NOVEL NANOCOMPOUND MATERIALS WITH INFRARED, ULTRAVIOLET AND VISIBLE ELECTROMAGNETIC RADIATION BLOCKING PROPERTIES AND METHOD FOR OBTAINING THEM

The invention in question relates to novel nanocompound materials which protect against infrared and ultraviolet-visible radiation, and to the method for obtaining said materials which comprises the following steps: reducing the size of the laminar particles by mechanical action, filtration, removal of organic material, removal of crystalline oxides and hard particles not modified, obtaining fine laminar material or laminar structures, treating the laminar structures using precursors, and adding the product of the above steps, either in the liquid state or in the dry state, to a plastic matrix. The invention also relates to the use of said materials in various sectors of industry.
Description

Technical field of the invention

[0001] The present invention relates to novel nanocomposite materials and their development thereof, for providing them with the advantageous capacity of blocking infrared, UV-VIS radiation. Said blocking is obtained by incorporating a specific type of natural and/or synthetic clay layers and that may or may not be intercalated with organic or with organic/inorganic hybrid materials, which are incorporated into a plastic matrix by solvent deposition and evaporation and/or by melt mixing processes.

[0002] Besides, the present invention relates to the use of novel materials for their application in multiple areas. The novel materials incorporate laminar nanoreinforcements which are added to thermoplastic and thermosetting polymeric materials for their application as a barrier against electromagnetic radiation in infrared, UV and visible regions. These nanocomposites allow blocking said electromagnetic radiation, either in a global or selective manner, due to the chemical composition thereof, their surface modification and the good dispersion of clay layers in the plastic matrix, and they lead to the absorption of the radiation that goes through the composite material. Due to the reduced size of the fillers, their being nanometric in thickness, and their high aspect/chemical function ratio, the application thereof becomes advantageous because they additionally result in synergies in other properties, such as the improvement of thermal or mechanical properties or of barrier properties to gases and vapours, and allow the possibility of incorporating active substances, such as antimicrobials, antioxidants, and bioactives, and allow fixing or controlled release thereof, as desired. These plastic material nanocomposites, may be prepared by different processing techniques conventionally used in the plastic processing and manufacturing, such as casting techniques and/or lamination (dissolution and evaporation of solvent) or melt mixing, for its advantageous application in the packaging of products of interest for the food industry as well as applications in other sectors.

[0004] For example, US Patent 4739007 describes the preparation of Nylon-6-clay nanocomposites from montmorillonites treated with alkylammonium salts by melt mixing method.

[0005] However, even including the numerous nanocomposite preparation methods described, and with different types of modified clays, there is no description of the manufacturing of nanocomposite materials with improved physical, mechanical, thermal and barrier properties when compared to the pure polymer and also with the capacity of blocking electromagnetic radiation, and with the additional capacity of allowing the fixing and/or the controlled release of antimicrobial, antioxidant and bioactive substances.

[0006] The protection against electromagnetic radiation is a basic requirement for many plastic applications, such as preserving packed food quality or greenhouse plastics. In this latter case metal and paper containers, which are opaque themselves, have this function; however, the most used plastic containers are generally transparent to a great part of electromagnetic radiation in the infrared (IR), ultraviolet (UV) and visible (VIS) zone. Therefore, research is being done on the protection against UV-VIS light in polymer packaging for sensitive food such as fruit, vegetables, juice, vitamin and sports drinks (M. van Aardt, S. E. Duncan, J. E. Marcy, T. E. Long, and C. R. Hackney. J DAIRY SCI 84 1341-1347 JUN 2001, Conrad, KR, Davidson, VJ, Mulholland, DL, Britt, I.J, Yada, S. J FOOD SCI 70 (1): E19-E25 JAN-FEB 2005, Goldhan G, Rieblingr K. European Food & Drink Review : No. 3, Autumn, 69, 71-72, 2002). There exist studies that show the UV-VIS light transmission spectra of polymer nanocomposite of some plastic materials (T.D. Fornes, P.J. Yoon, D.R. Polymer 44 (2003) 7545-755), polyamide (Yeh, J.M., Chen, C.L., Kuo, T.H., Su, W.F.H., Huang, S.Y., Liaw,
Brief description of the invention

