (50->100% EtOAc/hexanes) afforded 0.009 g (61%) of 2,2-dimethyl-1-[2-(methyl-phenyl-amino)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one as a yellow solid.
Example 22.

[0176]

Cyclohexyl-3-[7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea

[0177] A mixture of 1-[2-bromo-5-(2-trimethylsilyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.576 g, 1.40 mmol), benzophenone imine (0.26 mL, 1.54 mmol), cesium carbonate (0.912 g, 2.80 mmol), palladium acetate (0.031 g, 0.14 mmol) and BINAP (0.087 g, 0.14 mmol) in 14 mL of tetrahydrofuran was stirred at 90 °C in a sealed tube for 64 h then concentrated. The resulting residue was taken up in 30 mL of ethyl acetate and sequentially washed with 30 mL of water and 30 mL of a sat. aq. NaCl solution, dried over MgSO₄, filtered and concentrated to a residue. Column chromatography (10->25% EtOAc/hexanes) afforded 0.670 g (93%) of 1-[2-(benzhydrylidene-amino)-5-(2-trimethylsilyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one as a yellow oil.

Example 23.

[0178]

A mixture of 1-[2-(benzhydrylidene-amino)-5-(2-trimethylsilyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.670 g, 1.31 mmol), sodium acetate (0.258 g, 3.14 mmol) and hydroxylamine hydrochloride (0.164 g, 2.36 mmol) in 13 mL of methanol was stirred for 1 h, then concentrated to a residue. Column chromatography (10->50% EtOAc/hexanes) afforded 0.359 g (79%) of 1-[2-amino-5-(2-trimethylsilyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one as a white solid.
Example 24.

A solution of 1-[2-amino-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one (0.100 g, 0.287 mmol) and cyclohexyl isocyanate (0.37 mL, 2.9 mmol) in 3 mL of dichloroethane was stirred at reflux for 19 h, then concentrated to a residue. Column chromatography (10->50% EtOAc/hexanes) afforded 0.103 g (76%) of 1-cyclohexyl-3-[7-(2,2-dimethyl-propionyl)-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea as a brown solid.

Example 25.

A solution of 1-cyclohexyl-3-[7-(2,2-dimethyl-propionyl)-5-(2-trimethylsilanyl-ethoxymethyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea (0.102 g, 0.215 mmol) in 2 mL of dichloromethane and 2 mL of trifluoroacetic acid was stirred for 1 h, then concentrated, chasing twice with toluene. The residue was dissolved in 2 mL of ethanol and treated with sodium acetate trihydrate (0.293 g, 2.15 mmol). The mixture was stirred for 16 h, then concentrated to a residue. Column chromatography (50->80% EtOAc/hexanes) afforded 0.050 g (68%) of 1-cyclohexyl-3-[7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea as a white solid.

Compound prepared in similar fashion as 1-cyclohexyl-3-[7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea:

Cycloheptyl-3-[7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-urea

JAK Assay Information

Determination of IC₅₀ of Janus Kinase (JAK) inhibition:

Enzymes and peptide substrate used are described below:
JAK1: Recombinant human kinase domain from Invitrogen (Cat # PV4774)
JAK3: Recombinant human kinase domain from Millipore (Cat # 14-629) or prepared.
JAK2: Recombinant human kinase domain from Millipore (Cat # 14-640)
Substrate: N-terminally biotinylated 14-mer peptide derived from activation loop of JAK1 with sequence of the peptide substrate: Biotin-KAIETDKEYYTVKD

[0186] Assay conditions used are described below:

Assay Buffer: JAK Kinase Buffer: 50mM Hepes [pH 7.2], 10mM MgCl₂, 1mM DTT, 1 mg/ml BSA. The assay is carried out in this buffer.
Assay Format: The kinase activity of all three JAK kinases is measured using a radioactive, end-point assay and with trace amounts of ³³P-ATP. The assays are carried out in 96-well polypropylene plates.

Experimental Method:

[0187] All concentrations are final in the reaction mixture and all incubations are carried at room temperature. Assay steps are described below:

Compounds are serially diluted in 100% DMSO typically at a 10x starting concentration of 1 mM. Final concentration of DMSO in the reaction is 10%.
Compounds are preincubated with enzyme (0.5 nM JAK3 (commercially available), 0.2 nM JAK3 (prepared), 1 nM JAK2, 5 nM JAK1) for 10 minutes.
Compounds are preincubated with enzyme (0.5 nM JAK3, 1 nM JAK2, 5 nM JAK1) for 10 minutes.

[0188] Reactions are initiated by the addition of a cocktail of the two substrates (ATP and peptide premixed in the JAK Kinase Buffer). In the JAK2/JAK3 assays, ATP and the peptide are used at concentrations of 1.5μM and 50μM, respectively. JAK1 assay is carried out at an ATP concentration of 10μM and a peptide concentration of 50μM. The duration of the assay for JAK2 and JAK3 is 20 minutes. JAK1 assay is carried out for 40 minutes. With all three enzymes, reactions are terminated by the addition of 0.5M EDTA to a final concentration of 100mM.

