EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 14.11.2018 Bulletin 2018/46

Application number: 09700376.8

Date of filing: 08.01.2009

Int Cl.: A01G 25/06 (2006.01)

International application number: PCT/SE2009/050006

Designated Contracting States:
AT BE BG CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

Priority: 09.01.2008 SE 0800045

Date of publication of application: 13.10.2010 Bulletin 2010/41

Proprietor: Terrigio AB
541 23 SKÖVDE (SE)

Inventor: OHLIN, Börje
546 72 Mölltorp (SE)

Representative: Zacco Sweden AB
P.O. Box 5581
114 85 Stockholm (SE)

References cited:
EP-B1- 0 382 816
AU-B2- 511 876
DE-A1- 2 610 384
DE-A1- 2 610 384
FR-A1- 2 323 317
FR-A1- 2 323 317
US-A- 4 293 237

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a device for watering purposes and comprising a water-collecting housing or container that extends along the intended desired area to be watered and is arranged to be received in the ground.

[0002] During the last 40-50 years, we have, in the Western World, improved arable lands and lands by draining off, in order to increase, simplify processing and to increase the productivity of the lands. Enormous surfaces have been underdrained in order to be able to sow earlier, and large surfaces that have had a swamping-tendency have come into use thanks to underdrainage. But this has not only been beneficial. Afterwards, we can see resulting effects such as environmental influence on animal species and too quick dewatering of the rain that falls, with lowered groundwater levels as a consequence. However, the fundamental idea in the Western World has been to create large efficient production surfaces for cereals, production of vegetables, fruit and berries as well as also forest areas having better conditions.

[0003] The plastics industry, which has had the drain hose as main product, has had great success. There is a well-developed machine equipment for laying drain hoses, even if the market now begins to become saturated. Enormous surfaces are today dewatered efficiently.

[0004] However, globally seen, we are facing an enormous deficiency of water as regards fresh water. The food production in the world takes, to a great extent, place in highly industrialised agricultural countries using efficient implements and relatively good supply of rainfall or conducted water. All curves, however, indicate an immediate food scarcity in the world.

[0005] Sprinklers above ground provide very low investment costs but involves extremely high water consumption and a very great loss of water compared to the result of produced crops. In addition, they require high-pressure water of uniform pressure.

[0006] Pressurized drip hoses/moisture hoses require relatively low investment costs. Certain types can be placed under ground with direct moistening at the root zone. However, the disadvantage of these solutions is that they require very clean water and water under a constant pressure. But above all, these facilities do not at all resist any damage in the form of bite damage or other sabotage. Well-developed technology is a requirement in order for these to work.

[0007] EP-B1-0382816 discloses a watering device comprising a water collecting container (22, 25) for watering purpose that extends along the intended desired area to be watered and is arranged to be received in the ground (4).

[0008] A screening disc (26) extends from the bottom of the container to let the water remain in the container section even in case of inclined container.

[0009] Told screening disc (26) is fastened to the bottom of the container.

[0010] A wick (23) extends to the internal liquid-receiving spaces of the container at mutual distance from each other, as seen along the length extension thereof and the wick (23) extends through openings on the upper side of the container. The known screening disc (26) is a disc and the wick (11) extends to the middle of a portion of tube parts (21).

[0011] Told known watering device consist of many different parts which are put together manually. The water from one liquid-receiving space may be drained into another liquid receiving space by told wick (23).

[0012] Accordingly a MPS watering system, see, for instance, EP 382 816 B1, is a similar system, but which unfortunately is too complicated to lay. It is too expensive to use on larger surfaces and it requires a very great effort upon laying. Neither can it be laid in sloping systems. Thus, by this known solution provided with a single wall, it is not possible to provide a watering system having double-sided capability of water-raising by applying a wall for maximum utilization in leaning placement in any direction.

[0013] Therefore, the main object of the present invention and the main operation area thereof is primarily to give countries and federal states having small water resources the capability of producing cereals, vegetables, citrus plants, fruits as well as forest plants. This is realized by utilizing a proceeding reverse to the draining that hitherto have been done in other countries having an abundance of water as their problem.

[0014] By the present invention, drain hoses are changed to supply water slowly under the ground directly to the root zone of the plant material, without water pressure. This entails that the water consumption is about 10% of what conventional watering of plant materials requires in hot areas. Additional objects attained are, among others: possibilities of establishment of trees in desert expansion areas; vegetable gardening on a small village scale with limited supply of water and technology; large-scale cultivation of seeds, vegetables, fruits and forests without access to greater amounts of pressurized water, with 10% of water consumption, and, to provide a product the simplicity of which allows it to be dug down both manually and mechanically.

[0015] The product has also, by means of the simplicity thereof, other fields of application in developed countries where it can compete with more expensive and complicated systems in order to supply water on a small scale in winter gardens, parks and squares in plant islands etc., where systems supplying pressurized water are not the choice.