As it has been described herein above, the present invention describes novel composite materials with barrier properties against the passage of electromagnetic radiation, obtained by the introduction of laminar nanocomposites in plastic materials, with advantageous applications in the sectors of coatings and of the packaging and packing, particularly for the industry of packaging for products aimed at product storage, since this active packaging enables to considerably improve barrier properties, as well as to protect food against UV-VIS radiation and allows for the fixing and/or controlled release of active substances and for other applications such as greenhouse films, and biomedical and pharmaceutical applications.

The laminar nanocomposites are mainly based on vermiculite- and kaolinite-type phyllosilicates and/or mixtures thereof among one another or with other phyllosilicates, and in all cases with or without surface modification. These two minerals have themselves unique properties for electromagnetic radiation blocking due to their natural composition and coloration. The surface modification, when it is applied, enables to make compatible, increase the electromagnetic radiation blocking capacity and for the clay to be better exfoliated in nonpolar plastic matrices, thus enabling to obtain a good morphology for improving electromagnetic radiation barrier and blocking properties. These nanocomposites are prepared by lamination or casting techniques and/or melt mixing.

Brief description of the drawings

There follows a description of the invention with reference to the attached drawings, in which:

Figure 1 is an image obtained by a transmission electron microscope (TEM) showing the main morphologies that can be observed in nanocomposites obtained according to the present invention. The image shows us that the clay layers are partially exfoliated in the polymer matrix, and that they show a thickness of nanometric sizes. It should be noted the high aspect ratio (length/thickness ratio) presented by the dispersed layers, which guarantees the high protection against the passage of electromagnetic radiation.

Figure 2 is an image obtained by an atomic force microscope showing phase morphologies that may be observed in nanocomposites of laminar biodegradable materials according to the present invention. In this photo, it can be observed that the vermiculite layers are perfectly intercalated and dispersed along the matrix producing a very effective blocking effect.

Figure 3 presents the UV-VIS spectra obtained by a UV-VIS spectrophotometer. This graphic shows the spectra of 30-micron films of the highly transparent polylactic acid polymer and its nanocomposites, with different contents and types of clays. It is observed that when the content of vermiculite-based clays increases, a more intense UV-Vis radiation blocking is produced. It is also observed that for the same nanoadditive content (5% Wt.) the higher reduction of UV-Vis light transmission is for the nanocomposite with vermiculite-based clay, compared to that of the nanocomposite with montmorillonite-based clay. This is due to the high specific light blocking properties, particularly against ultraviolet light, of the vermiculites and kaolinite clays modified with those of other phyllosilicates. On the y-axis the wavelength (nm) is measured against the transmission % on the x-axis.

Figure 4 shows a graphic with water permeability values (y-axis measured in Kg m/s m² Pa) for several plastic materials (polylactic acid, polycaprolactone and polyhydroxybutyrate-valerate copolymer) and their nanocomposites with different clay contents. It is observed how water permeability is considerably reduced in the case of nanocomposites for the three biopolymers.
Detailed description of the invention

[0011] The present invention describes novel nanocomposite materials (nanocomposite polymer films), from the incorporation of nanoreinforcements of clays of laminar silicate and/or layered double hydroxide types, although the vermiculite- and kaolinite-type clays, with or without organic modification, will be preferably used. These materials will be characterized by the introduction of fillers of the laminar type with a thickness in the range of nanometres, in plastic matrices. These materials present some improvements in the thermal, mechanical and barrier properties, in relation to the pure material, allow electromagnetic radiation blocking, and also allow the controlled release of substances with antimicrobial, antioxidant and bioactive properties.