[0189] 25 μl of terminated reactions are transferred to 150 μl of a 7.5% (v/v) slurry of streptavidin-coated sepharose beads in MgCl₂- and CaCl₂-free 1x Phosphate Buffered Saline containing 50mM of EDTA in 96-well, 1.2um MultiScreen-BV filter plates. After a 30-minute incubation, the beads are washed under vacuum with the following buffers:

3 to 4 washes with 200 μl of 2M NaCl.
3 to 4 washes with 200 μl of 2M NaCl plus 1% (v/v) phosphoric acid.
1 wash with water.

[0190] Washed plates are dried in a 60˚C oven for between 1 to 2 hours.

[0191] 70 μl of Microscint 20 scintillation fluid is added to each well of filter plates and after at least 30 minutes of incubation, radioactive counts are measured in a Perkinelmer microplate scintillation counter.

[0192] Representative IC₅₀ results are in Table II below:

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC₅₀ h-jak2-sf21-c</th>
<th>IC₅₀ h-jak3-sf21-c</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>0.1289</td>
<td>0.0592</td>
</tr>
<tr>
<td>I-34</td>
<td>0.47999</td>
<td>0.49753</td>
</tr>
</tbody>
</table>

SYK Assay Information

Determination of IC₅₀ of Spleen Tyrosine Kinase (SYK) inhibition:

[0193] SYK kinase assay is a standard kinase assay adapted to a 96 well plate format. This assay is performed in 96-well format for IC₅₀ determination with 8 samples which represented 10 half log dilutions and a 40 μL reaction volume. The assay measures the incorporation of radiolabeled ³³P γATP into an N-terminally biotinylated peptide substrate,
derived from naturally occurring phosphoacceptor consensus sequence (Biotin-11aa DY'E). Phosphorylated products were detected upon termination of reactions with EDTA and the addition of Streptavidin coated beads. Representative results are in Table II above.

Assay plates: 96-well MultiScreen 0.65um filter plates (Millipore Cat. No.: MADVNOB10)
Streptavidin coated beads: Streptavidin Sepharose TM, suspension 5.0mL, in 50mM EDTA/PBS diluted (1:100), (Amersham, Cat. No.: 17-5113-01)
Compounds: 10 mM in 100% dimethylsulfoxide (DMSO), final conc.: compound 0.003-100uM in 10% DMSO
Enzyme: SYK RPA purified, truncated construct of Spleen Tyrosine Kinase aa 360-635, stock solution 1 mg/mL, MW: 31.2 KDa, final conc.: 0.0005 μM.
Peptide: biotinylated peptide is derived from a naturally occurring phosphor-acceptor consensus sequence (Biotin-EPEGDYEEVLE), special order from QCB, stock solution 20mM, final conc.: 5.0 μM.
ATP: Adenosine-5'-triphosphate 20 mM, (ROCHE Cat. No.: 93202720), final concentration: 20 μM
Buffer: HEPES: 2-Hydroxyethyl piperazine-2-ethanesulfonic acid (Sigma, Cat. No.: H-3375) final concentration: 50mM HEPES pH7.5
BSA: Bovine Serum Albumin Fraction V, fatty acid free (Roche Diagnostics GmbH, Cat. No. 9100221) diluted to a final concentration of 0.1%
EDTA: EDTA stock solution 500 mM, (GIBCO, Cat. No.: 15575-038) final concentration: 0.1 mM
DTT: 1,4-Dithiothreitol (Roche Diagnostics GmbH, Cat. No.: 197777), final conc.: 1mM
MgCl2 x 6H2O: MERCK, Cat. No.: 105833.1000, final concentration: 10mM
Assay Dilution Buffer (ADB): 50 mM HEPES, 0.1mM EGTA, 0.1mM Na Vanadate, 0.1mM β-glycerophosphate, 10 mM MgCl2, 1 mM DTT, 0.1% BSA, pH 7.5 Bead wash buffer: 10 g/L PBS (Phosphate buffered saline) with 2M NaCl+ 1% phosphoric acid.

Experimental Method:

[0194] In 40μL volume, 26μL of ADB diluted, purified recombinant human SYK360-635 [0.5 nM] was mixed with 4 μL of 10X concentrations of the test compounds, [usually 100μM-0.003μM] in [10%] DMSO and the mixture was incubated for 10 min at RT.
[0195] The kinase reaction was initiated by the addition of 10μL 4x substrate cocktail containing the DYE peptide substrate [0 or 5 μM], ATP [20 μM] and 33P-ATP [2μCi/rxn]. After incubation at 30˚C for 15 min, the reaction was terminated by the transfer of 25μL of the reaction sample to a 96 well 0.65μm Millipore MADVNOB membrane/plate containing 200μL of 5mM EDTA and 20% Streptavidine coated beads in PBS.
[0196] The unbound radionucleotides were washed under vacuum with 3 x 250μL 2M NaCl; 2 x 250 μL 2M NaCl+1% phosphoric acid; 1 x 250μL H2O. After the last wash membrane/plates were transferred to an adaptor plate, heat dried for 15 min at 60˚ C, and 50 μL scintillation cocktail was added to each well and 4 h later the amount of radioactivity was counted in a top counter.
[0197] The percent inhibition was calculated based on the uninhibited enzyme rate:

\[
\% \text{ Inhibition} = \frac{100}{1 + (\text{IC}_{50}/\text{Inhibitor conc})^a}
\]