[0016] The potential of the product, correctly used, may afford certain countries a hundredfold greater food production compared to today with the same level of water consumption. Totally for the world production of food, the potential is 10-30% greater food production with this product. Tree establishment in awkward areas may yield 90% better outcome than today.
[0017] Said object is attained by means of a device according to the present invention that essentially is characterized in that, internally in the container, there is a transverse double partition wall, which extends from the base portion of the container up to at least half the effective height of the container, that along the outside of the container, a liquid-sucking wick extends that is connected to the internal liquid-receiving spaces of the container at a mutual distance from each other, as seen along the length extension of the container, that the wick is arranged to extend through openings on the upperside of the container to base portions of the container at the area of the respective partition wall on each side of the same, the active suction capacity of the wick between container compartments provided being interrupted in order to prevent water transportation by means of the wick between the container compartments.

[0018] Advantages of the construction:

- non-pressurized system;
- can advantageously be laid unevenly;
- can be laid in sloping laying fashion;
- resists certain sabotage without too great a loss of water;
- long service life;
- simple laying with or without technical aids;
- cuts down the water consumption in comparison with drip and sprinkler solutions;
- the water consumption with direct application at the root zone provides water saving of a ratio of 1:6-1:10 in comparison with surface application;
- can be embodied in an economically maintainable way for the production of plants to be produced by means of the system;
- water filling can be effected both manually and by technically more advanced solutions, and;
- can be provided with control sticks, which in addition may work as extra deaeration for faster air evacuation during water filling in long systems.

[0019] The invention also relates to a proceeding for the manufacture of a container arrangement consisting of plastic material. Such a proceeding allows efficient manufacture of containers.

[0020] Said proceeding is characterized in that artefacts are continuously extruded in the form of thermoplastic pipes, hoses or containers of corrugated design, that portions of the fabricated artefact are subjected to counter-directed motion action for the provision of thickening of the plastic material layer along intended portions of the artefact, that the thickened plastic material layer is the subject of combined mechanical indentation and suction action so that a corrugatedly wall-shaped portion is formed internally in the artefact at a mutual distance from each other, and that excessive plastic material is removed from the area of a formed partition wall, hole making in the artefact formed and attachment of a laid-out wick being allowed to be effected, preferably in the immediately subsequent step.

[0021] Finally, the invention relates to means for the manufacture of a device as indicated above.

[0022] Said means is essentially characterized in that a machine intended for continuous extrusion of thermoplastic pipes, hoses or containers of corrugated design comprises at least two moulding stations that comprise mutually counter-directed corrugation mats, one moulding station of which is arranged to be driven adversely in the reversed direction in order to thicken the plastic layer along the intended part of the extruded artefact, that a wedge-shaped indentation part is actutable to indent said thickened plastic layer transversely to the injection direction for the formation of a double-walled transverse wall and subsequent sucking away of excessive plastic material and removal of the same by a suction apparatus.

[0023] The basic invention of the product is a tight drain hose having interior partitionings up to approx. 80 % of the internal height, which provides water sections. In each end, each section is provided with a water-sucking wick. The water is sucked up in a capillary fashion from the respective section. Each section should not be longer than 50 cm so that the hose can be laid arbitrarily leaning without any appreciable decrease of the water capacity per section. Deaeration holes are drilled on the upperside to prevent negative pressure from arising, so that the capillary force is reduced in the wick.

[0024] The wick is made endless in order to make the product reasonable price-wise. An end seal is provided with a water-filling facility. Extension pieces for the hose can be connected. The hose is provided with control pipes at appropriate distances for the use. A reamer for boring of holes may be utilized. In order to avoid too slow water-filling capacity, the hose should be provided with deaeration/control pipes every tenth metre. The hose should be flexible, but the corrugation and the plastic material together should provide such a bearing capacity that light tractors should be able to drive over the product if it is laying at a soil depth of approx. 30 cm without being deformed. The product should be laid planely or leaning slightly downward for optimal utilization. Refilling should occur at the highest point in the pipe system.

[0025] However, the liquid-sucking function of the wick is interrupted along the length extension thereof in order to only provide water suction for the respective parted container as seen along the entire length extension of the system.

[0026] In awkward hot ground conditions, the product is combined with so-called "container plants" in some form in order to bring down a working root system to the depth to the moisture zone created around the hose at the depth protected from the warm surface soil. These young plants of different species are pregrown under more controlled forms. They may be openable plastic sleeves or of "paper pot type", which today are used within nurseries for forest trees. The important thing is that the plant material has a good and deep root system.

[0027] For large-scale cultivation, there are planting
machines for this type of plants. In more advanced layings of the product, it is laid using a chain excavator of the same type that today is used laying drain hoses in Europe.

[0028] The invention is described below in the form of a preferred embodiment example, reference being made to the accompanying drawings, in which

Fig. 1 shows a schematic container according to the invention in active watering state,
Fig. 1A shows an example of container planting above a watering container,
Fig. 2 shows in perspective a watering container having a deaeration pipe,
Fig. 3 shows container without a protruding deaeration pipe,
Fig. 4 shows a partitioning wall in the container and with an attached wick,
Fig. 5 shows the container in section view and with shown walls and a wick,
Figs. 6-8 schematically show a machine for the fabrication of containers,
Fig. 9 schematically shows a part of the machine for material removal,
Fig. 10 shows a part of the machine for wick application, and
Fig. 11 shows a part of the machine for wick attachment in the container.

