Methods and apparatus in the field of single molecule sensing are described, e.g. for molecular analysis of analytes such as molecular analytes, e.g. nucleic acids, proteins, polypeptides, peptides, lipids and polysaccharides.

Molecular spectroscopy on a molecule translocating through a solid-state nanopore is described. Optical spectroscopic signals are enhanced by plasmonic field-confinement and antenna effects and probed in transmission by plasmon-enabled transmission of light through an optical channel that overlaps with the physical channel.
Description

Field of the invention

[0001] The present invention relates to methods and apparatus in the field of single molecule sensing. The methods and apparatus concern the molecular analysis of analytes such as molecular analytes, e.g. nucleic acids, proteins, polypeptides, peptides, lipids and polysaccharides.

Technical Background

[0002] It is of importance to be able to sequence certain molecules, e.g. sequences of nucleic acids, proteins (poly-) and other complex biomolecular entities... for example in order to be able to do diagnostic screening.

[0003] In literature it is proposed that solid-state nanopores can be used for biochemical analysis (Dekker2007), mostly structural analysis of linear organic molecules. A particular application that is often quoted is DNA sequencing (Deamer2000). Solid-state nanopores are holes fabricated artificially in a membrane with diameter in the range (0.1 nm - 999 nm). Molecular sequencing in such nanopore relies on

1) translocation of the target molecule through the nanopore and
2) transduction via highly localized physical interactions with the section of the molecule in the pore leading to measurable signals.

[0004] Transduction and recognition are performed sequentially and in real-time on segments of the molecule. Translocation is achieved passively or (with greater control) actively. Active translocation can be achieved by means of electrophoresis in which a voltage is applied on (two) electrodes placed in fluidic reservoirs separated by the membrane, the resulting electrical field then propels the charged molecule through the pore. In other examples optical or magnetic forces are exerted on the molecule or on bead(s) attached to the molecule to stimulate translocation or to modulate the translocation speed.

[0005] Various electric or electronic interactions can be exploited for sensing in the pore. For chemical analysis, chemically specific interactions are investigated. DNA translocation events are routinely detected by measurement of the ion current through the nanopore. The presence of a DNA molecule in the pore leads to an increase or decrease of the ionic current. Provided such measurements can be performed with sufficient sensitivity, information on structural or chemical composition of the molecule could be harvested from ionic current data. In another method, electrodes are mounted in the pore and electronic properties of the molecule are measured there. When a voltage is applied across the electrodes, an electronic current can flow stimulated by quantum mechanical electron tunneling via the electronic states of the molecule. Such mechanism provides chemical specificity. In yet another approach, capacitive modulations are sensed.

[0006] However all these methods are in need of improvement in order to obtain a more reliable result.

[0007] Holes in membranes have received wide attention from a completely different perspective as well: in 1998, Ebbesen reported on extraordinary strong transmission of light through a metal film pierced with sub-wavelength holes. At certain frequencies such hole pattern transmits much more, orders of magnitude more light per hole than what was previously expected for single holes. In 1944 Bethe had predicted a cut-off for hole radii, b, smaller than the wavelength of light. The mechanism of extraordinary transmission was subject of intense discussion (Abajo2007). It is now accepted that, in case of plasmon-supporting interfaces, the enhancement in transmission arises from a three-step process, the excitation of resonantly-interacting surface plasmons at the surface facing the light source, light transmission through the holes and re-emission at the other end.

[0008] Enhanced transmission through individual holes is also achievable, e.g., for holes fabricated in the center of a structure with periodic corrugations: such corrugations can act as antennas at visible frequencies allowing to catch and redirect light rays via the excitation and waveguiding of surface plasmon polaritons. (Grupp1999) The antenna can also function reciprocally: by proper texturing of the exit side, the directionality of the transmitted beam can be tuned. (Lezec2002) All these effects are strongly frequency dependent, of course.

[0009] Optical interactions greatly benefit from field confinement in the sensing region. Plasmon carrying metal structures are renowned for their ability to greatly increase field-confinement. Surface plasmons are electromagnetic excitations coupled to charge density oscillations and exist on the surface of metals with frequencies in the visible and infra-red part of the spectrum. Localized surface plasmons are electromagnetic modes that can be exited in bounded geometries such as nanoparticles.

[0010] Individual localized surface plasmon excitations interact when brought close together, the resulting spectrum depends strongly on the size, shape and distance between the particles (Prodan2003). In-phase modes in a system of two closely spaced particles for example, can lead to strong electromagnetic field confinement in the gap (Schuck2005). Intense electromagnetic fields lead to a strong interaction of the incident fields with objects in the gap. The ability to concentrate electromagnetic energy is a property that is extremely useful and can be applied in e.g. Raman spectroscopy (in this case called surface enhanced Raman spectroscopy (SERS), the surface enhancement of the Raman scattering cross-section is proportional to the fourth power of the field enhancement factor, sensing applications, nonlinear optics, etc.

