METHOD FOR COMPRESSING GASEOUS FUEL FOR FUELLING VEHICLE AND DEVICE FOR IMPLEMENTATION THEREOF

VERFAHREN ZUR KOMPRIMIERUNG VON GASFÖRMIGEM KRAFTSTOFF ZUR BETANKUNG EINES FAHRZEUGS UND DURCHFÜHRUNGSVORRICHTUNG DAFÜR

PROCÉDÉ DE COMPRESSION DE CARBURANT GAZEUX POUR ALIMENTER UN VÉHICULE ET DISPOSITIF POUR SA MISE EN APPLICATION

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

Priority: 12.09.2007 LV 070100

Date of publication of application: 30.06.2010 Bulletin 2010/26

Proprietor: Hygen SIA
1009 Riga (LV)

Inventor: SAFRONOV, Aleksejs
LV-1006 Riga (LV)

Representative: Anohins, Vladimir et al
Agency Tria Robit
P.O. Box 22
Riga 1010 (LV)

References cited:
WO-A-03/019016
US-A- 4 805 674
US-A- 5 603 360
US-A- 5 454 408
US-B1- 6 202 707

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This present invention relates to a preparation of natural gas for its further transfer under pressure to a fuel tank of a vehicle, e.g., automobile, and may be used for providing individual gas-filling devices operated from a residential natural gas distribution network.

There are known in the art various technologies for fuelling vehicles with gaseous fuel. E.g., US 4,805,674 (Knowlton) discloses a system adapted for fuelling vehicles with gaseous fuel. The system includes a compressing vessel, a low-pressure reservoir connected to a utility feed line and used as a pool for displacing liquid, a valve to pass the displacing liquid from the compressing vessel to the reservoir, a pump to pump the displacing liquid from the reservoir into the compressing vessel to displace compressed natural gas therefrom, and a compressor to pressurize natural gas into the compressing vessel therewith and feed it to a filling dispenser. Because of the reservoir and compressor, this system is rather cumbersome and is not convenient to be used at home.

Even more cumbersome installation with an extremely spacious reservoir and multiple compressing vessels is disclosed in US 5,454,408 (DiBella), a residential natural gas distribution network. Moreover, because the above-mentioned constructional elements, mainly for precision hydraulic drives, which provide the compression of natural gas for its efficient application as a motor vehicle fuel.

Complicated construction of compressors with mechanical drive, consumption of large amounts of power during their use, and generation of large amounts of heat, as well as high maintenance costs compensating a wear of movable parts of a compressor resulted in the development of compressors with hydraulic drives having some advantages over the compressors with mechanical drives.

It is known in the art a method for multistage compressing gas according to US patent No. 5,863,186, wherein multistage gas compressing in series-connected compressing vessels of a compressor is performed by under-pressure supply of a hydraulic fluid thereinto, said hydraulic fluid being separated from the compressed gas by pistons moving in the vessels during operating cycles of the compressor. This method has found its application in gas-filling devices of ECOFUELER, including individual gas-filling appliances of HRA type (Home Refueling Appliance), operated from a residential low pressure gas network and from a standard residential electrical network (www.eco-fueler.com). The disadvantage of gas-filling devices operated according to this method is their high price limiting the broad use thereof in a private sector. The reason has to do with the need for high-technology constructional elements, mainly for precision hydraulic compressing vessels.

It is known in the art a method for hydraulic compression of gas for fueling a motor vehicle from mobile gas-filling appliances without a dividing piston between the gas and fluid (RU patent No. 2 128 803). The implementation of the method described in this patent provides the use of gas mainlines with gas pressure of 2.5 MPa (25 bar) and this method includes gas supply under said pressure into vertically arranged (because of the absence of the dividing piston) compressing vessels, compressing the gas and forcing it into accumulating vessels by an under-pressure supply of working fluid to the compressing vessels from an auxiliary vessel. To pump gas into the accumulating vessels there may be used two communicating compressing vessels, and gas accumulation in the accumulating vessel is performed by anti-phase alternate transfer from each compressing vessel of gas displaced from this vessel by fluid drawn from the other compressing vessel. The process of pumping the fluid from one vessel into the other is being performed by simultaneously filling the volume vacated by the fluid with gas from the gas mainline. The method described in RU patent No. 2 128 803 requires the observance of a condition that the ratio of the minimum volume of gas space in the working vessels to the volume between certain upper and lower levels of the fluid lies in the range from 1/20 to 1/25. This requirement is justified by "increase in operating and economical efficiency of one-stage gas compressing process" and is met by mounting of two - upper and lower - fluid-level sensors, so that once a certain upper level of the working fluid in a compressing vessel has been reached, a certain volume of non-displaced gas is left. Transfer of gas from accumulating vessels to User's vessels is performed by a displacement of fluid by gas with the sequential transfer of fluid from a previous vessel to the next ones. This method may be used in mobile gas-filling units providing large volumes of compressed gas by connection to a gas line with rather high pressure required for this method and having a power supply source of sufficient power (industrial electrical network). Moreover, because the above-mentioned condition provided by this method, when upon the termination of a compression cycle in a compressing vessel, a certain volume of compressed gas is left in its upper part, the effective volume of the further filling of a working vessel decreases due to significant volume expansion of this left non-displaced volume of the compressed gas. Therefore, the existence of such residual ("parasitic") volume of compressed gas left in the working vessel at the end of a compression cycle results in the so called "stretched spring effect" at the stage of filling the compressing vessel (residual compressed gas begins to increase many fold in volume).