[0198] The IC50 was calculated using a non-linear curve fit with XLfit software (ID Business Solution Ltd., Guilford, Surrey, UK).
[0199] The foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity and understanding. It will be obvious to one of skill in the art that changes and modifications may be practiced within the scope of the appended claims. Therefore, it is to be understood that the above description is intended to be illustrative and not restrictive. The scope of the invention should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the following appended claims, which such claims are entitled.

Claims

1. A compound of Formula I
wherein:

R is R1, R2, R3, or R4;

R1 is C1-6 alkyl, phenyl, benzyl, heteroaryl, cycloalkyl, heterocycloalkyl, or cycloalkylalkyl, optionally substituted with one or more R1a;

R1a is R1b or R1c;

R1b is halogen, oxo, hydroxy, or -CN;
R1c is -C(=O)O(R1f), -C(=O)CH2(R1c), -S(R1f), -S(O)2(R1f), or -S(=O)(R1f), C1-6 alkyl, C1-6 alkoxy, amino, amido, C1-6 haloalkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, cycloalkyloxy, or heterocycloalkyloxy optionally substituted with one or more R1d;

R1d is H, halogen, hydroxy, C1-6 alkyl, C1-6 alkoxy, or C1-6 haloalkyl;

R2 is N(R2a)2;

each R2a is independently H or R2b;

each R2b is independently C1-6 alkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, or heterocycloalkyl alkylene, optionally substituted with one or more R2c;

R2c is R2d or R2e;

R2d is halogen, oxo, or hydroxy;
R2e is N(R2g)2, -C(=O)(R2g), -C(=O)O(R2g), -C(=O)N(R2g)2, -N(R2g)C(=O)(R2g), -S(=O)2(R2g), -S(O)2N(R2g)2, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, phenyl, heteroaryl, heterocycloalkyl, or heterocycloalkylalkylene, optionally substituted with one or more R2f;

each R2f is independently H, halogen, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl;

R3 is -C(=O)R3a;

R3a is C1-6 alkyl, C1-6 alkoxy, phenyl, or N(R3b)2;

each R3b is independently H or C1-6 alkyl;

R4 is -O(R4a);

R4a is H or R4b;

R4b is C1-6 alkyl, phenyl, benzyl, C1-6 haloalkyl, cycloalkyl, heterocycloalkyl, heteroaryl, optionally...
substituted with one or more R4c;
R4c is halogen, hydroxy, C1-6 alkyl, C1-6 haloalkyl, or C1-6 alkoxy;
Q3 is -O-Q3a, -C(=O)(Q3a), -O(CH2)mC(O)(Q3a), -S(=O)2(Q3a), -N(Q3a)2, -N(Q3a)S(=O)2(Q3a), N(Q3a)C(=O)(Q3a),-C(=O)N(Q3a)2, or -N(Q3a)C(=O)N(Q3a)2;
each Q3a is H, C1-6 alkyl, phenyl or cycloalkyl, optionally substituted with one or more Q3d; and
each Q3d is independently Q3e or Q3f;
Q3e is halogen or hydroxy;
Q3f is C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, phenyl, cycloalkyl, heterocycloalkyl, or heteroaryl, optionally substituted with one or more Q3g; and
each Q3g is independently halogen, hydroxy, C1-6 alkyl, C1-6 alkoxy;
hydroxyalkyl, C1-6 haloalkyl, or C1-6 alkoxy;
or a pharmaceutically acceptable salt thereof.

2. The compound of claim 1, wherein R is R1.

3. The compound of claim 2, wherein R1 is C1-6 alkyl, preferably tert-butyl.

4. The compound of claim 1, wherein R is R2 and R2 is NH(R2a) and R2a is R2b, preferably R2b is C1-6 alkyl.

5. A compound according to claim 1 of formula II:

\[
\begin{align*}
&\text{wherein} \\
&R1 \text{ is C1-6 alkyl, phenyl, benzyl, heteroaryl, cycloalkyl, heterocycloalkyl, or cycloalkylalkyl, optionally substituted with one or more R1a;} \\
&R1a \text{ is R1b or R1c;} \\
&R1b \text{ is halogen, oxo, hydroxy, or -CN;} \\
&R1c \text{ is -C(O)(CH2)m(R1e), -O(C(=O)CH2)m(R1f), -S(O)2(R1f), or -S(=O)2(R1f), C1-6 alkyl, C1-6 alkoxy, amino, amido, C1-6 haloalkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, cycloalkyloxy, or heterocycloalkyloxy optionally substituted with one or more R1d;} \\
&R1d \text{ is H, halogen, hydroxy, C1-6 alkyl, amino, C1-6 alkoxy, or C1-6 haloalkyl;} \\
&R1e \text{ is H, C1-6 alkyl, C1-6 alkoxy, cyano, C1-6 haloalkyl, phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl;} \\
&R1f \text{ is H, C1-6 alkyl, C1-6 haloalkyl, phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl;} \\
&m \text{ is 0, 1, or 2; and }
\end{align*}
\]
Q³ is as defined in claim 1.

