Method and system for controlling loading of food products in a food mixing unit

The system (1) for controlling loading of food products in a food mixing unit (2) by means of a loader unit (3), the system (1) having: a weighing device (7), which is mounted on the mixing unit (2) and has a memory (9) for storing at least one recipe of food products to be loaded and, for each food product of the recipe, first geographic coordinates (GC1) associated to the food product and identifying a stocking area (5) of the food product; a GPS receiver (12) associated to the loader unit (3) to detect second geographic coordinates (GC2) identifying the place in which the loader unit (3) is located; and processing means (10) configured to check the weight of the food products of the recipe as these are gradually loaded in the mixing unit (2), to acquire the second geographic coordinates (GC2) for each food product being loaded when the loader unit (3) takes the food product from a stocking area (5) and to compare the second geographic coordinates (GC2) with the first geographic coordinates (GC1) for each food product being loaded in order to verify that the correct food product is being taken.
Description

[0001] The present invention relates to a method for controlling the loading of food products in a food mixing unit and to corresponding control systems.

[0002] In particular, the present invention can be adopted advantageously but not exclusively in the zootechnical sector to check that food products loaded in a food mixing unit by means of at least one loader unit are effectively the food products programmed in a pre-established food recipe, to which the description below will explicitly refer without prejudice to its generality.

[0003] It is known that many livestock enterprises and stock-farms prepare the ration of food to be administered to each animal using a mixing unit consisting of a mixing wagon comprising a bin in which several food products are loaded by means of an external loader unit comprising, for example, an engine-driven vehicle with mechanical shovel. The mixer wagon also comprises one or more augers arranged inside the bin to mix the food products in the bin. The food products are loaded in the bin of the mixer wagon in a specific order according to the weights established by a recipe prepared previously by a nutritionist. Typically, each animal has different nutritional requirements according to breed, stage of growth and general conditions. Furthermore, the animals are divided into groups characterised by similar nutritional requirements. Therefore, each stock-farm has to prepare several food product recipes.

[0004] A prior art mixer wagon is equipped with a weighing device comprising load cells coupled with the bin in order to detect the weight of the contents of the bin, and a control unit connected to the load cells in order to check loading of the food products. The control unit comprises a memory in which one or more recipes are saved, a keyboard for entry of data and commands by an operator dedicated to the mixer wagon, for example to select the recipe, a processing unit to run a load programme defined by the recipe selected, a display to show information during execution of the recipe, for example to display the current weight recorded by the load cells and a buzzer to indicate that the pre-established weight of each food product has been reached.

[0005] In use, the load programme scans the food products to be loaded in a certain order established by the selected recipe and emits an operator alarm when the pre-established weight of each food product is reached so that the operator can order the loader unit to load the next food product. The alarm is emitted, for example, in the form of an acoustic signal by means of a buzzer and/or in the form of a visual signal by means of the display. The loader unit takes each food product to be loaded from at least one relative stocking area.

[0006] Using the aforementioned control unit, the operator of the mixer wagon controls the quantity of each food product loaded. However, the operator of the mixer wagon does not have the possibility of automatically and accurately checking that each food product loaded by the loader unit in the mixer wagon is that effectively established by the recipe. In other words, the operator must personally verify that the stocking area from which the loader unit takes the food product is the correct area for the food product programmed.

[0007] The object of the present invention is to provide a method and system for controlling loading of food products in a food mixing unit that eliminates the above-mentioned drawbacks and is also easy and economical to produce.

[0008] According to the present invention, a method and system for controlling loading of food products in a food mixing unit are furnished as defined in the attached claims.

[0009] To facilitate understanding of the present invention, a preferred embodiment is now described, for the purpose of providing a non-limiting example, with reference to the single figure attached, which provides a schematic view of the system for controlling loading of food products in at least one food mixing unit by means of at least one loader unit, such system being implemented according to the present invention.

[0010] In the sole figure, 1 indicates, in its entirety, the system implemented according to this invention, 2 indicates the mixing unit, which is preferably but not necessarily mobile, and 3 indicates the loader unit.