[0011] Field enhancement and confinement of optical
energy to small volumes are important for nonlinear optical phenomena. The nonlinear polarization response of an optical medium, including nonlinear susceptibilities $\chi^{(n)}$, can in general terms be expressed as:

$$P(E) = \varepsilon_0 \left[\chi_1 E + \chi_2 E^2 + \chi_3 E^3 + \ldots \right]$$

[0012] The higher order nonlinear susceptibilities are usually very small, and the nonlinearity only become of significant importance at high field intensity. Obviously plasmonic field-confinement effects can greatly enhance the nonlinear contributions. Nonlinear effects are therefore an interesting subject of study in plasmonics. The nonlinear susceptibilities originate from material (in plasmonics, the plasmon supporting metal or any nonlinear material in the field hotspot) or geometrical effects. Nonlinear effects provide great spatial resolution, due to symmetry requirements or the non-linear dependence on field strength, a property which is highly relevant in spectroscopy. Furthermore, nonlinearities can give rise to second and third harmonic generation or wave mixing. Applications for nonlinearities can be found in spectroscopy, lithography, nonlinear optical switching...

[0013] Light-matter interactions in molecules have been shown to be extremely useful in e.g. microscopy, molecular sensing and molecular spectroscopy in general. These interactions strongly depend on the local electromagnetic environment of the molecule and can be strongly enhanced using e.g. field-concentrating nanostructures, or nano-antennas.

[0014] Plasmonic nano-antennas can influence the behavior of optically active molecules in several ways. Firstly, due to the focusing of electromagnetic radiation to nanovolumes, molecules can be excited more efficiently. Secondly, the plasmon resonance perturbs the local electromagnetic mode density, modifying the decay rate of local dipole emitters. In the case, e.g., of Raman spectroscopy, this double effect leads to the well known E^4 dependence of the Raman scattering intensity on the local electric field.

[0015] Nano-antennas can enhance, inter alia, the following spectroscopy methods:

1. Surface enhanced Raman scattering (SERS)
 a. Enables probing vibrational transitions using optical excitation
 b. Strongly depends on the local E-field (E^4)
 c. Additional enhancement can be achieved using resonance Raman (illuminating in resonance with an electronic transition of the target molecule) or coherent anti-stokes Raman scattering (CARS) (a non-linear, 4-wave mixing process)

2. Molecular fluorescence
 a. Often used in the context of fluorescent labels, for e.g. optical microscopy applications, or microarrays
 b. Can be enhanced or quenched by plasmonic nanostructures, depending on the geometry.

3. Surface Enhanced Infrared Absorption spectroscopy
 a. Probes directly the vibrational transitions, but has different selection rules with respect to Raman, such that it is a complimentary technique.

[0016] Muhlschlegel et al. demonstrated that a pair of strongly coupled gold nanorods display strong intensity enhancement in the gap between the rods. (Muhlschlegel2005) The intensity depends on the length of the nanorods that function as dipole antennas: the mode at a shape singularity such as a gap can be amplified in case an antenna structure (matched to the gap resonance) is constructed in its vicinity. Below we will describe a gap mode coupled to a surface plasmon cavity that displays similar functionality. These examples indicate that antenna structures or electromagnetic cavity structures can lead to stronger light collection and more pronounced resonance phenomena.

[0017] Confining electromagnetic energy to lengthscales that are relevant for molecular spectroscopy is a known problem, which mounts up as the wavelength of the electromagnetic waves increases. As indicated in previous paragraphs, for visible light, this problem can be circumvented using plasmonic “antennas”.

Summary of the invention

[0018] An object of the present invention is to provide methods and apparatus in the field of single molecule sensing, e.g. for molecular analysis of analytes such as molecular analytes, e.g. nucleic acids, proteins, polypeptides, peptides, lipids and polysaccharides.

[0019] In one aspect the present invention provides an apparatus comprising:

a membrane having a first and a second major surface and having a membrane penetrating nanostructure between the first and second major surfaces, a source of electromagnetic radiation that impinges radiation on the nanostructure in the direction of the first major surface, means for translocating molecules through the nanostructure, a detection unit for detecting electromagnetic radiation that exits from the nanostructure away from the second major surface, transmission of electromagnetic radiation through the nanostructure being at least by excitation of surface plasmon polaritons in
the nanostructure.

[0020] In this invention use is made of an optical interaction. Plasmonic field-confinement and plasmon-enabled transmission of light through nanopores are used.

[0021] The present invention concerns molecular spectroscopy on a molecule translocating through a solid-state nanopore. Optical spectroscopic signals are enhanced by plasmonic field-confinement and antenna effects and probed in transmission by plasmon-enabled transmission of light through an optical channel that overlaps with the physical channel.

[0022] The apparatus may include a first and second chamber and the membrane placed between the chambers.

[0023] The means for translocating can include electrodes that may be placed in the first and second chambers and connected to a source of electrical power.