To summarize briefly the known methods for compressing natural gas for fueling motor vehicles, it may be seen that the technical level of solutions in this field is limited by two predominant variants, of which the first variant provides fueling a vehicle from a residential gas
low pressure network at high costs of hardware, whereas the second variant cannot be used as an individual means for fueling motor vehicles with gas.

[0009] The object of the present invention is to provide individual vehicle fueling from a residential low-pressure gas network using an individual gas-filling device cost-affordable for an average consumer.

[0010] This object is achieved by a method for compressing gas for fueling vehicles by alternate transfer of gas into two vertically arranged compressing vessels, its compression and forcing into high-pressure vessels by filling the compressing vessels with working fluid under pressure by means of a hydraulic drive. A novelty of this method lies in that, according to the present invention, each cycle of gas compressing and its forcing out of the compressing vessels is performed until these vessels are fully filled with the working fluid contained in the compressing vessels and alternately forced out of one compressing vessel into the other in response to a signal sent by a fluid-level sensor capable of detecting the full filling of the corresponding compressing vessel. To increase the efficiency of the method, i.e. to reduce the time required to fuel a motor vehicle, there may be provided the increase in gas pressure by its preliminary compression at the inlet of the compressing vessels. To reduce the time for fueling a vehicle, the device may be provided with an additional accumulating vessel, to which the fuel tank of the vehicle is connected during the fuelling.

Example 1 of the implementation of the method

[0011] One compressing vessel (standard high-pressure metal cylinder, 50 l capacity) is fully filled with gas from a source with the pressure of 2.0 KPa (about 200 mm H₂O) in a suction mode by pumping working fluid from it into the other vessel. Alternate pumping of the working fluid from one vessel to the other results in full displacement of gas into the fuel tank of a motor vehicle. When using a hydraulic drive with the delivery of 10 l/min the vehicle fuel tank of 50 l capacity (that corresponds to 10 - 11 l of gasoline equivalent) is filled up to the pressure of 20 MPa (200 bar) over a period of 17 hours.

Example 2 of the implementation of the method

[0012] To increase the operating efficiency of the gas-filling device according to the present invention there is used a precompressor that increases the pressure of the gas supplied from a residential network up to 2 bar at the inlet of the compressing vessel being filled. In this case, the time required to obtain the same amount of compressed gas reduces by half.

Example 3 of the implementation of the method

[0013] To enhance the convenience of the gas-filling device according to the present invention, there may be used an accumulating vessel, for example, a 50 l vessel, which may be previously filled (in the absence of a vehicle) with gas compressed up to 200 bar. In this case, the filling of the vehicle connected to the accumulating vessel may be carried out within 5 minutes by hydraulic displacement of the gas from this vessel.

[0014] The examples of the implementation of the method may be illustrated by embodiments of the gas-filling device according to the present invention (Fig 1-4) shown in drawings, in which:

Fig. 1 shows the gas-filling device according to the present invention provided with a precompressor and compressing vessels, each having one outlet (one neck);
Fig. 2 shows the gas-filling device according to the present invention with an accumulating vessel and two compressing vessels, each having two outlets;
Fig. 3 shows a shut-off device integrated with a fluid-level sensor capable of detecting a limit level of the working fluid used for the gas-filling device shown in Fig. 1;
Fig. 4 shows a shut-off device integrated with a fluid-level sensor capable of detecting a limit level of the working fluid used for the gas-filling device shown in Fig. 2.

The gas-filling device illustrated in Fig. 1 comprises two compressing vessels (1) and (2), in the necks of which there are mounted shut-off devices (3) integrated with fluid-level sensors (4) capable of detecting the full filling of the compressing vessels (1) and (2) with working fluid. A hydraulic pump (5) with an electric drive (6) is provided with a high-pressure line (7) and low-pressure line (8), which are connected with the compressing vessels (1) and (2) through four shut-off electromagnetic valves (9), (10), (11), and (12) and tubes (13) and (14) inside the compressing vessels (1) and (2), and are connected with each other by means of a bypass valve (15). Working spaces of each compressing vessel (1) and (2) through the shut-off devices (3) and opposite connected one-way valves (16 - 17) and (18 - 19) from one side are connected through valves (16) and (18) to an inlet pipeline (20) for gas supply into compressing vessels (1) and (2), and from the other side they are connected through valves (17) and (19) with an outlet pipeline (21) for pumping the gas into the fuel tank of a vehicle (22) through a connector (23). Use of one-way valves is well-known in the art. E.g., such one-way valves are successfully used in the apparatus disclosed in WO 03/019016 A1. An electric contact manometer (24), the output of which is connected to the input of an electronic control unit (25) is mounted on the outlet pipeline. The input of the electronic control unit (25) is connected also to outputs of the fluid-level sensors (4), its outputs being connected to four electromagnetic valves (9 - 12), the electric drive (6), and a pre-compressor (26), which is connected to a residential low-pressure gas line (28) through a filter-drier (27). In the initial condition, one of the compressing vessels (1) or (2) is filled
with gas (29), and the other is fully filled with working fluid (30), a small amount of the working fluid (30) being contained also in the compressing vessel (1) with gas - to balance possible difference between actual working volumes of the compressing vessels (1) and (2) being used.