6. A compound according to claim 1 of formula III:

wherein

R²b is independently C₁-₆ alkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, or heterocycloalkyl alkyne,
optionally substituted with one or more R²c;

R²c is R²d or R²c;

R²d is halogen, oxo, or hydroxy;

R²c is -N(R²g)(=O)(=O)(=O), -C(=O)R²g, -C(=O)OR²g, -C(=O)N(R²g)(=O)(=O), -S(=O)₂R²g, -S(=O)R²g,
N(R²g), C₁-₆ alkyl, C₁-₆ alkoxy, C₁-₆ haloalkyl, phenyl, heteroaryl, heteroaryloxy, cycloalkyl, or heterocycloalkyl,
optionally substituted with one or more R²f;

each R²f is independently H, halogen, C₁-₆ alkyl, C₁-₆ alkoxy, C₁-₆ haloalkyl;

each R²g is independently H, C₁-₆ alkyl, C₁-₆ alkoxy, C₁-₆ haloalkyl, or phenyl; and

Q³ is as defined in claim 1.

7. A compound according to claim 1 or 5, wherein R¹ is C₁-₆ alkyl, preferably tert-butyl.

8. A compound according to any one of the claims 1 to 7, wherein Q³a is C₁-₆ alkyl, phenyl or cycloalkyl,
optionally substituted with one or more Q³d, wherein Q³d is as defined in claim 1.

9. A compound according to claim 1 selected from the group consisting of:

2-(Cyclopentyl-methyl-amino)-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid isopropylamide;
1-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-2,2-dimethyl-propan-1-one;
1-(2-Cyclopentyl-oxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
N-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-benzamide;
Cyclohexane-carboxylic acid [7-(2,2-dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-amide;
N-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-N-methyl-benzamide;
N-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-benzenesulfonamide;
N-[7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-N-methyl-benzenesulfonamide;
7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazine-2-carboxylic acid dimethylamide;
7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazine-2-carboxylic acid isopropylamide;
1-(2-Acetyl-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
1-(2-Iso-butyl-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
2,2-Dimethyl-1-[2-(2-methyl-benzoxy)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one;
1-(2-Benzoyl-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazine-2-carboxylic acid cycloheptylamine;
2,2-Dimethyl-1-[2-(pyridine-4-carbonyl)-4H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one;
2,2-Dimethyl-1-[2-(pyridine-3-carbonyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-one;
1-(2-Cyclohexyl-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
10. Use of the compound of claim 1 in the manufacture of a medicament for the treatment of an inflammatory disorder or of an autoimmune disorder.

11. Compound according to any one of the claims 1 to 9 for use in the treatment of an inflammatory disorder or of an autoimmune disorder.

Patentansprüche

1. Eine Verbindung der Formel I

\[
\text{I} \quad \begin{array}{c}
\text{O} \\
\text{Q}^3
\end{array}
\]

wobei:

R gleich R¹, R², R³ oder R⁴ ist;

R¹ gleich C₁₋₆-Alkyl, Phenyl, Benzyl, Heteroaryl, Cycloalkyl, Heterocycloalkyl oder Cycloalkylalkyl ist, gegebenenfalls substituiert mit einem oder mehreren R¹a;

R¹a gleich R¹b oder R¹c ist;

R¹b gleich Halogen, Oxo, Hydroxy oder -CN ist;

R¹c gleich -C(=O)O(R¹f), -C(=O)CH₂(R¹e), -S(R¹f), -S(O)₂(R¹f) oder -S(=O)(R¹f), C₁₋₆-Alkyl, C₁₋₆-Alkaxy,
Amino, Amido, C₁₋₆-Halogenalkyl, Phenyl, Heteroaryl, Cycloalkyl, Heterocycloalkyl, Cycloalkyloxy oder Heterocycloalkyloxy ist, gegebenenfalls substituiert mit einem oder mehreren R¹d;
R¹d gleich H, Halogen, Hydroxy, C₁₋₆-Alkyl, C₁₋₆-Alkoxy oder C₁₋₆-Halogenalkyl ist;
R¹e gleich H, C₁₋₆-Alkyl, C₁₋₆-Alkoxy, -CN, C₁₋₆-Halogenalkyl, Phenyl, Heteroaryl, Cycloalkyl oder Heterocycloalkyl ist;
R¹f gleich H, C₁₋₆-Alkyl, C₁₋₆-Halogenalkyl, Phenyl, Heteroaryl, Cycloalkyl oder Heterocycloalkyl ist;