[0029] More precisely, the invention relates to a device 1 adapted for watering purposes and comprising a water-collecting container 3 that extends along the intended desired area 2 to be watered and is arranged to be received buried in the ground 4. According to the invention, there is a transverse double partition wall 5 in the internal space 6 of the container. Said partition wall 5 extends from the base portion 7 of the container up to a level 8 situated on at least half the effective height H of the container. Along the outside 9 of the container, preferably on the upper half thereof and most preferably on the top 10 thereof, a liquid-sucking wick 11 extends that is connected to the internal liquid-receiving spaces 12, 13 of the container at a mutual distance A from each other, as seen along the length extension L of the container.

[0030] The container 3 is preferably tubular or has a similar equivalent shape, e.g., hose-shaped or having an elongate shape, and has a corrugated wall shape 14, as seen along the length extension L of the container. In order to allow desired interconnection of the container 3 to reach the desired areas, the ends of the container 3 are arranged so that they are interconnectable in row form to the desired length. Also different couplings, e.g., T- or X-couplings may be arranged.

[0031] Because of the manufacturing method of the containers, the double wall portions 5A, 5B are leaning and more precisely they are diverging from an upper merging, substantially straight top portion 15 in the direction obliquely downward 16, 17 toward the base portion 7 of the container.

[0032] In order to allow to be able to lay the container 3 with great inclination in sloping country, without the water of the container 3 flowing out from the same through the lowest situated end thereof, the partition wall 5 extends up to a level 8 of the container 3, which level 8 is at least 80 % of the internal height H of the container.

[0033] Said wick 11, which consists of a band-shaped fibre fabric, for instance 20 mm wide and approx. 1.5 mm thick, is arranged to lie loosely on the upper side 18 of the container and extend through openings 19, arranged on the upper side 18 of the container, and down to the base portion 7 of the container 3 at the area of the respective partition wall 5 on each side of the same and is secured thereto.

[0034] The active suction capacity of the wick 11 between container compartments 12, 13 provided is interrupted so as to be able to prevent water transportation via the wick 11 between the container compartments 12, 13.

[0035] Said container 3, which is formed of tubular or hose-shaped parts of plastic material, is arranged to, with the respective ends thereof, easily be interconnectable with connecting containers 3 for the formation of a watering system 5 buryable in the ground 4.

[0036] The invention is based on the fact that water W is lifted out of the respective container 3 by means of capillary lifting force, and that the containers can work in different using areas: in smaller applications in flower vessels, flower beds, slopes having bushes, tree plantations, etc.; in wider contexts in order to provide young trees with water in reforesting in desert borders, and; under active-service conditions as for the provision of water to vegetables, palm trees, banana, citrus, olive cultivations, etc., in areas having a strongly limited supply of water.

[0037] A substantial detail of the invention, which distinguishes it from previously known solutions, is that the containers 3 are provided with a double-sided water suction on each side of the provided partition wall. This entails that the product can be laid leaning in both directions and yet be fully functional next to the knuckle.

[0038] The suction function of the containers 3 is effected by a flat endless suction wick 11 applied in a narrow milled transverse hole 19. This hole 19 is placed substantially right over the V-shaped partition wall 5 of the pipe. The partition wall 5 is provided with a suction wick 11 on both sides by means of a specially made needle that applies the wick. In the same instant as the needle reaches the bottom of the pipe, the wick is ultrasonically welded or alternatively hot-melt glued in the bottom of the pipe. In order to prevent water from being transported from container to container, the wick is sealed in the top using hot-melt adhesive or by heat treatment, i.e., that capillary effects of the wick are interrupted along the top portion 15 of the preferably straight partition wall 5 by, for instance, hot-melt gluing 79 or cross-cutting the wick 11 by, for instance, being burnt or cut off. The wick parts
above the partition wall are kept apart from each other at a distance X, which is at least 1.5 mm. In this way, each section will be entirely independent of the adjacent sections. This is an additional point where the present product differs substantially from previously patented solutions. This now entails, among other things, that, e.g., the hose or another formed container, can be damaged in one section without the adjacent sections, for that reason, ending function.

Preferably, the product is manufactured in a corrugated design in order to be flexible according to need. In addition, the strength of the hose increases by means of the corrugation. The strength/bearing capacity of the material thickness should be so high that a tractor of normal size should be able to drive over the hoses placed, for instance, 30 cm under the soil surface without deforming the hose system.

The length of the hose is determined by the manufacturer. As a supplement to the product, there is delivered an extension piece having sealing rings to make the hose extendable.

A start plug 20 having attachment for a water filler pipe may be included in the supplementary products of the product. Said plug 20 is provided with a sleeve coupling 21 where the filler pipe is applied. The filler pipe is provided with a cap. An end-sealing 22 plug terminates the system. Moreover, the corrugated design makes that the product becomes entirely insensitive to frost-shattering conditions.