[0011] In the example of the attached figure, the mixing unit 2 comprises a towable type mixer wagon comprising a bin 4 to receive the food products to be mixed and an auger (not shown) to mix the food products in the bin 4. Each of the food products to be loaded in the mixing unit 2 is usually stacked in at least one relative stocking area 5. The loader unit 3 is mobile in order to move to one stocking area 5 at a time and to transport a quantity of the relative food product to the mixing unit 2. The loader unit 3 comprises loading means 6 able to take a quantity of a food product from the respective stocking area 5 and to load the food product taken in the bin 4 of the mixing unit 2. In the example of the attached figure, the loader unit 3 is of the self-propelled type, i.e. it consists of an engine-driven vehicle, and in particular of a tractor, equipped with a cab 3a for an operator, and the loading means 6 comprise a bucket or mechanical shovel 6a mounted in a mobile manner on the tractor by means of an articulated arm 6b.

[0012] Referring again to the attached figure, the system 1 comprises a weighing device 7 mounted on the mixing unit 2 for checking the weight of the food products loaded in the bin 4. The weighing device 7 comprises one or more load cells 8 coupled to the bin 4 in order to detect the weight of the food products in the bin 4, and a memory 9 in which to save at least one recipe of food products to be loaded in the bin 4. Each recipe comprises a list of food products and a pre-established weight for each food product. The weighing device 7 also comprises a processing unit 10 for execution of a load programme defined by a selected recipe, an interface device 11 equipped with relative keyboard, display and buzzer for...
interaction between the operator of the mixing unit 2 and
the weighing device 7, so that the operator is able to enter
commands, for example, to select the recipe to be fol-
lowed, and receive information from the weighing device
7 during execution of the recipe, for example to display
the weight of each food product detected by the load cells
8 and to emit acoustic signals when the pre-established
weight of each food product is reached.

[0013] According to the present invention, the system
1 comprises at least a GPS receiver 12 mounted on the
loader unit 3 to detect the geographic coordinates of
the place where the loader unit 3 is located, a first wireless
type communication module 13 which is incorporated in
the weighing device 7 and is connected to the processing
unit 10, and at least one second wireless type commu-
nication module 14 which is mounted on the loader unit
3, and is connected, by means of a control unit 15, to the
GPS receiver 12 and is able to communicate with the
first communication module 13 to allow the processing
unit 10 to acquire the geographic coordinates detected
by the receiver 12 at the moment in which the loader unit
3 takes a food product from a relative stocking area 5. The
communication modules 13 and 14 are of the type
able to communicate via radio waves or infrared rays.

[0014] The system 1 also comprises a weight sensor
16, which is coupled to the mechanical shovel 6a and is
connected to the control unit 15 in order to detect the
presence of a food product in the loading means 6, and
a further interface device 17, which is mounted in the cab
3a of the loader unit 3, is connected to the control unit
15 and is provided with relative keyboard, display and
dimmer so that the operator of the loader unit 3 can enter
commands and receive signals relating to loading of a
food product, for example to display the weight detected
by the weight sensor 16.

[0015] Lastly, the weighing device 7 is fitted with a com-
munication port 18 connected to the memory 9 to permit
saving of the recipe and of further relative information in
the memory 9. The communication port 18 consists, for
example, of a reader for so-called memory cards, or of
a short-range wireless communication port, or of a USE
port. The structure of the system 1 described above per-
mits implementation of the method for controlling loading
of food products in a mixing unit 2 of the present invention,
such method being described below.

[0016] For the sake of simplicity but without any loss
of generality, in the case considered below the memory
9 of the weighing device 7 saves a single recipe and each
food product of the recipe can be taken from a single
stocking area 5.

[0017] First of all, according to the method, each stock-
ing area 5 is identified by means of a respective set of
points in space, each defined by the relative geographic
coordinates, referred to hereinafter as GC1. In particular,
the set of points comprises at least three points to define
a determined polygon in space that encloses at least part
of the relative stocking area 5. The set of points that iden-
tifies the relative stocking area 5 is associated to each

food product of the recipe. The recipe is then saved in a
generic database held on a central computer, not shown,
saving for each food product of the recipe the weight of
the food product and the geographic coordinates GC1 of
the set of points associated to such food product.

[0018] The recipe and the geographic coordinates
GC1 associated to the food products of the recipe are
saved in the memory 9 of the weighing device 7 of the
mixing unit 2 by means of the communication port 18 of
the weighing device connected to the memory 9. The
system 1 is now ready for use.