The gas-filling device according to the present invention illustrated in Fig. 2 with the accumulating vessel providing "fast" fueling of a vehicle without the pre-compressor, as compared to the gas-filling device shown in Fig. 1, is additionally provided with at least one accumulating vessel (31) and a drain tube (32) provided with a bypass valve (33).

Such device is shown in an embodiment when each of the compressing vessels (1) and (2) and the accumulating vessel (31) each has two necks - an upper neck and a lower neck. Gas and hydraulic mainlines in this case are staggered between upper (gas) and lower (hydraulic) necks of the compressing vessels (1) and (2) and the accumulating vessel (31). In the absence of a pre-compressor, the gas inlet one-way valves (16) and (18) (Fig. 1) of each of the compressing vessel (1) and (2) should be replaced with electromagnetic valves (34) and (35), because the pressure of the residential gas network is not high enough to overcome resistance of the one-way valves. The accumulating vessel (31) is provided with hydraulic electromagnetic valves (36) and (37).

The shut-off device (3) (Fig. 3) is intended to be used in the gas-filling device shown in Fig. 1, which is provided with compressing vessels (1) and (2), each of which having one neck in the upper part thereof. This shut-off device (3) has an inlet gas channel (38), an outlet gas channel (39), and a tube (40) connected by a T-shaped channel (41) with a high-pressure hydraulic line (7) and low-pressure hydraulic line (8) by electromagnetic valves (9 - 12). Between the outer wall of the tube (40) and a body (42) of the shut-off device (3) made of non-magnetic material there is a circular clearance (43), which is common for the inlet and outlet gas channels (38) and (39). In the outlet gas channel (39) there is a valve comprising of a movable closing element (44) provided with a magnetic insert (45) and a seat (46) in a fitting (47). A fluid-level sensor (4) capable of detecting the full filling of a compressing vessel with working fluid (30) placed at the outer side of the body (42) of the shut-off device (3) and the magnetic insert (45) are located at the same level in the lower position of the movable closing element (44).

A shut-off device (3) (Fig. 4) of the gas-filling device shown in Fig. 2 is similar to the shutoff device (3) shown in Fig. 3, which does not have the tube (40) and the T-shaped channel (41), but is additionally provided with a channel (48) (only in the shut-off device (3) for the compressing vessel (2)) to be connected to the drain tube (32).

The gas-filling device operates as follows. In the initial condition shown in Fig. 1, the compressing vessel (1) apart from a small amount of the working fluid is filled with gas from the residential low-pressure gas line (28) by means of the pre-compressor (26). The compressing vessel (2) is fully filled with the working fluid (30) for hydraulic systems. When starting the gas-filling device to fuel the vehicle (22) connected to the device through the connector (23), the electronic control unit (25), which runs an operating program, is activated, as a result of which the pre-compressor (26) and the electric drive (6) of the hydraulic pump (5) are simultaneously switched on, and the electromagnetic valves (9 - 12) are brought into a condition wherein the compressing vessel (1) is connected, through the open valve (9), to the high-pressure line (7), and the compressing vessel (2), through the open valve (12), is connected to the low-pressure line (8). During the operation of the hydraulic pump (5), the working fluid from the compressing vessel (2) through the tube (14), T-shaped channel (41) of the shut-off device (3) (Fig. 3), the open electromagnetic valve (12), the low-pressure line (8), the hydraulic pump (5), the high-pressure line (7), the open electromagnetic valve (9), and the tube (13) is pumped into the compressing vessel (1), from which the gas through a circular clearance (43) of the shut-off device (3), a clearance between the movable closing element (44) and walls of the outlet gas channel (39) of the shut-off device (3) (Fig. 3), through the outlet pipeline (21), and the connector (23) is displaced into the fuel tank of the vehicle (22). This process is accompanied by filling a vacated volume of the compressing vessel (2) with the gas coming from the compressor (26) through the gas-supply inlet pipeline (20) through the one-way valve (18) into the inlet gas channel (38) of the shut-off device (3) (Fig. 3). Once the working fluid (30) has reached the lower edge of the closing element (44), said element moves upward from the lower position and closes by its tapered portion, the seat (46) of the valve in the fitting (47). Simultaneously, the magnetic insert (45) leaves the area of the fluid-level sensor (4) of the compressing vessel (1), said sensor sends a signal to the electronic control unit (25) in order to change the hydraulic flow into a reverse mode, in which the electromagnetic valves (9) and (12) are closed, and the valves (10) and (11) are opened. The working fluid (30) from the completely filled compressing vessel (1) begins to enter the compressing vessel (2). The process of forcing the gas (29) out of the compressing vessel (2) and of filling the compressing vessel (1) with the gas is similar to the process described above. Repetition of cycles of filling-displacement of gas (29) and pumping of the working fluid (30) results in gradual gas pressure increase in the outlet pipeline (21) (filling the fuel tank of the vehicle (22)). The pressure in the outlet pipeline (21) is monitored by means of the electric contact manometer (24). Once target pressure has been reached in the outlet pipeline (21), the manometer (24) sends a signal to the electronic control unit (25) and then, on response of the fluid-level sensor (4) of the compressing vessel (1) or (2) with the working fluid (30), the electronic control unit (25) issues a command to stop the operation of the gas-filling device.
device - in the initial condition prepared to begin the next filling cycle.