In order for the capillary force not to be restrained, in the normal case, the pipe has to provided with deaeration every 5th to 10th metres. This is carried out by a pipe 23 reaching the ground surface 4A and being provided with a cap not completely tight. Said pipe 23 can also be provided with a level indicator, if the user has a need to be able to read the water level of the system. Said pipe is put into holes 24 for which there are markings on the upperside of the product; said markings is placed by the side of the location of the watering wick. At the markings, holes are drilled at suitable distances by, e.g., a reamer co-delivered for the purpose, more sparsely if the system is laid flat, and denser if it is laid disorderly so that negative pressure does not arise in the pipe. On the upperside of the container 3, the same is perforated with small holes in order to decrease the risk of negative pressure in the sections.

Since the product does not require water pressure, innumerable using areas open up. It can easily be filled using a bucket, hose, water inflow with constructed surface-water ditches, or in other simple ways be supplied with water. Naturally, it can also be automated, if technology for this can be arranged on the location.

Most systems on the market are based on pressurized water, and this immediately causes problems upon damage of the systems. In addition, they require electricity, or petrol- or gasoline-driven pumps in order to create pressure. In many locations of watering system, it may be directly inappropriate to have pressurized water for different reasons.

In conditions of high ground surface temperature, the system is very efficient. This is so since the system is laid at a depth of 20-100 cm depending on the type of plant and ground. By means of this watering, the soil surface can be loosened in order to break the capillary force for surface dehumidification at the same time as the water containers can distribute the moisture in the root zone. The root zone is then established directly at a greater depth having lower temperature and a maximum water utilization. When water in this way is supplied slowly by capillary force directly in the root zone, the utilization of the supplied water can become about 95-98 %. This is because evaporation is avoided and simultaneously the loss to the subsoil water is bypassed since the water already is capillary bound. See Fig 1A, where a plant 98 with root system 99 is shown planted in the upper soil layer above a container 3.

A comparison with water sprinkling daytime is that 92 % of supplied water is lost according to a study carried out at the Swedish University of Agricultural Sciences already in 1975. There is shown that 50 % evaporated already during the sprinkling occasion; the rest of the loss resulted from the dissipation of free water passing straight through the soil layer down toward the subsoil water, and from high surface evaporation from a moist soil surface with full capillary refilling from below.

Another advantage of the invention is that, by the system, it is favourable to supply nutrients via the system and then up to 25 % of the normal doses recommended in surface supply. In rain and watering, the surface supply causes great losses of the nutrient amount supplied, as free water brings the nutrients down to the subsoil water. By the system, not more nutrients are supplied than what, at the time, is lifted up and capillary bound. Hereby, the leaching is minimized.

In so-called “dead earths” (not cultivated or severly dried up earths where the micro life that decomposes nutrients into compounds useful for the roots is disabled) also microbes can be supplied without being damaged at the correct temperature and depth at the root zone, and thereby give the roots a good chance to develop and provide the plant material with nutrients.

A proceeding for the manufacture of a container arrangement 1 and consisting of plastic material according to the above-mentioned type is undertaken so that thermoplastic pipes, hoses, containers or other artefacts 3 of corrugated design are continuously extruded. Furthermore, a portion of a fabricated artefact 3 is subjected to counter-directed motion action for the provision of thickening of the plastic material layer along the intended portion I of the artefact. The thickened plastic material layer is the subject of combined mechanical indentation and suction action so that a corrugatedly wall-shaped portion 51 is formed internally in the artefact 3 at a mutual distance C from each other, and excessive plastic material is removed from the area of a formed partition wall 5, hole making in the artefact 3 formed and attachment.
of a laid-out wick 11 being allowed to be effected, preferably in the immediately subsequent step. For the provision of a double wedge-shaped partition wall 5, a wedge-shaped part 52 is allowed to be pressed into the warm plastic material. By means of, for instance, a milling cutter 106, said hole 19 is provided in the top portion 15 of the extruded artefact 3; 3. A V- and plate-shaped wick insertion part 75 is movable transversely to the injection direction 104 and a welding set 76 is arranged to weld said wick 11 in the area above the provided partition wall 5, and through the provided hole 19 of the artefact 3, a portion of the wick 11 is allowed to be inserted by means of a combined pressure device 75 and welding tool for welding the wick 11 to the bottom 7 of the artefact 3 on each side 5A, 5B of the partition wall 5, preferably by ultrasonic welding. From the base portion of the artefact, an ultrasonic welding head 76 is inserted into the inner space of the double-walled partition wall for welding together the wick 11 on each side of said wall 5 and with simultaneous co-operation with pressing rollers 77, 78 that are inserted internally in the artefact 3 on each side of the wall 5 and act as anvils.

The preferably band-shaped wick 11 of fibre material is glued on along the top portion 15 of the preferably straight partition wall 5 by hot-melt gluing 79, or the wick 11 is sealed, i.e., capillary effects of the wick are interrupted along the top portion 15 of the preferably straight partition wall 5 by, for instance, hot-melt gluing 79 or cross-cutting the wick 11 by, for instance, being burnt or cut off.