[0024] An optical detector may be placed in the second chamber or may be located next to the second chamber.

[0025] Preferably the nanostructure is further equipped with a field confining structure (e.g. nanoparticle(s) or a restricting channel constriction) that create an electromagnetic hotspot.

[0026] Antenna structures can be added on the radiation entry side of the membrane to increase the portion of incident radiation that is collected and to achieve stronger field intensity in the penetrating nanostructure. On the radiation exit side an antenna can be used to increase the portion of radiation that is converted into free-space propagating radiation and/or to shape the exit beam.

[0027] The nanostructure may be, for example, a pore or hole, e.g. circular, triangular, quadratic, oval or a slit or a channel.

[0028] The nanostructure can be a nanopore, e.g. having a size with a critical dimension smaller than 100 nm and preferably smaller than 10 nm and preferably smaller than 5 nm or 2 nm, e.g. 0.5 or 1 nm. A nanopore can have an inner diameter of at least about 0.5 nm, usually at least about 1 nm and more usually at least about 1.5 nm, where the diameter may be as great as 50 nm or greater.

[0029] The membrane is optionally coated with metal on both sides or only on the entry or exit side.

[0030] Further, by optimizing the design of the pore/cavity system, i.e. nanostructuring the membrane on top to maximize the capture process and nanostructuring the backside to maximize the re-emission process, the transmission can be maximized.

[0031] Another aspect the present invention provides a method for use with a membrane having a first and a second major surface and having a membrane penetrating nanostructure between the first and second major surfaces, the method comprising the steps of:

- directing electromagnetic radiation onto the nanostructure in the direction of the first major surface,
- translocating molecules through the nanostructure, detecting electromagnetic radiation that exits from the nanostructure away from the second major surface, transmission of electromagnetic radiation through the nanostructure being at least by excitation of surface plasmon polaritons in the nanostructure.

[0032] Transition of e.m. radiation through the penetrating nanostructure is preferably a combination of up to three effects: surface plasmons, transmission of light and re-emission. "Surface plasmons" refers to free space e.m. radiation (the impinging radiation) being converted to surface plasmon polaritons in the coupled pore/cavity system. The dipolar excitation in the pore decays radiatively, resulting in enhanced transmission.

[0033] The membrane penetrating nanostructure is illuminated by e.m. radiation having a wavelength. The membrane penetrating nanostructure preferably has a size that is sub-wavelength.

Brief Description of the Drawings

[0034] Figure 1: schematic of the intended apparatus.

Figure 2: schematic representation of the solid-state nanopore with electromagnetic functionality

Figure 3: various proposals for nanopore geometries.

Figure 4: Scanning electron micrograph of a KOH etched slit, the structure was cleaved in order to reveal its cross-section. The structure was coated with Au and acts as a resonant optical antenna.

Figure 5: (a) Sketch of the two-dimensional model (α = 68, defined by silicon crystal structure and KOH etch properties). (log|Ex|^2) Mode profiles at different frequencies of excitation (b) THz (c) THs (d) THz. A standing wave pattern is developed.

Figure 6: (a) Field intensity spectra (|Ex|^2). (b) Transmission spectra

Figure 7: a plot of transmission efficiency for point dipole source as function of position in the geometry.

Definitions

[0035] The term "membrane penetrating nanostructure" refers to a space through a membrane through which a molecule to be analyzed can pass. A membrane penetrating nanostructure should be understood as a structure having a nanoscale passageway through which a molecule can flow. The nanostructure is preferably designed such that the degrees of freedom for the movement of the molecule in the nanostructure is limited to a predefined direction, preferably from one side of the membrane to he other side of the membrane. Preferably, the movement should be limited to a 1D movement or line movement. The pore is not limited to the region through which the molecule flows, but can be larger such
that light can be coupled in the nanostructure. Therefore, the membrane penetrating nanostructure can be a nanopore, a nanoslit or a nanochannel.

The nanostructure may be, for example, a pore or hole, e.g., circular, triangular, quadratic, oval or a slit or a channel. The pore can be round, spherical, rectangular or can have any shape and can have a varying diameter across the thickness of the membrane. The term nanopore should be construed broadly to include nanoslits (two-dimensional equivalent) or nanochannels. A dimension which determines whether a molecule will pass, e.g., the distance across a slit, or the diameter of a hole, should be smaller than 100 nm and preferably smaller than 10 nm, e.g., less than 5 nm, less than 2 nm, e.g., 1 nm. The membrane penetrating nanostructure will be illuminated by light having a wavelength. The membrane penetrating nanostructure has a size that is sub-wavelength.

The term “Nucleic acid” encompasses DNA, RNA, single-stranded, double-stranded or triple-stranded and any chemical modifications thereof. Virtually any modification to the nucleic acid is contemplated. A “nucleic acid” may be of almost any length, from a small fragment up to a full-length chromosomal DNA molecule.

