Tyre retreading method and system

A method and system (1) for retreading a tyre (2), whereby a lateral surface (7) of the casing (6) is buffed; an inner surface (17) of a tread strip (10) is buffed; a green-rubber cushion (9) and the tread strip (10) are wound about the lateral surface (7) of the casing (6) to assemble the tyre (2); and the tyre (2) is cured; buffing of the lateral surface (7) of the casing (6) and/or the inner surface (17) of the tread strip (10) includes: directing a laser beam (B) onto the lateral surface (7) of the casing (6) and/or the inner surface (17) of the tread strip (10) to sublime part of the existing rubber; and producing a relative movement between the laser beam (B) and the lateral surface (7) of the casing (6) and/or the inner surface (17) of the tread strip (10), so the laser beam (B) sweeps over the whole surface (7; 17).

Fig. 4
Description

TECHNICAL FIELD

[0001] The present invention relates to a tyre retreading method and system.

[0002] The present invention may be used to advantage in retreading truck tyres, to which the following description refers purely by way of example.

BACKGROUND ART

[0003] Retreading a truck tyre comprises removing the worn tread from the tyre to expose the tyre casing, and applying a new tread to the casing. To apply the new tread to the casing, a green-rubber intermediate strip or cushion and a tread strip are wound about the casing; and the casing is cured further in an autoclave, so the bonding action of the cushion grips the tread firmly to the casing.

[0004] Examples of tyre retreading systems are to be found in Patent US6368439B1 and Patent Application N umber 1 in Figure 1 indicates as a whole a retreading system. Figure 2 shows a schematic view in perspective, with parts removed for clarity, of a first buffing device of the Figure 1 retreading system; Figure 3 shows a schematic front view, with parts removed for clarity, of a building machine of the Figure 1 retreading system; Figure 4 shows a schematic front view, with parts removed for clarity, of a second buffing device of the Figure 1 retreading system.

[0005] To remove all traces of the worn tread from the casing (without damaging the belts underneath), mechanical buffing, normally using wire brushes, is employed. This serves both to eliminate the worn tread and to improve grip by roughening the lateral surface of the casing and so increasing its specific surface area. Also, before applying the tread strip about the green-rubber cushion, an inner surface of the tread strip is buffed mechanically, normally using wire brushes, to remove any extraneous substances (dust, dirt and similar) from the inner surface, and to improve grip by roughening the inner surface and so increasing its specific surface area.

[0006] Mechanical wire brush buffing, however, has various drawbacks. First and foremost, it mechanically removes small particles of rubber that form rubber dust, which must be removed using special extractors to avoid contaminating the workplace, endangering health, and fouling both the tyre and machinery.

[0007] Moreover, by its very nature, mechanical buffing does not permit accurate, constant adjustment of the amount of rubber removed, or even very uniform rubber removal, with the result that, very often, either some of the worn tread is left on, or the underlying belts are damaged. For the same reason, mechanical buffing fails to provide for an even casing or tread strip, thus resulting in humps or dips in the retreaded tyre, which result in annoying vertical vibrations as the tyre rolls along.

[0008] When mechanical wire brush buffing, pieces of wire may work loose from the brushes and become embedded in the lateral surface of the casing or the inner surface of the tread strip, thus locally impairing grip of the tread strip to the casing, and reducing performance of the retreaded tyre.

[0009] Mechanical wire brush buffing produces a rough surface with an uneven, purely random score pattern, as opposed to a predetermined desired pattern.

[0010] Finally, the wire brushes are subject to severe wear and must be changed frequently, thus resulting in frequent maintenance holdups of the retreading system.

DISCLOSURE OF THE INVENTION

[0011] It is an object of the present invention to provide a tyre retreading method and system designed to eliminate the above drawbacks, and which in particular are cheap and easy to implement.

[0012] According to the present invention, there are provided a tyre retreading method and system, as claimed in the accompanying Claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] A non-limiting embodiment of the present invention will be described by way of example with reference to the accompanying drawings, in which:

- Figure 1 shows a schematic of a tyre retreading system in accordance with the present invention;
- Figure 2 shows a schematic view in perspective, with parts removed for clarity, of a building machine of the Figure 1 retreading system;
- Figure 3 shows a schematic front view, with parts removed for clarity, of a first buffing device of the Figure 1 retreading system;
- Figure 4 shows a schematic front view, with parts removed for clarity, of a second buffing device of the Figure 1 retreading system.