Means for the manufacture of a device 1 according to the invention for watering purposes and comprising a water-collecting container that extends along the intended desired area to be watered and is arranged to be received in the ground, comprise a machine 100 intended for continuous extrusion of thermoplastic pipes, hoses or containers 3 of corrugated design and provided with at least two moulding stations 101, 102 that are arranged in a row one after the other and comprise mutually counter-directed corrugation mats 101A, 102A. In that connection, a subsequent moulding station 102 is arranged to be adversely drivable on, e.g., balls, wheels or rollers in the reversed counter-directed reception direction 97, diametrically opposite the normal feeding direction 96, so as to thicken the plastic layer along said portion I of the intended part of the extruded artefact 3; 3. A wedge-shaped indentation part 52 is actuable to indent said thickened plastic layer transversely to the plastic injection direction 104 for the formation of a double-walled transverse wall 5 and sucking away of excessive plastic material and removal of the same by a suction apparatus 105. A milling cutter or a similar hole-making tool 106 is arranged to adversely to said double wall 5 mill a hole 19 in the plastic material before subsequent cooling.

Sealing of hose ends is carried out by already existing end caps, possibly supplemented with sealing rings. It is possible to drill in filler pipes anywhere. This is solved using a thick reamer shipped with the product as a supplementary instrument. When the hose is laid in longer lengths, deaeration pipes should be fitted every 5th or 10th metre, in order to facilitate the water filling. This is depending on the quality of soil.

Extruder - a moulding-compound heater 200 having a cone-shaped outlet of a type previously known per se that provides the machining part with material. The moulding station 101 including a fixed table part having feeding-in mat/corrugation mat 101A, 101A provided with negative-pressure ducts in the tool mat in order to create the corrugation of the hose. The same type that is used today. The table is double-sided.

Moulding station 102 including right table part - mov-
able table having similar containing corrugation mats 102A, 102A as table 1. This table reverses in order to provide a sufficient amount of moulding compound so as to create the essential partition wall of the hose. In the same step as this takes place, a wedge 52 acts from below and, by means of a suction apparatus and pressure, creates a perfect internal partition wall 5. Excessive moulding compound is simultaneously sucked upward.

- A suction sleeve 105 that is attached onto the upper part of the hose 3. The excessive moulding compound is simultaneously pressed together and removed via an associated cutting step from the movable table. Then, the hose continues through the movable table part 102 and is cooled off gradually.

- When the hose leaves the movable table, a recessing step 106 of the wick holes 19 takes place before the hose 3 reaches the belt conveyor, etc., 300 on which it is cooled off.

Sewing machine part - this is the heart of the process and here the part of the process that is entirely new takes place. Through the milled holes 19 made, the endless suction wick 11 is fitted by means of a specially made needle function. Fibre fabric is used as a wick 11, and this has a width of 20 mm and a thickness of approx. 1.5 mm. This is tested to provide good capillary properties and durability. The wick 11 is fitted by means of a flat hollow resilient needle unit 75, which is made fast by a tensioning/guide wheel. The wick 11 is inserted into the needle 75 by mounted process rollers 77, 78 in the needle base. This is in order to keep the wick in place both in upward and downward motions. In front of the front needle parts, a guide roller is placed. The front part is manufactured flat and hollow as well as mouths at the first feeding and anvil roller of the needle tip. At said roller, the ultrasonic welding in the bottom of the hose takes place. The rear needle part is also provided with a flat locating hole in the needle immediately above the mounted guide/anvil roller of the needle tip. Here, the bottom roller is also ultrasonically welded to the same. In the centre of the needle, a metal-lined hose 80 mouths, for hot-melt gluing of the wick on the crest where the wick turns over to the next section. This step takes place in order to prevent water transportation by means of the wick (11) between container compartments (12, 13) provided being interrupted in order to prevent water transportation by means of the wick (11) between container compartments (12, 13).

1. Device (1) for watering purposes and comprising a water-collecting container (3) that extends along the intended desired area to be watered and is arranged to be received in the ground (4), wherein internally (6) in the container (3), there is a transverse wall (5), which extends from the base portion (7) of the container up to at least half the effective height (H) of the container, wherein along the outside (9) of the container, a liquid-sucking wick (11) extends that is connected to internal liquid-receiving compartments (12, 13) of the container at a mutual distance (A) from each other, as seen along the length extension (L) of the container, and wherein the wick (11) is arranged to extend through openings (19) on the upperside (18) of the container to base portions (7) of the container (3) characterized in that, the wall (5) is a double partition wall, the liquid-sucking wick (11) is connected to the internal liquid-receiving compartments (12, 13) at the area of the respective partition wall (5) on each side of the same and the active suction capacity of the wick (11) between container compartments (12, 13) is provided being interrupted in order to prevent water transportation by means of the wick (11) between the container compartments (12, 13).

2. Device according to claim 1, characterized in that the container (3) is tubular and has a corrugated wall shape (14), as seen along the length extension (L) of the container.

3. Device according to any one of the preceding claims, characterized in that the ends (3A, 3B) of the container (3) are arranged so that they are interconnectable in row form to the desired length.

4. Device according to any one of the preceding claims, characterized in that the double wall portions (5A, 5B) lean and that the same diverge from an upper merging top portion (15) in the direction obliquely downward (16, 17).
5. Device according to any one of the preceding claims, characterized in that the partition wall (5) extends up to a level (8) of the container that at least is 80% of the internal height (H) of the container.