When the claimed method is implemented by means of the above-described device with the hydraulic pump (5) with delivery of 10 l/min and the pre-compressor (26) with delivery of 40 l/min, the filling of a 50-liter fuel tank of the vehicle up to the pressure of 200 bar is carried out over a period of 5 - 5.5 hours duration, which allows the vehicle to be re-fuelled, for example, at night. This time depends mainly upon the pre-compressor delivery.

The embodiment of the gas-filling device according to the method of invention allows the reduction of time required for complete filling of a fuel tank of a vehicle even with the pre-compressor excluded from the gas-filling system. This may be provided by incorporating an accumulating vessel into the gas-filling device introducing the former into the unified gas and hydraulic systems of the above-described device. Below the operation of said device is described in an embodiment wherein high-pressure standard cylinders with two outlet necks at the end parts thereof are used as compressing and accumulating vessels (Fig. 2).

In this embodiment of the gas-filling device of the present invention, gas and hydraulic main pipelines are separated: the gas main pipeline is connected to the upper necks of the vessels and the hydraulic pipeline is connected to the lower necks thereof.

The device operates as follows.

In the initial condition, gas and working fluid are present in both compressing vessels (1) and (2) similar to the initial condition described in the first embodiment of the method described above, the compressing vessel (1) being filled with gas (29) (with a small amount of working fluid in its lower part), and the compressing vessel (2) being filled with working fluid (30). In the accumulating vessel (31) there is also a certain amount of working fluid that is necessary to compensate possible manufacturer’s tolerance for actual volume of gas cylinders.

The operation of the gas-filling device is carried out in two stages: the stage of filling the accumulating vessel (31) and the stage of transfer of accumulated compressed gas from the accumulating vessel (31) into the fuel tank of the vehicle (22).

The filling of the accumulating vessel (31) (the first stage of the process) is carried out in the following sequence. When starting the gas-filling device, the electronic control unit (25), which runs an operating program, is activated, the electrical drive (6) of the hydraulic pump (5) switches on and the electromagnetic valve (35) opens simultaneously. The electromagnetic valves (9 - 12) are brought to the condition wherein the compressing vessel (1) is connected to the high-pressure line (7) through the opened valve (9), and the compressing vessel (2) is connected to the low-pressure line (8) through the opened valve (12). During the operation of the hydraulic pump (5), the working fluid (30) from the lower neck of the compressing vessel (2) through the open valve (12), the low-pressure line (8), the hydraulic pump (5), the high-pressure line (7), the open electromagnetic valve (9), and the lower neck of the compressing vessel (1) is pumped into the compressing vessel (1), from which the gas (29) through the outlet gas channel (39), the clearance between the movable closing element (44) and walls of the outlet gas channel (39) of the shut-off device (3) (Fig. 4), the one-way valve (17), and the outlet pipeline (21) is displaced into the accumulating vessel (31). This process is accompanied by filling a vacated volume of the compressing vessel (2) with the gas coming from the low-pressure gas pipeline (28) through the open electromagnetic valve (35). Once the working fluid (30) has reached the lower edge of the movable closing element (44), said element is displaced upwards from its lower position and closes by its tapered portion the seat (46) of the valve in the fitting (47). At the same time, the magnetic insert (45) leaves the area of the fluid-level sensor (4) of the compressing vessel (1), which sends a signal to the electronic control device (25) to change the hydraulic flow into a reverse mode, in which the electromagnetic valves (9) and (12) are closed, and the valves (10) and (11) are opened and the working fluid from the fully filled compressing vessel (1) starts filling the compressing vessel (2). The process of displacement of the gas from the compressing vessel (2) and of filling the compressing vessel (1) is similar to the process described above. The repetition of gas filling-displacement and fluid pumping cycles results in gradual increase of gas pressure in the outlet pipeline (21) (filling the accumulating vessel (31)). The pressure in the outlet pipeline (21) is monitored by means of the electric contact manometer (24). Once a target pressure in the outlet pipeline (21) has been reached, the manometer (24) sends a signal to the electronic control unit (25), and then, on response of the fluid-level sensor (4) of the compressing vessel (2) full with the working fluid, the electronic control unit (25) issues a command to stop the operation of the gas-filling device - in the initial condition prepared to begin the filling of the fuel tank of the vehicle (22).

The transfer of accumulated compress gas from the accumulating vessel (31) into the fuel tank of the vehicle (22) (the second stage of the process) is performed upon the connection of the fuel tank of the vehicle (22) through the connector (23) to the accumulating vessel (31) by activating a filling program at the electronic control unit (25), wherein the electromagnetic valve of the connector (23) connecting the outlet pipeline (21) to the fuel tank of the vehicle (22) is opened with simultaneously starting the electric drive (6) of the hydraulic pump (5) and setting the electromagnetic valves into the position providing the transfer of the working fluid (30) from the compressing vessel (2) into the accumulating vessel (31), which results in that the gas from the accumulating vessel (31) is fully forced into the fuel tank of the vehicle (22) up to response of the fluid-level sensor (4) of the accumulating vessel (31) signaling of the complete filling of the latter. At the moment of the response of the fluid-
level sensor (4) of the accumulating vessel (31), the hydraulic system is switched into a reverse mode, in which the working fluid from the accumulating vessel (31) is returned into the compressing vessel (2). The volume of the accumulating vessel (31) vacated from the working fluid is then filled with expanding gas, which is present under a high pressure in the drain tube (32). The system switches to the initial condition prepared for further filling of the accumulating vessel (31). In case when the fuel tank of the vehicle (22) has been completely filled up to the working pressure of 200 bar, and some non-displaced gas is left in the accumulating vessel (31), the electric contact manometer (24) sends a signal to the electronic control unit (25), from which a signal to close the electromagnetic valve in the connector (23) is sent. The filling of the accumulating vessel (31) with the working fluid (30) continues but the compressing vessel (2) up to the moment of full filling of the accumulating vessel (31) with the working fluid, response of the fluid-level sensor (4) and full forcing the gas out of the accumulating vessel (31) into the compressing vessel (2). Upon the response of the fluid-level sensor (4) signaling of full filling of the accumulating vessel (31), the hydraulic system, by the signal from the electronic control unit (25), is brought into the condition of returning the working fluid from the accumulating vessel (31) into the compressing vessel (2), from which the gas is forced into the accumulating vessel (31) through the outlet pipeline (21). The system is brought into the initial condition prepared to begin filling the accumulating vessel (31).