[0019] In use, the operator of the mixing unit 2 selects
a recipe by means of the interface device 11 which replies
by displaying the first food product being loaded. Here-
inafter, the wording “food product being loaded” means
the food product that, according to the list of food products
of the recipe, must be loaded at a certain time in the
mixing unit 2. In the case in which several loader units 3
are present, for example if there is a type of loader unit
3 for each type of food product of the recipe, or the loader
units 3 are distributed amongst the various stocking ar-
eas 5 if these are at a considerable distance from each
other, the operator of the mixing unit 12 selects one of
the available loader units 3. Possibly, information regard-
ing the food product being loaded, such information com-
prising an identification code of the food product, the
weight of the food product and the geographic coordi-
nates GC1 associated to the food product, is transmitted
by the weighing device 7 to the loader unit 3 selected by
means of communication modules 13 and 14. Such in-
formation is displayed by the interface device 17 in order
to notify this to the operator who is on the loader unit 3
selected.

[0020] At this point, the operator of the selected loader
unit 3 drives such loader unit 3 to the stocking area 5
relative to the food product being loaded in order to take
the programmed quantity of such food product.

[0021] The method comprises a step of acquiring, by
the weighing device 7, the geographic coordinates, indi-
cated in the following description by GC2, that identify
the place in which the loader unit 3 is located when it
takes the food product from the stocking area 5. This step
is based on use of the GPS receiver 12 mounted on the
loader unit 3. In particular, the step of acquisition of the
geographic coordinates GC2 comprises the following steps:

- detecting, by means of the weight sensor 16, the
 presence of the food product on the loading means
 6, i.e. presence of the food product in the shovel 6a;
- querying the GPS receiver 12 in order to obtain the
 geographic coordinates GC2 when the food product
 is present on the loading means 6; and
- transmitting immediately the geographic coordinates
 GC2 to the weighing device 7 by means of the com-
munication modules 13 and 14.

[0022] The step of acquisition of the geographic coor-
The above steps relating to acquisition of the geographic coordinates GC2 and comparison of the geographic coordinates GC2 with the geographic coordinates GC1 are implemented by the system 1 by suitably configuring the control unit 15 so that it queries the GPS receiver 12 when the weight sensor 16 detects the presence of the food product in order to obtain the geographic coordinates GC2 and orders the communication module 14 to transmit the geographic coordinates GC2, and suitably configuring the processing unit 10 so that it acquires, by means of the communication module 13, the geographic coordinates GC2 transmitted by the communication module 14 of the loader unit 3 that has taken the food product, compares the geographic coordinates GC2 acquired with the geographic coordinates GC1 associated to the food product being loaded and activates the interface device 11 so that the relative display and/or buzzer issues the above-mentioned error signal in the case in which the result of the comparison is negative. Furthermore, the processing unit 10 is configured to activate the communication module 13 so as to communicate the negative result of the comparison to the loader unit 3 that has taken the food product, and the control unit 15 is configured to receive, by means of the communication module 14, the negative result of the comparison transmitted by the weighing device 7 and therefore to command the interface device 17 in such a way that the relative display and/or buzzer emits the above-mentioned error signal.

Therefore, the method of control and the system 1 described above permit substantially automatic checking that the food products loaded in the mixing unit 2 effectively correspond to those established by the recipe selected.

According to a second embodiment of this invention, not illustrated, the system 1 is without the weight sensor 16 and the method for controlling loading differs from the preferred embodiment described above in that acquisition of the geographic coordinates GC2 comprises the following steps:

- waiting for the operator of the loader unit 3 to enter a confirmation command by means of the interface device 17; and
- querying the GPS receiver 12 following entry of such confirmation command in order to obtain the geographic coordinates GC2.

The confirmation command must be entered by the operator after visually checking that the loading means 6 are ready to take the food product from the stocking area 5. For this reason, functioning of the system 1 according to such embodiment is substantially semi-automatic.

The differences between the method according to such embodiment and the method according to the preferred embodiment described previously are also reflected in a different configuration of the control unit 15. In particular, the control unit 15 is configured to query the GPS receiver 12 after the interface device 17 has acquired the confirmation command.