R² gleich N(R²a)₂ ist;

jeder Rest R²a unabhängig H oder R²b ist;
jeder Rest R²b unabhängig C₁₋₆-Alkyl, Phenyl, Heteroaryl, Cycloalkyl, Heterocycloalkyl oder Heterocycloalkylalkyl ist, gegebenenfalls substituiert mit einem oder mehreren R²c;
R²c gleich R²d oder R²e ist;
R²d gleich H, C₁₋₆-Alkyl, C₁₋₆-Halogenalkyl, Phenyl, Heteroaryl, Heteroaryloxy, Cycloalkyl oder Heterocycloalkyl ist;
jeder Rest R²f unabhängig H, Halogen, C₁₋₆-Alkyl, C₁₋₆-Alkoxy, C₁₋₆-Halogenalkyl ist;
jeder Rest R²g unabhängig H, C₁₋₆-Alkyl, C₁₋₆-Alkoxy, C₁₋₆-Halogenalkyl oder Phenyl ist;

R³ gleich -C(=O)R³a ist;

R³a gleich C₁₋₆-Alkyl, C₁₋₆-Alkoxy, Phenyl oder N(R³b)₂ ist;
jeder Rest R³b unabhängig H oder C₁₋₆-Alkyl ist;

R⁴ gleich -O(R⁴a) ist;

R⁴a gleich H oder R⁴b ist;
R⁴b gleich C₁₋₆-Alkyl, Phenyl, Benzyl, C₁₋₆-Halogenalkyl, Cycloalkyl, Heterocycloalkyl, Heteroaryl ist, gegebenenfalls substituiert mit einem oder mehreren R⁴c;
R⁴c gleich Halogen, Hydroxy, C₁₋₆-Alkyl, C₁₋₆-Halogenalkyl oder C₁₋₆-Alkoxy ist;

Q³ gleich -O-Q³a, -C(=O)(Q³a), -O(CH₂)mC(=O)(Q³a), -S(=O)₂(Q³a), -N(Q³a)₂, -N(Q³a)S(=O)₂(Q³a), -N(Q³a)C(=O)(Q³a), -C(=O)N(Q³a)₂ oder -N(Q³a)C(=O)N(Q³a)₂ ist;

jeder Rest Q³a gleich H, C₁₋₆-Alkyl, Phenyl oder Cycloalkyl ist, gegebenenfalls substituiert mit einem oder mehreren Q³b;
jeder Rest Q³b unabhängig Q³c oder Q³d ist;
Q³c gleich Halogen oder Hydroxy ist;
Q³d gleich C₁₋₆-Alkyl, C₁₋₆-Alkoxy, C₁₋₆-Halogenalkyl, Phenyl, Cycloalkyl, Heterocycloalkyl oder Heteroaryl ist, gegebenenfalls substituiert mit einem oder mehreren Q³e;
jeder Rest Q³e unabhängig Halogen, Hydroxy, C₁₋₆-Alkyl, C₁₋₆-Hydroxyalkyl, C₁₋₆-Halogenalkyl oder C₁₋₆-Alkoxy ist;

oder ein pharmazeutisch verträgliches Salz davon.

2. Die Verbindung nach Anspruch 1, wobei R gleich R¹ ist.

3. Die Verbindung nach Anspruch 2, wobei R¹ gleich C₁₋₆-Alkyl, vorzugsweise tert-Butyl, ist.

4. Die Verbindung nach Anspruch 1, wobei R gleich R² ist und R² gleich NH(R²a) ist und R²a gleich R²b ist, wobei vorzugsweise R²b gleich C₁₋₆-Alkyl ist.

5. Eine Verbindung der Formel II gemäß Anspruch 1:
wobei

\[R^1 \text{ gleich } C_{1-6}\text{-Alkyl, Phenyl, Heteroaryl, Cycloalkyl, Heterocycloalkyl oder Cycloalkylyalkyl ist, gegebenenfalls substituiert mit einem oder mehreren } R^{1a}; \]

\[R^{1a} \text{ gleich } R^{1b} \text{ oder } R^{1c} \text{ ist; } \]

\[R^{1b} \text{ Halogen, Oxo, Hydroxy oder } -CN \text{ ist; } \]

\[R^{1c} \text{ gleich } -C(=O)O(R^{1f}), -C(=O)(CH_2)_m(R^{1e}), -O(CH_2)_m(R^{1e}), -S(R^{1f}), -S(O)_2(R^{1f}) \text{ oder } -S(=O)(R^{1f}), C_{1-6}\text{-Alkyl, } C_{1-6}\text{-Alkoxy, Amino, Amido, } C_{1-6}\text{-Halogenalkyl, Phenyl, Heteroaryl, Cycloalkyl, Heterocycloalkyl, Cycloalkyloxy oder Heterocycloalkyloxy ist, gegebenenfalls substituiert mit einem oder mehreren } R^{1d}; \]