PREFERRED EMBODIMENTS OF THE INVENTION

[0014] Number 1 in Figure 1 indicates as a whole a retreading system for retreading a worn truck tyre 2, and which comprises a preparation station 3, a winding station 4, and a curing station 5.

[0015] At preparation station 3, the worn tread (not shown) is removed mechanically from tyre 2, by cutters or similar, to expose the casing 6 of tyre 2, i.e. what is left of tyre 2 when the tread is removed. The lateral surface 7 (Figure 2) of casing 6 is then buffed to remove all traces of the old tread (without damaging the belts underneath) and increase the specific surface area and hence grip. To buff lateral surface 7 (Figure 2) of casing 6, preparation station 3 comprises a buffing device 8 described in detail below.

[0016] The buffed lateral surface 7 of casing 6 is then skived by hand to remove any preexisting local damage, and, finally, is filled by hand to fill any holes in lateral surface 7 of casing 6 with green rubber.

[0017] Once filling is completed, casing 6 is transferred to winding station 4 where a green-rubber intermediate strip or cushion 9 and a tread strip 10 are wound about casing 6.

[0018] As shown in Figure 2, winding station 4 com-
prises a building machine 11, in turn comprising a rotary drum 12 supporting casing 2 of tyre 2; a feed conveyor 13 for feeding tread strip 10 to rotary drum 12; a pressure roller 14 positioned contacting tread strip 10 between drum 12 and feed conveyor 13; and an actuating device (not shown) for pushing pressure roller 14 against tread strip 10 with adjustable force. Building machine 11 may also comprise a support 15 for supporting in rotary manner a roll of green-rubber cushion 9, which is wound manually about casing 6. In other words, feed conveyor 13 and support 15 define winding means for winding green-rubber cushion 9 about casing 6, and winding tread strip 10 about casing 6 and on top of green-rubber cushion 9.

In a preferred embodiment, building machine 11 is operated to wind green-rubber cushion 9 manually about casing 6, independently of tread strip 10, and then to wind tread strip 10 separately about casing 6 and on top of the previously wound green-rubber cushion 9. In which case, buffing device 16 is comprised of pressure rollers that can be adjusted to apply a consistent pressure to the outer surface of the green-rubber cushion 9. The pressure rollers are positioned to apply pressure to the green-rubber cushion 9 and tread strip 10 before green-rubber cushion 9 is coupled to tread strip 10.

Each buffing device 8, 16 also comprises an emitter 18 for emitting a laser beam B powerful enough to sublimate rubber. A high-power CO₂ laser with a high rubber sublimation rate is normally used. When buffing lateral surface 7 of casing 6 or inner surface 17 of tread strip 10, a high-power (e.g. CO₂) laser with a high rubber sublimation rate is particularly essential, on account of the thick layer of rubber (about one or more millimetres) to be removed from lateral surface 7 of casing 6 or inner surface 17 of tread strip 10.

Each buffing device 8, 16 also comprises an electronically controlled deflecting device 19 connected to emitter 18 to change the emission direction of laser beam B, and which typically only changes the emission direction of laser beam B in a deflection direction D₁ (Figure 4) perpendicular to the longitudinal travelling direction D₂ (Figure 3) of lateral surface 7 of casing 6 or inner surface 17 of tread strip 10. The whole of lateral surface 7 of casing 6 or inner surface 17 of tread strip 10 is therefore swept by the laser beam using both the deflection of laser beam B in deflection direction D₁, and the movement of lateral surface 7 of casing 6 and inner surface 17 of tread strip 10 in travelling direction D₂.