[0012] The novel method for the manufacturing of the nanocomposite materials described in the present invention, which may be based on structures such as laminar phyllosilicates, including clays (for example, montmorillonite, kaolinite, bentonite, smectite, hectorite, sepiolite, saponite, halloysite, vermiculite, mica) or synthetic or natural laminar layered double hydroxides with a laminar structure and which will be preferably based on vermiculite-and kaolinite-type materials, and which are or are not intercalated with materials of the organic type, comprises the following stages:

1) Reducing the size of the laminar particles by mechanical action, for example, by means of grinding technologies.
2) Filtering in vibrating sieves, filter press or any other wet/dry filtering system until reaching an interval comprised from 0.1 to 100 microns, preferably a decrease of the particle size under 25 microns is obtained, and more preferably under 3 microns, in the so-called D90 (no more than 10% of the material is above this value).
3) Removal of the organic matter by, and in a non-limiting sense, decanting techniques, supernatant removal or chemical reaction with oxidant substances such as peroxides.
4) Removal of the crystalline oxides and hard particles that are not subject to modification by centrifugation and/or gravimetric processes in dissolution or by turbodryers, preferably by either a wet or dry centrifugation process followed by atomization (typically called spray drying) with controlled depression.
5) Obtaining thin layers, considered the starting product of the present invention.
6) Pre-treatment of laminar structures in one or in several steps, by means of precursors of the expanding type as shown in Table 1.

<table>
<thead>
<tr>
<th>MODIFIER</th>
<th>(d_{\text{MODIFIER}}) (nm)</th>
<th>MODIFIER</th>
<th>(d_{\text{MODIFIER}}) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-modified Kaolinite</td>
<td>0.72</td>
<td>Non-modified Montmorillonite</td>
<td>0.98</td>
</tr>
<tr>
<td>Dimethyl sulfoxide</td>
<td>1.11</td>
<td>Ethylene polyoxide</td>
<td>1.12</td>
</tr>
<tr>
<td>N-methyl formamide (NMF)</td>
<td>1.02</td>
<td>Cellulose acetobutyrate</td>
<td>1.13</td>
</tr>
<tr>
<td>Hydrated hydrazine</td>
<td>1.03</td>
<td>Calcium butyrate</td>
<td>0.92</td>
</tr>
<tr>
<td>Water</td>
<td>0.78</td>
<td>Saccarose acetoisobutyrate</td>
<td>1.08</td>
</tr>
<tr>
<td>Alcohols</td>
<td>1.10</td>
<td>Manganese butyrate</td>
<td>0.95</td>
</tr>
<tr>
<td>Hydrazine anhydrous</td>
<td>0.96</td>
<td>Carboxymethyl starch</td>
<td>>3</td>
</tr>
<tr>
<td>Acetamide</td>
<td>1.09</td>
<td>Starch</td>
<td>1.21</td>
</tr>
<tr>
<td>DMSO+Methanol(MeOH)</td>
<td>1.12</td>
<td>Hidroxyethyl starch</td>
<td>1.15</td>
</tr>
<tr>
<td>Hexanoic acid</td>
<td>1.23</td>
<td>Hydroxypropyl starch</td>
<td>1.14</td>
</tr>
<tr>
<td>Acrylamides</td>
<td>1.44</td>
<td>Adonitol</td>
<td>1.04</td>
</tr>
<tr>
<td>Glucose</td>
<td>1.25</td>
<td>Sorbitol</td>
<td>1.19</td>
</tr>
<tr>
<td>Archylamide</td>
<td>1.14</td>
<td>Dibenzylidene sorbitol</td>
<td>1.16</td>
</tr>
<tr>
<td>Salicylic acid</td>
<td>1.07</td>
<td>Ethylene glycol</td>
<td>0.95</td>
</tr>
<tr>
<td>Manganese acetate</td>
<td>1.41</td>
<td>Polypropylene glycol</td>
<td>1.01</td>
</tr>
<tr>
<td>Caprolactam</td>
<td>1.18</td>
<td>Propylene glycol</td>
<td>1.01</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>1.21</td>
<td>Glycolic acid</td>
<td>1.06</td>
</tr>
<tr>
<td>Potassium acetate</td>
<td>1.39</td>
<td>Triethylene glycol</td>
<td>1.08</td>
</tr>
</tbody>
</table>
Preferably the expanders are selected from the group formed by DMSO, alcohols, acetates, or water and mixtures thereof, which activate the fines by an initial increase of the basal spacing of the layers and modify the surface characteristics of the clay. The penetration of the precursors will be accelerated by means of temperature, a homogenizer working in turbulent regime, ultrasound, pressure or combination thereof. They may be dried by evaporation in a stove, lyophilization, centrifugation and/or gravimetric processes in dissolution or turbodryers or by atomization typically called spray drying. According to another preferred embodiment of the present invention, the dissolution of the intercalated precursor may be used, without a previous drying process, as a starting medium for the following stage of modifier incorporation.

