A sheet-like element for reinforcing, separating and draining large structures such as road embankments, comprising a sheet-like body (1) which has a lattice-like configuration with main wires (2) and transverse wires (3) stretched along two mutually substantially perpendicular directions, the main wires (2), i.e., in the extrusion direction of the blank that provides the sheet-like body, having a substantially quadrangular cross-section with substantially sharp edges at least at their upper rim.
Description

[0001] The present invention relates to a sheet-like element for reinforcing, separating and draining large structures, such as road embankments.

[0002] As is known, during the provision of carriage ways, paved or unpaved, on soft or saturated ground, it is necessary to prevent sagging which creates severe traffic problems.

[0003] The base layer, consisting of compact granular material which is optionally cemented, can in fact be damaged and can sink deeply into the foundation soil, or deformations or horizontal and vertical movements at the base can occur which can cause the formation of grooves and troughs.

[0004] In order to avoid these phenomena, it is common practice to interpose between the embankment and the foundation soil one or more layers of biosynthetic reinforcement products, which are designed to distribute the load and ensure the safety factor required for the structure.

[0005] The technique of reinforcing the roadbed of the traditional type or of the suspended type, as in the case of viaducts, bridges, ramps and the like, by means of lattice-like elements such as metallic grids, nets made of plastics or high-strength fabric, is increasingly adopted in small and large civil infrastructures, prompting designers to review with new concepts the construction phase in order to improve the stability and strength of the various construction layers.

[0006] The solutions currently used are not always able to solve the problem, since anchoring the net in the ground is not always effective, with the possibility that the load produced by the transit of traffic, including heavy traffic, may lead to a destabilization of the placement of the net, with the possibility of its extraction from the foundation.

[0007] The aim of the invention is to solve the problem described above, by providing a sheet-like element for reinforcing, separating and draining large structures, such as road embankments, which has a higher friction between said sheet-like element and the filler material, thus facilitating the anchoring of the sheet-like element to the ground and consequently allowing greater loads without damage.

[0008] Within this aim, an object of the invention is to provide a sheet-like element that has a tendency to jam with respect to the filler material, so that the force needed to disengage the sheet-like element from its arrangement is increased with respect to the force required to disengage the sheet-like element of the solutions of the background art.

[0009] Another object of the present invention is to provide a sheet-like element for reinforcing, separating and draining large structures, such as road embankments, which thanks to its particular constructive characteristics is capable of giving the highest guarantees of reliability and safety in use.

[0010] Another object of the present invention is to provide a sheet-like element that can be obtained easily starting from commonly commercially available elements and materials and is also competitive from a merely economic point of view.

[0011] This aim and these and other objects which will become better apparent hereinafter are achieved by a sheet-like element for reinforcing, separating and draining large structures such as road embankments, according to the invention, comprising a sheet-like body which has a lattice-like configuration with main wires and transverse wires stretched along two mutually substantially perpendicular directions, characterized in that said main wires, i.e., in the extrusion direction of the blank that provides said sheet-like body, have a substantially quadrangular cross-section and a thickness, in a direction that lies at right angles to the plane of arrangement of said sheet-like body, which is equal to at least three times the thickness of said transverse wires.

[0012] Further characteristics and advantages of the present invention will become better apparent from the description of a preferred but not exclusive embodiment of a sheet-like element for reinforcing, separating and draining large structures, such as road embankments, illustrated by way of nonlimiting example with the aid of the accompanying drawings, wherein:

Figure 1 is a schematic sectional view of a road with the sheet-like element according to the invention arranged thereat;

Figure 2 is a plan view of the sheet-like element;

Figure 3 is a sectional view, taken along the line III-III of Figure 2;

Figure 4 is a sectional view, taken along the line IV-IV of Figure 2;

Figure 5 is a sectional view, taken at the node, of a different embodiment;

Figure 6 is a sectional view of the element, taken along the line that is perpendicular to the main wires at a central plane of the meshes;

Figure 7 is a sectional view, taken at the nodes in a direction that lies at right angles to the extension of the main wires;

Figure 8 is a perspective view of the sheet-like body coupled to a lower geotextile layer;

Figure 9 is a perspective view of the sheet-like body, coupled to a lower geotextile layer and to an upper geotextile layer;

Figure 10 is a sectional view, taken along the line X-X of Figure 8;

Figure 11 is a sectional view, taken along the line XI-XI of Figure 9.