A third embodiment, not illustrated, of the present invention is now described and applies to the case in which the mixing unit 2 is self-propelled in order to move to the various stocking areas 5 in the order defined by the list of food products of the recipe, and comprises a generic loader unit 3 for directly taking the food product from the stocking area 5 reached. For example, the loader unit 3 is of the type comprising at least a conveyor and/or at least an auger mounted on the mixing unit 2 to take the food product from the stocking area 5 reached. According to such embodiment, the system 1 is without the communication modules 13 and 14, the control unit 15 and weight sensor 16. The GPS receiver 12 is connected to the processing unit 10 and is preferably incorporated in the weighing device 7, even though, alternatively, it may be mounted on the loader unit 3. In both the above arrangements, the GPS receiver 12 is associated to the loader unit 3. The method for controlling loading differs from the preferred embodiment described above in that acquisition of the geographic coordinates GC2 comprises the following steps:

The above steps relating to acquisition of the geographic coordinates GC2 is followed by a step of comparison, by the weighing device 7, of the geographic coordinates GC2 with the geographic coordinates GC1 associated to the food product being loaded, to check whether the loader unit 3 is taking the correct food product, i.e. that the loader unit 3 is taking the food product from the correct stocking area 5. In particular, the step of comparison consists in checking whether the point identified by the geographic coordinates GC2 is located inside the polygon defined by the set of points associated to the food product being loaded.

If the result of the check on the geographic coordinates is positive, the loader unit 3 can return to the mixing unit 2 in order to load the food product just taken in the bin 4. After checking that the weight of the food product loaded in the bin 4 is correct, the weighing device 7 moves to the second food product of the recipe which becomes the new food product being loaded and the steps described above are repeated.

If the result of the check on the geographic coordinates is negative, i.e. if the point identified by the geographic coordinates GC2 is outside the polygon, the interface device 11 is activated to emit an acoustic and/or visual error signal in order to inform the operator of the mixing unit 2 that an incorrect food product is being taken and the load programme of the recipe may possibly be interrupted. The negative result of the comparison is also transmitted, by means of the communication modules 13 and 14, to the loader unit 3 that has taken the incorrect food product so that the relative interface device 17 can be activated to emit a similar error signal to also notify the operator of the loader unit 3 that an incorrect food product is being taken.

The above steps relating to acquisition of the geographic coordinates GC2 and comparison of the geographic coordinates GC2 with the geographic coordinates GC1 are implemented by the system 1 by suitably configuring the control unit 15 so that it queries the GPS receiver 12 after the interface device 17 has acquired the confirmation command.
Method for controlling loading of food products in a food mixing unit (2), which loading occurs by means of at least one loader unit (3); the mixing unit (2) comprising a weighing device (7), which comprises storage means (9) to store at least one recipe comprising a list of food products to be loaded in the mixing unit (2) and is suitable to check the weight of the food products of the recipe as they are loaded in the mixing unit (2); the loader unit (3) being suitable to take each food product from at least one relative stocking area (5); the method being characterised in that it comprises the steps of:

- identifying each stocking area (5) by means of a respective set of points in space, each of them defined by the relative geographic coordinates (GC1);
- associating to each food product of the recipe at least the set of points identifying said at least one relative stocking area (5);
- storing in said storage means (9), for each food product of the recipe, the first geographic coordinates (GC1) of the set of points associated to said food product;
- acquiring, by the weighing device (7), for each food product of the recipe being loaded, second geographic coordinates (GC2) identifying the place where the loader unit (3) is located when it takes the food product from a stocking area (5), by means of at least one GPS receiver (12) associated to the loader unit (3); and
- comparing, by the weighing device (7), the second geographic coordinates (GC2) with the first geographic coordinates (GC1) associated to the food product being loaded in order to check whether the correct food product is being taken.

2. Method according to Claim 1, wherein the set of points associated to each said food product of the recipe comprises at least three points; said step of comparing the second geographic coordinates (GC2) with the first geographic coordinates (GC1) associated to the food product being loaded comprising the step of checking whether the point defined by the second geographic coordinates (GC2) is inside a polygon defined by the set of points associated to the food product being loaded.