To sublimate a given mass of rubber (i.e. convert it directly from a solid to a gaseous state), it must be subjected to a given constant amount of energy depending on the latent sublimation heat of the rubber. The amount of energy supplied to a point on lateral surface 7 of casing 6 or inner surface 17 of tread strip 10 can be regulated by simply adjusting (increasing or reducing) the length of time the point is exposed to laser beam B and/or adjusting the power of laser beam B. Therefore, by adjusting the exposure time to laser beam B from one point to another and/or adjusting the power of laser beam B, the amount of rubber sublimated (i.e. the etching depth of laser beam B) can be adjusted accurately from one point to another.

In an alternative, lesser used embodiment, building machine 11 may include a cold curing process, in which the retreaded tyre 2 is cured for a short time in an autoclave; or a hot curing process, in which the retreaded tyre 2 is cured for a long time in a press-sealed curing mold. When dealing with a pre-molded, cured tread strip (so-called pre-cured tread), cold curing is adopted, in that only the green-rubber cushion 9 need be cured to ensure firm grip of tread strip 10 to casing 6 of tyre 2 by virtue of the bonding action of cushion 9. When using a green-rubber tread strip 10, on the other hand, hot curing is required to cure both cushion 9 and tread strip 10.
Figure 4 shows tread strip 10 partly buffed by buffing device 16. As can be seen, the buffing pattern is designed to form on inner surface 17 of tread strip 10 a number of parallel longitudinal grooves 20 of considerable depth (at least 0.5 mm and preferably about 0.8 mm, as compared with a standard depth of about 0.2 mm). This depth is made possible using laser beam B, which provides for in-depth rubber removal, whereas conventional mechanical brushes at most succeed in removing only 0.2-0.26 mm. Tests surprisingly show that a substantial increase in the depth of longitudinal grooves 20 (to over 0.5 mm) provides for greatly improving grip of tread strip 10 to green-rubber cushion 9 and so improving performance of retreaded tyre 2. As stated, grooves 20 serve to improve grip of tread strip 10 to casing 6 (with cushion 9 in between); and this is achieved both by increasing the specific surface area of inner surface 17 of tread strip 10 (and therefore the contact area where the bonds between casing 6 and tread strip 10 are formed with cushion 9 in between), and by producing "mutual penetration" of casing 6 and tread strip 10, with cushion 9 in between, to form a mechanical joint.

In the embodiment described above, both buffing devices 8, 16 employ a rubber-removing laser beam B. In other variations not shown, only one of buffing devices 8, 16 employs a rubber-removing laser beam B, while the other is a traditional type employing wire brushes.

Using a rubber-removing laser beam B, the rubber (and obviously any other extraneous substances), as opposed to being removed mechanically, is sublimated (i.e. passes directly from the solid to the gaseous state), so buffing devices 8, 16 described produce no rubber dust, but only vapour and fumes, which obviously tend to rise and can be aspirated completely and easily by extractors (unlike rubber dust which tends to be expelled in all directions, settles by force of gravity, and is much more difficult to extract). What is more, the vapour and fumes produced by buffing devices 8, 16 in no way foul casing 6 of tyre 2, tread strip 10, or the machinery.

Moreover, laser rubber removal permits highly accurate, constant control of the thickness removed, as well as extremely even rubber removal. This is due to the fact that, to sublimate a given mass of rubber, it must be subjected to a given constant energy depending on the latent sublimation heat of the rubber; so, by controlling the power of laser beam B and the exposure time to laser beam B of a given area, it is possible to accurately control the energy to which a given area is subjected and hence the amount of rubber removed by sublimation, and the worn tread can be removed completely, with no damage to the underlying belts. Moreover, unlike mechanical buffing, which also damages the underlying tread belts, laser beam B, which sublimates the rubber, cannot damage the tread belts (at least within the relatively short exposure time to sublimate the rubber).

Tests show that buffing devices 8, 16 described provide for reducing buffing time and so increasing the output of retreading system 1.

Last but not least, laser beam B of buffing devices 8, 16 provides for etching lateral surface 7 of casing 6 and inner surface 17 of tread strip 10 extremely accurately (to an error of less than 0.01 mm) with any predetermined pattern, either two-dimensional (i.e. with grooves of constant depth) or three-dimensional (i.e. with grooves of varying depth). The pattern etched on inner surface 17 of tread strip 10 is designed to maximize grip, bearing in mind also that neither casing 6 of tyre 2 nor tread strip 10 is completely even (due to the presence, for example, of plies and splices in casing 6, and grooves in the tread pattern of tread strip 10).