A “nucleoside” is a molecule comprising a purine or pyrimidine base or any chemical modification or structural analog thereof, covalently attached to a pentose sugar such as deoxyribose or ribose or derivatives or analogs of pentose sugars.

A “nucleotide” refers to a nucleoside further comprising at least one phosphate group covalently attached to the pentose sugar. The nucleotides to be detected may be ribonucleoside monophosphates or deoxyribonucleoside monophosphates although nucleoside diphosphates or triphosphates might be used. Alternatively, nucleosides may be released from the nucleic acid and detected. In other alternatives, purines or pyrimidines may be released, for example by acid treatment, and detected by Raman spectroscopy. Various substitutions or modifications may be made in the structure of the nucleotides, so long as they are still capable of being released from the nucleic acid, for example by exonuclease activity. For example, the ribose or deoxyribose moiety may be substituted with another pentose sugar or a pentose sugar analog. The phosphate groups may be substituted by various analogs. The purine or pyrimidine bases may be substituted or covalently modified. In embodiments involving labeled nucleotides, the label may be attached to any portion of the nucleotide so long as it does not interfere with exonuclease treatment.

A “Raman label” may be any organic or inorganic molecule, atom, complex or structure capable of producing a detectable Raman signal, including but not limited to synthetic molecules, dyes, naturally occurring pigments such as asphycoerythrin, organic nanostructures, metal nanostructures such as gold or silver nanoparticles or nanoprisms and nano-scale semiconductors such as quantum dots. “Raman label” encompasses any organic or inorganic atom, molecule, compound or structure known in the art that can be detected by Raman spectroscopy. Fluorescence labels, SERS labels, quantum dots and other label-types can be chosen, e.g., other labels can be metallic particles or magnetic particles.

Certain embodiments of the invention involve the use of nanoparticles to enhance the Raman signal obtained from nucleotides. The nanoparticles may be silver or gold nanoparticles, although any nanoparticles capable of providing a surface enhanced Raman spectroscopy (SERS), surface enhanced resonance Raman spectroscopy (SERRS) and/or coherent anti-Stokes Raman spectroscopy (CARS) signal may be used, e.g., Ag, Au, Cu, Al, Ni, Pt, Pd, particularly noble metals. A useful reference for particles and labels is: K. Kneipp, M. Moskovits, H. Kneipp (Eds.): Surface-Enhanced Raman Scattering - Physics and Applications, Topics Appl. Phys. 103, 1-18 (2006). Nanoparticles of between 1 nm and 2 nm in diameter may be used. Nanoparticles with an average diameter of 10 to 50 nm, 50 to 100 nm or about 100 nm are contemplated for certain applications. The nanoparticles may be approximately spherical in shape, although nanoparticles of any shape or of irregular shape may be used.

In certain embodiments of the invention, the nanoparticles may be random aggregates of nanoparticles (colloidal nanoparticles). In other embodiments, nanoparticles may be cross-linked to produce particular aggregates of nanoparticles, such as dimers, trimers, tetramers or other aggregates. Formation of “hot spots” for SERS, SERRS and/or CARS detection may be associated with particular aggregates of nanoparticles. Certain alternative embodiments may use heterogeneous mixtures of aggregates of different size or homogenous populations of nanoparticle aggregates. Aggregates containing a selected number of nanoparticles (dimers, trimers, etc.) may be enriched or purified by known techniques, such as ultracentrifugation in sucrose solutions.

Description of embodiments of the invention

The present invention will be described with respect to particular embodiments and with reference to certain drawings but the invention is not limited thereto but only by the claims. The drawings described are only schematic and are not-limiting. In the drawings, the size of some of the elements may be exaggerated and not drawn on scale for illustrative purposes. The dimensions and the relative dimensions do not correspond to actual reductions to practice of the invention.

Furthermore, the terms first, second, third and the like in the description and in the claims, are used for distinguishing between similar elements and not necessarily for describing a sequence, either temporally, spatially, in ranking or in any other manner. It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other sequences than described or illustrated herein.
Moreover, the terms top, bottom, over, under and the like in the description and the claims are used for descriptive purposes and not necessarily for describing relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other orientations than described or illustrated herein.

It is to be noticed that the term "comprising", used in the claims, should not be interpreted as being restricted to the means listed thereafter: it does not exclude other elements or steps. It is thus to be interpreted as specifying the presence of the stated features, integers, steps or components as referred to, but does not preclude the presence or addition of one or more other features, integers, steps or components, or groups thereof. Thus, the scope of the expression "a device comprising means A and B" should not be limited to devices consisting only of components A and B. It means that with respect to the present invention, the only relevant components of the device are A and B.