3. Method according to Claim 1 or 2, wherein the loader unit (3) is self-propelled in order to reach said stocking area (5) and to carry the relative food product from the stocking area (5) to the mixing unit (2); said GPS receiver (12) being mounted on the loader unit (3).

4. Method according to Claim 3, wherein said loader unit (3) comprises loading means (6) to take a food product from said relative stocking area (5) and to load the taken food product into said mixing unit (2); said step of acquiring, by the weighing device (7), for each food product of the recipe being loaded, second geographic coordinates (GC2) identifying the place where the loader unit (3) is located, comprising the steps of:

- detecting, by weight detecting means (16) connected to said loading means (6), the presence of the food product on the loading means (6);
- if the food product is present on the loading means (6), querying said GPS receiver (12) to obtain the second geographic coordinates (GC2); and
- transmitting the second geographic coordinates (GC2) from the loader unit (3) to the weighing device (7) by communication means (13, 14) mounted on the loader unit (3) and on the weighing device (7).

5. Method according to Claim 3, wherein said step of acquiring, by the weighing device (7), for each food product of the recipe being loaded, second geographic coordinates (GC2) identifying the place where the loader unit (3) is located, comprises the steps of:

- waiting for an operator of said loader unit (3) to enter a first command by means of first man-machine interface means (17) mounted on the
6. Method according to Claim 1 or 2, wherein said mixing unit (2) is self-propelled in order to reach said stocking area (5) and comprises said loader unit (3) to retrieve the food product directly from the stocking area (5).

7. Method according to Claim 6, wherein said weighing device (7) comprises second man-machine interface means (11); said step of acquiring, by the weighing device (7), for each food product of the recipe being loaded, second geographic coordinates (GC2) identifying the place where the loader unit (3) is located, comprising the steps of:

- waiting for an operator of said mixing unit (2) to enter a second command by means of the second man-machine interface means (11);
- querying said GPS receiver (12) following entry of the second command in order to obtain the second geographic coordinates (GC2).

8. Method according to any one of Claims 1-7, comprising the step of emitting at least one visual or acoustic error signal if the comparison between said second geographic coordinates (GC2) and said first geographic coordinates (GC1) associated to the food product being loaded reveals that an wrong food product is being taken.

9. System for controlling loading of food products in a food mixing unit (2), which loading occurs by means of at least one loader unit (3); the system (1) comprising a weighing device (7), which is mounted on the mixing unit (2), comprises storage means (9) to store at least one recipe comprising a list of food products to be loaded in the mixing unit (2) and comprises processing means (10) configured to check the weight of the food products as they are loaded in the mixing unit (2); the loader unit (3) being suitable to take each food product of the recipe from at least one relative stocking area (5); the system (1) being characterised in that said storage means (9) are suitable to store, for each food product of the recipe, first geographic coordinates (GC1) relative to a set of points which is associated to the food product and identifies the stocking area (5) relative to the food product; in that it comprises at least one GPS receiver (12) associated to the loader unit (3) to detect second geographic coordinates (GC2) identifying the place where the loader unit (3) is located; and in that said processing means (10) are configured to acquire the second geographic coordinates (GC2) for each food product being loaded when the loader unit (3) takes the food product from a stocking area (5) and to compare the second coordinates (GC2) acquired for the food product being loaded with the first geographic coordinates (GC1) associated to the food product being loaded in order to check whether the correct food product is being taken.

10. System according to Claim 9, wherein the set of points associated to each food product of said recipe comprises at least three points; said processing means (10) being configured to check whether the point defined by said second geographic coordinates (GC2) is inside a polygon defined by the set of points associated to the food product being loaded.

11. System according to Claim 9 or 10, wherein said loader unit (3) is self-propelled in order to reach said stocking area (5) and to carry the relative food product from the stocking area (5) to the mixing unit (2); said GPS receiver (12) being mounted on the loader unit (3).