6. Device according to any one of the preceding claims, characterized in that the wick (11) consists of a band-shaped fibre fabric and is arranged to lie loosely on the upper side (18) of the container as well as is secured in the container (3) on each side of the double-walled partition wall (5).

7. Device according to any one of the preceding claims, characterized in that said container (3) is formed of tubular or hose-shaped parts of plastic material, which are arranged to, with the respective ends thereof, be interconnectable with connecting containers for the formation of a watering system buryable in the ground (4).

8. Proceeding for the manufacture of a container arrangement (1) consisting of plastic material according to any one of the preceding claims, characterized in that artefacts are continuously extruded in the form of thermoplastic pipes, hoses or containers (3) of corrugated design, that portions of the fabricated artefact are subjected to counter-directed motion action for the provision of thickening of the plastic material layer along intended portions (I) of the artefact (3), that the thickened plastic material layer is the subject of combined mechanical indentation and suction action so that corrugated wall-shaped portions (51) are formed internally in the artefact at a mutual distance (C) from each other, and that excessive plastic material is removed from the area of a formed partition wall (5), hole making in the artefact (3) formed and attachment of a laid-out wick (11) being allowed to be effected, preferably in the immediately subsequent step, that a wedge-shaped part (52) is allowed to be pressed into the warm plastic material for the provision of a double wedge-shaped partition wall (5), that, by means of a milling cutter, etc., holes (19) are provided in the top portion (18) of the artefact in the area above the provided partition wall (5), that, through the provided hole (19) in the artefact (3), a portion of the wick is allowed to be inserted by means of a combined pressure device (75) and welding tool for welding the wick (11) to the bottom (7) of the artefact (3) on each side of the partition wall, preferably by ultrasonic welding, and that the preferably band-shaped wick (11) of fibre material is sealed, i.e., that capillary effects of the wick are interrupted along the top portion (15) of the preferably straight partition wall (5) by, for instance, hot-melt gluing (79), or cross-cutting by, for instance, being burnt or cut off.

9. Proceeding according to claim 8, characterized in that an ultrasonic welding head (76) is inserted into the inner space of the double-walled partition wall from the base portion of the artefact for welding together the wick (11) on each side of said wall (5) and with simultaneous co-operation with pressing rollers (77, 78) that are inserted internally in the artefact (3) on each side of the wall (5) and act as anvils.

10. Means for the manufacture of a device (1) according to any one of the preceding claims 1-7 for watering purposes and comprising a water-collecting container (3) that extends along the intended desired area to be watered and is arranged to be received in the ground (4), characterized in that a machine (100) intended for continuous extrusion of thermoplastic pipes, hoses or containers of corrugated design comprises at least two moulding stations (101, 102) that comprise mutually counter-directed corrugation mats (101A, 102A), one moulding station (102) of which is arranged to be driven adversely in the reversed direction (97) in order to thicken the plastic layer along the intended part of the extruded artefact (3), that a wedge-shaped indentation part (52) is actuatable to indent said thickened plastic layer transversely to the injection direction (104) for the formation of a double-walled transverse wall (5) and subsequent sucking away of excessive plastic material and removal of the same by a suction apparatus (105), that a milling cutter (106) is arranged to adversely to said double wall (5) mill a hole (19) for the wick (11) in the plastic material before subsequent cooling, and that a V- and plate-shaped wick insertion part (75) is movable transversely to the injection direction and that a welding set (76) is arranged to weld the wick (11) in the base portion (7) of the formed container (3).

11. Means according to claim 12, characterized in that, in the centre of said part, a hose (80) mouths for the supply of hot-melt adhesive (79) over the crest of the wall (5) and on top of the folding over of the wick thereon.