[0013] With reference to the figures, the sheet-like element for reinforcing, separating and draining large structures, such as road embankments, comprises a sheet-like body, generally designated by the reference numeral 1, which has a lattice-like configuration with main...
wires 2 and transverse wires 3, which are stretched along directions which are mutually substantially perpendicular. More particularly, the main wires lie along the direction of extrusion of the blank that provides the sheet-like body 1, whereas the transverse wires are substantially perpendicular.

The wires 2 and 3 cross at the nodes 4 and, as usual, are oriented, i.e., stretched in two mutually perpendicular directions.

Substantially, the sheet-like body is provided by means of two sets of crossed wires which are mutually tied together to form a single piece extruded element, preferably but not necessarily made of polypropylene, which is a plastic material that can provide low weight and good stiffness, together with resistance to atmospheric agents and temperature variations, with the possibility of being completely recycled in case of disposal.

In particular, the main wires 2 have, in a transverse cross-section, a substantially quadrangular configuration, whereas the transverse wires 3 have a flatter and wider shape, and therefore there is an important flexural stiffness when the main wires are subjected to stress, whereas the transverse wires are more easily flexible.

Preferably, the stretch ratio in the main direction and in the transverse direction is comprised between 2.8 and 5.5.

The main wires, which are oriented in the extrusion direction, are clearly defined in their shape and have the peculiarity of having, at their upper rim that protrudes with respect to the node 4, substantially sharp upper edges, designated by the reference numeral 10, and likewise there are substantially sharp lower edges 11, which are provided at the lower rim.

The thickness of the main wire at the node is at least three times greater than the thickness of the transverse wire 3 measured along the direction that is perpendicular to the plane of arrangement of the sheet-like element.

In the regions that are remote from the node, the thickness must be at least two times greater.

The transverse cross-section of the main wire, which as mentioned earlier has clearly distinguishable edges at the end of the wire, has dimensions comprised between 8 x 6 millimeters and 8 x 8 millimeters.

The presence of the sharp edges is a critical element in the specific case for the performance of the product in case of tangential sliding with respect to the ground, and this is an essential element also on the basis of the mechanical tests that have been carried out.

The angle α formed at the node as shown in Figures 3 and 4 is advantageously smaller than 90°, whereas a constructive variation is also possible which is shown in Figure 5 and in which the angle β formed between the sides of the node and the transverse wires is slightly greater than 90°.

In the practical embodiment, the lattice-like element has openings which have a substantially regular shape with a spacing between the main wires that is comprised between 50 and 70 mm and with a spacing of the transverse wires of approximately 60 mm, whereas the aperture of the meshes can vary between 42 and 65 mm for the main wires and around 58 mm for the transverse wires.

As indicated in Figures 8 to 11, it is possible to apply with heat a lower geotextile layer 20, so as to combine the draining capacity of a geocomposite with the increased strength and reinforcement of the ground that is typical of the invention.

Moreover, the presence of side lateral walls of the main wires 2 which are substantially vertical and form flattened portions in an upward region makes it possible to use the invention as an element for separating different layers of soil by applying an upper geotextile layer 21, which in practice encloses the sheet-like body together with the layer 20.

The particular substantially quadrangular cross-section of the main wires 2 makes it possible to have, on the upper side of the wire, the maximum possible contact surface between the geotextiles, which are clearly separated from each other due to the uniform height of the cross-section of the sheet-like body 1.

A significant element of the invention consists in that the presence of the sharp edges at the transverse wires makes it possible to better anchor the granular material, whether consisting of sand or gravel, and therefore in extraction tests it is observed that the sharp-edged protrusions provided on the wire allow greater friction even in media such as sand for an equal mesh size with a smaller unit weight than traditional nets.

In particular with reference to the vector diagram shown in Figure 1, where the curvature of the road surface has been exaggerated to highlight the concept, the weight P of the vehicle is divided into the component Pn of the weight that is normal to the roadbed and the component Pt, which is divided tangentially to the roadbed and is contained by the presence of the sharp edges provided on the net.

From what has been described above it is evident that the invention achieves the proposed aim and objects, and in particular the fact is stressed that it is particularly important to have provided main wires that have a quadrangular cross-section with sharp edges which allow the article to withstand stresses in a preferential direction, with the consequent possibility of saving material, and accordingly weight, in the direction that is not affected by the primary stress state.

The presence of the reinforcements along the entire extension of the main wires, without interruption at the nodes, makes it possible to keep the structure in a state of stress which is distributed ideally for the structure being considered, without having regions of discontinuity that might cause local deformations.

The invention thus conceived is susceptible of numerous modifications and variations, all of which are within the scope of the appended claims.