7) Optionally, intercalating in an aqueous base or with polar solvents, organic or hybrid substances in the laminar structure. In this same sense, the compounds to be intercalated are selected, and in a non-limiting sense, from the group formed by PVOH, EVOH and derivates of the same family, and/or biopolymers such as peptides and natural or synthetic proteins obtained by means of chemical or genetic modification of microorganisms or plants, and natural or synthetic polysaccharides obtained by means of chemical or genetic modification of microorganisms or plants and polypeptides, nucleic acids and synthetic nucleic acid polymers obtained by chemical or genetic modification of microorganisms or plants, and biodegradable polyesters such as polylactic acid, polylactic-glycolic acid, adipic acid and derivatives and the polyhydroxyalkanoates, preferably polyhydroxybutyrate and their copolymers with valerates, biomedical materials such as the hydroxypatites and phosphates of organic salts and quaternary ammonium salts - preferably hexadecyltrimethylammonium bromide - and other particles or nanoparticles with electromagnetic radiation blocking capacity, such as titanium dioxide and others typically used for this function.

When the organic material that is intercalated is the EVOH or any material of the family thereof, with molar contents of ethylene preferably lower than 48%, and more preferably lower than 29%, they are taken to saturation in an aqueous medium or in specific solvents of the alcoholic type and mixtures of alcohols and water, more preferably of water and isopropanol in water volume proportions greater than 50%.

On the other hand, the biopolymers with or without plasticizers, with or without crosslinkers and with or without emulsifiers or tensioactives or another type of additives, belong to the group formed by synthetic and natural (vegetable or animal) polysaccharides, such as cellulose and derivatives, carrageenans and derivatives, alginates, dextran, gum arabic and preferably chitosan or any of its natural or synthetic derivatives, more preferably chitosan salts and even more preferably chitosan acetate, and proteins derived from plants and animals as well as maize proteins (zein), gluten derivatives, such as gluten or its gliadin and glutenin fractions and more preferably gelatin, casein and soya proteins and derivatives thereof, as well as natural or synthetic polypeptides preferably of the elastin type obtained by means of chemistry or genetic modification of microorganisms or plants and mixtures thereof.

In the case of chitosan the deacetylation degree will be preferably higher than 80% and more preferably higher than 87%. The penetration of the precursors will be accelerated by means of temperature, a homogenizer working in turbulent regime, ultrasound, pressure or a combination thereof.

In a subsequent or alternative step to the dissolution of the fine agents pretreated with the previously proposed precursors and modifying agents, low molecular weight substances having an active or bioactive nature will be optionally added so as to be intercalated or released in a controlled manner, giving rise to nanocomposites with active or bioactive capacity. The active substances will be ethanol, or ethylene, or of the essential oil type, preferably thymol, carvacrol,
EXAMPLES

Understood with the following examples. Furthermore, the examples are illustrative rather than limiting so that the present invention can be used to reinforce the electromagnetic radiation blocking in plastic packaging applications in general, and in food and food component packaging applications in particular, for biomedical applications such as nanobiocomposites and in pharmaceutical applications for optionally releasing active ingredients, as a barrier to solvents and organic products, such as aromas and aroma components, oils, fats and hydrocarbons, and to mixed products of organic and inorganic nature, for applications requiring a biodegradable or compostable nature, for active packaging requiring antimicrobial, antioxidant nature or of any type requiring the controlled release of low molecular weight substances, preferably volatile, for applications requiring antimicrobial capacity and for the use of biopolymers either without the need of using plasticizers or with the need of using lower amounts thereof.