\[R^{1d} \text{ gleich } H, \text{ Halogen, Hydroxy, } C_{1-6}\text{-Alkyl, Amino, } C_{1-6}\text{-Alkoxy oder } C_{1-6}\text{-Halogenalkyl ist; } \]

\[R^{1e} \text{ gleich } H, C_{1-6}\text{-Alkyl, } C_{1-6}\text{-Alkoxy, Cyano, } C_{1-6}\text{-Halogenalkyl, Phenyl, Heteroaryl, Cycloalkyl oder Heterocycloalkyl ist; } \]

\[R^{1f} \text{ gleich } H, C_{1-6}\text{-Alkyl, } C_{1-6}\text{-Halogenalkyl, Phenyl, Heteroaryl, Cycloalkyl oder Heterocycloalkyl ist; } \]

\[m \text{ gleich } 0, 1 \text{ oder } 2 \text{ ist; und } \]

\[Q^3 \text{ wie in Anspruch 1 definiert ist. } \]

\[Q^3 \text{ wie in Anspruch 1 definiert ist. } \]

6. Eine Verbindung der Formel III gemäß Anspruch 1:

\[R^{2b} \text{ unabhängig } C_{1-6}\text{-Alkyl, Phenyl, Heteroaeryl, Cycloalkyl, Heterocycloalkyl oder Heterocycloalkylyalkyl ist, gegebenenfalls substituiert mit einem oder mehreren } R^{2c}; \]

\[R^{2c} \text{ gleich } R^{2d} \text{ oder } R^{2e} \text{ ist; } \]

\[R^{2d} \text{ Halogen, Oxo oder Hydroxy ist; } \]

\[R^{2e} \text{ gleich } -N(R^{2g})_2, -C(=O)(R^{2g}), -C(=O)O(R^{2g}), -C(=O)N(R^{2g})_2, -N(R^{2g})C(=O)(R^{2g}), -S(=O)_2(R^{2g}), -S(O)_2N(R^{2g})_2, C_{1-6}\text{-Alkyl, } C_{1-6}\text{-Alkoxy, } C_{1-6}\text{-Halogenalkyl, Phenyl, Heteroaryl, Heteroaerylloxy, Cycloalkyl oder Heterocycloalkyl ist, gegebenenfalls substituiert mit einem oder mehreren } R^{2f}; \]

\[\text{jeder Rest } R^{2f} \text{ unabhängig } H, \text{ Halogen, } C_{1-6}\text{-Alkyl, } C_{1-6}\text{-Alkoxy, } C_{1-6}\text{-Halogenalkyl ist; } \]

\[\text{jeder Rest } R^{2g} \text{ unabhängig } H, C_{1-6}\text{-Alkyl, } C_{1-6}\text{-Alkoxy, } C_{1-6}\text{-Halogenalkyl oder Phenyl ist; und } \]

\[Q^3 \text{ wie in Anspruch 1 definiert ist. } \]
7. Eine Verbindung gemäß Anspruch 1 oder 5, wobei R₁ gleich C₁₋₄-Alkyl, vorzugsweise tert-Butyl, ist.

8. Eine Verbindung gemäß einem der Ansprüche 1 bis 7, wobei Q₃a gleich C₁₋₆-Alkyl, Phenyl oder Cycloalkyl ist, gegebenenfalls substituiert mit einem oder mehreren Q₃a, wobei Q₃d wie in Anspruch 1 definiert ist.

9. Eine Verbindung gemäß Anspruch 1, ausgewählt aus der Gruppe bestehend aus:

- 2-(Cyclopentylmethylamino)-5H-pyrrolo[2,3-b]pyrazin-7-carbonsäureisopropylamid;
- 1-[7-(2,2-Dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-2,2-dimethylpropan-1-on;
- 1-(2-Cyclohexyloxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethylpropan-1-on;
- N-[7-(2,2-Dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-benzamid;
- Cyclohexancarbonsäur-[7-(2,2-dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-amid;
- N-[7-(2,2-Dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-N-methylbenzamid;
- N-[7-(2,2-Dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]-benzolsulfonamid;
- 7-(2,2-Dimethylpropionyl)-5H-pyrrolo[2,3-b]pyrazin-2-carbonsäurecyclopentylamid;
- 2,2-Dimethyl-1-[2-(methylphenylamino)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-propan-1-on;
- 1-(2-Isobutoxy-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethylpropan-1-on;
- 1-[2-(6-Methoxypyridin-2-ylamino)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethylpropan-1-on.

10. Verwendung der Verbindung nach Anspruch 1 bei der Herstellung eines Medikaments für die Behandlung einer entzündlichen Störung oder einer Autoimmunstörung.

11. Verbindung gemäß einem der Ansprüche 1 bis 9 zur Verwendung bei der Behandlung einer entzündlichen Störung oder einer Autoimmunstörung.