[0028] The application of this embodiment of the gas-filling device for the implementation of the method of invention allows the device to be prepared for “fast” fueling of a vehicle with highly compressed gas from the accumulating vessel (31). The rate of filling the fuel tank in this case depends upon the hydraulic pump delivery, and said filling may be performed within several minutes necessary for full displacement of the gas accumulated in the accumulating vessel irrespective pressure ratios of the fuel tank and the accumulating vessel (31). The method of invention together with the embodiments of the gas-filling device allows the autonomous (individual) fueling of a private vehicle in a mode convenient for the owner. The present invention thus provides possibility of fueling vehicles from a source of low pressure gaseous fuel, for example, residential natural gas or biomethane, by means of a gas-filling unit, the construction of which is based on the use of mass production components without the use of expensive precision elements.

Claims

1. A method for compressing a gaseous fuel for fueling a vehicle (22) by alternate gas supply into two vertically arranged compressing vessels (1,2), each of which having one neck in the upper part thereof, with further compression of gas (29) and forcing it out into the fuel tank (22) of the vehicle by alternately filling the compressing vessels (1,2) with working fluid (30) under pressure, each cycle of gas (29) forced out from the corresponding compressing vessel being performed by directly transferring the working fluid (30) from one of the compressing vessels (1 or 2) into the other compressing vessel (2 or 1), until the working fluid (30) completely fills said other compressing vessel (2 or 1), characterized in that said transferring of the working fluid (30) is performed until its flow reaches the lower edge of a movable closing element (44) of a shut-off device (3) mounted in said upper neck of the compressing vessel (1,2), and displaces said movable closing element (44) in an outlet gas channel (39) of said shut-off device (3) upwards from its lower position, thus closing the seat (46) of a valve of the outlet pipeline (21) for pumping the gas (29) into the fuel tank of the vehicle (22) with a tapered portion of said movable closing element (44) before said working fluid (30) reaches said seat (46) of valve of said outlet pipeline (21) for pumping the gas (29) into the fuel tank of the vehicle (22), said upward movement of the movable closing element (44) activating a fluid-level sensor (4) placed at the outer side of the body (42) of the shut-off device (3), which generates a signal for a control unit to change the direction of pumping the working fluid (30) to reverse mode for a new similar cycle of pumping the working fluid (30) from the compressing vessel (2 or 1) which is completely filled therewith to the other compressing vessel (1 or 2) which is filled with gas (29) and working fluid (30), where the amount of said working fluid (30) is enough for compensation of the possible difference of inner volumes of compressing vessels (1,2).

2. A gas-filling device for fueling a vehicle with a gaseous fuel comprising two compressing vessels (1,2) connected through one-way valves (16,17,18,19) to an inlet pipeline (20) for gas supply and an outlet pipeline (21) for pumping the gas (29) into the fuel tank of the vehicle (22) and communicating with each other through a high-pressure hydraulic line (7) and a low-pressure hydraulic line (8), a hydraulic pump (5) configured to pump the working fluid (30) alternately from one compressing vessel (1 or 2) into the other compressing vessel (2 or 1), and an electric control unit (25), said hydraulic pipelines (7,8) being connected to said hydraulic pump (5), said outlet pipeline (21) for pumping the gas (29) into the fuel tank of the vehicle (22) being provided with a vehicle fueling connector (23), characterized in that each compressing vessel (1,2) is provided with a shut-off device (3) integrated with a fluid-level sensor (4), the latter being placed on the outer side of the body (42)
of said shut-off device (3), said body (42) of the shut-off device (3) being made of non-magnetic material, said shut-off device (3) being mounted in the neck of each compressing vessel (1,2), the shut-off device (3) having a movable closing element (44) which has a tapered upper portion and said movable closing element (44) is placed in an outlet gas channel (39) of the shut-off device (3) with a clearance (43) between it and the walls of said outlet gas channel (39), said movable closing element (44) being capable to stay in a lower position when the gas (29) flows through the clearance (43) and to move upwards in said outlet gas channel (39) by the action of the flow of working fluid (30) and to close the outlet gas channel (39), said movable closing element (44) has a magnetic insert (45), said fluid-level sensor (4) and said magnetic insert (45) being located at the same level in said lower position of said movable closing element (44), and said magnetic insert (45) being located out of the area of fluid level sensor (4) in the upper positions of said movable closing element (44).