Figure 1 presents a sketch of an apparatus in accordance with an embodiment of the present invention. (The illustration is non-limiting and not to scale, some components in the drawing are not always required.) Two fluidic reservoirs 2, 4 are separated by a membrane 5 in which a membrane penetrating nanostructure such as a nanopore 6 is fabricated. A linear molecule such as comprising nucleic acids, DNA, RNA, single-stranded, double-stranded or triple stranded and any chemical modifications thereof a strand of DNA is translocated through the solid-state nanopore 6 by means of any suitable driving force, e.g. by electrophoresis. To this end, at least one electrode 3, 5 is mounted in each reservoir 2, 4, respectively and a voltage is supplied with a voltage regulator 10 (preferably feedback coupled). The device further consists of a source of electromagnetic radiation such as a light source 8 (which can be, for example, a LED, a laser incandescent lamp or any other type of light source) and optionally a lens system 13. The light source may be placed inside the upper reservoir or may be external to the upper reservoir and may illuminate the nanopore 6 through a window. In some instances, for example CARS spectroscopy) more than one light source can be used. The light is supplied from the top, i.e. from the upper reservoir 2 towards the lower reservoir 4. In the apparatus of Fig. 1 orthogonal light excitation is assumed but other angles of incidence at the nanopore 6 can also be chosen. The light interacts with the molecule inside the nanopore 6, this interaction is the basis for biomolecular analysis. Hence the nanopore can be an optical confinement. Important for the present invention is the fact that electromagnetic radiation such as light that has been transmitted through the nanopore 6 (rather than only reflected light) is used for the measurements. To this end specific optical functionality is built-in the nanopore 6. In the lower reservoir an optical detector 12 and a light capture system such as a lens system 14 are mounted that collect the transmitted light. The detector 12 may be located outside the lower reservoir and may view the nanopore 6 through a window in the lower reservoir. The output of the detector 12 may be supplied to an amplifier 7 such as a preamplifier and the output of the amplifier may be connected to read-out electronics. The read-out electronics may include a computing unit 9.

Hence, the membrane penetrating nanostructure such as a nanopore 6 itself can be an optical device, an optical confinement with carefully designed optical properties. Figure 2 displays a sketch of the membrane penetrating nanostructure such as a nanopore 6 that clarifies its functioning. (Again, the illustration is non-limiting and not to scale, and some components in the drawing are not always required.) A membrane penetrating nanostructure should be understood as a structure having a nanoscale passageway through which a molecule can flow. The nanostructure is preferably designed such that the degrees of freedom for the movement of the molecule in the nanostructure is limited to a predefined direction, preferably from one side of the membrane to the other side of the membrane. Preferably, the movement should be limited to a 1D movement or line movement. The pore can be round, spherical, rectangular or can have any shape and can have a varying diameter across the thickness of the membrane. The pore is not limited to the region through which the molecule flows, but can be larger such that light can be coupled in the nanostructure. Therefore, the membrane penetrating nanostructure can be a nanopore, a nanoslit or a nanochannel.

Other than as fluidic channel and passage for molecules, the membrane penetrating nanostructure such as the nanopore 6 acts as a channel for light transmission. In order to achieve light transmission through the sub-wavelength hole, the properties of surface plasmons polaritons are used. The transition of electromagnetic radiation through the penetrating nanostructure is a combination of up to three effects: surface plasmons, transmission of light and re-emission. Surface plasmons relates to free space electromagnetic radiation (the impinging radiation) being converted to surface plasmon polaritons in the coupled pore/cavity system. The dipolar excitation in the pore decays radiatively, resulting in enhanced transmission. So the transmission of electromagnetic radiation (or enhanced transmission) through the nanostructure is at least by excitation of surface plasmon polaritons in the nanostructure.

Furthermore, by optimizing the design of the pore/cavity system, i.e. nanostructuring the membrane on top to maximize the capture process and nanostructuring the backside to maximize the re-emission process, the transmission can be improved further and/or maximized. Transmission of light through this optical channel can occur based on two principles: via waveguiding of propagating modes in the channel or via evanescent non-propagating modes that couple through the channel to modes on the exit side (Genet2007).

Preferably, the nanopore is narrow and further equipped with a field confining structure 28 (e.g. nano-
through the membrane outside the pore region, is avoided.

membrane via parasitic pathways, i.e. transmission as a light transmission channel in embodiments of the present invention. Flow to a small section in the membrane, also functions that restricts molecular translocation and ionic current physically connects the upper and lower reservoir and enhanced spatial resolution. The nanopore 6, that the present invention offers further background reduction.

[0055] The transmission-based approach provided by the present invention offers further background reduction and enhanced spatial resolution. The nanopore 6, that physically connects the upper and lower reservoir and that restricts molecular translocation and ionic current flow to a small section in the membrane, also functions as a light transmission channel in embodiments of the present invention. Hereby light transmission through the membrane via parasitic pathways, i.e. transmission through the membrane outside the pore region, is avoided. Hence, optical signals that do not interact with the optical device mounted on or in the membrane are restricted from reaching the detector, thereby eliminating unwanted background signals. A strong interaction between the light in the transmission channel and the molecule in the nanopore are thereby achieved.