Revendications

1. Composé de formule I
dans laquelle:

R représente un groupe R¹, R², R³ ou R⁴;

R¹ représente un groupe alkyle en C₁ à C₆, phényle, hétéroaryle, cycloalkyle, hétérocycloalkyle ou cycloalkylalkyle, facultativement substitué avec un ou plusieurs substituants R¹a;

R¹a représente un groupe R¹b ou R¹c;

R¹b représente un groupe halogéno, oxo, hydroxy ou -CN;
R¹c représente un groupe -C(=O)O(R¹f), -C(=O)-CH₂(R¹e), -S(R¹f)₂, -S(=O)(R¹f)₂ ou -S(O)(R¹f), alkyl en C₁ à C₆, alkoxy en C₁ à C₆, amino, amido, halogénoalkyle en C₁ à C₆, phényle, hétéroaryle, cycloalkyl, hétérocycloalkyle, cycloalkyloxy ou hétérocycloalkyloxy, facultativement substitué avec un ou plusieurs substituants R¹d;

R¹d représente H, un groupe halogéno, hydroxy, alkyle en C₁ à C₆, alkoxy en C₁ à C₆ ou halogénoalkyle en C₁ à C₆;
R¹e représente H, un groupe alkyle en C₁ à C₆, alkoxy en C₁ à C₆, -CN, halogénoalkyle en C₁ à C₆, phényle, hétéroaryle, cycloalkyl, hétérocycloalkyle;
R¹f représente H, un groupe alkyle en C₁ à C₆, halogénoalkyle en C₁ à C₆, phényle, hétéroaryle, cycloalkyl ou hétérocycloalkyle;
R¹g représente un groupe N(R²a)₂;
chaque groupe R²a représente indépendamment H ou un groupe R²b;
chaque groupe R²b représente indépendamment un groupe alkyle en C₁ à C₆, phényle, hétéroaryle, cycloalkyl, hétérocycloalkyle ou hétérocycloalkyloxy, facultativement substitué avec un ou plusieurs substituants R²c;
R²c représente un groupe R²d ou R²e;

R²d représente un groupe halogéno, oxo ou hydroxy;
R²e représente un groupe -N(R²a)₂, -C(=O)(R²a), -C(=O)O(R²a), -C(=O)N(R²a)₂, -N(R²a)₂, C(=O)(R²a), S(=O)₂(R²a), -S(=O)(R²a)₂, alkyle en C₁ à C₆, alkoxy en C₁ à C₆, halogénoalkyle en C₁ à C₆, phényle, hétéroaryle, hétéroaryloxy, cycloalkyl ou hétérocycloalkyle, facultativement substitué avec un ou plusieurs substituants R²f;
chaque groupe R²f représente indépendamment H, un groupe halogéno, alkyle en C₁ à C₆, alkoxy en C₁ à C₆, halogénoalkyle en C₁ à C₆;
chaque groupe R²g représente indépendamment H, un groupe alkyle en C₁ à C₆, alkoxy en C₁ à C₆, halogénoalkyle en C₁ à C₆, phényle;
R²h représente un groupe -C(O)R³;
R³a représente un groupe alkyle en C₁ à C₆, alkoxy en C₁ à C₆, phényle ou N(R³b)₂;
chaque groupe R3b représente indépendamment H ou un groupe alkyle en C1 à C6; R4 représente un groupe -O(R4a); R4a représente H ou un groupe R4b; R4b représente un groupe alkyle en C1 à C6, phényle, benzyle, halogénoalkyle en C1 à C6, cycloalkyle, hétérocycloalkyle ou hétéroaryle, facultativement substitué avec un ou plusieurs substituants R4c; R4c représente un groupe halogéno, hydroxy, alkyle en C1 à C6, halogénoalkyle en C1 à C6 ou alkoxy en C1 à C6; Q3 représente un groupe -O-Q3a, -C(=O)(Q3a), -O(CH2)mC(=O)(Q3a), -S(=O)2(Q3a), -N(Q3a)2, -N(Q3a)S(=O)2(Q3a), -N(Q3a)C(=O)(Q3a), -C(O)N(Q3a)2 ou -N(Q3a)C(=O)N(Q3a)2; chaque groupe Q3a représente H, un groupe alkyle en C1 à C6, phényle ou cycloalkyle, facultativement substitué avec un ou plusieurs substituants Q3d; et chaque groupe Q3d représente indépendamment un groupe Q3e ou Q3f; Q3e représente un groupe halogéno ou hydroxy; Q3f représente un groupe alkyle en C1 à C6, alkoxy en C1 à C6, halogénoalkyle en C1 à C6, phényle, cycloalkyle, hétérocycloalkyle ou hétéroaryle, facultativement substitué avec un ou plusieurs substituants Q3g; et chaque groupe Q3g représente indépendamment un groupe halogéno, hydroxy, alkyle en C1 à C6, hydroxyalkyle en C1 à C6, halogénoalkyle en C1 à C6 ou alkoxy en C1 à C6; ou un de ses sels pharmaceutiquement acceptables.

2. Composé suivant la revendication 1, dans lequel R représente un groupe R1.

3. Composé suivant la revendication 2, dans lequel R1 représente un groupe alkyle en C1 à C6, de préférence tertiair-butyle.