3. The method according to claim 1, characterized in that the gas (29) from the compressing vessels (1,2) is forced into an accumulating vessel (31), out of which the accumulated gas (29) during the fuelling of the vehicle (22) is completely forced out of said accumulating vessel (31) into its fuel tank until the accumulating vessel (31) is completely filled with working fluid (30) in case when the fuel tank of the vehicle (22) has been completely filled up to the working pressure, and some non-displaced gas (29) is left in the accumulating vessel (31), filling the accumulating vessel (31) with the working fluid (30) continues but the gas (29), through a drain tube (32) and through a bypass valve (33) opened by gas pressure, enters not the fuel tank of the vehicle (22), but the compressing vessel (1,2) up to the moment of full filling of the accumulating vessel (31) with working fluid response of the fluid-level sensor (4) and full forcing the gas (29) out of the accumulating vessel (31) into the compressing vessel (1,2).

4. The gas-filling device according to claim 2, characterized in that the gas-filling device is provided with an accumulating vessel (31) connected to said gas pipeline (21) and hydraulic pipelines (7,8) of the compressing vessels (1,2) and has a shut-off device (3) mounted in the neck of said accumulating vessel (31) in the same manner as the shut-off devices (3) of the compressing vessels (1,2), said shut-off device (3) being connected by a drain tube (32) and a bypass valve (33) to the shut-off device (3) of one of the compressing vessels (1 or 2) for draining the gas from said accumulating vessel (31) to the compressing vessel (1 or 2) in case when the fuel tank of the vehicle (22) is full, but there is still some gas (29) in the accumulating vessel (31) in order to achieve completely forcing the gas (29) out of said accumulating vessel (31) by means of completely filling said accumulating vessel (31) with working fluid (30) until the activation of the fluid-level sensor (4) of said shut-off device (3).

5. The gas-filling device according to claim 2, characterized in that said compressing vessels (1,2) are made with two necks, upper and lower, the upper necks being connected to the gas pipelines (20,21) and the lower necks being connected to the hydraulic pipeline (7,8).

6. The gas-filling device according to claim 4 characterized in that both the compressing vessels (1,2) and the accumulating vessel (31) are made with two necks, upper and lower, the upper necks being connected to the gas pipelines (20,21) and the lower necks being connected to the hydraulic pipeline (7,8).
2. Gasfüllvorrichtung zur Betankung eines Fahrzeugs

2.1. Gasfüllvorrichtung zur Betankung eines Fahrzeugs (22), bei der ein Gasfüllvorrichtung (23) bereitgestellt ist, bei der das Pumpen des Arbeitsfluids (30) in einen Umkehrmodus für einen neuen Zyklus zum Pumpen des Arbeitsfluids (30) aus dem Kompressionsgefäß (2) oder 1), das mit diesem vollständig gefüllt ist, zum anderen Kompressionsgefäß (1) oder 2) zu ändern, das mit Gas (29) und Arbeitsfluid (30) gefüllt ist, wobei die Menge des Arbeitsfluids (30) ausreichend ist, um die mögliche Differenz von Innenvolumina von Kompressionsgefäßen (1, 2) auszugleichen.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, das Gas (29) aus dem Kompressionsgefäße (1, 2) in ein Sammelgefäß (31) gepresst wird, aus dem das gesammelte Gas (29) während der Betankung des Fahrzeugs (22) vollständig aus dem Sammelgefäß (31) in seinen Kraftstofftank gepresst wird, bis das Sammelgefäß (31) vollständig mit Arbeitsfluid (30) gefüllt ist, für den Fall, dass der Kraftstofftank des Fahrzeugs (22) vollständig bis zum Arbeitsdruck gefüllt wurde, und etwas nicht verdrängtes Gas (29) im Sammelgefäß (31) verbleibt, mit dem Füllen des Sammelgefäße (31) mit dem Arbeitsfluid (30) fortgefahren wird, aber das Gas (29), durch ein Ablassrohr (32) und durch ein Umgehungsventil (33), das durch Gasdruck geöffnet wird, nicht in den Kraftstofftank des Fahrzeugs (22), sondern in das Kompressionsgefäße (1, 2) eintritt, bis zu einer Meldung des Fluidpegsensors (4), dass das Sammelgefäß (31) vollständig mit Arbeitsfluid gefüllt ist und das Gas (29) vollständig aus dem Sammelgefäß (31) in das Kompressionsgefäße (1, 2) hinausgepresst ist.

4. Gasfüllvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Gasfüllvorrichtung mit einem Kompressionsgefäße (1, 2), die durch Einwegventile (16, 17, 18, 19) mit einer Einlassleitung (20) für eine Gaszuleitung und einer Auslassleitung (21) zum Pumpen des Gases (29) in den Kraftstofftank des Fahrzeugs (22) verbunden sind und miteinander durch eine Hochdruckhydraulikleitung (7) und eine Niederdruckhydraulikleitung (8) kommunizieren, eine Hydraulikpumpe (5), die gestaltet ist, das Arbeitsfluid (30) abwechselnd von einem Kompressionsgefäße (1 oder 2) in das andere Kompressionsgefäße (2 oder 1) zu pumpen, und eine elektrische SteuerEinheit (25), wobei die Hydraulikleitungen (7, 8) mit der Hochdruckhydraulikpumpe (5) verbunden sind, die Auslassleitung (21) zum Pumpen des Gases (29) in den Kraftstofftank des Fahrzeugs (22) mit einem Fahrzeugbetankungsverbindungselement (23) bereitgestellt ist, dadurch gekennzeichnet, dass jedes Kompressionsgefäße (1, 2) mit einer Absperrvorrichtung (3) bereitgestellt ist, die mit einem Fluidpegsensor (4) integriert ist, der an der Außenseite des Körpers (42) der Absperrvorrichtung (3) angebracht ist, wobei der Absperrvorrichtung (3) ein bewegliches Verschlusselement (44) aufweist, das einen konischen oberen Abschnitt hat, und das bewegliche Verschlusselement (44) in einem nicht magnetischen Material besteht, wobei die Absperrvorrichtung (3) im Hals jedes Kompressionsgefäße (1, 2) montiert ist, wobei die Absperrvorrichtung (3) ein bewegliches Verschlusselement (44) aufweist, das einen konischen oberen Abschnitt hat, und das bewegliche Verschlusselement (44) in einem Auslassgaskanal (39) der Absperrvorrichtung (3) mit einem Zwischenraum (43) zwischen sich und den Wänden des Auslassgaskanals (39) angebracht ist, wobei das bewegliche Verschlusselement (44) imstande ist, in einer unteren Position zu bleiben, wenn das Gas (29) durch den Zwischenraum (43) strömt und sich durch die Wirkung des Stroms von Arbeitsfluid (30) nach oben in den Auslassgaskanal (39) bewegt und den Auslassgaskanal (39) verschließt, wobei das bewegliche Verschlusselement (44) einen magnetischen Einsatz (45) hat, wobei der Fluidpegsensor (4) und der magnetische Einsatz (45) in der unteren Position des beweglichen Verschlusselementes (44) auf derselben Höhe gelegen sind und der magnetische Einsatz (45) in den oberen Positionen des beweglichen Verschlusselementes (44) außerhalb des Bereichs von Fluidpegsensor (4) gelegen ist.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Gasfüllvorrichtung mit einem Kompressionsgefäße (1, 2) mit zwei Hälse, oberen und unteren, gebildet sind, wobei die oberen Hälse mit den Gasleitungen (20, 21) verbunden sind und die unteren Hälse mit der Hydraulikleitung (7, 8) verbunden sind.

6. Gasfüllvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Gasfüllvorrichtung mit einem Kompressionsgefäße (1, 2) mit zwei Hälse, oberen und unteren, gebildet sind, wobei die oberen Hälse mit den Gasleitungen (20, 21) verbunden sind und die unteren Hälse mit der Hydraulikleitung (7, 8) verbunden sind.
kennzeichnet, dass sowohl die Kompressionsgefäße (1, 2) wie auch das Sammelgefäss (31) mit zwei Hälse, oberen und unteren, gebildet sind, wobei die oberen Hälse mit den Gasleitungen (20, 21) verbunden sind und die unteren Hälse mit der Hydraulikleitung (7, 8) verbunden sind.

Revendications

1. Procédé pour comprimer un carburant gazeux pour avitailler un véhicule (22) par une alimentation en gaz supplémentaire dans deux cuves de compression agencées verticalement (1, 2), chacune d’elles ayant un col dans sa partie supérieure, avec une compression supplémentaire de gaz (29) et en le forçant jusque dans le réservoir à carburant (22) du véhicule en remplissant en alternance les cuves de compression (1, 2) avec un fluide de travail (30) sous pression, chaque cycle de gaz (29) forcé à partir de la cuve de compression correspondante étant effectué en transférant directement le fluide de travail (30) depuis l’une des cuves de compression (1 ou 2) dans l’autre cuve de compression (2 ou 1), jusqu’à ce que le fluide de travail (30) remplisse complètement la cuve de compression (2 ou 1), caractérisé en ce que ledit transfert du fluide de travail (30) est effectué jusqu’à ce que son flux atteigne le bord inférieur d’un élément de fermeture mobile (44) d’un dispositif de coupure (3) monté sur ledit col supérieur de la cuve de compression (1, 2), et déplace ledit élément de fermeture mobile (44) dans un canal de gaz de sortie (39) dudit dispositif de coupure (3) vers le haut à partir de sa position inférieure, ferment ainsi le siège (46) d’une soupape du pipeline de sortie (21) pour pomper le gaz (29) dans le réservoir à carburant du véhicule (22) avec une portion tronconique dudit élément de fermeture mobile (44) avant que ledit fluide de travail (30) n’atteigne ledit siège (46) de soupape dudit pipeline de sortie (21) pour pomper le gaz (29) dans le réservoir à carburant du véhicule (22), ledit mouvement ascendant de l’élément de fermeture mobile (44) activant un capteur de niveau de fluide (4) placé au niveau du côté extérieur du corps (42) du dispositif de coupure (3), qui produit un signal pour qu’une unité de commande change le sens de pompage du fluide de travail (30) pour inverser le mode pour un nouveau cycle similaire de pompage du fluide de travail (30) à partir de la cuve de compression (2 ou 1) qui est complètement remplie avec celui-ci à destination de l’autre cuve de compression (1 ou 2) qui est remplie de gaz (29) et de fluide de travail (30), où la quantité dudit fluide de travail (30) est suffisante pour compenser la différence possible de volumes intérieurs des cuves de compression (1, 2).