[0056] This embodiment also leads to greater spatial resolution: optical signals arising from molecular excitations outside the sensing region have a reduced probability to be transmitted and to be collected by the optical detector. As a result, the embodiment provides an extra technique for achieving larger spatial resolution.

[0057] The size of the nanopore 6 is preferably very small: critical dimension should be smaller than 100 nm and preferably smaller than 10 nm. The inner diameter of the nanopore may vary considerably depending on the intended use of the device. Typically, the channel or nanopore will have an inner diameter of at least about 0.5 nm, usually at least about 1 nm and more usually at least about 1.5 nm, where the diameter may be as great as 50 nm or longer.

[0058] Different properties set this requirement: (1) the translocation of linear molecules can be performed with greater control in small holes: simultaneous translocation of different molecules can be avoided or the conformation of the molecule can be controlled in a better manner. (2) In some instances ionic currents through the nanopore are sensed that can provide further information about the presence of the molecule in the nanopore, or even on the structural conformation of the translocating molecule. In general, small holes give rise to a better signal-to-noise ratio for such measurement. (3) Smaller nanopore structures are expected to lead to stronger field-confinement (and thus greater spatial resolution): stronger electromagnetic fields can be excited in a plasmonic antenna when the feed-gap size is reduced. (4) The effective size of the optical transmission channel is determined by the physical size of the nanopore. Stronger background reduction can be achieved for a narrower optical channel.

[0059] Plasmonic materials allow guiding light in smaller volumes. The use of plasmonic properties to decrease the size of the optical transmission channel is therefore important for the present invention. Light propagation through the optical channel can occur via guided plasmonic modes or via evanescent coupling of an electromagnetic mode on the entry side to an electromagnetic mode on the exit side.

[0060] The radiation pattern of the light exiting the membrane can be controlled through design: a dipolar radiation pattern, for example, can be achieved, or, in a more sophisticated implementation, antenna structures 24, 26 on the exit side can be provided to guide the light. This feature can be important for improving signal-to-noise and further reduction of background signals: the optical collection system in the lower reservoir can be optimized for collecting light emanating from the nanopore aperture, a directed output signal can be detected with greater efficiency and leads to a better signal-to-noise.
Furthermore, unwanted light collection is further suppressed. In the example of Figure 1, this can be achieved with a lens 14 and a pinhole 16 placed in a conjugate plane.

[0061] Both or either antenna structures and cavity effects can be used with the present invention. Antenna structures on the entry side help to increase the light collection efficiency and help to amplify the field intensity enhancement achievable with the channel structure itself or with the field-confining structures mounted in the channel. In accordance with a further embodiment of the present invention a gap-mode resonator is provided mounted in a surface plasmon cavity that exemplifies that antenna structures or cavities that can lead to improved performance.

[0062] The optical interaction that is exploited in the nanopore 6 can be chosen from the realm of optical spectroscopy techniques known to the skilled person. A first option is found in the amount of light transmission: the translocating molecule can modulate the transmission spectrum, information on the presence and structural information can be obtained by measuring the transmission signal. Other options are found in fluorescence, SERS, SEIRA, CARS. All these techniques greatly benefit the present invention by confinement of electromagnetic energy to a small volume to increase signal strength and spatial resolution.

[0063] For virtually all of the optical techniques listed above, signals can be enhanced by means of optical labels in accordance with an embodiment of the present invention. Fluorescence labels, SERS labels, CARS labels, quantum dots and other label-types can be chosen. Labels can be attached to the molecule under study before or during the measurement. Labels can be provided to enhance the contrast between different segments of the molecule (e.g. labels specific to nucleotides in the case of DNA sequencing) or to mark specific locations of interest on the molecule (e.g. start or end of genes in the case of DNA).

[0064] Implementations with above-described devices assembled in an array format with the aim of improving the throughput are of course also claimed.

[0065] The molecule to be investigated can be, for example a DNA molecule, RNA molecule, polycaccharide, polypeptide or protein, lipids

[0066] In the following fabrication schemes nanopore geometries are provided for various designs of the nanopores with optical functionality described above (see Figure 3) in accordance with embodiments of the present invention. One embodiment will be described in detail. Rectangular and triangular hole shapes are included within the scope of the present invention. The membranes are optionally coated with metal on both sides or only on the entry or exit side. Suitable metals are gold and silver, Cu or Al. Antennas can optionally be added on one or on both sides. In embodiments described below groove patterns are illustrated. Solid-state pores in membranes can be fabricated with the numerous techniques known in the art. For example dry or wet etching can be used.