4. Composé suivant la revendication 1, dans lequel R représente un groupe R2 et R2 représente un groupe NH(R2a) et R2a représente un groupe R2b R2b représentant de préférence un groupe alkyle en C1 à C6.

5. Composé suivant la revendication 1, de formule II:

\[
\text{II}
\]

dans laquelle:

R1 représente un groupe alkyle en C1 à C6, phényle, benzyle, hétéroaryle, cycloalkyle, hétérocycloalkyle ou cycloalkylalkyle, facultativement substitué avec un ou plusieurs substituants R1a; R1a représente un groupe R1b ou R1c; R1b représente un groupe halogéno, oxo, hydroxy ou -CN; R1c représente un groupe -C(=O)OR1f, -C(=O)CH2m(R1e), -O(CH2)m(R1e), -S(R1f), -S(O)2(R1f) ou
EP 2 250 172 B1

-S(=O)(R 1f), alkyleen C 1 à C 6, alkoxyen C 1 à C 6, amino, amido, halogéno-alkyle en C 1 à C 6, phényle, hétéroaryle, cycloalkyle, hétérocycloalkyle, cycloalkyloxy, ou hétérocycloalkyloxy, facultativement substitué avec un ou plusieurs substituants R 1a;

R 1d représente H, un groupe halogéno, hydroxy, alkyle en C 1 à C 6, amino, alkoxy en C 1 à C 6 ou halogénoalkyle en C 1 à C 6;
R 1e représente H, un groupe alkyle en C 1 à C 6, alkoxy en C 1 à C 6, cyano, halogénoalkyle en C 1 à C 6, phényle, hétéroaryle, cycloalkyle ou hétérocycloalkyle;
R 1f représente H, un groupe alkyle en C 1 à C 6, halogénoalkyle en C 1 à C 6, phényle, hétéroaryle, cycloalkyle ou hétérocycloalkyle;

m est égal à 0, 1 ou 2 ; et

Q 3 est tel que défini dans la revendication 1.

6. Composé suivant la revendication 1, de formule III:

![Image](image.png)

III

dans laquelle

R 2b représente indépendamment un groupe alkyle en C 1 à C 6, phényle, hétéroaryle, cycloalkyle, hétérocycloalkyle ou hétérocycloalkyl-alkylène, facultativement substitué avec un ou plusieurs substituants R 2c;

R 2c représente un groupe R 2d ou R 2e;

R 2d représente un groupe halogéno, oxo ou hydroxy;
R 2e représente un groupe -N(R 2g) 2, -C(=O)(R 2g) 2, -C(=O)O(R 2g) 2, -C(=O)N(R 2g), -N(R 2g)C(=O)(R 2g),
-S(=O) 2(R 2g),-S(O) 2N(R 2g) 2, alkyleen C 1 à C 6, alkoxyen C 1 à C 6, halogénoalkyle en C 1 à C 6, phényle, hétéroaryle, hétéroaryloxy, cycloalkyle ou hétérocycloalkyle, facultativement substitué avec un ou plusieurs substituants R 2f ;

echaque groupe R 2f représente indépendamment H, un groupe halogéno, alkyle en C 1 à C 6, alkoxy en C 1 à C 6 ou halogénoalkyle en C 1 à C 6, phényle, hétéroaryle, cycloalkyle ou hétérocycloalkyle;

echaque groupe R 2g représente indépendamment H, un groupe alkyle en C 1 à C 6, alkoxy en C 1 à C 6, halogénoalkyle en C 1 à C 6 ou phényle; et

Q 3 est tel que défini dans la revendication 1.

7. Composé suivant la revendication 1 ou 5, dans lequel R 1 représente un groupe alkyle en C 1 à C 6, de préférence tertiobutyle.

8. Composé suivant l’une quelconque des revendications 1 à 7, dans lequel Q 3a représente un groupe alkyle en C 1 à C 6, phényle ou cycloalkyle, facultativement substitué avec un ou plusieurs substituants Q 3d, Q 3d étant tel que défini dans la revendication 1.

9. Composé suivant la revendication 1, choisi dans le groupe consistant en:

l’isopropylamide d’acide 2-(cyclopentyl-méthyl-amino)-5H-pyrrolo[2,3-b]pyrazine-7-carboxylique;
la 1-[7-(2,2-diméthyl-propionyl)-5H-pyrrolo[2,3-b]pyrazine-2-yl]-2,2-diméthyl-propane-1-one;
10. Utilisation du composé de la revendication 1 dans la production d’un médicament destiné au traitement d’un trouble inflammatoire ou d’un trouble auto-immun.

11. Composé suivant l’une quelconque des revendications 1 à 9, destiné à être utilisé dans le traitement d’un trouble inflammatoire ou d’un trouble auto-immun.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

Non-patent literature cited in the description

• Oncogene, 2000, vol. 19, 5662-5679 [0006]
• Goodman; Gilman’s. The Pharmacological Basis of Therapeutics. McGraw Hill Companies Inc, 2001 [0091]