2. Dispositif de remplissage de gaz pour avitailler un véhicule avec un carburant gazeux comprenant deux cuves de compression (1, 2) reliées par des soupapes de non-retour (16, 17, 18, 19) à un pipeline d’entrée (20) pour l’alimentation en gaz et à un pipeline de sortie (21) pour de pompage de gaz (29) dans le réservoir à carburant du véhicule (22) et communiquant l’une avec l’autre par une conduite hydraulique haute pression (7) et une conduite hydraulique basse pression (8), une pompe hydraulique (5) configurée pour pomper le fluide de travail (30) en alternance à partir d’une cuve de compression particulière (1 ou 2) jusque dans l’autre cuve de compression (2 ou 1) et une unité de commande électrique (25), ledits pipelines hydrauliques (7, 8) étant reliés à ladite pompe hydraulique (5), ledit pipeline de sortie (21) pour le pompage de gaz (29) dans le réservoir à carburant du véhicule (22) étant muni d’un connecteur d’alimentation de véhicule (23), caractérisé en ce que chaque cuve de compression (1, 2) est munie d’un dispositif de coupure (3) intégré avec un capteur de niveau de fluide (4), ce dernier étant placé sur le côté extérieur du corps (42) dudit dispositif de coupure (3), ledit corps (42) dudit dispositif de coupure (3) étant fait de matière non magnétique (3), ledit dispositif de coupure étant monté dans le col de chaque cuve de compression (1, 2), le dispositif de coupure (3) ayant un élément de fermeture mobile (44) qui a une portion supérieure tronconique et ledit élément de fermeture mobile (44) est placé dans un canal de gaz de sortie (39) du dispositif de coupure (3) avec un dégagement (43) entre lui et les parois dudit canal de gaz de sortie (39), ledit élément de fermeture mobile (44) étant susceptible de rester dans une position inférieure lorsque le gaz (29) s’écoule à travers le dégagement (43) et de se déplacer vers le haut dans ledit canal de gaz de sortie (39) par l’action du flux de fluide de travail (30) et de ferment le canal de gaz de sortie (39), ledit élément de fermeture mobile (44) a un insert magnétique (45), ledit capteur de niveau de fluide (4) et ledit insert magnétique (45) étant situés au même niveau dans ladite position inférieure dudit élément de fermeture mobile (44), et ledit insert magnétique (45) étant situé hors de la zone de capteur de niveau de fluide (4) dans les positions supérieures dudit élément de fermeture mobile (44).

3. Procédé selon la revendication 1, caractérisé en ce que le gaz (29) provenant des cuves de compression (1, 2) est forcé jusque dans une cuve d’accumulation (31), dont le gaz accumulé (29) pendant l’avitaillement du véhicule (22) est complètement forcé hors de ladite cuve d’accumulation (31) dans son réservoir à carburant jusqu’à ce que la cuve d’accumulation (31) soit complètement remplie de fluide de travail (30) dans le cas où le réservoir à carburant du véhicule (22) a été complètement rempli jusqu’à la pression de travail, et un peu de gaz non déplacé...
(29) est laissé dans la cuve d’accumulation (31), remplissant la cuve d’accumulation (31) avec du fluide de travail (30) continue, mais le gaz (29), à travers un tube d’écoulement (32) et à travers une soupape de contournement (33) ouverte par la pression du gaz, ne pénètre pas dans le réservoir à carburant du véhicule (22), mais la cuve de compression (1, 2) jusqu’au moment du remplissage complet de la cuve d’accumulation (31) avec la réponse du fluide de travail du capteur de niveau de fluide (4) et du forçage complet du gaz (29) hors de la cuve d’accumulation (31) dans la cuve de compression (1, 2).

4. Dispositif de remplissage de gaz selon la revendication 2, caractérisé en ce que le dispositif de remplissage de gaz est muni d’une cuve d’accumulation (31) reliée au pipeline de gaz (21) et à des pipelines hydrauliques (7, 8) des cuves de compression (1, 2) et possède un dispositif de coupure (3) monté dans le col de ladite cuve d’accumulation (31) de la même manière que les dispositifs de coupure (3) des cuves de compression (1, 2), ledit dispositif de coupure (3) étant relié par un tube d’écoulement (32) et une soupape de contournement (33) au dispositif de coupure (3) d’une des cuves de compression (1 ou 2) pour écouler le gaz provenant de ladite cuve d’accumulation (31) jusqu’à la cuve de compression (1 ou 2) dans le cas où le réservoir à carburant du véhicule (22) est plein, mais il y a toujours un peu de gaz (29) dans la cuve d’accumulation (31) afin de parvenir à forcer complètement le gaz (29) hors de ladite cuve d’accumulation (31) au moyen du remplissage complet de ladite cuve d’accumulation (31) avec du fluide de travail (30) jusqu’à l’activation du capteur de niveau de fluide (4) dudit dispositif de coupure (3).

5. Dispositif de remplissage de gaz selon la revendication 2, caractérisé en ce que lesdites cuves de compression (1, 2) sont faites avec deux cols, supérieurs et inférieurs, les cols supérieurs étant reliés aux pipelines de gaz (20, 21) et les cols inférieurs étant reliés au pipeline hydraulique (7, 8).

6. Dispositif de remplissage de gaz selon la revendication 4, caractérisé en ce que les deux cuves de compression (1, 2) et la cuve d’accumulation (31) sont faites avec deux cols, supérieurs et inférieurs, les cols supérieurs étant reliés aux pipelines de gaz (20, 21) et les cols inférieurs étant reliés au pipeline hydraulique (7, 8).
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4805674 A, Knowlton [0002]
- US 6202707 B1, Woodall [0004]
- US 5863186 A [0006]
- RU 2128803 [0007]