All the details may further be any according to
requirements and to the state of the art.

[0034] The disclosures in Italian Patent Application No. MI2009A000508 from which this application claims priority are incorporated herein by reference.

[0035] Where technical features mentioned in any claim are followed by reference signs, those reference signs have been included for the sole purpose of increasing the intelligibility of the claims and accordingly such reference signs do not have any limiting effect on the interpretation of each element identified by way of example by such reference signs.

Claims

1. A sheet-like element for reinforcing, separating and draining large structures such as road embankments, comprising a sheet-like body (1) which has a lattice-like configuration with main wires (2) and transverse wires (3) stretched along two mutually substantially perpendicular directions, characterized in that said main wires (2), i.e., in an extrusion direction of a blank that provides said sheet-like body, have a substantially quadrangular cross-section and a thickness, in a direction that lies at right angles to a plane of arrangement of said sheet-like body (1), which is equal to at least three times a thickness of said transverse wires (3).

2. The sheet-like element according to claim 1, characterized in that said wires (2, 3) are biaxially oriented, with a stretch ratio in said two substantially mutually perpendicular directions which is comprised between 2.8 and 5.5.

3. The sheet-like element according to claim 1, characterized in that said main wires have substantially sharp edges (10, 11) at least at an upper rim.

4. The sheet-like element according to claim 1, characterized in that said main wires (2) comprise substantially sharp upper edges (10) and substantially sharp lower edges (11).

5. The sheet-like element according to claim 1, characterized in that said main wires (2) have, in regions that are remote from nodes (4), a thickness that is at least twice the thickness of said transverse wires (3).

6. The sheet-like element according to claim 1, characterized in that said main wires (2) have, in a direction that is substantially perpendicular to said extrusion direction, dimensions comprised between 8 x 6 millimeters and 8 x 8 millimeters.

7. The sheet-like element according to claim 5, characterized in that an angle (α, β) formed by sides of the main wires (2) in said node (4) and the plane of arrangement of said sheet-like body (1) is substantially close to 90°.

8. The sheet-like element according to claim 7, characterized in that the angle (β) formed between the sides of said main wires (2) in said node and the plane of arrangement of said sheet-like body (1) at said node (4) is smaller than 90°.

9. The sheet-like element according to claim 1, characterized in that said main wires (2) have a spacing comprised between 60 and 70 mm and said transverse wires (3) have a spacing of approximately 60 mm.

10. The sheet-like element according to claim 1, characterized in that it comprises a lower geotextile layer (20), which is connected to a lower face of said sheet-like body (1).

11. The sheet-like element according to claim 1, characterized in that it comprises an upper geotextile layer (21), which is coupled to an upper face of said sheet-like body (1).
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 278 605 A1 (NETLON LTD [GB])</td>
<td>1-11</td>
<td>INVE. E01C3/00 B29D28/00</td>
</tr>
<tr>
<td></td>
<td>17 August 1988 (1988-08-17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 1, lines 44-47</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 2, lines 54-57</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 6, lines 13-34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* claim 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* figures 1,4,5,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>FR 2 630 143 A1 (NORTENE SA [FR])</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 October 1989 (1989-10-20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 1, lines 1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 2, line 37 - page 3, line 13; figures 1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>EP 0 836 929 A1 (TENAX SPA [IT])</td>
<td>1,2,6,7,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22 April 1998 (1998-04-22)</td>
<td>9-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 1, lines 2-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 2, lines 32-41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 3, line 55 - column 4, line 12; figures 1,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 December 2003 (2003-12-04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraphs [0002], [0068]; figures 4,5a,5b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

The Hague 16 July 2010

Examiner: Gallego, Adoración

CATEGORY OF CITED DOCUMENTS
X: particularly relevant if taken alone
Y: particularly relevant if combined with another document of the same category
A: technological background
O: non-written disclosure
P: intermediate document
T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
D: document cited in the application
L: document cited for other reasons
&: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EPO file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

16-07-2010

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 3874363 D1</td>
<td>15-10-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3874363 T2</td>
<td>11-02-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2201632 A</td>
<td>07-09-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 53792 A</td>
<td>30-07-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 63315722 A</td>
<td>23-12-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 38392 G</td>
<td>22-05-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4815892 A</td>
<td>28-03-1989</td>
</tr>
</tbody>
</table>

FR 2630143 A1 20-10-1989 NONE


IT M1962140 A1 15-04-1998

US 5891549 A 06-04-1999

US 2003223819 A1 04-12-2003 NONE

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- IT MI20090508 A [0034]