[0067] All the geometries depicted in Fig. 3 represent cross-sections of the pore region. The term nanopore should be construed broadly to include nanoslits (two-dimensional equivalent) or nanochannels

[0068] An embodiment of the present invention will be described with reference to a controllable SERS substrate and a cavity formed using KOH with feed gap. In this embodiment use is made of anisotropic etching of silicon in KOH or TMAH etch solutions to create a nanopore. In such etch solution, the chemical etching of silicon along the <111> crystal direction is greatly retarded with respect to etching along the <100> crystal direction. Building on this property, pyramidal etch-pits or triangular slits can be defined enclosed by (111) crystal planes. (100) SOI material (Silicon on Insulator) can be used as the substrate. Figure 4 shows a scanning electron micrograph of the obtained structure. Note that the slit is, in this case, not made in a membrane, membranes can be obtained through etching of the silicon backside material. The structure was coated with Au and acts as a resonant optical antenna and a considerable portion of the light impinging on the structures is transmitted. Greatest field confinement is achieved in the gap and the gap mode is responsible for the greatest share of light transmission.

[0069] The KOH pit acts as a resonant cavity for surface plasmon on the metal sidewalls of the pits. The resonance condition of the etch-pit depends on the size of the cavity and the wavelength of the surface plasmon polariton. In the geometry of this embodiment having a KOH-etched groove with a slit at the bottom, these cavity effects are equally important. Use was made of a Finite Difference Time Domain (FDTD) solver to investigate the optical properties of this pit-with-slit-geometry. A two-dimensional model was made that can accurately render the behavior of long slits as pyramidal etch-pits behave similarly but 3D models are needed to render the behavior of such slit geometry accurately. The thickness of the silicon top layer was taken to be 750 nm, a Au layer with a uniform thickness of 60 nm covers the silicon structure.

[0070] In Figure 5 (a) the model is illustrated schematically. In panels (b), (c) and (d) of the same figure mode profiles at different frequencies of excitation are represented (log|E|^2). A clear standing wave pattern is developed, evidence for constructive interference in the cavity. The narrow slit at the bottom of the groove strongly influences the optical properties of the overall structure. In a second model, the optical properties of thin triangular slits in accordance with another embodiment were investigated in order to study the effect of the slit separately. In this model use was made of a 50 nm thick gold film with triangular holes etched in them. Field intensity in the center of the slit is plotted in Figure 6. The structure has a clear resonance at 480 THz. In the same plot the field intensity versus frequency graph is provided for an etch groove without slit, a 2-dimensional variant of the geometry investigated in reference (Perney2006,
In this case the field intensity was probed at the apex of the triangular groove. In the same figure the field intensity probed in a groove-with-slit geometry is plotted. It is clear that this third spectrum contains features from the pure slit-mode and the cavity mode of the groove. The cavity amplifies the slit mode and functions as an antenna. The field intensity in the gap and at resonance is expected to depend on the antenna arm length: one expects an enhanced field intensity when the antenna is matched to the gap resonance. In literature, such feedgap coupled to an antenna is occasionally termed resonant optical antenna.

[0071] In panel (b) of the same Figure 5 the transmission spectra for a gold membrane with triangular pit and the slit mounted in a cavity are plotted. The transmission efficiency on resonance is substantial (10% of plane wave radiation is transmitted). Note that the high efficiency of transmission at frequencies > 600 THz for the triangular slit is due to the transparency of gold in this frequency regime, the triangular slit does not have a great influence on the total transmission in this part of the spectrum. The above results provide insight in the functioning of the KOH-defined slits as resonant optical antenna with strong enhancement of the attainable field confinement and local field intensity, and also elucidates that a significant portion of the impinging light can be transmitted through a narrow portion of such geometry. 3D simulations on KOH defined etch pits with a square hole at the bottom (opposed to long rectangular slits in KOH-etched grooves) reveal that in terms of field-intensity slits are the better choice. This is due to a better charge separation, or, put alternatively, elimination of charge-shunting currents for the slit geometry.

[0073] In the embodiment described above, the cavity is defined by the sidewalls of the etch-pit. Other types of cavities or antenna structures can also be considered. Metal antenna structures consisting of corrugations in a metal film such as in some of the examples drawings of figure 3. Additionally, photonic cavities (made with dielectric materials) can also be coupled to the plasmonic antenna-mode resonator in the channel (Kim1999). The above described geometry in combination with a transmission based measurement can lead to enhanced spatial resolution. The transmission efficiency of light generated by point dipoles placed at different locations in the geometry (dipole orientation: along the x-axis) have been calculated. The result of all calculations is summarized in the plot of Figure 7. This ‘transmission matrix’ indicates that a dipole excited close to the feedgap has a much greater transmission efficiency than a dipole placed at a larger distance from the hotspot. Unwanted signals, arising from molecules or part of a molecule outside the sensing area, therefore contribute less to the total collected signal.

References

Claims

1. An apparatus comprising:

 a membrane having a first and a second major
surface and having a membrane penetrating nanostructure between the first and second major surfaces,
a source of electromagnetic radiation that impinges radiation on the nanostructure in the direction of the first major surface,
means for translocating molecules through the nanostructure,
a detection unit for detecting electromagnetic radiation that exits from the nanostructure away from the second major surface, transmission of electromagnetic radiation through the nanostructure being at least by excitation of surface plasmon polaritons in the nanostructure.