Patentansprüche

1. Vorrichtung (1) für Bewässerungszwecke und mit einem Wassersammlerbehälter (3), der sich entlang der beabsichtigten gewünschten, zu bewässernden Fläche erstreckt und zur Aufnahme in dem Boden (4) angeordnet ist, wobei innerhalb (6) in dem Behälter (3) eine Querwand (5) vorgesehen ist, die sich von dem Basisabschnitt (7) des Behälters aufwärts bis zu zumindest der Hälfte der effektiven Höhe (H) des Behälters erstreckt, wobei sich entlang der Außenfläche (9) des Behälters ein Flüssigkeitssumpf hat, der mit internen Flüssigkeitssumpf aufnehmenden Fächern (12, 13) des Behälters unter...
einer gegenseitigen Distanz (A) voneinander bei Betrachtung in der Längenausdehnung (L) des Behälters verbunden ist, und wobei der Docht (11) derart angeordnet ist, dass er sich durch Öffnungen (19) an der oberen Seite (18) des Behälters zu Basisabschnitten (7) des Behälters (3) erstreckt, dadurch gekennzeichnet, dass die Wand (5) eine Doppelabteilungswand ist, der flüssigkeitssaugendes Docht (11) mit den internen flüssigkeitstransportierenden Fächer (12, 13) an dem Bereich der jeweiligen Abteilungswand (5) auf jeder Seite derselben verbunden ist und die aktive Saugkapsel des Daches (11) zwischen Behälterfächern (12, 13), die vorgesehen sind, unterbrochen ist, um einen Wassertransport mittels des Daches (11) zwischen den Behälterfächern (12, 13) zu verhindern. 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Behälter (3) rohrförmig ist und eine gewellte Wandform (14) bei Betrachtung entlang der Längenausdehnung (L) des Behälters aufweist. 3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Enden (3A, 3B) des Behälters (3) so angeordnet sind, dass sie in Reihenform auf die gewünschte Länge miteinander verbindbar sind. 4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dop-pelwandabschnitte (5A, 5B) angelehnt sind und dass diese von einem oberen zusammenlaufenden oberen Abschnitt (15) in der Richtung schräg abwärts (16, 17) divergieren. 5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich die Abteilungswand (50) bis zu einer Höhe (8) des Behälters erstreckt, die zumindest 80% der Innenhöhe (H) des Behälters ist. 6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Docht (11) aus einem bandförmigen Fasergewebe besteht und derart angeordnet ist, dass er locker an der Oberseite (18) des Behälters liegt, wie auch in dem Behälter (3) an jeder Seite der doppelwandigen Abteilungswand (5) gesichert ist. 7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (3) aus rohrförmigen oder schlauchförmigen Teilen aus Kunststoffmaterial geformt ist, die so angeordnet sind, dass sie mit ihren jeweiligen Enden mit verbindenden Behältern für die Bildung eines Wassersystems, das in dem Boden (4) eingegraben ist, verbindbar sind. 8. Verfahren zur Herstellung einer Behälteranordnung (1), die aus einem Kunststoffmaterial besteht, nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Gegenstände kontinuierlich in der Form thermostatischer Rohre, Schläuche oder Behälter (3) mit gewellter Ausgestaltung extrudiert werden, dass Anteile des hergestellten Gegenstandes einer entgegengesetzt gerichteten Bewegungswirkung für die Bereitstellung einer Verdi ckung der Kunststoffmaterialschiht entlang beabsichtiger Abschnitte (I) des Gegenstandes (3) unterzogen werden, dass die verdickte Kunststoffmaterialschiht dann einer kombinierten mechanischen Vertiefungs- und Saugwirkung unterzogen wird, so dass gewellte wandförmige Abschnitte (51) intern in dem Gegenstand unter einer gegenseitigen Distanz (C) voneinander geformt werden, und dass überdies das Gegenstand aus einem Kunststoffmaterial von dem Bereich einer geformten Abteilungswand (5) entfernt wird, eine Lochbildung in dem Gegenstand (3) sichtbar wird und eine Befestigung eines ausgelegten Daches (11) bevorzugt in dem unmittelbar nachfolgenden Schritt bewirkt wird, dass ein keilförmiges Teil (52) in das warme Kunststoffmaterial für die Bereitstellung einer doppelten keilförmigen Abteilungswand (5) gepresst wird, das mittels eines Fräsers, etc., Löcher (19) in dem oberen Abschnitt (18) des Gegenstandes in dem Bereich oberhalb der bereitgestellten Abteilungswand (5) vorgesehen werden, dass durch das vorgesehene Loch (19) in dem Gegenstand (3) ein Abschnitt des Daches mittels einer kombinierten Pressvorrichtung (75) mit Schweißwerkzeug zum Schweißen des Daches (11) an den Boden (7) des Gegenstandes (3) an jeder Seite der Abteilungs wand, bevorzugt durch Ultraschallschweißen einge setzt wird, und dass der bevorzugt bandförmige Docht (11) aus Fasermaterial abgedichtet ist, d.h. dass Kapillarwirkungen des Daches entlang des oberen Abschnitts (15) der bevorzugt geraden Ab teilungswand (5) mittels eines Heißschmelzklebens (79) oder Querschneidens beispielsweise durch Wegbrennen oder Abschneiden unterbrochen werden. 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass ein Ultraschallschweißkopf (76) in den Innenraum der doppelwandigen Abteilungs wand von dem Basisabschnitt des Gegenstandes zum Zusammenschweißen des Daches (11) an jeder Seite der Wand (5) und mit einem gleichzeitigen Zusammenwirken mit Pressrollen (77, 78) eingesetzt wird, die intern in dem Gegenstand (3) an jeder Seite der Wand eingesetzt sind und als Anker wirken. 10. Mittel für die Herstellung einer Vorrichtung (1) nach einem der vorhergehenden Ansprüche 1 bis 7 für Bewässerungszwecke und mit einem Wassersam-
mélangeur (3), qui se situe en dehors de la zone abstraite, en favorisant la course de la pièce extérieure et de l'ouverture (4) dans la direction de la zone souhaitée d'irrigation et de la zone d'absorbance dans la direction d'irrigation respective (5) sur chaque face de ceux-là et la capacité d'aspiration active de la mèche (11) entre les compartiments du dispositif (12, 13) fournissent étant interrompue afin d'empêcher le transport d'eau au moyen de la mèche (11) entre les compartiments du dispositif (12, 13).

2. Dispositif selon la revendication 1, caractérisé en ce que le récipient (3) est tubulaire et a une forme de paroi ondulée (14), suivant l'extension longitudinale (L) du récipient.

3. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les extrémités (3A, 3B) du récipient (3) sont prévues de sorte qu'elles puissent être reliées les unes aux autres sous forme de rangée à la longueur souhaitée.

4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les parties à double paroi (5A, 5B) sont inclinées et en ce que celles-ci divergent depuis une partie supérieure convergente supérieure (15) dans la direction obliquement vers le bas (16, 17).

5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la paroi de séparation (5) s'étend jusqu'à un niveau (8) du récipient qui est situé à au moins 80 % de la hauteur interne (H) du récipient.

6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la mèche (11) est constituée d'un tissu en fibres en forme de bande et est agencée pour poser librement sur la face supérieure (18) du récipient et est également maintenue dans le récipient (3) sur chaque face de la paroi de séparation à double paroi (5).

7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit récipient (3) est formé de parties de matériau plastique tubulaires ou en forme de tuyau, qui sont prévues pour, avec les extrémités respectives de celles-ci, pouvoir être reliées à des récipients stables pour la formation d'un système d'irrigation enfonçable dans le sol (4).

8. Procédé de fabrication d'un agencement de récipient (1) constitué de matériau plastique selon l'une quelconque des revendications précédentes, caractérisé en ce que les artéfacts sont extrudés en continu sous la forme de conduites, de tuyaux ou de récipients thermoplastiques (3) de conception ondulée, en ce que des parties de l'artefact fabriqué sont
soumises à une action de mouvement dans la direction inverse pour la fourniture d’un épaississement de la couche de matériau plastique le long des parties prévues (I) de l’artéfact (3), en ce que la couche de matériau plastique épaissie fait l’objet d’une action combinée d’indentation mécanique et d’aspiration de sorte que des parties en forme de paroi ondulée (51) sont formées de manière interne dans l’artéfact à une certaine distance (C) les unes des autres, et en ce qu’un matériau plastique en excès est retiré de la zone d’une paroi de séparation formée (5), la fabrication d’un orifice dans l’artéfact (3) formé et la fixation d’une mèche posée (11) étant autorisées à être effectuées, de préférence dans l’étape suivant immédiatement, en ce que l’artéfact formé et en ce qu’un matériau plastique en excès est retiré de la zone d’une paroi de séparation formée (5), en ce que, au moyen d’une fraise, etc., des orifices (19) sont formés dans la partie supérieure (18) de l’artéfact dans la zone au-dessus de la paroi de séparation formée (5), en ce que, à travers le l’orifice formé (19) dans l’artéfact (3), une partie de la mèche est autorisée à être insérée au moyen d’un dispositif de pression (75) et d’un outil de soudage combinés pour souder la mèche (11) au bas (7) de l’artéfact (3) sur chaque face de la paroi de séparation, de préférence par soudage par ultrasons, et en ce que la mèche de préférence en forme de bande (11) de matériau en fibres est scellée, à savoir, en ce que les effets capillaires de la mèche sont interrompus le long de la partie supérieure (15) de la paroi de séparation de préférence linéaire (5), par exemple, par collage à chaud (79), ou par découpe transversale en étant, par exemple, brûlée ou coupée.

9. Procédé selon la revendication 8, caractérisé en ce que, au centre de ladite partie, un flexible (80) débouche pour la fourniture d’adhésif thermofusible (79) sur la crête de la paroi (5) et sur le dessus des plis de la mèche du dessus.

10. Moyen de fabrication d’un dispositif (1) selon l’une quelconque des revendications précédentes 1 à 7, conçu à des fins d’irrigation et comprenant un récipient collecteur d’eau (3) qui s’étend le long de la zone souhaitée que l’on prévoit d’irriguer et est prévu pour être reçu dans le sol (4), caractérisé en ce qu’une machine (100) prévue pour l’extrusion continue de conduites, tuyaux ou récipients thermoplastiques de conception ondulée comprend au moins deux stations de moulage (101, 102) qui comprennent des mats de corrogation dirigés dans le sens inverse (101A, 102A), une station de moulage (102) qui est agencée pour être entraînée contrairement dans la direction opposée (97) afin d’épaissir la couche plastique le long de la partie prévue de l’artéfact extrudé (3), en ce qu’une partie d’indentation cunéiforme (52) est actionnable pour indenter ladite couche plastique épaissie transversalement à la direction d’injection (104) pour la formation d’une paroi transversale à double paroi (5) et l’aspiration subséquente du matériau plastique en excès et le retrait de celui-ci par un appareil d’aspiration (105), en ce qu’une fraise (106) est agencée pour, à l’opposé de ladite double paroi (5), fraiser un orifice (19) pour la mèche (11) dans le matériau plastique avant le refroidissement subséquent, et en ce qu’une partie d’insertion de mèche en forme de V et de plaque (75) est mobile transversalement à la direction d’injection et en ce qu’un ensemble de soudage (76) est prévu pour souder la mèche (11) dans la partie de base (7) du récipient formé (3).

11. Moyen selon la revendication 12, caractérisé en ce que, en ce que, au centre de ladite partie, un flexible (80) débouche pour la fourniture d’adhésif thermofusible (79) sur la crête de la paroi (5) et sur le dessus des plis de la mèche du dessus.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 0382816 B1 [0007]
- EP 382816 B1 [0012]