It is important to note that the pattern etched on inner surface 17 of tread strip 10 can be altered rapidly, if necessary from one tread strip 10 to another, by simply altering the electronic control of deflecting device 19. Using conventional wire brushes, on the other hand, changing buffing performance takes much longer, and is much more complicated, by involving replacement of physical parts.

Buffing of lateral surface 7 of casing 6 can also be adapted easily to each casing 6 as a function of the actual condition of lateral surface 7. That is, whereas tread strip 10 is a new, specially made component, which means inner surface 17 of tread strip 10 is in a fairly homogeneous condition, casing 6 of tyre 2 is a used part that has had a working life, is being recycled, and has undergone mechanical removal of the worn tread. Given therefore the highly heterogeneous condition of lateral surface 7 of casing 6, adapting buffing performance as closely as possible to the actual condition of lateral surface 7 of casing 6 may prove useful, and can be done by simply, quickly, and accurately adjusting the direction and power of laser beam B, and the exposure time to
laser beam B of each point.

Claims

1. A method of retreading a tyre (2); the method comprising the steps of:
 - buffing a lateral surface (7) of a casing (6) of the tyre (2);
 - buffing an inner surface (17) of a tread strip (10);
 - winding a green-rubber cushion (9) and the tread strip (10) about the lateral surface (7) of the casing (6) to assemble the tyre (2); and
 - curing the tyre (2);
 the method being characterized in that the step of buffing the lateral surface (7) of the casing (6) and/or the inner surface (17) of the tread strip (10) comprises the further steps of:
 - directing a laser beam (B) onto the lateral surface (7) of the casing (6) and/or the inner surface (17) of the tread strip (10) to sublimate part of the existing rubber; and
 - producing a relative movement between the laser beam (B) and the lateral surface (7) of the casing (6) and/or the inner surface (17) of the tread strip (10), so the laser beam (B) sweeps over the whole surface (7; 17).

2. A method as claimed in Claim 1, wherein the step of producing a relative movement between the laser beam (B) and the lateral surface (7) of the casing (6) and/or the inner surface (17) of the tread strip (10) comprises the further steps of:
 - varying the emission direction of the laser beam (B) solely in a deflection direction (D1); and
 - moving the lateral surface (7) of the casing (6) and/or the inner surface (17) of the tread strip (10) in a longitudinal travelling direction (D2) perpendicular to the deflection direction (D1).

3. A method as claimed in Claim 1 or 2, and comprising the further step of varying the energy supplied to a given point on the lateral surface (7) of the casing (6) or the inner surface (17) of the tread strip (10) by varying the length of time the point is exposed to the laser beam (B) and/or by varying the power of the laser beam (B), so as to vary the amount of rubber sublimated at the point.

4. A method as claimed in Claim 1, 2 or 3, and comprising the further steps of:
 - determining beforehand a desired etching pattern to be formed on the lateral surface (7) of the casing (6) and/or the inner surface (17) of the tread strip (10); and
 - forming the desired etching pattern on the lateral surface (7) of the casing (6) and/or the inner surface (17) of the tread strip (10) by means of the laser beam (B) and while buffing the surface (7; 17).

5. A method as claimed in one of Claims 1 to 4, wherein the inner surface (17) of the tread strip (10) is buffed simultaneously with formation of the tread strip (10).

6. A method as claimed in one of Claims 1 to 4, wherein the inner surface (17) of the tread strip (10) is buffed just before winding the green-rubber cushion (9) and the tread strip (10) about the lateral surface (7) of the casing (6).

7. A method as claimed in Claim 6, and comprising the further steps of:
 - winding the green-rubber cushion (9) about the casing (6) before the tread strip (10) and independently of the tread strip (10); and
 - buffing the inner surface (17) of the tread strip (10) just before winding the tread strip (10) about the casing (6) and on top of the previously wound green-rubber cushion (9).