2. The apparatus according to claim 1, further comprising a first and second chamber and the membrane placed between the chambers.

3. The apparatus of claim 2, wherein the means for translocating includes electrodes that may be placed in the first and second chambers and connected to a source of electrical power.

4. The apparatus of claim 2 or 3, wherein the source of electromagnetic radiation is placed in or adjacent the first chamber and further comprising an optical detector placed in the second chamber or located next to the second chamber.

5. The apparatus according to any of the above claims wherein the penetrating nanostructure is further equipped with a field confining structure that create an electromagnetic hotspot.

6. The apparatus of claim 5, wherein the field confining structure comprises nanoparticle(s) or a restricting channel constriction.

7. The apparatus of any of the above claims further comprising at least one antenna structure on the first major surface of the membrane to increase the portion of incident radiation that is collected and to achieve stronger field intensity in the penetrating nanostructure.

8. The apparatus according to any previous claim further comprising at least one antenna located on the second major surface to increase the portion of radiation that is converted into free-space propagating radiation and/or to shape the exit radiation beam.

9. The apparatus according to any previous claim, wherein the penetrating nanostructure is a pore or hole, a slit or a channel.

10. The apparatus according to claim 9, wherein the penetrating nanostructure is a nanopore, having a size with a critical dimension smaller than 100 nm and preferably smaller than 10 nm.

11. The apparatus according to any previous claim, wherein the membrane is coated with metal on both first and second major surfaces or only on the first or second major surfaces.

12. The apparatus according to any previous claim wherein electromagnetic radiation has a wavelength and the membrane penetrating nanostructure has a size that is sub-wavelength.

13. A method for use with a membrane having a first and a second major surface and having a membrane penetrating nanostructure between the first and second major surfaces, the method comprising the steps of:

directing electromagnetic radiation onto the nanostructure in the direction of the first major surface,
translocating molecules through the nanostructure,
detecting electromagnetic radiation that exits from the nanostructure away from the second major surface, transmission of electromagnetic radiation through the nanostructure being at least by excitation of surface plasmon polaritons in the nanostructure.

14. The method of claim 13, wherein the transition of e.m. radiation through the penetrating nanostructure is carried out a combination of up to three effects: surface plasmons, transmission of light and re-emission.

15. The method of claim 13 or 14, wherein the molecules are optical labeled.
Fig. 1
Fig. 2

Incoming light

20 Antenna

Membrane

Field confining structure

Optical channel

22 Molecule

26 Transmitted light

28

Fig. 3

FIG. 4
(a) 2D-Model

(b)

(c)

(d)

FIG. 5
FIG. 6

FIG. 7
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 03/016781 A (HARVARD COLLEGE [US]); STARK PETER RANDOLPH HAZARD [US]; LARSON DALE N) 27 February 2003 (2003-02-27) * page 40, paragraph 2 - page 41, paragraph 2; figure 25 *</td>
<td>1-15</td>
<td>INV. G01N21/64 ADD. 01N8/00 01N10/00</td>
</tr>
<tr>
<td>A</td>
<td>WO 03/019245 A (UNIV PASTEUR [FR]; CENTRE NAT RECH SCIENT [FR]; LEZEC HENRI JOSEPH [FR]) 6 March 2003 (2003-03-06)</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>A,D</td>
<td>DEAMER D W ET AL: "Nanopores and nucleic acids: prospects for ultrarapid sequencing" TRENDS IN BIOTECHNOLOGY, ELSEVIER PUBLICATIONS, CAMBRIDGE, GB, vol. 18, no. 4, 1 April 2000 (2000-04-01), pages 147-151, XP004194002 ISSN: 0167-7799</td>
<td>----</td>
<td>-/--</td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

Verbandt, Yves

CATEGORY OF CITED DOCUMENTS

- **X:** particularly relevant if taken alone
- **Y:** particularly relevant if combined with another document of the same category
- **A:** technological background
- **O:** non-written disclosure
- **P:** intermediate document
- **T:** theory or principle underlying the invention
- **E:** earlier patent document, but published on, or after the filing date
- **D:** document cited in the application
- **L:** document cited for other reasons
- **A:** member of the same patent family, corresponding document
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
</table>

The present search report has been drawn up for all claims

Place of search: The Hague
Date of completion of the search: 14 May 2009
Examiner: Verbandt, Yves
ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 08 17 1127

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

14-05-2009

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 03016781 A</td>
<td>27-02-2003</td>
<td>AU 2002332552 A1</td>
<td>03-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003036204 A1</td>
<td>20-02-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003028774 A</td>
<td>29-01-2003</td>
</tr>
<tr>
<td>US 2008231834 A1</td>
<td>25-09-2008</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description