12. System according to Claim 11, wherein said loader unit (3) comprises loading means (6) to take a food product from said relative stocking area (5) and to load the taken food product in the mixing unit (2) to acquire the second geographic coordinates (GC2); the system (1) comprising: weight detecting means (16) connected to said loading means (6) to detect the presence of a food product on the loading means (6); control means (15) which are mounted on the loader unit (3), are connected to the weight detecting means (16) and to said GPS receiver (12) and are configured to query the GPS receiver (12) in case the food product is present on the loading means (6) in order to obtain said second coordinates (GC2); and communication means (13, 14) mounted on the loader unit (3) and on said weighing device (7) to transmit the second geographic coordinates (GC2) from the loader unit (3) to the weighing device (7).

13. System according to Claim 11, comprising: first man-machine interface means (17) mounted on said loader unit (3) to allow an operator of the loader unit (3) to enter a first command; control means (15), which are mounted on the loader unit (3), are connected to the first man-machine interface means (17) and to said GPS receiver (12) and are configured to query the GPS receiver (12) following entry of the first command in order to obtain said second coordinates (GC2); and communication means (13, 14) mounted on the loader unit (3) and on said weighing device (7) to transmit the second geographic coordinates (GC2) from the loader unit (3) to the weighing device (7).
14. System according to Claim 9 or 10, wherein said mixing unit (2) is self-propelled in order to reach said stocking area (5) and comprises said loader unit (3) to directly take the food product from the stocking area (5).

15. System according to Claim 14, wherein said weighing device (7) comprises second man-machine interface means (11) which are connected to said processing means (10) and allow an operator of said mixing unit (2) to enter a second command; said processing means (10) being connected to said GPS receiver (12) and being configured to query the GPS receiver (12) following entry of the second command in order to obtain said second coordinates (GC2).

16. System according to Claim 12 or 13, wherein said communication means (13, 14) comprise a first wireless communication module (13), which is incorporated in said weighing device (7) and is connected to said processing means (10) and, at least one second wireless communication module (14), which is mounted on said at least one loader unit (3), is suitable to communicate with the first wireless communication module (13) and is connected to said GPS receiver (12).

17. System according to any one of Claims 9-16 wherein said weighing device (7) comprises second man-machine interface means (11), which are connected to said processing means (10) and are suitable to emit visual and/or acoustic signals; the processing means (10) being configured to control the second man-machine interface means (11) so that they emit at least one visual or acoustic error signal in the case in which the comparison between said second geographic coordinates (GC2) and said first geographic coordinates (GC1) associated to the food product being loaded reveals that a wrong food product is being taken.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2008/097080 A (MAASLAND N.V.) 14 August 2008 (2008-08-14) * pages 11-15; figures 1-3 *</td>
<td>1,9</td>
<td>INV. A01K5/00 A01K5/02 A23N17/00</td>
</tr>
</tbody>
</table>

TECHNICAL FIELDS SEARCHED (IPC)

- A01K
- A23N

The present search report has been drawn up for all claims

Place of search
The Hague

Date of completion of the search
22 March 2010

Examiner
von Arx, Vik

CATEGORY OF CITED DOCUMENTS

- T: theory or principle underlying the invention
- E: earlier patent document, but published on, or after the filing date
- D: document cited in the application
- L: document cited for other reasons
- &: member of the same patent family, corresponding document

- X: particularly relevant if taken alone
- Y: particularly relevant if combined with another document of the same category
- A: technological background
- O: non-written disclosure
- P: intermediate document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

22-03-2010

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2008097080 A</td>
<td>14-08-2008</td>
<td>AT 10467 U1</td>
<td>15-04-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2676031 A1</td>
<td>14-08-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101588712 A</td>
<td>25-11-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 202008001482 U1</td>
<td>17-04-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 200800021 U3</td>
<td>10-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 1067278 U</td>
<td>01-05-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 1067279 U</td>
<td>01-05-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT M20080043 U1</td>
<td>05-05-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 1033349 C2</td>
<td>07-08-2008</td>
</tr>
<tr>
<td>WO 200811805 A</td>
<td>02-10-2008</td>
<td>CA 2680019 A1</td>
<td>02-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2129214 A1</td>
<td>09-12-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 1033589 C2</td>
<td>29-09-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010017035 A1</td>
<td>21-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101267731 A</td>
<td>17-09-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1931196 A1</td>
<td>18-06-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009590529 T</td>
<td>12-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080050414 A</td>
<td>05-06-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 1030690 C2</td>
<td>04-04-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008251024 A1</td>
<td>16-10-2008</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82