According to another fundamental aspect of the present invention, the nanocomposite materials obtained by means of the method described in the present invention are used to reinforce the electromagnetic radiation blocking in plastic packaging applications in general, and in food and food component packaging applications in particular, for biomedical applications such as nanobiocomposites and in pharmaceutical applications for optionally releasing active ingredients, as a barrier to solvents and organic products, such as aromas and aroma components, oils, fats and hydrocarbons, and to mixed products of organic and inorganic nature, for applications requiring a biodegradable or compostable nature, for active packaging requiring antimicrobial, antioxidant nature or of any type requiring the controlled release of low molecular weight substances, preferably volatile, for applications requiring antimicrobial capacity and for the use of biopolymers either without the need of using plasticizers or with the need of using lower amounts thereof.

All the features and advantages set forth, as well as other features proper to the invention, may be better understood with the following examples. Furthermore, the examples are illustrative rather than limiting so that the present invention can be better understood.

EXAMPLES

Example 1: Polylactic acid films with different contents (1%, 5%, 10% and 20%) of vermiculite-type clays modified with 40% mass of hexadecyltrimethylammonium bromide and of a montmorillonite-type clay (5%) modified with 40% mass of hexadecyltrimethylammonium bromide. Initially, the modified clay was dispersed in a chloroform dissolution, under ambient conditions. The polymer (polylactic acid) was added at 5% Wt. in the organic solvent. A thin film was formed by solvent evaporation, casting process. These nanocomposites were characterized by studying their morphology, as well as their barrier properties against water, limonene (food aroma simulator) and oxygen. In another study the UV-Vis light dispersion capacity was proved. For this, the UV-Vis radiation absorption capacity was tested on castings of around 30 microns. While the pure polymer has a transmittance of around 100%, the PLA+20% clay films enable to reduce UV light transmission 85-90%, thus reaching an effective blocking of UV radiation passage and also of a great amount of the visible radiation passage. In the case of the visible spectrum, a 70% radiation blocking was achieved with the addition of 20% of clay content (See Figure 3). This type of appropriately modified vermiculite-type clays produces
a strong light blocking in both the UV and the visible region, due to the great nanometric dispersion reached in the matrix. The application of these biodegradable polylactic acid nanocomposites gives rise to the creation of very interesting packaging, which can be used for example in the preservation of food sensitive to UV-Vis radiation and to low molecular weight gases such as oxygen, steam and limonene.

Example 2: Nanocomposite material films of PLA, polycaprolactone (PCL) and polyhydroxybutyrate-co-valerate (PHBV) by introduction of different contents of vermiculite-type clay modified with hexadecyltrimethylammonium bromide. Initially, the clay was dispersed in a chloroform dissolution, under ambient conditions. The polymer (polylactic acid) was added at 5% Wt. in chloroform. A film of the material was formed by solvent evaporation. The water permeability (see Figure 4) and limonene permeability were studied in these biopolymers and their nanocomposites. As for water permeability, PCL films with 1, 5 and 10% clay have a water permeability reduction of 54%, 63% and 63%, respectively, compared to the pure material. Water permeability improvements improve with the increase of clay content, although in the case of films with 5 and 10% clay water reduction is the same. As for limonene permeability, PCL films with 5% clay show the best limonene permeability values. The application of these nanocomposites give rise to the creation of very interesting materials, which can be used for example in the preservation of food sensitive to low molecular weight gases such as oxygen, steam and limonene.

Claims

1. A method for the obtention of nanocomposite materials, characterized in that it comprises the following stages:
 a. reduction of laminar particle size by mechanical action;
 b. filtering;
 c. removal of organic matter;
 d. removal of the crystalline oxides and hard particles not subjected to modification;
 e. obtaining laminar fines or laminar structure;
 f. pre-treatment of laminar structures by precursors; and
 g. addition of the product resulting from the previous stages in liquid or solid state to a plastic matrix.

2. Method for the obtention of nanocomposite materials according to claim 1, characterized in that after stage f. are intercalated organic or hybrid materials in the laminar structure.