8. A method as claimed in Claim 6, and comprising the further steps of:
 - applying the green-rubber cushion (9) to the tread strip (10), and then winding the green-rubber cushion (9) and the tread strip (10) together about the tyre (2); and
 - buffing the inner surface (17) of the tread strip (10) just before applying the green-rubber cushion (9) to the tread strip (10).

9. A method as claimed in one of Claims 1 to 8, wherein the step of buffing the inner surface (17) of the tread strip (10) comprises forming a number of parallel longitudinal grooves (20) of at least 0.5 mm in depth.

10. A method as claimed in one of Claims 1 to 8, and comprising the further step of forming a number of longitudinal grooves (20) beforehand on the inner surface (17) of the tread strip (10) when building the tread strip (10); the step of buffing the inner surface (17) of the tread strip (10) comprising removing a surface film from the inner surface (17) to clean the inner surface (17).

11. A method as claimed in one of Claims 1 to 10, and comprising the further step of removing the worn tread from the used tyre (2) to obtain the casing (6) of the tyre (2).
12. A system (1) for retreading a tyre (2); the system comprising:

- a first buffing device (8) for buffing a lateral surface (7) of a casing (6) of the tyre (2);
- a second buffing device (16) for buffing an inner surface (17) of a tread strip (10);
- a winding station (4) for winding a green-rubber cushion (9) and the tread strip (10) about the lateral surface (7) of the casing (6) to assemble the tyre (2)); and
- a curing station (5) for curing the tyre (2);

the system (1) being **characterized in that** the first buffing device (8) and/or the second buffing device (16) comprise/s:

- an emitter (18) for directing a laser beam (B) onto the lateral surface (7) of the casing (6) and/or the inner surface (17) of the tread strip (10) to sublimate part of the existing rubber; and
- displacing means (13, 19) for producing a relative movement between the laser beam (B) and the lateral surface (7) of the casing (6) and/or the inner surface (17) of the tread strip (10), so the laser beam (B) sweeps over the whole surface (7; 17).
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>GB 2 435 231 A (PERKS NICHOLAS [GB]) 22 August 2007 (2007-08-22) * page 2, line 5 - page 5, line 22; figures *</td>
<td>1-12</td>
<td>INV. B29D30/54 B26D1/00 B29B17/02</td>
</tr>
<tr>
<td>D,Y</td>
<td>US 2005/194077 A1 (YAP CHOO K [MY]) 8 September 2005 (2005-09-08) * paragraphs [0004], [0005], [0020] - [0022]; claims *</td>
<td>1-12</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP 60 196331 A (YOKOHAMA RUBBER CO LTD) 4 October 1985 (1985-10-04) * abstract; figures *</td>
<td>1-12</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

Place of search: Munich
Date of completion of the search: 31 July 2009
Examiner: Kopp, Christian
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>EP 0 958 881 A (DENGLER STEFAN [DE]) 24 November 1999 (1999-11-24) * paragraph [0002]; claims * -----</td>
<td>1-12</td>
<td>1-12</td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

Place of search
Munich

Date of completion of the search
31 July 2009

Examiner
Kopp, Christian

CATEGORY OF CITED DOCUMENTS

- T: theory or principle underlying the invention
- E: earlier patent document, but published on, or after the filing date
- D: document cited in the application
- L: document cited for other reasons
- &: member of the same patent family, corresponding document
- X: particularly relevant if taken alone
- Y: particularly relevant if combined with another document of the same category
- A: technological background
- O: non-written disclosure
- P: intermediate document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

31-07-2009

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB 2435231 A</td>
<td>22-08-2007</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2005194077 A1</td>
<td>08-09-2005</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 60196331 A</td>
<td>04-10-1985</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE 19642283 A1</td>
<td>16-04-1998</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 4230511 A</td>
<td>28-10-1980</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69424917 D1</td>
<td>20-07-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69424917 T2</td>
<td>12-10-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0650824 A1</td>
<td>03-05-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2148267 T3</td>
<td>16-10-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7178842 A</td>
<td>18-07-1995</td>
</tr>
<tr>
<td>DE 4436200 A1</td>
<td>18-04-1996</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2113600 T3</td>
<td>01-05-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5537866 A</td>
<td>23-07-1996</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 6368439 B1 [0004]
- US 2005194077 A1 [0004]