3. Method for the obtention of nanocomposite materials according to claim 1, characterized in that after stage f. are added low molecular weight substances of active and/or bioactive nature.

4. Method for the obtention of nanocomposite materials according to claim 3, characterized in that said low molecular weight substances of active and/or bioactive nature are selected from the group of ethanol, ethylene, essential oils, small-sized antimicrobial peptides either natural or obtained by genetic modification, natural or synthetic antioxidants, enzymes, probiotics, prebiotics, simbiotics, vitamins, minerals, marine oils, drugs or bioavailable calcium compounds.

5. Method for the obtention of nanocomposite materials according to anyone of claims 3 or 4, characterized in that said substances with active and/or bioactive nature are added in an amount lower than 80% volume of the dissolution, preferably lower than 12%, and more preferably lower than 8%.

6. Method for the obtention of nanocomposite materials according to anyone of claims 3 to 5, characterized in that the penetration of said active and/or bioactive substances is accelerated by temperature, an homogenizer working in turbulent regime, ultrasounds, pressure or a combination thereof.

7. Method for the obtention of nanocomposite materials according to claim 1, characterized in that said filtering is carried out by a vibrating sieve or filter press, or any other wet or dry filtering system.

8. Method for the obtention of nanocomposite materials according to claim 7, characterized in that the particles are reduced in the D90 to 100 microns, preferably to 25 microns, and more preferably to 3 microns.

9. Method for the obtention of nanocomposite materials according to claim 1, characterized in that said removal of organic matter is carried out, and in a non-limiting sense, by decantation, supernatant collection or chemical reaction with oxidizing substances.
10. Method for the obtention of nanocomposite materials according to claim 1, characterized in that said removal of crystalline oxides and hard particles is carried out by centrifugation and/or gravimetric processes in dissolution or by turbodryers, preferably by either wet or dry centrifugation processes followed by atomization at controlled depression.

11. Method for the obtention of nanocomposite materials according to claim 1, characterized in that said precursors are of the expanding type.

12. Method for the obtention of nanocomposite materials according to claim 11, characterized in that said expensors are independently selected from the group of DMSO, alcohols, acetates or water, and combinations thereof.

13. Method for the obtention of nanocomposite materials according to anyone of claims 11 or 12, characterized in that the penetration of the precursors is accelerated by temperature, a homogenizer working in turbulent regime, ultrasounds, pressure or a combination thereof.

14. Method for the obtention of nanocomposite materials according to anyone of claims 11 to 13, characterized in that the precursors are dried by evaporation in a stove, lyophilization, centrifugation and/or gravimetric processes in dissolution or by turbodryers or by atomization, indistinctly.

15. Method for the obtention of nanocomposite materials according to claim 1, characterized in that the organic or hybrid compounds to be intercalated are indistinctly selected from the group formed by PVOH, EVOH and derivates of the same family, and/or biopolymers and/or phosphates, quaternary ammonium salts, preferably hexadecyltrimethylammonium bromide.

16. Method for the obtention of nanocomposite materials according to claim 15, characterized in that the EVOH or any material of the family thereof is intercalated with molar contents of ethylene lower than 48%, preferably lower than 29%, when they are taken to saturation in an aqueous medium or in specific solvents of the alcoholic type and mixtures of alcohols and water, preferably water and isopropanol in water volume proportions greater than 50%.

17. Method for the obtention of nanocomposite materials according to claim 15, characterized in that biopolymers are indistinctly selected from the group of peptides and natural or synthetic proteins obtained by chemistry or genetic modification of microorganisms or plants and natural polysaccharides or synthetic polysaccharides obtained by chemistry or genetic modification of microorganisms or plants and polypeptides, nucleic acids and synthetic nucleic acid polymers obtained by chemistry or genetic modification of microorganisms or plants, and biodegradable polyesters such as polylactic acid, polylactic-glycolic acid, adipic acid and derivatives thereof, and polyhydroxalkanoates, preferably polydextrinpta and their copolymers with valeriates, biomaterials such as hydroxyapatites and other particles or nanoparticles with electromagnetic radiation blocking capacity such as titanium dioxide.

18. Method for the obtention of nanocomposite materials according to claim 15, characterized in that the biopolymers have or do not have additives belonging to the group formed by synthetic and natural polysaccharides selected from the group formed by cellulose and derivatives, carrageenans and derivatives, alginites, dextran, gum arabic and preferably chitosan or any of its natural or synthetic derivatives, more preferably chitosan salts and even more preferably chitosan acetate, and proteins derived from plants and animals as well as maize proteins, gluten derivatives, such as gluten or its gliadin and glutenin fractions and more preferably gelatin, casein and soya proteins and derivatives thereof, as well as natural or synthetic polypeptides preferably of the elastin type obtained by chemistry or genetic modification of microorganisms or plants and mixtures thereof.

19. Method for the obtention of nanocomposite materials according to claim 18, characterized in that the chitosan owns a deacetylation degree higher than 80%, preferably higher than 87%.

20. Method for the obtention of nanocomposite materials according to claim 1, characterized in that the addition to the plastic matrix is carried out by extrusion, injection, blowing, compression molding, resin transfer molding, calendering, thermal shock, internal mixing, ultrasounds, coextrusion, co-injection, or a combination thereof.

21. Method for the obtention of nanocomposite materials according to claim 1, characterized in that said plastic matrix is indistinctly selected from the group of PVOH, EVOH or derivates and biodegradable materials such as proteins, polysaccharides and polyesters and biomedical materials such as hydroxyapatites or mixtures thereof, and may contain all kinds of additives typically added to plastics to improve their processing or properties.
22. Method for the obtention of nanocomposite materials according to claim 1, characterized in that after stage h., the product is precipitated so as to obtain either a powder or an additive concentrate in a plastic matrix.

23. Method for the obtention of nanocomposite materials according to claim 22, characterized in that the additive concentrate is grinded to give rise to a particulate product.

24. Method for the obtention of nanocomposite materials according to claim 22, characterized in that the additive concentrate is processed by any plastic processing method to obtain pellets in the solid state.

25. Method for the obtention of nanocomposite materials according to claim 22, characterized in that said additive concentrate is processed by any manufacturing method related to the plastic processing industry such as extrusion, injection, blowing, compression molding, resin transfer molding, calendering, thermal shock, internal mixing, ultrasonic, coextrusion, co-injection, or a combination thereof.

26. Method for the obtention of nanocomposite materials according to claim 22, characterized in that the powder or additive concentrate are added to a plastic matrix by a conventional route of plastic processing.

27. Nanocomposite materials obtained using the method of anyone of claims 1 to 26, characterized in that they are formed by laminar nanoreinforcements introduced in plastic materials.

28. Nanocomposite materials according to claim 27, characterized in that said nanoreinforcements are of the laminar silicate type and/or laminar double hydroxydes.

29. Nanocomposite materials according to claim 28, characterized in that said nanoreinforcements of the laminar silicate type are of the vermiculite and kaolinite type with or without surface modification.

30. Nanocomposite materials according to claim 27, characterized in that they are formed by laminar nanoreinforcements introduced in plastic materials and that may optionally carry any proportion of other additives typically applied for protection against near infrared and UV-visible radiation.

31. Use of the materials obtained using the method according to anyone of claims 27 to 30, to reinforce electromagnetic radiation blocking in plastics in packaging applications in food and food component packaging applications.

32. Use of the materials obtained using the method according to anyone of claims 27 to 30, for biomedical applications such as nanobiocomposites.

33. Use of the materials obtained using the method according to anyone of claims 27 to 30, to release active ingredients in the pharmaceutical industry.

34. Use of the material obtained using the method according to anyone of claims 27 to 30, as a barrier against solvents and organic products, such as aromas and aroma components, oils, fats and hydrocarbons, and against mixed products of organic and inorganic nature.

35. Use of the materials obtained using the method according to anyone of claims 27 to 30, for applications requiring a biodegradable or compostable nature.

36. Use of materials obtained using the method according to anyone of claims 27 to 30, for active packaging requiring an antimicrobial, antioxidant nature or of any other type requiring either fixing or controlled release of low molecular weight substances, preferably volatile ones.

37. Use of the materials obtained using the method according to anyone of claims 27 to 30, for applications requiring an antimicrobial capacity.

38. Use of the materials obtained using the method according to anyone of claims 27 to 30, for the use of biopolymers either without the need of using plasticizers agents or with the need of lower amounts thereof.
Figure 3
Figure 4
INTERNATIONAL SEARCH REPORT

International application No.
PCT/ES 2008/000723

A. CLASSIFICATION OF SUBJECT MATTER

see extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C01B,C08K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

INVENES,EPODOC,WPI,XPESP,TXTUS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>ES 2277563 B1 (CABELLO et al.) 01.07.2007, page 3, line 3 - page 4, line 40; examples 1-3.</td>
<td>1-30,32-38</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2006110627 A1 (UNIVERSITY OF SOUTH CAROLINA) 19.10.2006, page 5, line 27 - page 8, line 32; page 19, line 28 - page 20, line 4.</td>
<td>31</td>
</tr>
<tr>
<td>A</td>
<td>US 6586500 B2 (BAGRODIA et al.) 01.07.2003, column 3, line 45 - column 4, line 17;column 8, line 5 - column 10, line 23; column 21, lines 55-60; example 1.</td>
<td>1-38</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☒ See patent family annex.

* Special categories of cited documents:
 "A1" document defining the general state of the art which is not considered to be of particular relevance.
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure use, exhibition, or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "X" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Z" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other documents, such combination being obvious to a person skilled in the art
 "S" document member of the same patent family

Date of the actual completion of the international search
17 February 2009 (17.02.2009)

Date of mailing of the international search report
20/03/2009

Name and mailing address of the ISA/O.E.P.M.
Paseo de la Castellana, 75 28071 Madrid, España.
Facsimile No., 34 91 3495304
Form PCT/ISA/210 (second sheet) (July 2008)

Authorized officer
A. Rda Aguite
Telephone No. +34 91 349 8518
<table>
<thead>
<tr>
<th>Patent document cited in the search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES 2277563 AB</td>
<td>01.07.2007</td>
<td>CA 2635373 A</td>
<td>05.07.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007074184 A</td>
<td>05.07.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1985585 A</td>
<td>29.10.2008</td>
</tr>
<tr>
<td>WO 2006110627 A</td>
<td>19.10.2006</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 6586500 B</td>
<td>01.07.2003</td>
<td>CA 2410429 A</td>
<td>06.12.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6663201 A</td>
<td>06.12.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002037953 A</td>
<td>28.03.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6828370 B</td>
<td>07.12.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002098309 A</td>
<td>25.07.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1307506 A</td>
<td>07.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0111333 A</td>
<td>24.09.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1276015 C</td>
<td>20.09.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003535204 T</td>
<td>25.11.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEXA 02011732 A</td>
<td>30.07.2004</td>
</tr>
<tr>
<td>US 2007197710 A</td>
<td>23.08.2007</td>
<td>CA 2581129 A</td>
<td>30.03.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006035980 A</td>
<td>30.03.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2007003130 A</td>
<td>05.06.2007</td>
</tr>
<tr>
<td>US 2007106005 A</td>
<td>10.05.2007</td>
<td>WO 2007058869 A</td>
<td>24.05.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 057885 A</td>
<td>26.12.2007</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2008)
CLASSIFICATION OF SUBJECT MATTER

C01B 33/44 (2006.01)
C08K 3/34 (2006.01)
C08K 7/26 (2006.01)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4739007 A [0004]

Non-patent literature cited in the description

- M. van Aardt ; S. E. Duncan ; J. E. Marcy ; T. E. Long ; C. R. Hackney. J DAIRY SCI, June 2001, vol. 84, 1341-1347 [0006]
- Conrad, KR ; Davidson, VJ ; Mulholland, DL ; Britt, I.J ; Yada, S. J FOOD SCI, January 2005, vol. 70 (1), E19-E25 [0006]
- Goldhan G ; Riebleringer K. European Food & Drink Review, 2002, 71-72 [0006]